1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * drivers/pwm/pwm-tegra.c
5 * Tegra pulse-width-modulation controller driver
7 * Copyright (c) 2010-2020, NVIDIA Corporation.
8 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
10 * Overview of Tegra Pulse Width Modulator Register:
11 * 1. 13-bit: Frequency division (SCALE)
12 * 2. 8-bit : Pulse division (DUTY)
13 * 3. 1-bit : Enable bit
15 * The PWM clock frequency is divided by 256 before subdividing it based
16 * on the programmable frequency division value to generate the required
17 * frequency for PWM output. The maximum output frequency that can be
18 * achieved is (max rate of source clock) / 256.
19 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20 * 408 MHz/256 = 1.6 MHz.
21 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
23 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24 * To achieve 100% duty cycle, program Bit [24] of this register to
25 * 1’b1. In which case the other bits [23:16] are set to don't care.
28 * - When PWM is disabled, the output is driven to inactive.
29 * - It does not allow the current PWM period to complete and
32 * - If the register is reconfigured while PWM is running,
33 * it does not complete the currently running period.
35 * - If the user input duty is beyond acceptible limits,
36 * -EINVAL is returned.
39 #include <linux/clk.h>
40 #include <linux/err.h>
42 #include <linux/module.h>
44 #include <linux/of_device.h>
45 #include <linux/pwm.h>
46 #include <linux/platform_device.h>
47 #include <linux/pinctrl/consumer.h>
48 #include <linux/slab.h>
49 #include <linux/reset.h>
51 #define PWM_ENABLE (1 << 31)
52 #define PWM_DUTY_WIDTH 8
53 #define PWM_DUTY_SHIFT 16
54 #define PWM_SCALE_WIDTH 13
55 #define PWM_SCALE_SHIFT 0
57 struct tegra_pwm_soc
{
58 unsigned int num_channels
;
60 /* Maximum IP frequency for given SoCs */
61 unsigned long max_frequency
;
64 struct tegra_pwm_chip
{
69 struct reset_control
*rst
;
71 unsigned long clk_rate
;
72 unsigned long min_period_ns
;
76 const struct tegra_pwm_soc
*soc
;
79 static inline struct tegra_pwm_chip
*to_tegra_pwm_chip(struct pwm_chip
*chip
)
81 return container_of(chip
, struct tegra_pwm_chip
, chip
);
84 static inline u32
pwm_readl(struct tegra_pwm_chip
*chip
, unsigned int num
)
86 return readl(chip
->regs
+ (num
<< 4));
89 static inline void pwm_writel(struct tegra_pwm_chip
*chip
, unsigned int num
,
92 writel(val
, chip
->regs
+ (num
<< 4));
95 static int tegra_pwm_config(struct pwm_chip
*chip
, struct pwm_device
*pwm
,
96 int duty_ns
, int period_ns
)
98 struct tegra_pwm_chip
*pc
= to_tegra_pwm_chip(chip
);
99 unsigned long long c
= duty_ns
, hz
;
100 unsigned long rate
, required_clk_rate
;
105 * Convert from duty_ns / period_ns to a fixed number of duty ticks
106 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
107 * nearest integer during division.
109 c
*= (1 << PWM_DUTY_WIDTH
);
110 c
= DIV_ROUND_CLOSEST_ULL(c
, period_ns
);
112 val
= (u32
)c
<< PWM_DUTY_SHIFT
;
115 * min period = max clock limit >> PWM_DUTY_WIDTH
117 if (period_ns
< pc
->min_period_ns
)
121 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
122 * cycles at the PWM clock rate will take period_ns nanoseconds.
124 * num_channels: If single instance of PWM controller has multiple
125 * channels (e.g. Tegra210 or older) then it is not possible to
126 * configure separate clock rates to each of the channels, in such
127 * case the value stored during probe will be referred.
129 * If every PWM controller instance has one channel respectively, i.e.
130 * nums_channels == 1 then only the clock rate can be modified
131 * dynamically (e.g. Tegra186 or Tegra194).
133 if (pc
->soc
->num_channels
== 1) {
135 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
136 * with the maximum possible rate that the controller can
137 * provide. Any further lower value can be derived by setting
140 * required_clk_rate is a reference rate for source clock and
141 * it is derived based on user requested period. By setting the
142 * source clock rate as required_clk_rate, PWM controller will
143 * be able to configure the requested period.
146 (NSEC_PER_SEC
/ period_ns
) << PWM_DUTY_WIDTH
;
148 err
= clk_set_rate(pc
->clk
, required_clk_rate
);
152 /* Store the new rate for further references */
153 pc
->clk_rate
= clk_get_rate(pc
->clk
);
156 rate
= pc
->clk_rate
>> PWM_DUTY_WIDTH
;
158 /* Consider precision in PWM_SCALE_WIDTH rate calculation */
159 hz
= DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC
, period_ns
);
160 rate
= DIV_ROUND_CLOSEST_ULL(100ULL * rate
, hz
);
163 * Since the actual PWM divider is the register's frequency divider
164 * field plus 1, we need to decrement to get the correct value to
165 * write to the register.
171 * Make sure that the rate will fit in the register's frequency
174 if (rate
>> PWM_SCALE_WIDTH
)
177 val
|= rate
<< PWM_SCALE_SHIFT
;
180 * If the PWM channel is disabled, make sure to turn on the clock
181 * before writing the register. Otherwise, keep it enabled.
183 if (!pwm_is_enabled(pwm
)) {
184 err
= clk_prepare_enable(pc
->clk
);
190 pwm_writel(pc
, pwm
->hwpwm
, val
);
193 * If the PWM is not enabled, turn the clock off again to save power.
195 if (!pwm_is_enabled(pwm
))
196 clk_disable_unprepare(pc
->clk
);
201 static int tegra_pwm_enable(struct pwm_chip
*chip
, struct pwm_device
*pwm
)
203 struct tegra_pwm_chip
*pc
= to_tegra_pwm_chip(chip
);
207 rc
= clk_prepare_enable(pc
->clk
);
211 val
= pwm_readl(pc
, pwm
->hwpwm
);
213 pwm_writel(pc
, pwm
->hwpwm
, val
);
218 static void tegra_pwm_disable(struct pwm_chip
*chip
, struct pwm_device
*pwm
)
220 struct tegra_pwm_chip
*pc
= to_tegra_pwm_chip(chip
);
223 val
= pwm_readl(pc
, pwm
->hwpwm
);
225 pwm_writel(pc
, pwm
->hwpwm
, val
);
227 clk_disable_unprepare(pc
->clk
);
230 static const struct pwm_ops tegra_pwm_ops
= {
231 .config
= tegra_pwm_config
,
232 .enable
= tegra_pwm_enable
,
233 .disable
= tegra_pwm_disable
,
234 .owner
= THIS_MODULE
,
237 static int tegra_pwm_probe(struct platform_device
*pdev
)
239 struct tegra_pwm_chip
*pwm
;
243 pwm
= devm_kzalloc(&pdev
->dev
, sizeof(*pwm
), GFP_KERNEL
);
247 pwm
->soc
= of_device_get_match_data(&pdev
->dev
);
248 pwm
->dev
= &pdev
->dev
;
250 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
251 pwm
->regs
= devm_ioremap_resource(&pdev
->dev
, r
);
252 if (IS_ERR(pwm
->regs
))
253 return PTR_ERR(pwm
->regs
);
255 platform_set_drvdata(pdev
, pwm
);
257 pwm
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
258 if (IS_ERR(pwm
->clk
))
259 return PTR_ERR(pwm
->clk
);
261 /* Set maximum frequency of the IP */
262 ret
= clk_set_rate(pwm
->clk
, pwm
->soc
->max_frequency
);
264 dev_err(&pdev
->dev
, "Failed to set max frequency: %d\n", ret
);
269 * The requested and configured frequency may differ due to
270 * clock register resolutions. Get the configured frequency
271 * so that PWM period can be calculated more accurately.
273 pwm
->clk_rate
= clk_get_rate(pwm
->clk
);
275 /* Set minimum limit of PWM period for the IP */
277 (NSEC_PER_SEC
/ (pwm
->soc
->max_frequency
>> PWM_DUTY_WIDTH
)) + 1;
279 pwm
->rst
= devm_reset_control_get_exclusive(&pdev
->dev
, "pwm");
280 if (IS_ERR(pwm
->rst
)) {
281 ret
= PTR_ERR(pwm
->rst
);
282 dev_err(&pdev
->dev
, "Reset control is not found: %d\n", ret
);
286 reset_control_deassert(pwm
->rst
);
288 pwm
->chip
.dev
= &pdev
->dev
;
289 pwm
->chip
.ops
= &tegra_pwm_ops
;
291 pwm
->chip
.npwm
= pwm
->soc
->num_channels
;
293 ret
= pwmchip_add(&pwm
->chip
);
295 dev_err(&pdev
->dev
, "pwmchip_add() failed: %d\n", ret
);
296 reset_control_assert(pwm
->rst
);
303 static int tegra_pwm_remove(struct platform_device
*pdev
)
305 struct tegra_pwm_chip
*pc
= platform_get_drvdata(pdev
);
312 err
= clk_prepare_enable(pc
->clk
);
316 for (i
= 0; i
< pc
->chip
.npwm
; i
++) {
317 struct pwm_device
*pwm
= &pc
->chip
.pwms
[i
];
319 if (!pwm_is_enabled(pwm
))
320 if (clk_prepare_enable(pc
->clk
) < 0)
323 pwm_writel(pc
, i
, 0);
325 clk_disable_unprepare(pc
->clk
);
328 reset_control_assert(pc
->rst
);
329 clk_disable_unprepare(pc
->clk
);
331 return pwmchip_remove(&pc
->chip
);
334 #ifdef CONFIG_PM_SLEEP
335 static int tegra_pwm_suspend(struct device
*dev
)
337 return pinctrl_pm_select_sleep_state(dev
);
340 static int tegra_pwm_resume(struct device
*dev
)
342 return pinctrl_pm_select_default_state(dev
);
346 static const struct tegra_pwm_soc tegra20_pwm_soc
= {
348 .max_frequency
= 48000000UL,
351 static const struct tegra_pwm_soc tegra186_pwm_soc
= {
353 .max_frequency
= 102000000UL,
356 static const struct tegra_pwm_soc tegra194_pwm_soc
= {
358 .max_frequency
= 408000000UL,
361 static const struct of_device_id tegra_pwm_of_match
[] = {
362 { .compatible
= "nvidia,tegra20-pwm", .data
= &tegra20_pwm_soc
},
363 { .compatible
= "nvidia,tegra186-pwm", .data
= &tegra186_pwm_soc
},
364 { .compatible
= "nvidia,tegra194-pwm", .data
= &tegra194_pwm_soc
},
367 MODULE_DEVICE_TABLE(of
, tegra_pwm_of_match
);
369 static const struct dev_pm_ops tegra_pwm_pm_ops
= {
370 SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend
, tegra_pwm_resume
)
373 static struct platform_driver tegra_pwm_driver
= {
376 .of_match_table
= tegra_pwm_of_match
,
377 .pm
= &tegra_pwm_pm_ops
,
379 .probe
= tegra_pwm_probe
,
380 .remove
= tegra_pwm_remove
,
383 module_platform_driver(tegra_pwm_driver
);
385 MODULE_LICENSE("GPL");
386 MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
387 MODULE_DESCRIPTION("Tegra PWM controller driver");
388 MODULE_ALIAS("platform:tegra-pwm");