Merge branch 'work.regset' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / drivers / staging / octeon-usb / octeon-hcd.h
blob9ed619c93a4ede8ae2e8448fcc32311cd7bdaa49
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Octeon HCD hardware register definitions.
5 * This file is subject to the terms and conditions of the GNU General Public
6 * License. See the file "COPYING" in the main directory of this archive
7 * for more details.
9 * Some parts of the code were originally released under BSD license:
11 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
12 * reserved.
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met:
18 * * Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
21 * * Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials provided
24 * with the distribution.
26 * * Neither the name of Cavium Networks nor the names of
27 * its contributors may be used to endorse or promote products
28 * derived from this software without specific prior written
29 * permission.
31 * This Software, including technical data, may be subject to U.S. export
32 * control laws, including the U.S. Export Administration Act and its associated
33 * regulations, and may be subject to export or import regulations in other
34 * countries.
36 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
37 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
38 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
39 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
40 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
41 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
42 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
43 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
44 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
45 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
48 #ifndef __OCTEON_HCD_H__
49 #define __OCTEON_HCD_H__
51 #include <asm/bitfield.h>
53 #define CVMX_USBCXBASE 0x00016F0010000000ull
54 #define CVMX_USBCXREG1(reg, bid) \
55 (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
56 ((bid) & 1) * 0x100000000000ull)
57 #define CVMX_USBCXREG2(reg, bid, off) \
58 (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
59 (((off) & 7) + ((bid) & 1) * 0x8000000000ull) * 32)
61 #define CVMX_USBCX_GAHBCFG(bid) CVMX_USBCXREG1(0x008, bid)
62 #define CVMX_USBCX_GHWCFG3(bid) CVMX_USBCXREG1(0x04c, bid)
63 #define CVMX_USBCX_GINTMSK(bid) CVMX_USBCXREG1(0x018, bid)
64 #define CVMX_USBCX_GINTSTS(bid) CVMX_USBCXREG1(0x014, bid)
65 #define CVMX_USBCX_GNPTXFSIZ(bid) CVMX_USBCXREG1(0x028, bid)
66 #define CVMX_USBCX_GNPTXSTS(bid) CVMX_USBCXREG1(0x02c, bid)
67 #define CVMX_USBCX_GOTGCTL(bid) CVMX_USBCXREG1(0x000, bid)
68 #define CVMX_USBCX_GRSTCTL(bid) CVMX_USBCXREG1(0x010, bid)
69 #define CVMX_USBCX_GRXFSIZ(bid) CVMX_USBCXREG1(0x024, bid)
70 #define CVMX_USBCX_GRXSTSPH(bid) CVMX_USBCXREG1(0x020, bid)
71 #define CVMX_USBCX_GUSBCFG(bid) CVMX_USBCXREG1(0x00c, bid)
72 #define CVMX_USBCX_HAINT(bid) CVMX_USBCXREG1(0x414, bid)
73 #define CVMX_USBCX_HAINTMSK(bid) CVMX_USBCXREG1(0x418, bid)
74 #define CVMX_USBCX_HCCHARX(off, bid) CVMX_USBCXREG2(0x500, bid, off)
75 #define CVMX_USBCX_HCFG(bid) CVMX_USBCXREG1(0x400, bid)
76 #define CVMX_USBCX_HCINTMSKX(off, bid) CVMX_USBCXREG2(0x50c, bid, off)
77 #define CVMX_USBCX_HCINTX(off, bid) CVMX_USBCXREG2(0x508, bid, off)
78 #define CVMX_USBCX_HCSPLTX(off, bid) CVMX_USBCXREG2(0x504, bid, off)
79 #define CVMX_USBCX_HCTSIZX(off, bid) CVMX_USBCXREG2(0x510, bid, off)
80 #define CVMX_USBCX_HFIR(bid) CVMX_USBCXREG1(0x404, bid)
81 #define CVMX_USBCX_HFNUM(bid) CVMX_USBCXREG1(0x408, bid)
82 #define CVMX_USBCX_HPRT(bid) CVMX_USBCXREG1(0x440, bid)
83 #define CVMX_USBCX_HPTXFSIZ(bid) CVMX_USBCXREG1(0x100, bid)
84 #define CVMX_USBCX_HPTXSTS(bid) CVMX_USBCXREG1(0x410, bid)
86 #define CVMX_USBNXBID1(bid) (((bid) & 1) * 0x10000000ull)
87 #define CVMX_USBNXBID2(bid) (((bid) & 1) * 0x100000000000ull)
89 #define CVMX_USBNXREG1(reg, bid) \
90 (CVMX_ADD_IO_SEG(0x0001180068000000ull | reg) + CVMX_USBNXBID1(bid))
91 #define CVMX_USBNXREG2(reg, bid) \
92 (CVMX_ADD_IO_SEG(0x00016F0000000000ull | reg) + CVMX_USBNXBID2(bid))
94 #define CVMX_USBNX_CLK_CTL(bid) CVMX_USBNXREG1(0x10, bid)
95 #define CVMX_USBNX_DMA0_INB_CHN0(bid) CVMX_USBNXREG2(0x818, bid)
96 #define CVMX_USBNX_DMA0_OUTB_CHN0(bid) CVMX_USBNXREG2(0x858, bid)
97 #define CVMX_USBNX_USBP_CTL_STATUS(bid) CVMX_USBNXREG1(0x18, bid)
99 /**
100 * cvmx_usbc#_gahbcfg
102 * Core AHB Configuration Register (GAHBCFG)
104 * This register can be used to configure the core after power-on or a change in
105 * mode of operation. This register mainly contains AHB system-related
106 * configuration parameters. The AHB is the processor interface to the O2P USB
107 * core. In general, software need not know about this interface except to
108 * program the values as specified.
110 * The application must program this register as part of the O2P USB core
111 * initialization. Do not change this register after the initial programming.
113 union cvmx_usbcx_gahbcfg {
114 u32 u32;
116 * struct cvmx_usbcx_gahbcfg_s
117 * @ptxfemplvl: Periodic TxFIFO Empty Level (PTxFEmpLvl)
118 * Software should set this bit to 0x1.
119 * Indicates when the Periodic TxFIFO Empty Interrupt bit in the
120 * Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This
121 * bit is used only in Slave mode.
122 * * 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic
123 * TxFIFO is half empty
124 * * 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic
125 * TxFIFO is completely empty
126 * @nptxfemplvl: Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl)
127 * Software should set this bit to 0x1.
128 * Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in
129 * the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered.
130 * This bit is used only in Slave mode.
131 * * 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non-
132 * Periodic TxFIFO is half empty
133 * * 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non-
134 * Periodic TxFIFO is completely empty
135 * @dmaen: DMA Enable (DMAEn)
136 * * 1'b0: Core operates in Slave mode
137 * * 1'b1: Core operates in a DMA mode
138 * @hbstlen: Burst Length/Type (HBstLen)
139 * This field has not effect and should be left as 0x0.
140 * @glblintrmsk: Global Interrupt Mask (GlblIntrMsk)
141 * Software should set this field to 0x1.
142 * The application uses this bit to mask or unmask the interrupt
143 * line assertion to itself. Irrespective of this bit's setting,
144 * the interrupt status registers are updated by the core.
145 * * 1'b0: Mask the interrupt assertion to the application.
146 * * 1'b1: Unmask the interrupt assertion to the application.
148 struct cvmx_usbcx_gahbcfg_s {
149 __BITFIELD_FIELD(u32 reserved_9_31 : 23,
150 __BITFIELD_FIELD(u32 ptxfemplvl : 1,
151 __BITFIELD_FIELD(u32 nptxfemplvl : 1,
152 __BITFIELD_FIELD(u32 reserved_6_6 : 1,
153 __BITFIELD_FIELD(u32 dmaen : 1,
154 __BITFIELD_FIELD(u32 hbstlen : 4,
155 __BITFIELD_FIELD(u32 glblintrmsk : 1,
156 ;)))))))
157 } s;
161 * cvmx_usbc#_ghwcfg3
163 * User HW Config3 Register (GHWCFG3)
165 * This register contains the configuration options of the O2P USB core.
167 union cvmx_usbcx_ghwcfg3 {
168 u32 u32;
170 * struct cvmx_usbcx_ghwcfg3_s
171 * @dfifodepth: DFIFO Depth (DfifoDepth)
172 * This value is in terms of 32-bit words.
173 * * Minimum value is 32
174 * * Maximum value is 32768
175 * @ahbphysync: AHB and PHY Synchronous (AhbPhySync)
176 * Indicates whether AHB and PHY clocks are synchronous to
177 * each other.
178 * * 1'b0: No
179 * * 1'b1: Yes
180 * This bit is tied to 1.
181 * @rsttype: Reset Style for Clocked always Blocks in RTL (RstType)
182 * * 1'b0: Asynchronous reset is used in the core
183 * * 1'b1: Synchronous reset is used in the core
184 * @optfeature: Optional Features Removed (OptFeature)
185 * Indicates whether the User ID register, GPIO interface ports,
186 * and SOF toggle and counter ports were removed for gate count
187 * optimization.
188 * @vendor_control_interface_support: Vendor Control Interface Support
189 * * 1'b0: Vendor Control Interface is not available on the core.
190 * * 1'b1: Vendor Control Interface is available.
191 * @i2c_selection: I2C Selection
192 * * 1'b0: I2C Interface is not available on the core.
193 * * 1'b1: I2C Interface is available on the core.
194 * @otgen: OTG Function Enabled (OtgEn)
195 * The application uses this bit to indicate the O2P USB core's
196 * OTG capabilities.
197 * * 1'b0: Not OTG capable
198 * * 1'b1: OTG Capable
199 * @pktsizewidth: Width of Packet Size Counters (PktSizeWidth)
200 * * 3'b000: 4 bits
201 * * 3'b001: 5 bits
202 * * 3'b010: 6 bits
203 * * 3'b011: 7 bits
204 * * 3'b100: 8 bits
205 * * 3'b101: 9 bits
206 * * 3'b110: 10 bits
207 * * Others: Reserved
208 * @xfersizewidth: Width of Transfer Size Counters (XferSizeWidth)
209 * * 4'b0000: 11 bits
210 * * 4'b0001: 12 bits
211 * - ...
212 * * 4'b1000: 19 bits
213 * * Others: Reserved
215 struct cvmx_usbcx_ghwcfg3_s {
216 __BITFIELD_FIELD(u32 dfifodepth : 16,
217 __BITFIELD_FIELD(u32 reserved_13_15 : 3,
218 __BITFIELD_FIELD(u32 ahbphysync : 1,
219 __BITFIELD_FIELD(u32 rsttype : 1,
220 __BITFIELD_FIELD(u32 optfeature : 1,
221 __BITFIELD_FIELD(u32 vendor_control_interface_support : 1,
222 __BITFIELD_FIELD(u32 i2c_selection : 1,
223 __BITFIELD_FIELD(u32 otgen : 1,
224 __BITFIELD_FIELD(u32 pktsizewidth : 3,
225 __BITFIELD_FIELD(u32 xfersizewidth : 4,
226 ;))))))))))
227 } s;
231 * cvmx_usbc#_gintmsk
233 * Core Interrupt Mask Register (GINTMSK)
235 * This register works with the Core Interrupt register to interrupt the
236 * application. When an interrupt bit is masked, the interrupt associated with
237 * that bit will not be generated. However, the Core Interrupt (GINTSTS)
238 * register bit corresponding to that interrupt will still be set.
239 * Mask interrupt: 1'b0, Unmask interrupt: 1'b1
241 union cvmx_usbcx_gintmsk {
242 u32 u32;
244 * struct cvmx_usbcx_gintmsk_s
245 * @wkupintmsk: Resume/Remote Wakeup Detected Interrupt Mask
246 * (WkUpIntMsk)
247 * @sessreqintmsk: Session Request/New Session Detected Interrupt Mask
248 * (SessReqIntMsk)
249 * @disconnintmsk: Disconnect Detected Interrupt Mask (DisconnIntMsk)
250 * @conidstschngmsk: Connector ID Status Change Mask (ConIDStsChngMsk)
251 * @ptxfempmsk: Periodic TxFIFO Empty Mask (PTxFEmpMsk)
252 * @hchintmsk: Host Channels Interrupt Mask (HChIntMsk)
253 * @prtintmsk: Host Port Interrupt Mask (PrtIntMsk)
254 * @fetsuspmsk: Data Fetch Suspended Mask (FetSuspMsk)
255 * @incomplpmsk: Incomplete Periodic Transfer Mask (incomplPMsk)
256 * Incomplete Isochronous OUT Transfer Mask
257 * (incompISOOUTMsk)
258 * @incompisoinmsk: Incomplete Isochronous IN Transfer Mask
259 * (incompISOINMsk)
260 * @oepintmsk: OUT Endpoints Interrupt Mask (OEPIntMsk)
261 * @inepintmsk: IN Endpoints Interrupt Mask (INEPIntMsk)
262 * @epmismsk: Endpoint Mismatch Interrupt Mask (EPMisMsk)
263 * @eopfmsk: End of Periodic Frame Interrupt Mask (EOPFMsk)
264 * @isooutdropmsk: Isochronous OUT Packet Dropped Interrupt Mask
265 * (ISOOutDropMsk)
266 * @enumdonemsk: Enumeration Done Mask (EnumDoneMsk)
267 * @usbrstmsk: USB Reset Mask (USBRstMsk)
268 * @usbsuspmsk: USB Suspend Mask (USBSuspMsk)
269 * @erlysuspmsk: Early Suspend Mask (ErlySuspMsk)
270 * @i2cint: I2C Interrupt Mask (I2CINT)
271 * @ulpickintmsk: ULPI Carkit Interrupt Mask (ULPICKINTMsk)
272 * I2C Carkit Interrupt Mask (I2CCKINTMsk)
273 * @goutnakeffmsk: Global OUT NAK Effective Mask (GOUTNakEffMsk)
274 * @ginnakeffmsk: Global Non-Periodic IN NAK Effective Mask
275 * (GINNakEffMsk)
276 * @nptxfempmsk: Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk)
277 * @rxflvlmsk: Receive FIFO Non-Empty Mask (RxFLvlMsk)
278 * @sofmsk: Start of (micro)Frame Mask (SofMsk)
279 * @otgintmsk: OTG Interrupt Mask (OTGIntMsk)
280 * @modemismsk: Mode Mismatch Interrupt Mask (ModeMisMsk)
282 struct cvmx_usbcx_gintmsk_s {
283 __BITFIELD_FIELD(u32 wkupintmsk : 1,
284 __BITFIELD_FIELD(u32 sessreqintmsk : 1,
285 __BITFIELD_FIELD(u32 disconnintmsk : 1,
286 __BITFIELD_FIELD(u32 conidstschngmsk : 1,
287 __BITFIELD_FIELD(u32 reserved_27_27 : 1,
288 __BITFIELD_FIELD(u32 ptxfempmsk : 1,
289 __BITFIELD_FIELD(u32 hchintmsk : 1,
290 __BITFIELD_FIELD(u32 prtintmsk : 1,
291 __BITFIELD_FIELD(u32 reserved_23_23 : 1,
292 __BITFIELD_FIELD(u32 fetsuspmsk : 1,
293 __BITFIELD_FIELD(u32 incomplpmsk : 1,
294 __BITFIELD_FIELD(u32 incompisoinmsk : 1,
295 __BITFIELD_FIELD(u32 oepintmsk : 1,
296 __BITFIELD_FIELD(u32 inepintmsk : 1,
297 __BITFIELD_FIELD(u32 epmismsk : 1,
298 __BITFIELD_FIELD(u32 reserved_16_16 : 1,
299 __BITFIELD_FIELD(u32 eopfmsk : 1,
300 __BITFIELD_FIELD(u32 isooutdropmsk : 1,
301 __BITFIELD_FIELD(u32 enumdonemsk : 1,
302 __BITFIELD_FIELD(u32 usbrstmsk : 1,
303 __BITFIELD_FIELD(u32 usbsuspmsk : 1,
304 __BITFIELD_FIELD(u32 erlysuspmsk : 1,
305 __BITFIELD_FIELD(u32 i2cint : 1,
306 __BITFIELD_FIELD(u32 ulpickintmsk : 1,
307 __BITFIELD_FIELD(u32 goutnakeffmsk : 1,
308 __BITFIELD_FIELD(u32 ginnakeffmsk : 1,
309 __BITFIELD_FIELD(u32 nptxfempmsk : 1,
310 __BITFIELD_FIELD(u32 rxflvlmsk : 1,
311 __BITFIELD_FIELD(u32 sofmsk : 1,
312 __BITFIELD_FIELD(u32 otgintmsk : 1,
313 __BITFIELD_FIELD(u32 modemismsk : 1,
314 __BITFIELD_FIELD(u32 reserved_0_0 : 1,
315 ;))))))))))))))))))))))))))))))))
316 } s;
320 * cvmx_usbc#_gintsts
322 * Core Interrupt Register (GINTSTS)
324 * This register interrupts the application for system-level events in the
325 * current mode of operation (Device mode or Host mode). It is shown in
326 * Interrupt. Some of the bits in this register are valid only in Host mode,
327 * while others are valid in Device mode only. This register also indicates the
328 * current mode of operation. In order to clear the interrupt status bits of
329 * type R_SS_WC, the application must write 1'b1 into the bit. The FIFO status
330 * interrupts are read only; once software reads from or writes to the FIFO
331 * while servicing these interrupts, FIFO interrupt conditions are cleared
332 * automatically.
334 union cvmx_usbcx_gintsts {
335 u32 u32;
337 * struct cvmx_usbcx_gintsts_s
338 * @wkupint: Resume/Remote Wakeup Detected Interrupt (WkUpInt)
339 * In Device mode, this interrupt is asserted when a resume is
340 * detected on the USB. In Host mode, this interrupt is asserted
341 * when a remote wakeup is detected on the USB.
342 * For more information on how to use this interrupt, see "Partial
343 * Power-Down and Clock Gating Programming Model" on
344 * page 353.
345 * @sessreqint: Session Request/New Session Detected Interrupt
346 * (SessReqInt)
347 * In Host mode, this interrupt is asserted when a session request
348 * is detected from the device. In Device mode, this interrupt is
349 * asserted when the utmiotg_bvalid signal goes high.
350 * For more information on how to use this interrupt, see "Partial
351 * Power-Down and Clock Gating Programming Model" on
352 * page 353.
353 * @disconnint: Disconnect Detected Interrupt (DisconnInt)
354 * Asserted when a device disconnect is detected.
355 * @conidstschng: Connector ID Status Change (ConIDStsChng)
356 * The core sets this bit when there is a change in connector ID
357 * status.
358 * @ptxfemp: Periodic TxFIFO Empty (PTxFEmp)
359 * Asserted when the Periodic Transmit FIFO is either half or
360 * completely empty and there is space for at least one entry to be
361 * written in the Periodic Request Queue. The half or completely
362 * empty status is determined by the Periodic TxFIFO Empty Level
363 * bit in the Core AHB Configuration register
364 * (GAHBCFG.PTxFEmpLvl).
365 * @hchint: Host Channels Interrupt (HChInt)
366 * The core sets this bit to indicate that an interrupt is pending
367 * on one of the channels of the core (in Host mode). The
368 * application must read the Host All Channels Interrupt (HAINT)
369 * register to determine the exact number of the channel on which
370 * the interrupt occurred, and then read the corresponding Host
371 * Channel-n Interrupt (HCINTn) register to determine the exact
372 * cause of the interrupt. The application must clear the
373 * appropriate status bit in the HCINTn register to clear this bit.
374 * @prtint: Host Port Interrupt (PrtInt)
375 * The core sets this bit to indicate a change in port status of
376 * one of the O2P USB core ports in Host mode. The application must
377 * read the Host Port Control and Status (HPRT) register to
378 * determine the exact event that caused this interrupt. The
379 * application must clear the appropriate status bit in the Host
380 * Port Control and Status register to clear this bit.
381 * @fetsusp: Data Fetch Suspended (FetSusp)
382 * This interrupt is valid only in DMA mode. This interrupt
383 * indicates that the core has stopped fetching data for IN
384 * endpoints due to the unavailability of TxFIFO space or Request
385 * Queue space. This interrupt is used by the application for an
386 * endpoint mismatch algorithm.
387 * @incomplp: Incomplete Periodic Transfer (incomplP)
388 * In Host mode, the core sets this interrupt bit when there are
389 * incomplete periodic transactions still pending which are
390 * scheduled for the current microframe.
391 * Incomplete Isochronous OUT Transfer (incompISOOUT)
392 * The Device mode, the core sets this interrupt to indicate that
393 * there is at least one isochronous OUT endpoint on which the
394 * transfer is not completed in the current microframe. This
395 * interrupt is asserted along with the End of Periodic Frame
396 * Interrupt (EOPF) bit in this register.
397 * @incompisoin: Incomplete Isochronous IN Transfer (incompISOIN)
398 * The core sets this interrupt to indicate that there is at least
399 * one isochronous IN endpoint on which the transfer is not
400 * completed in the current microframe. This interrupt is asserted
401 * along with the End of Periodic Frame Interrupt (EOPF) bit in
402 * this register.
403 * @oepint: OUT Endpoints Interrupt (OEPInt)
404 * The core sets this bit to indicate that an interrupt is pending
405 * on one of the OUT endpoints of the core (in Device mode). The
406 * application must read the Device All Endpoints Interrupt
407 * (DAINT) register to determine the exact number of the OUT
408 * endpoint on which the interrupt occurred, and then read the
409 * corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
410 * register to determine the exact cause of the interrupt. The
411 * application must clear the appropriate status bit in the
412 * corresponding DOEPINTn register to clear this bit.
413 * @iepint: IN Endpoints Interrupt (IEPInt)
414 * The core sets this bit to indicate that an interrupt is pending
415 * on one of the IN endpoints of the core (in Device mode). The
416 * application must read the Device All Endpoints Interrupt
417 * (DAINT) register to determine the exact number of the IN
418 * endpoint on which the interrupt occurred, and then read the
419 * corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
420 * register to determine the exact cause of the interrupt. The
421 * application must clear the appropriate status bit in the
422 * corresponding DIEPINTn register to clear this bit.
423 * @epmis: Endpoint Mismatch Interrupt (EPMis)
424 * Indicates that an IN token has been received for a non-periodic
425 * endpoint, but the data for another endpoint is present in the
426 * top of the Non-Periodic Transmit FIFO and the IN endpoint
427 * mismatch count programmed by the application has expired.
428 * @eopf: End of Periodic Frame Interrupt (EOPF)
429 * Indicates that the period specified in the Periodic Frame
430 * Interval field of the Device Configuration register
431 * (DCFG.PerFrInt) has been reached in the current microframe.
432 * @isooutdrop: Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
433 * The core sets this bit when it fails to write an isochronous OUT
434 * packet into the RxFIFO because the RxFIFO doesn't have
435 * enough space to accommodate a maximum packet size packet
436 * for the isochronous OUT endpoint.
437 * @enumdone: Enumeration Done (EnumDone)
438 * The core sets this bit to indicate that speed enumeration is
439 * complete. The application must read the Device Status (DSTS)
440 * register to obtain the enumerated speed.
441 * @usbrst: USB Reset (USBRst)
442 * The core sets this bit to indicate that a reset is detected on
443 * the USB.
444 * @usbsusp: USB Suspend (USBSusp)
445 * The core sets this bit to indicate that a suspend was detected
446 * on the USB. The core enters the Suspended state when there
447 * is no activity on the phy_line_state_i signal for an extended
448 * period of time.
449 * @erlysusp: Early Suspend (ErlySusp)
450 * The core sets this bit to indicate that an Idle state has been
451 * detected on the USB for 3 ms.
452 * @i2cint: I2C Interrupt (I2CINT)
453 * This bit is always 0x0.
454 * @ulpickint: ULPI Carkit Interrupt (ULPICKINT)
455 * This bit is always 0x0.
456 * @goutnakeff: Global OUT NAK Effective (GOUTNakEff)
457 * Indicates that the Set Global OUT NAK bit in the Device Control
458 * register (DCTL.SGOUTNak), set by the application, has taken
459 * effect in the core. This bit can be cleared by writing the Clear
460 * Global OUT NAK bit in the Device Control register
461 * (DCTL.CGOUTNak).
462 * @ginnakeff: Global IN Non-Periodic NAK Effective (GINNakEff)
463 * Indicates that the Set Global Non-Periodic IN NAK bit in the
464 * Device Control register (DCTL.SGNPInNak), set by the
465 * application, has taken effect in the core. That is, the core has
466 * sampled the Global IN NAK bit set by the application. This bit
467 * can be cleared by clearing the Clear Global Non-Periodic IN
468 * NAK bit in the Device Control register (DCTL.CGNPInNak).
469 * This interrupt does not necessarily mean that a NAK handshake
470 * is sent out on the USB. The STALL bit takes precedence over
471 * the NAK bit.
472 * @nptxfemp: Non-Periodic TxFIFO Empty (NPTxFEmp)
473 * This interrupt is asserted when the Non-Periodic TxFIFO is
474 * either half or completely empty, and there is space for at least
475 * one entry to be written to the Non-Periodic Transmit Request
476 * Queue. The half or completely empty status is determined by
477 * the Non-Periodic TxFIFO Empty Level bit in the Core AHB
478 * Configuration register (GAHBCFG.NPTxFEmpLvl).
479 * @rxflvl: RxFIFO Non-Empty (RxFLvl)
480 * Indicates that there is at least one packet pending to be read
481 * from the RxFIFO.
482 * @sof: Start of (micro)Frame (Sof)
483 * In Host mode, the core sets this bit to indicate that an SOF
484 * (FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
485 * USB. The application must write a 1 to this bit to clear the
486 * interrupt.
487 * In Device mode, in the core sets this bit to indicate that an
488 * SOF token has been received on the USB. The application can read
489 * the Device Status register to get the current (micro)frame
490 * number. This interrupt is seen only when the core is operating
491 * at either HS or FS.
492 * @otgint: OTG Interrupt (OTGInt)
493 * The core sets this bit to indicate an OTG protocol event. The
494 * application must read the OTG Interrupt Status (GOTGINT)
495 * register to determine the exact event that caused this
496 * interrupt. The application must clear the appropriate status bit
497 * in the GOTGINT register to clear this bit.
498 * @modemis: Mode Mismatch Interrupt (ModeMis)
499 * The core sets this bit when the application is trying to access:
500 * * A Host mode register, when the core is operating in Device
501 * mode
502 * * A Device mode register, when the core is operating in Host
503 * mode
504 * The register access is completed on the AHB with an OKAY
505 * response, but is ignored by the core internally and doesn't
506 * affect the operation of the core.
507 * @curmod: Current Mode of Operation (CurMod)
508 * Indicates the current mode of operation.
509 * * 1'b0: Device mode
510 * * 1'b1: Host mode
512 struct cvmx_usbcx_gintsts_s {
513 __BITFIELD_FIELD(u32 wkupint : 1,
514 __BITFIELD_FIELD(u32 sessreqint : 1,
515 __BITFIELD_FIELD(u32 disconnint : 1,
516 __BITFIELD_FIELD(u32 conidstschng : 1,
517 __BITFIELD_FIELD(u32 reserved_27_27 : 1,
518 __BITFIELD_FIELD(u32 ptxfemp : 1,
519 __BITFIELD_FIELD(u32 hchint : 1,
520 __BITFIELD_FIELD(u32 prtint : 1,
521 __BITFIELD_FIELD(u32 reserved_23_23 : 1,
522 __BITFIELD_FIELD(u32 fetsusp : 1,
523 __BITFIELD_FIELD(u32 incomplp : 1,
524 __BITFIELD_FIELD(u32 incompisoin : 1,
525 __BITFIELD_FIELD(u32 oepint : 1,
526 __BITFIELD_FIELD(u32 iepint : 1,
527 __BITFIELD_FIELD(u32 epmis : 1,
528 __BITFIELD_FIELD(u32 reserved_16_16 : 1,
529 __BITFIELD_FIELD(u32 eopf : 1,
530 __BITFIELD_FIELD(u32 isooutdrop : 1,
531 __BITFIELD_FIELD(u32 enumdone : 1,
532 __BITFIELD_FIELD(u32 usbrst : 1,
533 __BITFIELD_FIELD(u32 usbsusp : 1,
534 __BITFIELD_FIELD(u32 erlysusp : 1,
535 __BITFIELD_FIELD(u32 i2cint : 1,
536 __BITFIELD_FIELD(u32 ulpickint : 1,
537 __BITFIELD_FIELD(u32 goutnakeff : 1,
538 __BITFIELD_FIELD(u32 ginnakeff : 1,
539 __BITFIELD_FIELD(u32 nptxfemp : 1,
540 __BITFIELD_FIELD(u32 rxflvl : 1,
541 __BITFIELD_FIELD(u32 sof : 1,
542 __BITFIELD_FIELD(u32 otgint : 1,
543 __BITFIELD_FIELD(u32 modemis : 1,
544 __BITFIELD_FIELD(u32 curmod : 1,
545 ;))))))))))))))))))))))))))))))))
546 } s;
550 * cvmx_usbc#_gnptxfsiz
552 * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ)
554 * The application can program the RAM size and the memory start address for the
555 * Non-Periodic TxFIFO.
557 union cvmx_usbcx_gnptxfsiz {
558 u32 u32;
560 * struct cvmx_usbcx_gnptxfsiz_s
561 * @nptxfdep: Non-Periodic TxFIFO Depth (NPTxFDep)
562 * This value is in terms of 32-bit words.
563 * Minimum value is 16
564 * Maximum value is 32768
565 * @nptxfstaddr: Non-Periodic Transmit RAM Start Address (NPTxFStAddr)
566 * This field contains the memory start address for Non-Periodic
567 * Transmit FIFO RAM.
569 struct cvmx_usbcx_gnptxfsiz_s {
570 __BITFIELD_FIELD(u32 nptxfdep : 16,
571 __BITFIELD_FIELD(u32 nptxfstaddr : 16,
573 } s;
577 * cvmx_usbc#_gnptxsts
579 * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS)
581 * This read-only register contains the free space information for the
582 * Non-Periodic TxFIFO and the Non-Periodic Transmit Request Queue.
584 union cvmx_usbcx_gnptxsts {
585 u32 u32;
587 * struct cvmx_usbcx_gnptxsts_s
588 * @nptxqtop: Top of the Non-Periodic Transmit Request Queue (NPTxQTop)
589 * Entry in the Non-Periodic Tx Request Queue that is currently
590 * being processed by the MAC.
591 * * Bits [30:27]: Channel/endpoint number
592 * * Bits [26:25]:
593 * - 2'b00: IN/OUT token
594 * - 2'b01: Zero-length transmit packet (device IN/host OUT)
595 * - 2'b10: PING/CSPLIT token
596 * - 2'b11: Channel halt command
597 * * Bit [24]: Terminate (last entry for selected channel/endpoint)
598 * @nptxqspcavail: Non-Periodic Transmit Request Queue Space Available
599 * (NPTxQSpcAvail)
600 * Indicates the amount of free space available in the Non-
601 * Periodic Transmit Request Queue. This queue holds both IN
602 * and OUT requests in Host mode. Device mode has only IN
603 * requests.
604 * * 8'h0: Non-Periodic Transmit Request Queue is full
605 * * 8'h1: 1 location available
606 * * 8'h2: 2 locations available
607 * * n: n locations available (0..8)
608 * * Others: Reserved
609 * @nptxfspcavail: Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail)
610 * Indicates the amount of free space available in the Non-
611 * Periodic TxFIFO.
612 * Values are in terms of 32-bit words.
613 * * 16'h0: Non-Periodic TxFIFO is full
614 * * 16'h1: 1 word available
615 * * 16'h2: 2 words available
616 * * 16'hn: n words available (where 0..32768)
617 * * 16'h8000: 32768 words available
618 * * Others: Reserved
620 struct cvmx_usbcx_gnptxsts_s {
621 __BITFIELD_FIELD(u32 reserved_31_31 : 1,
622 __BITFIELD_FIELD(u32 nptxqtop : 7,
623 __BITFIELD_FIELD(u32 nptxqspcavail : 8,
624 __BITFIELD_FIELD(u32 nptxfspcavail : 16,
625 ;))))
626 } s;
630 * cvmx_usbc#_grstctl
632 * Core Reset Register (GRSTCTL)
634 * The application uses this register to reset various hardware features inside
635 * the core.
637 union cvmx_usbcx_grstctl {
638 u32 u32;
640 * struct cvmx_usbcx_grstctl_s
641 * @ahbidle: AHB Master Idle (AHBIdle)
642 * Indicates that the AHB Master State Machine is in the IDLE
643 * condition.
644 * @dmareq: DMA Request Signal (DMAReq)
645 * Indicates that the DMA request is in progress. Used for debug.
646 * @txfnum: TxFIFO Number (TxFNum)
647 * This is the FIFO number that must be flushed using the TxFIFO
648 * Flush bit. This field must not be changed until the core clears
649 * the TxFIFO Flush bit.
650 * * 5'h0: Non-Periodic TxFIFO flush
651 * * 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic
652 * TxFIFO flush in Host mode
653 * * 5'h2: Periodic TxFIFO 2 flush in Device mode
654 * - ...
655 * * 5'hF: Periodic TxFIFO 15 flush in Device mode
656 * * 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the
657 * core
658 * @txfflsh: TxFIFO Flush (TxFFlsh)
659 * This bit selectively flushes a single or all transmit FIFOs, but
660 * cannot do so if the core is in the midst of a transaction.
661 * The application must only write this bit after checking that the
662 * core is neither writing to the TxFIFO nor reading from the
663 * TxFIFO.
664 * The application must wait until the core clears this bit before
665 * performing any operations. This bit takes 8 clocks (of phy_clk
666 * or hclk, whichever is slower) to clear.
667 * @rxfflsh: RxFIFO Flush (RxFFlsh)
668 * The application can flush the entire RxFIFO using this bit, but
669 * must first ensure that the core is not in the middle of a
670 * transaction.
671 * The application must only write to this bit after checking that
672 * the core is neither reading from the RxFIFO nor writing to the
673 * RxFIFO.
674 * The application must wait until the bit is cleared before
675 * performing any other operations. This bit will take 8 clocks
676 * (slowest of PHY or AHB clock) to clear.
677 * @intknqflsh: IN Token Sequence Learning Queue Flush (INTknQFlsh)
678 * The application writes this bit to flush the IN Token Sequence
679 * Learning Queue.
680 * @frmcntrrst: Host Frame Counter Reset (FrmCntrRst)
681 * The application writes this bit to reset the (micro)frame number
682 * counter inside the core. When the (micro)frame counter is reset,
683 * the subsequent SOF sent out by the core will have a
684 * (micro)frame number of 0.
685 * @hsftrst: HClk Soft Reset (HSftRst)
686 * The application uses this bit to flush the control logic in the
687 * AHB Clock domain. Only AHB Clock Domain pipelines are reset.
688 * * FIFOs are not flushed with this bit.
689 * * All state machines in the AHB clock domain are reset to the
690 * Idle state after terminating the transactions on the AHB,
691 * following the protocol.
692 * * CSR control bits used by the AHB clock domain state
693 * machines are cleared.
694 * * To clear this interrupt, status mask bits that control the
695 * interrupt status and are generated by the AHB clock domain
696 * state machine are cleared.
697 * * Because interrupt status bits are not cleared, the application
698 * can get the status of any core events that occurred after it set
699 * this bit.
700 * This is a self-clearing bit that the core clears after all
701 * necessary logic is reset in the core. This may take several
702 * clocks, depending on the core's current state.
703 * @csftrst: Core Soft Reset (CSftRst)
704 * Resets the hclk and phy_clock domains as follows:
705 * * Clears the interrupts and all the CSR registers except the
706 * following register bits:
707 * - PCGCCTL.RstPdwnModule
708 * - PCGCCTL.GateHclk
709 * - PCGCCTL.PwrClmp
710 * - PCGCCTL.StopPPhyLPwrClkSelclk
711 * - GUSBCFG.PhyLPwrClkSel
712 * - GUSBCFG.DDRSel
713 * - GUSBCFG.PHYSel
714 * - GUSBCFG.FSIntf
715 * - GUSBCFG.ULPI_UTMI_Sel
716 * - GUSBCFG.PHYIf
717 * - HCFG.FSLSPclkSel
718 * - DCFG.DevSpd
719 * * All module state machines (except the AHB Slave Unit) are
720 * reset to the IDLE state, and all the transmit FIFOs and the
721 * receive FIFO are flushed.
722 * * Any transactions on the AHB Master are terminated as soon
723 * as possible, after gracefully completing the last data phase of
724 * an AHB transfer. Any transactions on the USB are terminated
725 * immediately.
726 * The application can write to this bit any time it wants to reset
727 * the core. This is a self-clearing bit and the core clears this
728 * bit after all the necessary logic is reset in the core, which
729 * may take several clocks, depending on the current state of the
730 * core. Once this bit is cleared software should wait at least 3
731 * PHY clocks before doing any access to the PHY domain
732 * (synchronization delay). Software should also should check that
733 * bit 31 of this register is 1 (AHB Master is IDLE) before
734 * starting any operation.
735 * Typically software reset is used during software development
736 * and also when you dynamically change the PHY selection bits
737 * in the USB configuration registers listed above. When you
738 * change the PHY, the corresponding clock for the PHY is
739 * selected and used in the PHY domain. Once a new clock is
740 * selected, the PHY domain has to be reset for proper operation.
742 struct cvmx_usbcx_grstctl_s {
743 __BITFIELD_FIELD(u32 ahbidle : 1,
744 __BITFIELD_FIELD(u32 dmareq : 1,
745 __BITFIELD_FIELD(u32 reserved_11_29 : 19,
746 __BITFIELD_FIELD(u32 txfnum : 5,
747 __BITFIELD_FIELD(u32 txfflsh : 1,
748 __BITFIELD_FIELD(u32 rxfflsh : 1,
749 __BITFIELD_FIELD(u32 intknqflsh : 1,
750 __BITFIELD_FIELD(u32 frmcntrrst : 1,
751 __BITFIELD_FIELD(u32 hsftrst : 1,
752 __BITFIELD_FIELD(u32 csftrst : 1,
753 ;))))))))))
754 } s;
758 * cvmx_usbc#_grxfsiz
760 * Receive FIFO Size Register (GRXFSIZ)
762 * The application can program the RAM size that must be allocated to the
763 * RxFIFO.
765 union cvmx_usbcx_grxfsiz {
766 u32 u32;
768 * struct cvmx_usbcx_grxfsiz_s
769 * @rxfdep: RxFIFO Depth (RxFDep)
770 * This value is in terms of 32-bit words.
771 * * Minimum value is 16
772 * * Maximum value is 32768
774 struct cvmx_usbcx_grxfsiz_s {
775 __BITFIELD_FIELD(u32 reserved_16_31 : 16,
776 __BITFIELD_FIELD(u32 rxfdep : 16,
778 } s;
782 * cvmx_usbc#_grxstsph
784 * Receive Status Read and Pop Register, Host Mode (GRXSTSPH)
786 * A read to the Receive Status Read and Pop register returns and additionally
787 * pops the top data entry out of the RxFIFO.
788 * This Description is only valid when the core is in Host Mode. For Device Mode
789 * use USBC_GRXSTSPD instead.
790 * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the
791 * same offset in the O2P USB core. The offset difference shown in this
792 * document is for software clarity and is actually ignored by the
793 * hardware.
795 union cvmx_usbcx_grxstsph {
796 u32 u32;
798 * struct cvmx_usbcx_grxstsph_s
799 * @pktsts: Packet Status (PktSts)
800 * Indicates the status of the received packet
801 * * 4'b0010: IN data packet received
802 * * 4'b0011: IN transfer completed (triggers an interrupt)
803 * * 4'b0101: Data toggle error (triggers an interrupt)
804 * * 4'b0111: Channel halted (triggers an interrupt)
805 * * Others: Reserved
806 * @dpid: Data PID (DPID)
807 * * 2'b00: DATA0
808 * * 2'b10: DATA1
809 * * 2'b01: DATA2
810 * * 2'b11: MDATA
811 * @bcnt: Byte Count (BCnt)
812 * Indicates the byte count of the received IN data packet
813 * @chnum: Channel Number (ChNum)
814 * Indicates the channel number to which the current received
815 * packet belongs.
817 struct cvmx_usbcx_grxstsph_s {
818 __BITFIELD_FIELD(u32 reserved_21_31 : 11,
819 __BITFIELD_FIELD(u32 pktsts : 4,
820 __BITFIELD_FIELD(u32 dpid : 2,
821 __BITFIELD_FIELD(u32 bcnt : 11,
822 __BITFIELD_FIELD(u32 chnum : 4,
823 ;)))))
824 } s;
828 * cvmx_usbc#_gusbcfg
830 * Core USB Configuration Register (GUSBCFG)
832 * This register can be used to configure the core after power-on or a changing
833 * to Host mode or Device mode. It contains USB and USB-PHY related
834 * configuration parameters. The application must program this register before
835 * starting any transactions on either the AHB or the USB. Do not make changes
836 * to this register after the initial programming.
838 union cvmx_usbcx_gusbcfg {
839 u32 u32;
841 * struct cvmx_usbcx_gusbcfg_s
842 * @otgi2csel: UTMIFS or I2C Interface Select (OtgI2CSel)
843 * This bit is always 0x0.
844 * @phylpwrclksel: PHY Low-Power Clock Select (PhyLPwrClkSel)
845 * Software should set this bit to 0x0.
846 * Selects either 480-MHz or 48-MHz (low-power) PHY mode. In
847 * FS and LS modes, the PHY can usually operate on a 48-MHz
848 * clock to save power.
849 * * 1'b0: 480-MHz Internal PLL clock
850 * * 1'b1: 48-MHz External Clock
851 * In 480 MHz mode, the UTMI interface operates at either 60 or
852 * 30-MHz, depending upon whether 8- or 16-bit data width is
853 * selected. In 48-MHz mode, the UTMI interface operates at 48
854 * MHz in FS mode and at either 48 or 6 MHz in LS mode
855 * (depending on the PHY vendor).
856 * This bit drives the utmi_fsls_low_power core output signal, and
857 * is valid only for UTMI+ PHYs.
858 * @usbtrdtim: USB Turnaround Time (USBTrdTim)
859 * Sets the turnaround time in PHY clocks.
860 * Specifies the response time for a MAC request to the Packet
861 * FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM).
862 * This must be programmed to 0x5.
863 * @hnpcap: HNP-Capable (HNPCap)
864 * This bit is always 0x0.
865 * @srpcap: SRP-Capable (SRPCap)
866 * This bit is always 0x0.
867 * @ddrsel: ULPI DDR Select (DDRSel)
868 * Software should set this bit to 0x0.
869 * @physel: USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial
870 * Software should set this bit to 0x0.
871 * @fsintf: Full-Speed Serial Interface Select (FSIntf)
872 * Software should set this bit to 0x0.
873 * @ulpi_utmi_sel: ULPI or UTMI+ Select (ULPI_UTMI_Sel)
874 * This bit is always 0x0.
875 * @phyif: PHY Interface (PHYIf)
876 * This bit is always 0x1.
877 * @toutcal: HS/FS Timeout Calibration (TOutCal)
878 * The number of PHY clocks that the application programs in this
879 * field is added to the high-speed/full-speed interpacket timeout
880 * duration in the core to account for any additional delays
881 * introduced by the PHY. This may be required, since the delay
882 * introduced by the PHY in generating the linestate condition may
883 * vary from one PHY to another.
884 * The USB standard timeout value for high-speed operation is
885 * 736 to 816 (inclusive) bit times. The USB standard timeout
886 * value for full-speed operation is 16 to 18 (inclusive) bit
887 * times. The application must program this field based on the
888 * speed of enumeration. The number of bit times added per PHY
889 * clock are:
890 * High-speed operation:
891 * * One 30-MHz PHY clock = 16 bit times
892 * * One 60-MHz PHY clock = 8 bit times
893 * Full-speed operation:
894 * * One 30-MHz PHY clock = 0.4 bit times
895 * * One 60-MHz PHY clock = 0.2 bit times
896 * * One 48-MHz PHY clock = 0.25 bit times
898 struct cvmx_usbcx_gusbcfg_s {
899 __BITFIELD_FIELD(u32 reserved_17_31 : 15,
900 __BITFIELD_FIELD(u32 otgi2csel : 1,
901 __BITFIELD_FIELD(u32 phylpwrclksel : 1,
902 __BITFIELD_FIELD(u32 reserved_14_14 : 1,
903 __BITFIELD_FIELD(u32 usbtrdtim : 4,
904 __BITFIELD_FIELD(u32 hnpcap : 1,
905 __BITFIELD_FIELD(u32 srpcap : 1,
906 __BITFIELD_FIELD(u32 ddrsel : 1,
907 __BITFIELD_FIELD(u32 physel : 1,
908 __BITFIELD_FIELD(u32 fsintf : 1,
909 __BITFIELD_FIELD(u32 ulpi_utmi_sel : 1,
910 __BITFIELD_FIELD(u32 phyif : 1,
911 __BITFIELD_FIELD(u32 toutcal : 3,
912 ;)))))))))))))
913 } s;
917 * cvmx_usbc#_haint
919 * Host All Channels Interrupt Register (HAINT)
921 * When a significant event occurs on a channel, the Host All Channels Interrupt
922 * register interrupts the application using the Host Channels Interrupt bit of
923 * the Core Interrupt register (GINTSTS.HChInt). This is shown in Interrupt.
924 * There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in
925 * this register are set and cleared when the application sets and clears bits
926 * in the corresponding Host Channel-n Interrupt register.
928 union cvmx_usbcx_haint {
929 u32 u32;
931 * struct cvmx_usbcx_haint_s
932 * @haint: Channel Interrupts (HAINT)
933 * One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15
935 struct cvmx_usbcx_haint_s {
936 __BITFIELD_FIELD(u32 reserved_16_31 : 16,
937 __BITFIELD_FIELD(u32 haint : 16,
939 } s;
943 * cvmx_usbc#_haintmsk
945 * Host All Channels Interrupt Mask Register (HAINTMSK)
947 * The Host All Channel Interrupt Mask register works with the Host All Channel
948 * Interrupt register to interrupt the application when an event occurs on a
949 * channel. There is one interrupt mask bit per channel, up to a maximum of 16
950 * bits.
951 * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
953 union cvmx_usbcx_haintmsk {
954 u32 u32;
956 * struct cvmx_usbcx_haintmsk_s
957 * @haintmsk: Channel Interrupt Mask (HAINTMsk)
958 * One bit per channel: Bit 0 for channel 0, bit 15 for channel 15
960 struct cvmx_usbcx_haintmsk_s {
961 __BITFIELD_FIELD(u32 reserved_16_31 : 16,
962 __BITFIELD_FIELD(u32 haintmsk : 16,
964 } s;
968 * cvmx_usbc#_hcchar#
970 * Host Channel-n Characteristics Register (HCCHAR)
973 union cvmx_usbcx_hccharx {
974 u32 u32;
976 * struct cvmx_usbcx_hccharx_s
977 * @chena: Channel Enable (ChEna)
978 * This field is set by the application and cleared by the OTG
979 * host.
980 * * 1'b0: Channel disabled
981 * * 1'b1: Channel enabled
982 * @chdis: Channel Disable (ChDis)
983 * The application sets this bit to stop transmitting/receiving
984 * data on a channel, even before the transfer for that channel is
985 * complete. The application must wait for the Channel Disabled
986 * interrupt before treating the channel as disabled.
987 * @oddfrm: Odd Frame (OddFrm)
988 * This field is set (reset) by the application to indicate that
989 * the OTG host must perform a transfer in an odd (micro)frame.
990 * This field is applicable for only periodic (isochronous and
991 * interrupt) transactions.
992 * * 1'b0: Even (micro)frame
993 * * 1'b1: Odd (micro)frame
994 * @devaddr: Device Address (DevAddr)
995 * This field selects the specific device serving as the data
996 * source or sink.
997 * @ec: Multi Count (MC) / Error Count (EC)
998 * When the Split Enable bit of the Host Channel-n Split Control
999 * register (HCSPLTn.SpltEna) is reset (1'b0), this field indicates
1000 * to the host the number of transactions that should be executed
1001 * per microframe for this endpoint.
1002 * * 2'b00: Reserved. This field yields undefined results.
1003 * * 2'b01: 1 transaction
1004 * * 2'b10: 2 transactions to be issued for this endpoint per
1005 * microframe
1006 * * 2'b11: 3 transactions to be issued for this endpoint per
1007 * microframe
1008 * When HCSPLTn.SpltEna is set (1'b1), this field indicates the
1009 * number of immediate retries to be performed for a periodic split
1010 * transactions on transaction errors. This field must be set to at
1011 * least 2'b01.
1012 * @eptype: Endpoint Type (EPType)
1013 * Indicates the transfer type selected.
1014 * * 2'b00: Control
1015 * * 2'b01: Isochronous
1016 * * 2'b10: Bulk
1017 * * 2'b11: Interrupt
1018 * @lspddev: Low-Speed Device (LSpdDev)
1019 * This field is set by the application to indicate that this
1020 * channel is communicating to a low-speed device.
1021 * @epdir: Endpoint Direction (EPDir)
1022 * Indicates whether the transaction is IN or OUT.
1023 * * 1'b0: OUT
1024 * * 1'b1: IN
1025 * @epnum: Endpoint Number (EPNum)
1026 * Indicates the endpoint number on the device serving as the
1027 * data source or sink.
1028 * @mps: Maximum Packet Size (MPS)
1029 * Indicates the maximum packet size of the associated endpoint.
1031 struct cvmx_usbcx_hccharx_s {
1032 __BITFIELD_FIELD(u32 chena : 1,
1033 __BITFIELD_FIELD(u32 chdis : 1,
1034 __BITFIELD_FIELD(u32 oddfrm : 1,
1035 __BITFIELD_FIELD(u32 devaddr : 7,
1036 __BITFIELD_FIELD(u32 ec : 2,
1037 __BITFIELD_FIELD(u32 eptype : 2,
1038 __BITFIELD_FIELD(u32 lspddev : 1,
1039 __BITFIELD_FIELD(u32 reserved_16_16 : 1,
1040 __BITFIELD_FIELD(u32 epdir : 1,
1041 __BITFIELD_FIELD(u32 epnum : 4,
1042 __BITFIELD_FIELD(u32 mps : 11,
1043 ;)))))))))))
1044 } s;
1048 * cvmx_usbc#_hcfg
1050 * Host Configuration Register (HCFG)
1052 * This register configures the core after power-on. Do not make changes to this
1053 * register after initializing the host.
1055 union cvmx_usbcx_hcfg {
1056 u32 u32;
1058 * struct cvmx_usbcx_hcfg_s
1059 * @fslssupp: FS- and LS-Only Support (FSLSSupp)
1060 * The application uses this bit to control the core's enumeration
1061 * speed. Using this bit, the application can make the core
1062 * enumerate as a FS host, even if the connected device supports
1063 * HS traffic. Do not make changes to this field after initial
1064 * programming.
1065 * * 1'b0: HS/FS/LS, based on the maximum speed supported by
1066 * the connected device
1067 * * 1'b1: FS/LS-only, even if the connected device can support HS
1068 * @fslspclksel: FS/LS PHY Clock Select (FSLSPclkSel)
1069 * When the core is in FS Host mode
1070 * * 2'b00: PHY clock is running at 30/60 MHz
1071 * * 2'b01: PHY clock is running at 48 MHz
1072 * * Others: Reserved
1073 * When the core is in LS Host mode
1074 * * 2'b00: PHY clock is running at 30/60 MHz. When the
1075 * UTMI+/ULPI PHY Low Power mode is not selected, use
1076 * 30/60 MHz.
1077 * * 2'b01: PHY clock is running at 48 MHz. When the UTMI+
1078 * PHY Low Power mode is selected, use 48MHz if the PHY
1079 * supplies a 48 MHz clock during LS mode.
1080 * * 2'b10: PHY clock is running at 6 MHz. In USB 1.1 FS mode,
1081 * use 6 MHz when the UTMI+ PHY Low Power mode is
1082 * selected and the PHY supplies a 6 MHz clock during LS
1083 * mode. If you select a 6 MHz clock during LS mode, you must
1084 * do a soft reset.
1085 * * 2'b11: Reserved
1087 struct cvmx_usbcx_hcfg_s {
1088 __BITFIELD_FIELD(u32 reserved_3_31 : 29,
1089 __BITFIELD_FIELD(u32 fslssupp : 1,
1090 __BITFIELD_FIELD(u32 fslspclksel : 2,
1091 ;)))
1092 } s;
1096 * cvmx_usbc#_hcint#
1098 * Host Channel-n Interrupt Register (HCINT)
1100 * This register indicates the status of a channel with respect to USB- and
1101 * AHB-related events. The application must read this register when the Host
1102 * Channels Interrupt bit of the Core Interrupt register (GINTSTS.HChInt) is
1103 * set. Before the application can read this register, it must first read
1104 * the Host All Channels Interrupt (HAINT) register to get the exact channel
1105 * number for the Host Channel-n Interrupt register. The application must clear
1106 * the appropriate bit in this register to clear the corresponding bits in the
1107 * HAINT and GINTSTS registers.
1109 union cvmx_usbcx_hcintx {
1110 u32 u32;
1112 * struct cvmx_usbcx_hcintx_s
1113 * @datatglerr: Data Toggle Error (DataTglErr)
1114 * @frmovrun: Frame Overrun (FrmOvrun)
1115 * @bblerr: Babble Error (BblErr)
1116 * @xacterr: Transaction Error (XactErr)
1117 * @nyet: NYET Response Received Interrupt (NYET)
1118 * @ack: ACK Response Received Interrupt (ACK)
1119 * @nak: NAK Response Received Interrupt (NAK)
1120 * @stall: STALL Response Received Interrupt (STALL)
1121 * @ahberr: This bit is always 0x0.
1122 * @chhltd: Channel Halted (ChHltd)
1123 * Indicates the transfer completed abnormally either because of
1124 * any USB transaction error or in response to disable request by
1125 * the application.
1126 * @xfercompl: Transfer Completed (XferCompl)
1127 * Transfer completed normally without any errors.
1129 struct cvmx_usbcx_hcintx_s {
1130 __BITFIELD_FIELD(u32 reserved_11_31 : 21,
1131 __BITFIELD_FIELD(u32 datatglerr : 1,
1132 __BITFIELD_FIELD(u32 frmovrun : 1,
1133 __BITFIELD_FIELD(u32 bblerr : 1,
1134 __BITFIELD_FIELD(u32 xacterr : 1,
1135 __BITFIELD_FIELD(u32 nyet : 1,
1136 __BITFIELD_FIELD(u32 ack : 1,
1137 __BITFIELD_FIELD(u32 nak : 1,
1138 __BITFIELD_FIELD(u32 stall : 1,
1139 __BITFIELD_FIELD(u32 ahberr : 1,
1140 __BITFIELD_FIELD(u32 chhltd : 1,
1141 __BITFIELD_FIELD(u32 xfercompl : 1,
1142 ;))))))))))))
1143 } s;
1147 * cvmx_usbc#_hcintmsk#
1149 * Host Channel-n Interrupt Mask Register (HCINTMSKn)
1151 * This register reflects the mask for each channel status described in the
1152 * previous section.
1153 * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
1155 union cvmx_usbcx_hcintmskx {
1156 u32 u32;
1158 * struct cvmx_usbcx_hcintmskx_s
1159 * @datatglerrmsk: Data Toggle Error Mask (DataTglErrMsk)
1160 * @frmovrunmsk: Frame Overrun Mask (FrmOvrunMsk)
1161 * @bblerrmsk: Babble Error Mask (BblErrMsk)
1162 * @xacterrmsk: Transaction Error Mask (XactErrMsk)
1163 * @nyetmsk: NYET Response Received Interrupt Mask (NyetMsk)
1164 * @ackmsk: ACK Response Received Interrupt Mask (AckMsk)
1165 * @nakmsk: NAK Response Received Interrupt Mask (NakMsk)
1166 * @stallmsk: STALL Response Received Interrupt Mask (StallMsk)
1167 * @ahberrmsk: AHB Error Mask (AHBErrMsk)
1168 * @chhltdmsk: Channel Halted Mask (ChHltdMsk)
1169 * @xfercomplmsk: Transfer Completed Mask (XferComplMsk)
1171 struct cvmx_usbcx_hcintmskx_s {
1172 __BITFIELD_FIELD(u32 reserved_11_31 : 21,
1173 __BITFIELD_FIELD(u32 datatglerrmsk : 1,
1174 __BITFIELD_FIELD(u32 frmovrunmsk : 1,
1175 __BITFIELD_FIELD(u32 bblerrmsk : 1,
1176 __BITFIELD_FIELD(u32 xacterrmsk : 1,
1177 __BITFIELD_FIELD(u32 nyetmsk : 1,
1178 __BITFIELD_FIELD(u32 ackmsk : 1,
1179 __BITFIELD_FIELD(u32 nakmsk : 1,
1180 __BITFIELD_FIELD(u32 stallmsk : 1,
1181 __BITFIELD_FIELD(u32 ahberrmsk : 1,
1182 __BITFIELD_FIELD(u32 chhltdmsk : 1,
1183 __BITFIELD_FIELD(u32 xfercomplmsk : 1,
1184 ;))))))))))))
1185 } s;
1189 * cvmx_usbc#_hcsplt#
1191 * Host Channel-n Split Control Register (HCSPLT)
1194 union cvmx_usbcx_hcspltx {
1195 u32 u32;
1197 * struct cvmx_usbcx_hcspltx_s
1198 * @spltena: Split Enable (SpltEna)
1199 * The application sets this field to indicate that this channel is
1200 * enabled to perform split transactions.
1201 * @compsplt: Do Complete Split (CompSplt)
1202 * The application sets this field to request the OTG host to
1203 * perform a complete split transaction.
1204 * @xactpos: Transaction Position (XactPos)
1205 * This field is used to determine whether to send all, first,
1206 * middle, or last payloads with each OUT transaction.
1207 * * 2'b11: All. This is the entire data payload is of this
1208 * transaction (which is less than or equal to 188 bytes).
1209 * * 2'b10: Begin. This is the first data payload of this
1210 * transaction (which is larger than 188 bytes).
1211 * * 2'b00: Mid. This is the middle payload of this transaction
1212 * (which is larger than 188 bytes).
1213 * * 2'b01: End. This is the last payload of this transaction
1214 * (which is larger than 188 bytes).
1215 * @hubaddr: Hub Address (HubAddr)
1216 * This field holds the device address of the transaction
1217 * translator's hub.
1218 * @prtaddr: Port Address (PrtAddr)
1219 * This field is the port number of the recipient transaction
1220 * translator.
1222 struct cvmx_usbcx_hcspltx_s {
1223 __BITFIELD_FIELD(u32 spltena : 1,
1224 __BITFIELD_FIELD(u32 reserved_17_30 : 14,
1225 __BITFIELD_FIELD(u32 compsplt : 1,
1226 __BITFIELD_FIELD(u32 xactpos : 2,
1227 __BITFIELD_FIELD(u32 hubaddr : 7,
1228 __BITFIELD_FIELD(u32 prtaddr : 7,
1229 ;))))))
1230 } s;
1234 * cvmx_usbc#_hctsiz#
1236 * Host Channel-n Transfer Size Register (HCTSIZ)
1239 union cvmx_usbcx_hctsizx {
1240 u32 u32;
1242 * struct cvmx_usbcx_hctsizx_s
1243 * @dopng: Do Ping (DoPng)
1244 * Setting this field to 1 directs the host to do PING protocol.
1245 * @pid: PID (Pid)
1246 * The application programs this field with the type of PID to use
1247 * for the initial transaction. The host will maintain this field
1248 * for the rest of the transfer.
1249 * * 2'b00: DATA0
1250 * * 2'b01: DATA2
1251 * * 2'b10: DATA1
1252 * * 2'b11: MDATA (non-control)/SETUP (control)
1253 * @pktcnt: Packet Count (PktCnt)
1254 * This field is programmed by the application with the expected
1255 * number of packets to be transmitted (OUT) or received (IN).
1256 * The host decrements this count on every successful
1257 * transmission or reception of an OUT/IN packet. Once this count
1258 * reaches zero, the application is interrupted to indicate normal
1259 * completion.
1260 * @xfersize: Transfer Size (XferSize)
1261 * For an OUT, this field is the number of data bytes the host will
1262 * send during the transfer.
1263 * For an IN, this field is the buffer size that the application
1264 * has reserved for the transfer. The application is expected to
1265 * program this field as an integer multiple of the maximum packet
1266 * size for IN transactions (periodic and non-periodic).
1268 struct cvmx_usbcx_hctsizx_s {
1269 __BITFIELD_FIELD(u32 dopng : 1,
1270 __BITFIELD_FIELD(u32 pid : 2,
1271 __BITFIELD_FIELD(u32 pktcnt : 10,
1272 __BITFIELD_FIELD(u32 xfersize : 19,
1273 ;))))
1274 } s;
1278 * cvmx_usbc#_hfir
1280 * Host Frame Interval Register (HFIR)
1282 * This register stores the frame interval information for the current speed to
1283 * which the O2P USB core has enumerated.
1285 union cvmx_usbcx_hfir {
1286 u32 u32;
1288 * struct cvmx_usbcx_hfir_s
1289 * @frint: Frame Interval (FrInt)
1290 * The value that the application programs to this field specifies
1291 * the interval between two consecutive SOFs (FS) or micro-
1292 * SOFs (HS) or Keep-Alive tokens (HS). This field contains the
1293 * number of PHY clocks that constitute the required frame
1294 * interval. The default value set in this field for a FS operation
1295 * when the PHY clock frequency is 60 MHz. The application can
1296 * write a value to this register only after the Port Enable bit of
1297 * the Host Port Control and Status register (HPRT.PrtEnaPort)
1298 * has been set. If no value is programmed, the core calculates
1299 * the value based on the PHY clock specified in the FS/LS PHY
1300 * Clock Select field of the Host Configuration register
1301 * (HCFG.FSLSPclkSel). Do not change the value of this field
1302 * after the initial configuration.
1303 * * 125 us (PHY clock frequency for HS)
1304 * * 1 ms (PHY clock frequency for FS/LS)
1306 struct cvmx_usbcx_hfir_s {
1307 __BITFIELD_FIELD(u32 reserved_16_31 : 16,
1308 __BITFIELD_FIELD(u32 frint : 16,
1310 } s;
1314 * cvmx_usbc#_hfnum
1316 * Host Frame Number/Frame Time Remaining Register (HFNUM)
1318 * This register indicates the current frame number.
1319 * It also indicates the time remaining (in terms of the number of PHY clocks)
1320 * in the current (micro)frame.
1322 union cvmx_usbcx_hfnum {
1323 u32 u32;
1325 * struct cvmx_usbcx_hfnum_s
1326 * @frrem: Frame Time Remaining (FrRem)
1327 * Indicates the amount of time remaining in the current
1328 * microframe (HS) or frame (FS/LS), in terms of PHY clocks.
1329 * This field decrements on each PHY clock. When it reaches
1330 * zero, this field is reloaded with the value in the Frame
1331 * Interval register and a new SOF is transmitted on the USB.
1332 * @frnum: Frame Number (FrNum)
1333 * This field increments when a new SOF is transmitted on the
1334 * USB, and is reset to 0 when it reaches 16'h3FFF.
1336 struct cvmx_usbcx_hfnum_s {
1337 __BITFIELD_FIELD(u32 frrem : 16,
1338 __BITFIELD_FIELD(u32 frnum : 16,
1340 } s;
1344 * cvmx_usbc#_hprt
1346 * Host Port Control and Status Register (HPRT)
1348 * This register is available in both Host and Device modes.
1349 * Currently, the OTG Host supports only one port.
1350 * A single register holds USB port-related information such as USB reset,
1351 * enable, suspend, resume, connect status, and test mode for each port. The
1352 * R_SS_WC bits in this register can trigger an interrupt to the application
1353 * through the Host Port Interrupt bit of the Core Interrupt register
1354 * (GINTSTS.PrtInt). On a Port Interrupt, the application must read this
1355 * register and clear the bit that caused the interrupt. For the R_SS_WC bits,
1356 * the application must write a 1 to the bit to clear the interrupt.
1358 union cvmx_usbcx_hprt {
1359 u32 u32;
1361 * struct cvmx_usbcx_hprt_s
1362 * @prtspd: Port Speed (PrtSpd)
1363 * Indicates the speed of the device attached to this port.
1364 * * 2'b00: High speed
1365 * * 2'b01: Full speed
1366 * * 2'b10: Low speed
1367 * * 2'b11: Reserved
1368 * @prttstctl: Port Test Control (PrtTstCtl)
1369 * The application writes a nonzero value to this field to put
1370 * the port into a Test mode, and the corresponding pattern is
1371 * signaled on the port.
1372 * * 4'b0000: Test mode disabled
1373 * * 4'b0001: Test_J mode
1374 * * 4'b0010: Test_K mode
1375 * * 4'b0011: Test_SE0_NAK mode
1376 * * 4'b0100: Test_Packet mode
1377 * * 4'b0101: Test_Force_Enable
1378 * * Others: Reserved
1379 * PrtSpd must be zero (i.e. the interface must be in high-speed
1380 * mode) to use the PrtTstCtl test modes.
1381 * @prtpwr: Port Power (PrtPwr)
1382 * The application uses this field to control power to this port,
1383 * and the core clears this bit on an overcurrent condition.
1384 * * 1'b0: Power off
1385 * * 1'b1: Power on
1386 * @prtlnsts: Port Line Status (PrtLnSts)
1387 * Indicates the current logic level USB data lines
1388 * * Bit [10]: Logic level of D-
1389 * * Bit [11]: Logic level of D+
1390 * @prtrst: Port Reset (PrtRst)
1391 * When the application sets this bit, a reset sequence is
1392 * started on this port. The application must time the reset
1393 * period and clear this bit after the reset sequence is
1394 * complete.
1395 * * 1'b0: Port not in reset
1396 * * 1'b1: Port in reset
1397 * The application must leave this bit set for at least a
1398 * minimum duration mentioned below to start a reset on the
1399 * port. The application can leave it set for another 10 ms in
1400 * addition to the required minimum duration, before clearing
1401 * the bit, even though there is no maximum limit set by the
1402 * USB standard.
1403 * * High speed: 50 ms
1404 * * Full speed/Low speed: 10 ms
1405 * @prtsusp: Port Suspend (PrtSusp)
1406 * The application sets this bit to put this port in Suspend
1407 * mode. The core only stops sending SOFs when this is set.
1408 * To stop the PHY clock, the application must set the Port
1409 * Clock Stop bit, which will assert the suspend input pin of
1410 * the PHY.
1411 * The read value of this bit reflects the current suspend
1412 * status of the port. This bit is cleared by the core after a
1413 * remote wakeup signal is detected or the application sets
1414 * the Port Reset bit or Port Resume bit in this register or the
1415 * Resume/Remote Wakeup Detected Interrupt bit or
1416 * Disconnect Detected Interrupt bit in the Core Interrupt
1417 * register (GINTSTS.WkUpInt or GINTSTS.DisconnInt,
1418 * respectively).
1419 * * 1'b0: Port not in Suspend mode
1420 * * 1'b1: Port in Suspend mode
1421 * @prtres: Port Resume (PrtRes)
1422 * The application sets this bit to drive resume signaling on
1423 * the port. The core continues to drive the resume signal
1424 * until the application clears this bit.
1425 * If the core detects a USB remote wakeup sequence, as
1426 * indicated by the Port Resume/Remote Wakeup Detected
1427 * Interrupt bit of the Core Interrupt register
1428 * (GINTSTS.WkUpInt), the core starts driving resume
1429 * signaling without application intervention and clears this bit
1430 * when it detects a disconnect condition. The read value of
1431 * this bit indicates whether the core is currently driving
1432 * resume signaling.
1433 * * 1'b0: No resume driven
1434 * * 1'b1: Resume driven
1435 * @prtovrcurrchng: Port Overcurrent Change (PrtOvrCurrChng)
1436 * The core sets this bit when the status of the Port
1437 * Overcurrent Active bit (bit 4) in this register changes.
1438 * @prtovrcurract: Port Overcurrent Active (PrtOvrCurrAct)
1439 * Indicates the overcurrent condition of the port.
1440 * * 1'b0: No overcurrent condition
1441 * * 1'b1: Overcurrent condition
1442 * @prtenchng: Port Enable/Disable Change (PrtEnChng)
1443 * The core sets this bit when the status of the Port Enable bit
1444 * [2] of this register changes.
1445 * @prtena: Port Enable (PrtEna)
1446 * A port is enabled only by the core after a reset sequence,
1447 * and is disabled by an overcurrent condition, a disconnect
1448 * condition, or by the application clearing this bit. The
1449 * application cannot set this bit by a register write. It can only
1450 * clear it to disable the port. This bit does not trigger any
1451 * interrupt to the application.
1452 * * 1'b0: Port disabled
1453 * * 1'b1: Port enabled
1454 * @prtconndet: Port Connect Detected (PrtConnDet)
1455 * The core sets this bit when a device connection is detected
1456 * to trigger an interrupt to the application using the Host Port
1457 * Interrupt bit of the Core Interrupt register (GINTSTS.PrtInt).
1458 * The application must write a 1 to this bit to clear the
1459 * interrupt.
1460 * @prtconnsts: Port Connect Status (PrtConnSts)
1461 * * 0: No device is attached to the port.
1462 * * 1: A device is attached to the port.
1464 struct cvmx_usbcx_hprt_s {
1465 __BITFIELD_FIELD(u32 reserved_19_31 : 13,
1466 __BITFIELD_FIELD(u32 prtspd : 2,
1467 __BITFIELD_FIELD(u32 prttstctl : 4,
1468 __BITFIELD_FIELD(u32 prtpwr : 1,
1469 __BITFIELD_FIELD(u32 prtlnsts : 2,
1470 __BITFIELD_FIELD(u32 reserved_9_9 : 1,
1471 __BITFIELD_FIELD(u32 prtrst : 1,
1472 __BITFIELD_FIELD(u32 prtsusp : 1,
1473 __BITFIELD_FIELD(u32 prtres : 1,
1474 __BITFIELD_FIELD(u32 prtovrcurrchng : 1,
1475 __BITFIELD_FIELD(u32 prtovrcurract : 1,
1476 __BITFIELD_FIELD(u32 prtenchng : 1,
1477 __BITFIELD_FIELD(u32 prtena : 1,
1478 __BITFIELD_FIELD(u32 prtconndet : 1,
1479 __BITFIELD_FIELD(u32 prtconnsts : 1,
1480 ;)))))))))))))))
1481 } s;
1485 * cvmx_usbc#_hptxfsiz
1487 * Host Periodic Transmit FIFO Size Register (HPTXFSIZ)
1489 * This register holds the size and the memory start address of the Periodic
1490 * TxFIFO, as shown in Figures 310 and 311.
1492 union cvmx_usbcx_hptxfsiz {
1493 u32 u32;
1495 * struct cvmx_usbcx_hptxfsiz_s
1496 * @ptxfsize: Host Periodic TxFIFO Depth (PTxFSize)
1497 * This value is in terms of 32-bit words.
1498 * * Minimum value is 16
1499 * * Maximum value is 32768
1500 * @ptxfstaddr: Host Periodic TxFIFO Start Address (PTxFStAddr)
1502 struct cvmx_usbcx_hptxfsiz_s {
1503 __BITFIELD_FIELD(u32 ptxfsize : 16,
1504 __BITFIELD_FIELD(u32 ptxfstaddr : 16,
1506 } s;
1510 * cvmx_usbc#_hptxsts
1512 * Host Periodic Transmit FIFO/Queue Status Register (HPTXSTS)
1514 * This read-only register contains the free space information for the Periodic
1515 * TxFIFO and the Periodic Transmit Request Queue
1517 union cvmx_usbcx_hptxsts {
1518 u32 u32;
1520 * struct cvmx_usbcx_hptxsts_s
1521 * @ptxqtop: Top of the Periodic Transmit Request Queue (PTxQTop)
1522 * This indicates the entry in the Periodic Tx Request Queue that
1523 * is currently being processes by the MAC.
1524 * This register is used for debugging.
1525 * * Bit [31]: Odd/Even (micro)frame
1526 * - 1'b0: send in even (micro)frame
1527 * - 1'b1: send in odd (micro)frame
1528 * * Bits [30:27]: Channel/endpoint number
1529 * * Bits [26:25]: Type
1530 * - 2'b00: IN/OUT
1531 * - 2'b01: Zero-length packet
1532 * - 2'b10: CSPLIT
1533 * - 2'b11: Disable channel command
1534 * * Bit [24]: Terminate (last entry for the selected
1535 * channel/endpoint)
1536 * @ptxqspcavail: Periodic Transmit Request Queue Space Available
1537 * (PTxQSpcAvail)
1538 * Indicates the number of free locations available to be written
1539 * in the Periodic Transmit Request Queue. This queue holds both
1540 * IN and OUT requests.
1541 * * 8'h0: Periodic Transmit Request Queue is full
1542 * * 8'h1: 1 location available
1543 * * 8'h2: 2 locations available
1544 * * n: n locations available (0..8)
1545 * * Others: Reserved
1546 * @ptxfspcavail: Periodic Transmit Data FIFO Space Available
1547 * (PTxFSpcAvail)
1548 * Indicates the number of free locations available to be written
1549 * to in the Periodic TxFIFO.
1550 * Values are in terms of 32-bit words
1551 * * 16'h0: Periodic TxFIFO is full
1552 * * 16'h1: 1 word available
1553 * * 16'h2: 2 words available
1554 * * 16'hn: n words available (where 0..32768)
1555 * * 16'h8000: 32768 words available
1556 * * Others: Reserved
1558 struct cvmx_usbcx_hptxsts_s {
1559 __BITFIELD_FIELD(u32 ptxqtop : 8,
1560 __BITFIELD_FIELD(u32 ptxqspcavail : 8,
1561 __BITFIELD_FIELD(u32 ptxfspcavail : 16,
1562 ;)))
1563 } s;
1567 * cvmx_usbn#_clk_ctl
1569 * USBN_CLK_CTL = USBN's Clock Control
1571 * This register is used to control the frequency of the hclk and the
1572 * hreset and phy_rst signals.
1574 union cvmx_usbnx_clk_ctl {
1575 u64 u64;
1577 * struct cvmx_usbnx_clk_ctl_s
1578 * @divide2: The 'hclk' used by the USB subsystem is derived
1579 * from the eclk.
1580 * Also see the field DIVIDE. DIVIDE2<1> must currently
1581 * be zero because it is not implemented, so the maximum
1582 * ratio of eclk/hclk is currently 16.
1583 * The actual divide number for hclk is:
1584 * (DIVIDE2 + 1) * (DIVIDE + 1)
1585 * @hclk_rst: When this field is '0' the HCLK-DIVIDER used to
1586 * generate the hclk in the USB Subsystem is held
1587 * in reset. This bit must be set to '0' before
1588 * changing the value os DIVIDE in this register.
1589 * The reset to the HCLK_DIVIDERis also asserted
1590 * when core reset is asserted.
1591 * @p_x_on: Force USB-PHY on during suspend.
1592 * '1' USB-PHY XO block is powered-down during
1593 * suspend.
1594 * '0' USB-PHY XO block is powered-up during
1595 * suspend.
1596 * The value of this field must be set while POR is
1597 * active.
1598 * @p_rtype: PHY reference clock type
1599 * On CN50XX/CN52XX/CN56XX the values are:
1600 * '0' The USB-PHY uses a 12MHz crystal as a clock source
1601 * at the USB_XO and USB_XI pins.
1602 * '1' Reserved.
1603 * '2' The USB_PHY uses 12/24/48MHz 2.5V board clock at the
1604 * USB_XO pin. USB_XI should be tied to ground in this
1605 * case.
1606 * '3' Reserved.
1607 * On CN3xxx bits 14 and 15 are p_xenbn and p_rclk and values are:
1608 * '0' Reserved.
1609 * '1' Reserved.
1610 * '2' The PHY PLL uses the XO block output as a reference.
1611 * The XO block uses an external clock supplied on the
1612 * XO pin. USB_XI should be tied to ground for this
1613 * usage.
1614 * '3' The XO block uses the clock from a crystal.
1615 * @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to
1616 * remain powered in Suspend Mode.
1617 * '1' The USB-PHY XO Bias, Bandgap and PLL are
1618 * powered down in suspend mode.
1619 * The value of this field must be set while POR is
1620 * active.
1621 * @p_c_sel: Phy clock speed select.
1622 * Selects the reference clock / crystal frequency.
1623 * '11': Reserved
1624 * '10': 48 MHz (reserved when a crystal is used)
1625 * '01': 24 MHz (reserved when a crystal is used)
1626 * '00': 12 MHz
1627 * The value of this field must be set while POR is
1628 * active.
1629 * NOTE: if a crystal is used as a reference clock,
1630 * this field must be set to 12 MHz.
1631 * @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV.
1632 * @sd_mode: Scaledown mode for the USBC. Control timing events
1633 * in the USBC, for normal operation this must be '0'.
1634 * @s_bist: Starts bist on the hclk memories, during the '0'
1635 * to '1' transition.
1636 * @por: Power On Reset for the PHY.
1637 * Resets all the PHYS registers and state machines.
1638 * @enable: When '1' allows the generation of the hclk. When
1639 * '0' the hclk will not be generated. SEE DIVIDE
1640 * field of this register.
1641 * @prst: When this field is '0' the reset associated with
1642 * the phy_clk functionality in the USB Subsystem is
1643 * help in reset. This bit should not be set to '1'
1644 * until the time it takes 6 clocks (hclk or phy_clk,
1645 * whichever is slower) has passed. Under normal
1646 * operation once this bit is set to '1' it should not
1647 * be set to '0'.
1648 * @hrst: When this field is '0' the reset associated with
1649 * the hclk functioanlity in the USB Subsystem is
1650 * held in reset.This bit should not be set to '1'
1651 * until 12ms after phy_clk is stable. Under normal
1652 * operation, once this bit is set to '1' it should
1653 * not be set to '0'.
1654 * @divide: The frequency of 'hclk' used by the USB subsystem
1655 * is the eclk frequency divided by the value of
1656 * (DIVIDE2 + 1) * (DIVIDE + 1), also see the field
1657 * DIVIDE2 of this register.
1658 * The hclk frequency should be less than 125Mhz.
1659 * After writing a value to this field the SW should
1660 * read the field for the value written.
1661 * The ENABLE field of this register should not be set
1662 * until AFTER this field is set and then read.
1664 struct cvmx_usbnx_clk_ctl_s {
1665 __BITFIELD_FIELD(u64 reserved_20_63 : 44,
1666 __BITFIELD_FIELD(u64 divide2 : 2,
1667 __BITFIELD_FIELD(u64 hclk_rst : 1,
1668 __BITFIELD_FIELD(u64 p_x_on : 1,
1669 __BITFIELD_FIELD(u64 p_rtype : 2,
1670 __BITFIELD_FIELD(u64 p_com_on : 1,
1671 __BITFIELD_FIELD(u64 p_c_sel : 2,
1672 __BITFIELD_FIELD(u64 cdiv_byp : 1,
1673 __BITFIELD_FIELD(u64 sd_mode : 2,
1674 __BITFIELD_FIELD(u64 s_bist : 1,
1675 __BITFIELD_FIELD(u64 por : 1,
1676 __BITFIELD_FIELD(u64 enable : 1,
1677 __BITFIELD_FIELD(u64 prst : 1,
1678 __BITFIELD_FIELD(u64 hrst : 1,
1679 __BITFIELD_FIELD(u64 divide : 3,
1680 ;)))))))))))))))
1681 } s;
1685 * cvmx_usbn#_usbp_ctl_status
1687 * USBN_USBP_CTL_STATUS = USBP Control And Status Register
1689 * Contains general control and status information for the USBN block.
1691 union cvmx_usbnx_usbp_ctl_status {
1692 u64 u64;
1694 * struct cvmx_usbnx_usbp_ctl_status_s
1695 * @txrisetune: HS Transmitter Rise/Fall Time Adjustment
1696 * @txvreftune: HS DC Voltage Level Adjustment
1697 * @txfslstune: FS/LS Source Impedance Adjustment
1698 * @txhsxvtune: Transmitter High-Speed Crossover Adjustment
1699 * @sqrxtune: Squelch Threshold Adjustment
1700 * @compdistune: Disconnect Threshold Adjustment
1701 * @otgtune: VBUS Valid Threshold Adjustment
1702 * @otgdisable: OTG Block Disable
1703 * @portreset: Per_Port Reset
1704 * @drvvbus: Drive VBUS
1705 * @lsbist: Low-Speed BIST Enable.
1706 * @fsbist: Full-Speed BIST Enable.
1707 * @hsbist: High-Speed BIST Enable.
1708 * @bist_done: PHY Bist Done.
1709 * Asserted at the end of the PHY BIST sequence.
1710 * @bist_err: PHY Bist Error.
1711 * Indicates an internal error was detected during
1712 * the BIST sequence.
1713 * @tdata_out: PHY Test Data Out.
1714 * Presents either internally generated signals or
1715 * test register contents, based upon the value of
1716 * test_data_out_sel.
1717 * @siddq: Drives the USBP (USB-PHY) SIDDQ input.
1718 * Normally should be set to zero.
1719 * When customers have no intent to use USB PHY
1720 * interface, they should:
1721 * - still provide 3.3V to USB_VDD33, and
1722 * - tie USB_REXT to 3.3V supply, and
1723 * - set USBN*_USBP_CTL_STATUS[SIDDQ]=1
1724 * @txpreemphasistune: HS Transmitter Pre-Emphasis Enable
1725 * @dma_bmode: When set to 1 the L2C DMA address will be updated
1726 * with byte-counts between packets. When set to 0
1727 * the L2C DMA address is incremented to the next
1728 * 4-byte aligned address after adding byte-count.
1729 * @usbc_end: Bigendian input to the USB Core. This should be
1730 * set to '0' for operation.
1731 * @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
1732 * @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
1733 * @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
1734 * This signal enables the pull-down resistance on
1735 * the D+ line. '1' pull down-resistance is connected
1736 * to D+/ '0' pull down resistance is not connected
1737 * to D+. When an A/B device is acting as a host
1738 * (downstream-facing port), dp_pulldown and
1739 * dm_pulldown are enabled. This must not toggle
1740 * during normal operation.
1741 * @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
1742 * This signal enables the pull-down resistance on
1743 * the D- line. '1' pull down-resistance is connected
1744 * to D-. '0' pull down resistance is not connected
1745 * to D-. When an A/B device is acting as a host
1746 * (downstream-facing port), dp_pulldown and
1747 * dm_pulldown are enabled. This must not toggle
1748 * during normal operation.
1749 * @hst_mode: When '0' the USB is acting as HOST, when '1'
1750 * USB is acting as device. This field needs to be
1751 * set while the USB is in reset.
1752 * @tuning: Transmitter Tuning for High-Speed Operation.
1753 * Tunes the current supply and rise/fall output
1754 * times for high-speed operation.
1755 * [20:19] == 11: Current supply increased
1756 * approximately 9%
1757 * [20:19] == 10: Current supply increased
1758 * approximately 4.5%
1759 * [20:19] == 01: Design default.
1760 * [20:19] == 00: Current supply decreased
1761 * approximately 4.5%
1762 * [22:21] == 11: Rise and fall times are increased.
1763 * [22:21] == 10: Design default.
1764 * [22:21] == 01: Rise and fall times are decreased.
1765 * [22:21] == 00: Rise and fall times are decreased
1766 * further as compared to the 01 setting.
1767 * @tx_bs_enh: Transmit Bit Stuffing on [15:8].
1768 * Enables or disables bit stuffing on data[15:8]
1769 * when bit-stuffing is enabled.
1770 * @tx_bs_en: Transmit Bit Stuffing on [7:0].
1771 * Enables or disables bit stuffing on data[7:0]
1772 * when bit-stuffing is enabled.
1773 * @loop_enb: PHY Loopback Test Enable.
1774 * '1': During data transmission the receive is
1775 * enabled.
1776 * '0': During data transmission the receive is
1777 * disabled.
1778 * Must be '0' for normal operation.
1779 * @vtest_enb: Analog Test Pin Enable.
1780 * '1' The PHY's analog_test pin is enabled for the
1781 * input and output of applicable analog test signals.
1782 * '0' THe analog_test pin is disabled.
1783 * @bist_enb: Built-In Self Test Enable.
1784 * Used to activate BIST in the PHY.
1785 * @tdata_sel: Test Data Out Select.
1786 * '1' test_data_out[3:0] (PHY) register contents
1787 * are output. '0' internally generated signals are
1788 * output.
1789 * @taddr_in: Mode Address for Test Interface.
1790 * Specifies the register address for writing to or
1791 * reading from the PHY test interface register.
1792 * @tdata_in: Internal Testing Register Input Data and Select
1793 * This is a test bus. Data is present on [3:0],
1794 * and its corresponding select (enable) is present
1795 * on bits [7:4].
1796 * @ate_reset: Reset input from automatic test equipment.
1797 * This is a test signal. When the USB Core is
1798 * powered up (not in Susned Mode), an automatic
1799 * tester can use this to disable phy_clock and
1800 * free_clk, then re-enable them with an aligned
1801 * phase.
1802 * '1': The phy_clk and free_clk outputs are
1803 * disabled. "0": The phy_clock and free_clk outputs
1804 * are available within a specific period after the
1805 * de-assertion.
1807 struct cvmx_usbnx_usbp_ctl_status_s {
1808 __BITFIELD_FIELD(u64 txrisetune : 1,
1809 __BITFIELD_FIELD(u64 txvreftune : 4,
1810 __BITFIELD_FIELD(u64 txfslstune : 4,
1811 __BITFIELD_FIELD(u64 txhsxvtune : 2,
1812 __BITFIELD_FIELD(u64 sqrxtune : 3,
1813 __BITFIELD_FIELD(u64 compdistune : 3,
1814 __BITFIELD_FIELD(u64 otgtune : 3,
1815 __BITFIELD_FIELD(u64 otgdisable : 1,
1816 __BITFIELD_FIELD(u64 portreset : 1,
1817 __BITFIELD_FIELD(u64 drvvbus : 1,
1818 __BITFIELD_FIELD(u64 lsbist : 1,
1819 __BITFIELD_FIELD(u64 fsbist : 1,
1820 __BITFIELD_FIELD(u64 hsbist : 1,
1821 __BITFIELD_FIELD(u64 bist_done : 1,
1822 __BITFIELD_FIELD(u64 bist_err : 1,
1823 __BITFIELD_FIELD(u64 tdata_out : 4,
1824 __BITFIELD_FIELD(u64 siddq : 1,
1825 __BITFIELD_FIELD(u64 txpreemphasistune : 1,
1826 __BITFIELD_FIELD(u64 dma_bmode : 1,
1827 __BITFIELD_FIELD(u64 usbc_end : 1,
1828 __BITFIELD_FIELD(u64 usbp_bist : 1,
1829 __BITFIELD_FIELD(u64 tclk : 1,
1830 __BITFIELD_FIELD(u64 dp_pulld : 1,
1831 __BITFIELD_FIELD(u64 dm_pulld : 1,
1832 __BITFIELD_FIELD(u64 hst_mode : 1,
1833 __BITFIELD_FIELD(u64 tuning : 4,
1834 __BITFIELD_FIELD(u64 tx_bs_enh : 1,
1835 __BITFIELD_FIELD(u64 tx_bs_en : 1,
1836 __BITFIELD_FIELD(u64 loop_enb : 1,
1837 __BITFIELD_FIELD(u64 vtest_enb : 1,
1838 __BITFIELD_FIELD(u64 bist_enb : 1,
1839 __BITFIELD_FIELD(u64 tdata_sel : 1,
1840 __BITFIELD_FIELD(u64 taddr_in : 4,
1841 __BITFIELD_FIELD(u64 tdata_in : 8,
1842 __BITFIELD_FIELD(u64 ate_reset : 1,
1843 ;)))))))))))))))))))))))))))))))))))
1844 } s;
1847 #endif /* __OCTEON_HCD_H__ */