2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.rst for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex
);
28 static LIST_HEAD(relay_channels
);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct
*vma
)
35 struct rchan_buf
*buf
= vma
->vm_private_data
;
36 buf
->chan
->cb
->buf_unmapped(buf
, vma
->vm_file
);
40 * fault() vm_op implementation for relay file mapping.
42 static vm_fault_t
relay_buf_fault(struct vm_fault
*vmf
)
45 struct rchan_buf
*buf
= vmf
->vma
->vm_private_data
;
46 pgoff_t pgoff
= vmf
->pgoff
;
51 page
= vmalloc_to_page(buf
->start
+ (pgoff
<< PAGE_SHIFT
));
53 return VM_FAULT_SIGBUS
;
61 * vm_ops for relay file mappings.
63 static const struct vm_operations_struct relay_file_mmap_ops
= {
64 .fault
= relay_buf_fault
,
65 .close
= relay_file_mmap_close
,
69 * allocate an array of pointers of struct page
71 static struct page
**relay_alloc_page_array(unsigned int n_pages
)
73 const size_t pa_size
= n_pages
* sizeof(struct page
*);
74 if (pa_size
> PAGE_SIZE
)
75 return vzalloc(pa_size
);
76 return kzalloc(pa_size
, GFP_KERNEL
);
80 * free an array of pointers of struct page
82 static void relay_free_page_array(struct page
**array
)
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
92 * Returns 0 if ok, negative on error
94 * Caller should already have grabbed mmap_lock.
96 static int relay_mmap_buf(struct rchan_buf
*buf
, struct vm_area_struct
*vma
)
98 unsigned long length
= vma
->vm_end
- vma
->vm_start
;
99 struct file
*filp
= vma
->vm_file
;
104 if (length
!= (unsigned long)buf
->chan
->alloc_size
)
107 vma
->vm_ops
= &relay_file_mmap_ops
;
108 vma
->vm_flags
|= VM_DONTEXPAND
;
109 vma
->vm_private_data
= buf
;
110 buf
->chan
->cb
->buf_mapped(buf
, filp
);
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
123 static void *relay_alloc_buf(struct rchan_buf
*buf
, size_t *size
)
126 unsigned int i
, j
, n_pages
;
128 *size
= PAGE_ALIGN(*size
);
129 n_pages
= *size
>> PAGE_SHIFT
;
131 buf
->page_array
= relay_alloc_page_array(n_pages
);
132 if (!buf
->page_array
)
135 for (i
= 0; i
< n_pages
; i
++) {
136 buf
->page_array
[i
] = alloc_page(GFP_KERNEL
);
137 if (unlikely(!buf
->page_array
[i
]))
139 set_page_private(buf
->page_array
[i
], (unsigned long)buf
);
141 mem
= vmap(buf
->page_array
, n_pages
, VM_MAP
, PAGE_KERNEL
);
145 memset(mem
, 0, *size
);
146 buf
->page_count
= n_pages
;
150 for (j
= 0; j
< i
; j
++)
151 __free_page(buf
->page_array
[j
]);
152 relay_free_page_array(buf
->page_array
);
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
160 * Returns channel buffer if successful, %NULL otherwise.
162 static struct rchan_buf
*relay_create_buf(struct rchan
*chan
)
164 struct rchan_buf
*buf
;
166 if (chan
->n_subbufs
> KMALLOC_MAX_SIZE
/ sizeof(size_t *))
169 buf
= kzalloc(sizeof(struct rchan_buf
), GFP_KERNEL
);
172 buf
->padding
= kmalloc_array(chan
->n_subbufs
, sizeof(size_t *),
177 buf
->start
= relay_alloc_buf(buf
, &chan
->alloc_size
);
182 kref_get(&buf
->chan
->kref
);
192 * relay_destroy_channel - free the channel struct
193 * @kref: target kernel reference that contains the relay channel
195 * Should only be called from kref_put().
197 static void relay_destroy_channel(struct kref
*kref
)
199 struct rchan
*chan
= container_of(kref
, struct rchan
, kref
);
204 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
205 * @buf: the buffer struct
207 static void relay_destroy_buf(struct rchan_buf
*buf
)
209 struct rchan
*chan
= buf
->chan
;
212 if (likely(buf
->start
)) {
214 for (i
= 0; i
< buf
->page_count
; i
++)
215 __free_page(buf
->page_array
[i
]);
216 relay_free_page_array(buf
->page_array
);
218 *per_cpu_ptr(chan
->buf
, buf
->cpu
) = NULL
;
221 kref_put(&chan
->kref
, relay_destroy_channel
);
225 * relay_remove_buf - remove a channel buffer
226 * @kref: target kernel reference that contains the relay buffer
228 * Removes the file from the filesystem, which also frees the
229 * rchan_buf_struct and the channel buffer. Should only be called from
232 static void relay_remove_buf(struct kref
*kref
)
234 struct rchan_buf
*buf
= container_of(kref
, struct rchan_buf
, kref
);
235 relay_destroy_buf(buf
);
239 * relay_buf_empty - boolean, is the channel buffer empty?
240 * @buf: channel buffer
242 * Returns 1 if the buffer is empty, 0 otherwise.
244 static int relay_buf_empty(struct rchan_buf
*buf
)
246 return (buf
->subbufs_produced
- buf
->subbufs_consumed
) ? 0 : 1;
250 * relay_buf_full - boolean, is the channel buffer full?
251 * @buf: channel buffer
253 * Returns 1 if the buffer is full, 0 otherwise.
255 int relay_buf_full(struct rchan_buf
*buf
)
257 size_t ready
= buf
->subbufs_produced
- buf
->subbufs_consumed
;
258 return (ready
>= buf
->chan
->n_subbufs
) ? 1 : 0;
260 EXPORT_SYMBOL_GPL(relay_buf_full
);
263 * High-level relay kernel API and associated functions.
267 * rchan_callback implementations defining default channel behavior. Used
268 * in place of corresponding NULL values in client callback struct.
272 * subbuf_start() default callback. Does nothing.
274 static int subbuf_start_default_callback (struct rchan_buf
*buf
,
279 if (relay_buf_full(buf
))
286 * buf_mapped() default callback. Does nothing.
288 static void buf_mapped_default_callback(struct rchan_buf
*buf
,
294 * buf_unmapped() default callback. Does nothing.
296 static void buf_unmapped_default_callback(struct rchan_buf
*buf
,
302 * create_buf_file_create() default callback. Does nothing.
304 static struct dentry
*create_buf_file_default_callback(const char *filename
,
305 struct dentry
*parent
,
307 struct rchan_buf
*buf
,
314 * remove_buf_file() default callback. Does nothing.
316 static int remove_buf_file_default_callback(struct dentry
*dentry
)
321 /* relay channel default callbacks */
322 static struct rchan_callbacks default_channel_callbacks
= {
323 .subbuf_start
= subbuf_start_default_callback
,
324 .buf_mapped
= buf_mapped_default_callback
,
325 .buf_unmapped
= buf_unmapped_default_callback
,
326 .create_buf_file
= create_buf_file_default_callback
,
327 .remove_buf_file
= remove_buf_file_default_callback
,
331 * wakeup_readers - wake up readers waiting on a channel
332 * @work: contains the channel buffer
334 * This is the function used to defer reader waking
336 static void wakeup_readers(struct irq_work
*work
)
338 struct rchan_buf
*buf
;
340 buf
= container_of(work
, struct rchan_buf
, wakeup_work
);
341 wake_up_interruptible(&buf
->read_wait
);
345 * __relay_reset - reset a channel buffer
346 * @buf: the channel buffer
347 * @init: 1 if this is a first-time initialization
349 * See relay_reset() for description of effect.
351 static void __relay_reset(struct rchan_buf
*buf
, unsigned int init
)
356 init_waitqueue_head(&buf
->read_wait
);
357 kref_init(&buf
->kref
);
358 init_irq_work(&buf
->wakeup_work
, wakeup_readers
);
360 irq_work_sync(&buf
->wakeup_work
);
363 buf
->subbufs_produced
= 0;
364 buf
->subbufs_consumed
= 0;
365 buf
->bytes_consumed
= 0;
367 buf
->data
= buf
->start
;
370 for (i
= 0; i
< buf
->chan
->n_subbufs
; i
++)
373 buf
->chan
->cb
->subbuf_start(buf
, buf
->data
, NULL
, 0);
377 * relay_reset - reset the channel
380 * This has the effect of erasing all data from all channel buffers
381 * and restarting the channel in its initial state. The buffers
382 * are not freed, so any mappings are still in effect.
384 * NOTE. Care should be taken that the channel isn't actually
385 * being used by anything when this call is made.
387 void relay_reset(struct rchan
*chan
)
389 struct rchan_buf
*buf
;
395 if (chan
->is_global
&& (buf
= *per_cpu_ptr(chan
->buf
, 0))) {
396 __relay_reset(buf
, 0);
400 mutex_lock(&relay_channels_mutex
);
401 for_each_possible_cpu(i
)
402 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
403 __relay_reset(buf
, 0);
404 mutex_unlock(&relay_channels_mutex
);
406 EXPORT_SYMBOL_GPL(relay_reset
);
408 static inline void relay_set_buf_dentry(struct rchan_buf
*buf
,
409 struct dentry
*dentry
)
411 buf
->dentry
= dentry
;
412 d_inode(buf
->dentry
)->i_size
= buf
->early_bytes
;
415 static struct dentry
*relay_create_buf_file(struct rchan
*chan
,
416 struct rchan_buf
*buf
,
419 struct dentry
*dentry
;
422 tmpname
= kzalloc(NAME_MAX
+ 1, GFP_KERNEL
);
425 snprintf(tmpname
, NAME_MAX
, "%s%d", chan
->base_filename
, cpu
);
427 /* Create file in fs */
428 dentry
= chan
->cb
->create_buf_file(tmpname
, chan
->parent
,
440 * relay_open_buf - create a new relay channel buffer
442 * used by relay_open() and CPU hotplug.
444 static struct rchan_buf
*relay_open_buf(struct rchan
*chan
, unsigned int cpu
)
446 struct rchan_buf
*buf
= NULL
;
447 struct dentry
*dentry
;
450 return *per_cpu_ptr(chan
->buf
, 0);
452 buf
= relay_create_buf(chan
);
456 if (chan
->has_base_filename
) {
457 dentry
= relay_create_buf_file(chan
, buf
, cpu
);
460 relay_set_buf_dentry(buf
, dentry
);
462 /* Only retrieve global info, nothing more, nothing less */
463 dentry
= chan
->cb
->create_buf_file(NULL
, NULL
,
466 if (IS_ERR_OR_NULL(dentry
))
471 __relay_reset(buf
, 1);
473 if(chan
->is_global
) {
474 *per_cpu_ptr(chan
->buf
, 0) = buf
;
481 relay_destroy_buf(buf
);
486 * relay_close_buf - close a channel buffer
487 * @buf: channel buffer
489 * Marks the buffer finalized and restores the default callbacks.
490 * The channel buffer and channel buffer data structure are then freed
491 * automatically when the last reference is given up.
493 static void relay_close_buf(struct rchan_buf
*buf
)
496 irq_work_sync(&buf
->wakeup_work
);
497 buf
->chan
->cb
->remove_buf_file(buf
->dentry
);
498 kref_put(&buf
->kref
, relay_remove_buf
);
501 static void setup_callbacks(struct rchan
*chan
,
502 struct rchan_callbacks
*cb
)
505 chan
->cb
= &default_channel_callbacks
;
509 if (!cb
->subbuf_start
)
510 cb
->subbuf_start
= subbuf_start_default_callback
;
512 cb
->buf_mapped
= buf_mapped_default_callback
;
513 if (!cb
->buf_unmapped
)
514 cb
->buf_unmapped
= buf_unmapped_default_callback
;
515 if (!cb
->create_buf_file
)
516 cb
->create_buf_file
= create_buf_file_default_callback
;
517 if (!cb
->remove_buf_file
)
518 cb
->remove_buf_file
= remove_buf_file_default_callback
;
522 int relay_prepare_cpu(unsigned int cpu
)
525 struct rchan_buf
*buf
;
527 mutex_lock(&relay_channels_mutex
);
528 list_for_each_entry(chan
, &relay_channels
, list
) {
529 if ((buf
= *per_cpu_ptr(chan
->buf
, cpu
)))
531 buf
= relay_open_buf(chan
, cpu
);
533 pr_err("relay: cpu %d buffer creation failed\n", cpu
);
534 mutex_unlock(&relay_channels_mutex
);
537 *per_cpu_ptr(chan
->buf
, cpu
) = buf
;
539 mutex_unlock(&relay_channels_mutex
);
544 * relay_open - create a new relay channel
545 * @base_filename: base name of files to create, %NULL for buffering only
546 * @parent: dentry of parent directory, %NULL for root directory or buffer
547 * @subbuf_size: size of sub-buffers
548 * @n_subbufs: number of sub-buffers
549 * @cb: client callback functions
550 * @private_data: user-defined data
552 * Returns channel pointer if successful, %NULL otherwise.
554 * Creates a channel buffer for each cpu using the sizes and
555 * attributes specified. The created channel buffer files
556 * will be named base_filename0...base_filenameN-1. File
557 * permissions will be %S_IRUSR.
559 * If opening a buffer (@parent = NULL) that you later wish to register
560 * in a filesystem, call relay_late_setup_files() once the @parent dentry
563 struct rchan
*relay_open(const char *base_filename
,
564 struct dentry
*parent
,
567 struct rchan_callbacks
*cb
,
572 struct rchan_buf
*buf
;
574 if (!(subbuf_size
&& n_subbufs
))
576 if (subbuf_size
> UINT_MAX
/ n_subbufs
)
579 chan
= kzalloc(sizeof(struct rchan
), GFP_KERNEL
);
583 chan
->buf
= alloc_percpu(struct rchan_buf
*);
589 chan
->version
= RELAYFS_CHANNEL_VERSION
;
590 chan
->n_subbufs
= n_subbufs
;
591 chan
->subbuf_size
= subbuf_size
;
592 chan
->alloc_size
= PAGE_ALIGN(subbuf_size
* n_subbufs
);
593 chan
->parent
= parent
;
594 chan
->private_data
= private_data
;
596 chan
->has_base_filename
= 1;
597 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
599 setup_callbacks(chan
, cb
);
600 kref_init(&chan
->kref
);
602 mutex_lock(&relay_channels_mutex
);
603 for_each_online_cpu(i
) {
604 buf
= relay_open_buf(chan
, i
);
607 *per_cpu_ptr(chan
->buf
, i
) = buf
;
609 list_add(&chan
->list
, &relay_channels
);
610 mutex_unlock(&relay_channels_mutex
);
615 for_each_possible_cpu(i
) {
616 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
617 relay_close_buf(buf
);
620 kref_put(&chan
->kref
, relay_destroy_channel
);
621 mutex_unlock(&relay_channels_mutex
);
624 EXPORT_SYMBOL_GPL(relay_open
);
626 struct rchan_percpu_buf_dispatcher
{
627 struct rchan_buf
*buf
;
628 struct dentry
*dentry
;
631 /* Called in atomic context. */
632 static void __relay_set_buf_dentry(void *info
)
634 struct rchan_percpu_buf_dispatcher
*p
= info
;
636 relay_set_buf_dentry(p
->buf
, p
->dentry
);
640 * relay_late_setup_files - triggers file creation
641 * @chan: channel to operate on
642 * @base_filename: base name of files to create
643 * @parent: dentry of parent directory, %NULL for root directory
645 * Returns 0 if successful, non-zero otherwise.
647 * Use to setup files for a previously buffer-only channel created
648 * by relay_open() with a NULL parent dentry.
650 * For example, this is useful for perfomring early tracing in kernel,
651 * before VFS is up and then exposing the early results once the dentry
654 int relay_late_setup_files(struct rchan
*chan
,
655 const char *base_filename
,
656 struct dentry
*parent
)
659 unsigned int i
, curr_cpu
;
661 struct dentry
*dentry
;
662 struct rchan_buf
*buf
;
663 struct rchan_percpu_buf_dispatcher disp
;
665 if (!chan
|| !base_filename
)
668 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
670 mutex_lock(&relay_channels_mutex
);
671 /* Is chan already set up? */
672 if (unlikely(chan
->has_base_filename
)) {
673 mutex_unlock(&relay_channels_mutex
);
676 chan
->has_base_filename
= 1;
677 chan
->parent
= parent
;
679 if (chan
->is_global
) {
681 buf
= *per_cpu_ptr(chan
->buf
, 0);
682 if (!WARN_ON_ONCE(!buf
)) {
683 dentry
= relay_create_buf_file(chan
, buf
, 0);
684 if (dentry
&& !WARN_ON_ONCE(!chan
->is_global
)) {
685 relay_set_buf_dentry(buf
, dentry
);
689 mutex_unlock(&relay_channels_mutex
);
693 curr_cpu
= get_cpu();
695 * The CPU hotplug notifier ran before us and created buffers with
696 * no files associated. So it's safe to call relay_setup_buf_file()
697 * on all currently online CPUs.
699 for_each_online_cpu(i
) {
700 buf
= *per_cpu_ptr(chan
->buf
, i
);
701 if (unlikely(!buf
)) {
702 WARN_ONCE(1, KERN_ERR
"CPU has no buffer!\n");
707 dentry
= relay_create_buf_file(chan
, buf
, i
);
708 if (unlikely(!dentry
)) {
714 local_irq_save(flags
);
715 relay_set_buf_dentry(buf
, dentry
);
716 local_irq_restore(flags
);
719 disp
.dentry
= dentry
;
721 /* relay_channels_mutex must be held, so wait. */
722 err
= smp_call_function_single(i
,
723 __relay_set_buf_dentry
,
730 mutex_unlock(&relay_channels_mutex
);
734 EXPORT_SYMBOL_GPL(relay_late_setup_files
);
737 * relay_switch_subbuf - switch to a new sub-buffer
738 * @buf: channel buffer
739 * @length: size of current event
741 * Returns either the length passed in or 0 if full.
743 * Performs sub-buffer-switch tasks such as invoking callbacks,
744 * updating padding counts, waking up readers, etc.
746 size_t relay_switch_subbuf(struct rchan_buf
*buf
, size_t length
)
749 size_t old_subbuf
, new_subbuf
;
751 if (unlikely(length
> buf
->chan
->subbuf_size
))
754 if (buf
->offset
!= buf
->chan
->subbuf_size
+ 1) {
755 buf
->prev_padding
= buf
->chan
->subbuf_size
- buf
->offset
;
756 old_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
757 buf
->padding
[old_subbuf
] = buf
->prev_padding
;
758 buf
->subbufs_produced
++;
760 d_inode(buf
->dentry
)->i_size
+=
761 buf
->chan
->subbuf_size
-
762 buf
->padding
[old_subbuf
];
764 buf
->early_bytes
+= buf
->chan
->subbuf_size
-
765 buf
->padding
[old_subbuf
];
767 if (waitqueue_active(&buf
->read_wait
)) {
769 * Calling wake_up_interruptible() from here
770 * will deadlock if we happen to be logging
771 * from the scheduler (trying to re-grab
772 * rq->lock), so defer it.
774 irq_work_queue(&buf
->wakeup_work
);
779 new_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
780 new = buf
->start
+ new_subbuf
* buf
->chan
->subbuf_size
;
782 if (!buf
->chan
->cb
->subbuf_start(buf
, new, old
, buf
->prev_padding
)) {
783 buf
->offset
= buf
->chan
->subbuf_size
+ 1;
787 buf
->padding
[new_subbuf
] = 0;
789 if (unlikely(length
+ buf
->offset
> buf
->chan
->subbuf_size
))
795 buf
->chan
->last_toobig
= length
;
798 EXPORT_SYMBOL_GPL(relay_switch_subbuf
);
801 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
803 * @cpu: the cpu associated with the channel buffer to update
804 * @subbufs_consumed: number of sub-buffers to add to current buf's count
806 * Adds to the channel buffer's consumed sub-buffer count.
807 * subbufs_consumed should be the number of sub-buffers newly consumed,
808 * not the total consumed.
810 * NOTE. Kernel clients don't need to call this function if the channel
811 * mode is 'overwrite'.
813 void relay_subbufs_consumed(struct rchan
*chan
,
815 size_t subbufs_consumed
)
817 struct rchan_buf
*buf
;
819 if (!chan
|| cpu
>= NR_CPUS
)
822 buf
= *per_cpu_ptr(chan
->buf
, cpu
);
823 if (!buf
|| subbufs_consumed
> chan
->n_subbufs
)
826 if (subbufs_consumed
> buf
->subbufs_produced
- buf
->subbufs_consumed
)
827 buf
->subbufs_consumed
= buf
->subbufs_produced
;
829 buf
->subbufs_consumed
+= subbufs_consumed
;
831 EXPORT_SYMBOL_GPL(relay_subbufs_consumed
);
834 * relay_close - close the channel
837 * Closes all channel buffers and frees the channel.
839 void relay_close(struct rchan
*chan
)
841 struct rchan_buf
*buf
;
847 mutex_lock(&relay_channels_mutex
);
848 if (chan
->is_global
&& (buf
= *per_cpu_ptr(chan
->buf
, 0)))
849 relay_close_buf(buf
);
851 for_each_possible_cpu(i
)
852 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
853 relay_close_buf(buf
);
855 if (chan
->last_toobig
)
856 printk(KERN_WARNING
"relay: one or more items not logged "
857 "[item size (%zd) > sub-buffer size (%zd)]\n",
858 chan
->last_toobig
, chan
->subbuf_size
);
860 list_del(&chan
->list
);
861 kref_put(&chan
->kref
, relay_destroy_channel
);
862 mutex_unlock(&relay_channels_mutex
);
864 EXPORT_SYMBOL_GPL(relay_close
);
867 * relay_flush - close the channel
870 * Flushes all channel buffers, i.e. forces buffer switch.
872 void relay_flush(struct rchan
*chan
)
874 struct rchan_buf
*buf
;
880 if (chan
->is_global
&& (buf
= *per_cpu_ptr(chan
->buf
, 0))) {
881 relay_switch_subbuf(buf
, 0);
885 mutex_lock(&relay_channels_mutex
);
886 for_each_possible_cpu(i
)
887 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
888 relay_switch_subbuf(buf
, 0);
889 mutex_unlock(&relay_channels_mutex
);
891 EXPORT_SYMBOL_GPL(relay_flush
);
894 * relay_file_open - open file op for relay files
898 * Increments the channel buffer refcount.
900 static int relay_file_open(struct inode
*inode
, struct file
*filp
)
902 struct rchan_buf
*buf
= inode
->i_private
;
903 kref_get(&buf
->kref
);
904 filp
->private_data
= buf
;
906 return nonseekable_open(inode
, filp
);
910 * relay_file_mmap - mmap file op for relay files
912 * @vma: the vma describing what to map
914 * Calls upon relay_mmap_buf() to map the file into user space.
916 static int relay_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
918 struct rchan_buf
*buf
= filp
->private_data
;
919 return relay_mmap_buf(buf
, vma
);
923 * relay_file_poll - poll file op for relay files
929 static __poll_t
relay_file_poll(struct file
*filp
, poll_table
*wait
)
932 struct rchan_buf
*buf
= filp
->private_data
;
937 if (filp
->f_mode
& FMODE_READ
) {
938 poll_wait(filp
, &buf
->read_wait
, wait
);
939 if (!relay_buf_empty(buf
))
940 mask
|= EPOLLIN
| EPOLLRDNORM
;
947 * relay_file_release - release file op for relay files
951 * Decrements the channel refcount, as the filesystem is
952 * no longer using it.
954 static int relay_file_release(struct inode
*inode
, struct file
*filp
)
956 struct rchan_buf
*buf
= filp
->private_data
;
957 kref_put(&buf
->kref
, relay_remove_buf
);
963 * relay_file_read_consume - update the consumed count for the buffer
965 static void relay_file_read_consume(struct rchan_buf
*buf
,
967 size_t bytes_consumed
)
969 size_t subbuf_size
= buf
->chan
->subbuf_size
;
970 size_t n_subbufs
= buf
->chan
->n_subbufs
;
973 if (buf
->subbufs_produced
== buf
->subbufs_consumed
&&
974 buf
->offset
== buf
->bytes_consumed
)
977 if (buf
->bytes_consumed
+ bytes_consumed
> subbuf_size
) {
978 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
979 buf
->bytes_consumed
= 0;
982 buf
->bytes_consumed
+= bytes_consumed
;
984 read_subbuf
= buf
->subbufs_consumed
% n_subbufs
;
986 read_subbuf
= read_pos
/ buf
->chan
->subbuf_size
;
987 if (buf
->bytes_consumed
+ buf
->padding
[read_subbuf
] == subbuf_size
) {
988 if ((read_subbuf
== buf
->subbufs_produced
% n_subbufs
) &&
989 (buf
->offset
== subbuf_size
))
991 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
992 buf
->bytes_consumed
= 0;
997 * relay_file_read_avail - boolean, are there unconsumed bytes available?
999 static int relay_file_read_avail(struct rchan_buf
*buf
)
1001 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1002 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1003 size_t produced
= buf
->subbufs_produced
;
1004 size_t consumed
= buf
->subbufs_consumed
;
1006 relay_file_read_consume(buf
, 0, 0);
1008 consumed
= buf
->subbufs_consumed
;
1010 if (unlikely(buf
->offset
> subbuf_size
)) {
1011 if (produced
== consumed
)
1016 if (unlikely(produced
- consumed
>= n_subbufs
)) {
1017 consumed
= produced
- n_subbufs
+ 1;
1018 buf
->subbufs_consumed
= consumed
;
1019 buf
->bytes_consumed
= 0;
1022 produced
= (produced
% n_subbufs
) * subbuf_size
+ buf
->offset
;
1023 consumed
= (consumed
% n_subbufs
) * subbuf_size
+ buf
->bytes_consumed
;
1025 if (consumed
> produced
)
1026 produced
+= n_subbufs
* subbuf_size
;
1028 if (consumed
== produced
) {
1029 if (buf
->offset
== subbuf_size
&&
1030 buf
->subbufs_produced
> buf
->subbufs_consumed
)
1039 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1040 * @read_pos: file read position
1041 * @buf: relay channel buffer
1043 static size_t relay_file_read_subbuf_avail(size_t read_pos
,
1044 struct rchan_buf
*buf
)
1046 size_t padding
, avail
= 0;
1047 size_t read_subbuf
, read_offset
, write_subbuf
, write_offset
;
1048 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1050 write_subbuf
= (buf
->data
- buf
->start
) / subbuf_size
;
1051 write_offset
= buf
->offset
> subbuf_size
? subbuf_size
: buf
->offset
;
1052 read_subbuf
= read_pos
/ subbuf_size
;
1053 read_offset
= read_pos
% subbuf_size
;
1054 padding
= buf
->padding
[read_subbuf
];
1056 if (read_subbuf
== write_subbuf
) {
1057 if (read_offset
+ padding
< write_offset
)
1058 avail
= write_offset
- (read_offset
+ padding
);
1060 avail
= (subbuf_size
- padding
) - read_offset
;
1066 * relay_file_read_start_pos - find the first available byte to read
1067 * @buf: relay channel buffer
1069 * If the read_pos is in the middle of padding, return the
1070 * position of the first actually available byte, otherwise
1071 * return the original value.
1073 static size_t relay_file_read_start_pos(struct rchan_buf
*buf
)
1075 size_t read_subbuf
, padding
, padding_start
, padding_end
;
1076 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1077 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1078 size_t consumed
= buf
->subbufs_consumed
% n_subbufs
;
1079 size_t read_pos
= consumed
* subbuf_size
+ buf
->bytes_consumed
;
1081 read_subbuf
= read_pos
/ subbuf_size
;
1082 padding
= buf
->padding
[read_subbuf
];
1083 padding_start
= (read_subbuf
+ 1) * subbuf_size
- padding
;
1084 padding_end
= (read_subbuf
+ 1) * subbuf_size
;
1085 if (read_pos
>= padding_start
&& read_pos
< padding_end
) {
1086 read_subbuf
= (read_subbuf
+ 1) % n_subbufs
;
1087 read_pos
= read_subbuf
* subbuf_size
;
1094 * relay_file_read_end_pos - return the new read position
1095 * @read_pos: file read position
1096 * @buf: relay channel buffer
1097 * @count: number of bytes to be read
1099 static size_t relay_file_read_end_pos(struct rchan_buf
*buf
,
1103 size_t read_subbuf
, padding
, end_pos
;
1104 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1105 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1107 read_subbuf
= read_pos
/ subbuf_size
;
1108 padding
= buf
->padding
[read_subbuf
];
1109 if (read_pos
% subbuf_size
+ count
+ padding
== subbuf_size
)
1110 end_pos
= (read_subbuf
+ 1) * subbuf_size
;
1112 end_pos
= read_pos
+ count
;
1113 if (end_pos
>= subbuf_size
* n_subbufs
)
1119 static ssize_t
relay_file_read(struct file
*filp
,
1120 char __user
*buffer
,
1124 struct rchan_buf
*buf
= filp
->private_data
;
1125 size_t read_start
, avail
;
1132 inode_lock(file_inode(filp
));
1136 if (!relay_file_read_avail(buf
))
1139 read_start
= relay_file_read_start_pos(buf
);
1140 avail
= relay_file_read_subbuf_avail(read_start
, buf
);
1144 avail
= min(count
, avail
);
1145 from
= buf
->start
+ read_start
;
1147 if (copy_to_user(buffer
, from
, avail
))
1154 relay_file_read_consume(buf
, read_start
, ret
);
1155 *ppos
= relay_file_read_end_pos(buf
, read_start
, ret
);
1157 inode_unlock(file_inode(filp
));
1162 static void relay_consume_bytes(struct rchan_buf
*rbuf
, int bytes_consumed
)
1164 rbuf
->bytes_consumed
+= bytes_consumed
;
1166 if (rbuf
->bytes_consumed
>= rbuf
->chan
->subbuf_size
) {
1167 relay_subbufs_consumed(rbuf
->chan
, rbuf
->cpu
, 1);
1168 rbuf
->bytes_consumed
%= rbuf
->chan
->subbuf_size
;
1172 static void relay_pipe_buf_release(struct pipe_inode_info
*pipe
,
1173 struct pipe_buffer
*buf
)
1175 struct rchan_buf
*rbuf
;
1177 rbuf
= (struct rchan_buf
*)page_private(buf
->page
);
1178 relay_consume_bytes(rbuf
, buf
->private);
1181 static const struct pipe_buf_operations relay_pipe_buf_ops
= {
1182 .release
= relay_pipe_buf_release
,
1183 .try_steal
= generic_pipe_buf_try_steal
,
1184 .get
= generic_pipe_buf_get
,
1187 static void relay_page_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1192 * subbuf_splice_actor - splice up to one subbuf's worth of data
1194 static ssize_t
subbuf_splice_actor(struct file
*in
,
1196 struct pipe_inode_info
*pipe
,
1201 unsigned int pidx
, poff
, total_len
, subbuf_pages
, nr_pages
;
1202 struct rchan_buf
*rbuf
= in
->private_data
;
1203 unsigned int subbuf_size
= rbuf
->chan
->subbuf_size
;
1204 uint64_t pos
= (uint64_t) *ppos
;
1205 uint32_t alloc_size
= (uint32_t) rbuf
->chan
->alloc_size
;
1206 size_t read_start
= (size_t) do_div(pos
, alloc_size
);
1207 size_t read_subbuf
= read_start
/ subbuf_size
;
1208 size_t padding
= rbuf
->padding
[read_subbuf
];
1209 size_t nonpad_end
= read_subbuf
* subbuf_size
+ subbuf_size
- padding
;
1210 struct page
*pages
[PIPE_DEF_BUFFERS
];
1211 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1212 struct splice_pipe_desc spd
= {
1215 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1217 .ops
= &relay_pipe_buf_ops
,
1218 .spd_release
= relay_page_release
,
1222 if (rbuf
->subbufs_produced
== rbuf
->subbufs_consumed
)
1224 if (splice_grow_spd(pipe
, &spd
))
1228 * Adjust read len, if longer than what is available
1230 if (len
> (subbuf_size
- read_start
% subbuf_size
))
1231 len
= subbuf_size
- read_start
% subbuf_size
;
1233 subbuf_pages
= rbuf
->chan
->alloc_size
>> PAGE_SHIFT
;
1234 pidx
= (read_start
/ PAGE_SIZE
) % subbuf_pages
;
1235 poff
= read_start
& ~PAGE_MASK
;
1236 nr_pages
= min_t(unsigned int, subbuf_pages
, spd
.nr_pages_max
);
1238 for (total_len
= 0; spd
.nr_pages
< nr_pages
; spd
.nr_pages
++) {
1239 unsigned int this_len
, this_end
, private;
1240 unsigned int cur_pos
= read_start
+ total_len
;
1245 this_len
= min_t(unsigned long, len
, PAGE_SIZE
- poff
);
1248 spd
.pages
[spd
.nr_pages
] = rbuf
->page_array
[pidx
];
1249 spd
.partial
[spd
.nr_pages
].offset
= poff
;
1251 this_end
= cur_pos
+ this_len
;
1252 if (this_end
>= nonpad_end
) {
1253 this_len
= nonpad_end
- cur_pos
;
1254 private = this_len
+ padding
;
1256 spd
.partial
[spd
.nr_pages
].len
= this_len
;
1257 spd
.partial
[spd
.nr_pages
].private = private;
1260 total_len
+= this_len
;
1262 pidx
= (pidx
+ 1) % subbuf_pages
;
1264 if (this_end
>= nonpad_end
) {
1274 ret
= *nonpad_ret
= splice_to_pipe(pipe
, &spd
);
1275 if (ret
< 0 || ret
< total_len
)
1278 if (read_start
+ ret
== nonpad_end
)
1282 splice_shrink_spd(&spd
);
1286 static ssize_t
relay_file_splice_read(struct file
*in
,
1288 struct pipe_inode_info
*pipe
,
1299 while (len
&& !spliced
) {
1300 ret
= subbuf_splice_actor(in
, ppos
, pipe
, len
, flags
, &nonpad_ret
);
1304 if (flags
& SPLICE_F_NONBLOCK
)
1314 spliced
+= nonpad_ret
;
1324 const struct file_operations relay_file_operations
= {
1325 .open
= relay_file_open
,
1326 .poll
= relay_file_poll
,
1327 .mmap
= relay_file_mmap
,
1328 .read
= relay_file_read
,
1329 .llseek
= no_llseek
,
1330 .release
= relay_file_release
,
1331 .splice_read
= relay_file_splice_read
,
1333 EXPORT_SYMBOL_GPL(relay_file_operations
);