Merge branch 'work.regset' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux/fpc-iii.git] / kernel / workqueue.c
blobc41c3c17b86a3ea1703e12d3412cf417eacd4555
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
5 * Copyright (C) 2002 Ingo Molnar
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
13 * Made to use alloc_percpu by Christoph Lameter.
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
25 * Please read Documentation/core-api/workqueue.rst for details.
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
54 #include "workqueue_internal.h"
56 enum {
58 * worker_pool flags
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
69 * Note that DISASSOCIATED should be flipped only while holding
70 * wq_pool_attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
108 WQ_NAME_LEN = 24,
112 * Structure fields follow one of the following exclusion rules.
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
120 * L: pool->lock protected. Access with pool->lock held.
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
127 * A: wq_pool_attach_mutex protected.
129 * PL: wq_pool_mutex protected.
131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * RCU for reads.
138 * WQ: wq->mutex protected.
140 * WR: wq->mutex protected for writes. RCU protected for reads.
142 * MD: wq_mayday_lock protected.
145 /* struct worker is defined in workqueue_internal.h */
147 struct worker_pool {
148 raw_spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
156 struct list_head worklist; /* L: list of pending works */
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
169 struct worker *manager; /* L: purely informational */
170 struct list_head workers; /* A: attached workers */
171 struct completion *detach_completion; /* all workers detached */
173 struct ida worker_ida; /* worker IDs for task name */
175 struct workqueue_attrs *attrs; /* I: worker attributes */
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
184 atomic_t nr_running ____cacheline_aligned_in_smp;
187 * Destruction of pool is RCU protected to allow dereferences
188 * from get_work_pool().
190 struct rcu_head rcu;
191 } ____cacheline_aligned_in_smp;
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
199 struct pool_workqueue {
200 struct worker_pool *pool; /* I: the associated pool */
201 struct workqueue_struct *wq; /* I: the owning workqueue */
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
204 int refcnt; /* L: reference count */
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
207 int nr_active; /* L: nr of active works */
208 int max_active; /* L: max active works */
209 struct list_head delayed_works; /* L: delayed works */
210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
211 struct list_head mayday_node; /* MD: node on wq->maydays */
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
216 * itself is also RCU protected so that the first pwq can be
217 * determined without grabbing wq->mutex.
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
224 * Structure used to wait for workqueue flush.
226 struct wq_flusher {
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
229 struct completion done; /* flush completion */
232 struct wq_device;
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
238 struct workqueue_struct {
239 struct list_head pwqs; /* WR: all pwqs of this wq */
240 struct list_head list; /* PR: list of all workqueues */
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
245 atomic_t nr_pwqs_to_flush; /* flush in progress */
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
250 struct list_head maydays; /* MD: pwqs requesting rescue */
251 struct worker *rescuer; /* MD: rescue worker */
253 int nr_drainers; /* WQ: drain in progress */
254 int saved_max_active; /* WQ: saved pwq max_active */
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259 #ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 char *lock_name;
264 struct lock_class_key key;
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
274 struct rcu_head rcu;
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
282 static struct kmem_cache *pwq_cache;
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294 static bool wq_online; /* can kworkers be created yet? */
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304 /* wait for manager to go away */
305 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
307 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
308 static bool workqueue_freezing; /* PL: have wqs started freezing? */
310 /* PL: allowable cpus for unbound wqs and work items */
311 static cpumask_var_t wq_unbound_cpumask;
313 /* CPU where unbound work was last round robin scheduled from this CPU */
314 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
317 * Local execution of unbound work items is no longer guaranteed. The
318 * following always forces round-robin CPU selection on unbound work items
319 * to uncover usages which depend on it.
321 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322 static bool wq_debug_force_rr_cpu = true;
323 #else
324 static bool wq_debug_force_rr_cpu = false;
325 #endif
326 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
328 /* the per-cpu worker pools */
329 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
331 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
333 /* PL: hash of all unbound pools keyed by pool->attrs */
334 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
336 /* I: attributes used when instantiating standard unbound pools on demand */
337 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
339 /* I: attributes used when instantiating ordered pools on demand */
340 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
342 struct workqueue_struct *system_wq __read_mostly;
343 EXPORT_SYMBOL(system_wq);
344 struct workqueue_struct *system_highpri_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_highpri_wq);
346 struct workqueue_struct *system_long_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_long_wq);
348 struct workqueue_struct *system_unbound_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_unbound_wq);
350 struct workqueue_struct *system_freezable_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_wq);
352 struct workqueue_struct *system_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
357 static int worker_thread(void *__worker);
358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
359 static void show_pwq(struct pool_workqueue *pwq);
361 #define CREATE_TRACE_POINTS
362 #include <trace/events/workqueue.h>
364 #define assert_rcu_or_pool_mutex() \
365 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
366 !lockdep_is_held(&wq_pool_mutex), \
367 "RCU or wq_pool_mutex should be held")
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
370 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "RCU, wq->mutex or wq_pool_mutex should be held")
375 #define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 (pool)++)
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
383 * @pi: integer used for iteration
385 * This must be called either with wq_pool_mutex held or RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
392 #define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
395 else
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
400 * @pool: worker_pool to iterate workers of
402 * This must be called with wq_pool_attach_mutex.
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
407 #define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 else
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
417 * This must be called either with wq->mutex held or RCU read locked.
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
424 #define for_each_pwq(pwq, wq) \
425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
426 lockdep_is_held(&(wq->mutex)))
428 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 static struct debug_obj_descr work_debug_descr;
432 static void *work_debug_hint(void *addr)
434 return ((struct work_struct *) addr)->func;
437 static bool work_is_static_object(void *addr)
439 struct work_struct *work = addr;
441 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 * fixup_init is called when:
446 * - an active object is initialized
448 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 struct work_struct *work = addr;
452 switch (state) {
453 case ODEBUG_STATE_ACTIVE:
454 cancel_work_sync(work);
455 debug_object_init(work, &work_debug_descr);
456 return true;
457 default:
458 return false;
463 * fixup_free is called when:
464 * - an active object is freed
466 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 struct work_struct *work = addr;
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_free(work, &work_debug_descr);
474 return true;
475 default:
476 return false;
480 static struct debug_obj_descr work_debug_descr = {
481 .name = "work_struct",
482 .debug_hint = work_debug_hint,
483 .is_static_object = work_is_static_object,
484 .fixup_init = work_fixup_init,
485 .fixup_free = work_fixup_free,
488 static inline void debug_work_activate(struct work_struct *work)
490 debug_object_activate(work, &work_debug_descr);
493 static inline void debug_work_deactivate(struct work_struct *work)
495 debug_object_deactivate(work, &work_debug_descr);
498 void __init_work(struct work_struct *work, int onstack)
500 if (onstack)
501 debug_object_init_on_stack(work, &work_debug_descr);
502 else
503 debug_object_init(work, &work_debug_descr);
505 EXPORT_SYMBOL_GPL(__init_work);
507 void destroy_work_on_stack(struct work_struct *work)
509 debug_object_free(work, &work_debug_descr);
511 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 destroy_timer_on_stack(&work->timer);
516 debug_object_free(&work->work, &work_debug_descr);
518 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520 #else
521 static inline void debug_work_activate(struct work_struct *work) { }
522 static inline void debug_work_deactivate(struct work_struct *work) { }
523 #endif
526 * worker_pool_assign_id - allocate ID and assing it to @pool
527 * @pool: the pool pointer of interest
529 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
530 * successfully, -errno on failure.
532 static int worker_pool_assign_id(struct worker_pool *pool)
534 int ret;
536 lockdep_assert_held(&wq_pool_mutex);
538 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
539 GFP_KERNEL);
540 if (ret >= 0) {
541 pool->id = ret;
542 return 0;
544 return ret;
548 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
549 * @wq: the target workqueue
550 * @node: the node ID
552 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
553 * read locked.
554 * If the pwq needs to be used beyond the locking in effect, the caller is
555 * responsible for guaranteeing that the pwq stays online.
557 * Return: The unbound pool_workqueue for @node.
559 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
560 int node)
562 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
565 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
566 * delayed item is pending. The plan is to keep CPU -> NODE
567 * mapping valid and stable across CPU on/offlines. Once that
568 * happens, this workaround can be removed.
570 if (unlikely(node == NUMA_NO_NODE))
571 return wq->dfl_pwq;
573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
576 static unsigned int work_color_to_flags(int color)
578 return color << WORK_STRUCT_COLOR_SHIFT;
581 static int get_work_color(struct work_struct *work)
583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
587 static int work_next_color(int color)
589 return (color + 1) % WORK_NR_COLORS;
593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594 * contain the pointer to the queued pwq. Once execution starts, the flag
595 * is cleared and the high bits contain OFFQ flags and pool ID.
597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598 * and clear_work_data() can be used to set the pwq, pool or clear
599 * work->data. These functions should only be called while the work is
600 * owned - ie. while the PENDING bit is set.
602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
603 * corresponding to a work. Pool is available once the work has been
604 * queued anywhere after initialization until it is sync canceled. pwq is
605 * available only while the work item is queued.
607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608 * canceled. While being canceled, a work item may have its PENDING set
609 * but stay off timer and worklist for arbitrarily long and nobody should
610 * try to steal the PENDING bit.
612 static inline void set_work_data(struct work_struct *work, unsigned long data,
613 unsigned long flags)
615 WARN_ON_ONCE(!work_pending(work));
616 atomic_long_set(&work->data, data | flags | work_static(work));
619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
620 unsigned long extra_flags)
622 set_work_data(work, (unsigned long)pwq,
623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
626 static void set_work_pool_and_keep_pending(struct work_struct *work,
627 int pool_id)
629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 WORK_STRUCT_PENDING);
633 static void set_work_pool_and_clear_pending(struct work_struct *work,
634 int pool_id)
637 * The following wmb is paired with the implied mb in
638 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 * here are visible to and precede any updates by the next PENDING
640 * owner.
642 smp_wmb();
643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 * The following mb guarantees that previous clear of a PENDING bit
646 * will not be reordered with any speculative LOADS or STORES from
647 * work->current_func, which is executed afterwards. This possible
648 * reordering can lead to a missed execution on attempt to queue
649 * the same @work. E.g. consider this case:
651 * CPU#0 CPU#1
652 * ---------------------------- --------------------------------
654 * 1 STORE event_indicated
655 * 2 queue_work_on() {
656 * 3 test_and_set_bit(PENDING)
657 * 4 } set_..._and_clear_pending() {
658 * 5 set_work_data() # clear bit
659 * 6 smp_mb()
660 * 7 work->current_func() {
661 * 8 LOAD event_indicated
664 * Without an explicit full barrier speculative LOAD on line 8 can
665 * be executed before CPU#0 does STORE on line 1. If that happens,
666 * CPU#0 observes the PENDING bit is still set and new execution of
667 * a @work is not queued in a hope, that CPU#1 will eventually
668 * finish the queued @work. Meanwhile CPU#1 does not see
669 * event_indicated is set, because speculative LOAD was executed
670 * before actual STORE.
672 smp_mb();
675 static void clear_work_data(struct work_struct *work)
677 smp_wmb(); /* see set_work_pool_and_clear_pending() */
678 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
681 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 unsigned long data = atomic_long_read(&work->data);
685 if (data & WORK_STRUCT_PWQ)
686 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
687 else
688 return NULL;
692 * get_work_pool - return the worker_pool a given work was associated with
693 * @work: the work item of interest
695 * Pools are created and destroyed under wq_pool_mutex, and allows read
696 * access under RCU read lock. As such, this function should be
697 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
699 * All fields of the returned pool are accessible as long as the above
700 * mentioned locking is in effect. If the returned pool needs to be used
701 * beyond the critical section, the caller is responsible for ensuring the
702 * returned pool is and stays online.
704 * Return: The worker_pool @work was last associated with. %NULL if none.
706 static struct worker_pool *get_work_pool(struct work_struct *work)
708 unsigned long data = atomic_long_read(&work->data);
709 int pool_id;
711 assert_rcu_or_pool_mutex();
713 if (data & WORK_STRUCT_PWQ)
714 return ((struct pool_workqueue *)
715 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
718 if (pool_id == WORK_OFFQ_POOL_NONE)
719 return NULL;
721 return idr_find(&worker_pool_idr, pool_id);
725 * get_work_pool_id - return the worker pool ID a given work is associated with
726 * @work: the work item of interest
728 * Return: The worker_pool ID @work was last associated with.
729 * %WORK_OFFQ_POOL_NONE if none.
731 static int get_work_pool_id(struct work_struct *work)
733 unsigned long data = atomic_long_read(&work->data);
735 if (data & WORK_STRUCT_PWQ)
736 return ((struct pool_workqueue *)
737 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739 return data >> WORK_OFFQ_POOL_SHIFT;
742 static void mark_work_canceling(struct work_struct *work)
744 unsigned long pool_id = get_work_pool_id(work);
746 pool_id <<= WORK_OFFQ_POOL_SHIFT;
747 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
750 static bool work_is_canceling(struct work_struct *work)
752 unsigned long data = atomic_long_read(&work->data);
754 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 * Policy functions. These define the policies on how the global worker
759 * pools are managed. Unless noted otherwise, these functions assume that
760 * they're being called with pool->lock held.
763 static bool __need_more_worker(struct worker_pool *pool)
765 return !atomic_read(&pool->nr_running);
769 * Need to wake up a worker? Called from anything but currently
770 * running workers.
772 * Note that, because unbound workers never contribute to nr_running, this
773 * function will always return %true for unbound pools as long as the
774 * worklist isn't empty.
776 static bool need_more_worker(struct worker_pool *pool)
778 return !list_empty(&pool->worklist) && __need_more_worker(pool);
781 /* Can I start working? Called from busy but !running workers. */
782 static bool may_start_working(struct worker_pool *pool)
784 return pool->nr_idle;
787 /* Do I need to keep working? Called from currently running workers. */
788 static bool keep_working(struct worker_pool *pool)
790 return !list_empty(&pool->worklist) &&
791 atomic_read(&pool->nr_running) <= 1;
794 /* Do we need a new worker? Called from manager. */
795 static bool need_to_create_worker(struct worker_pool *pool)
797 return need_more_worker(pool) && !may_start_working(pool);
800 /* Do we have too many workers and should some go away? */
801 static bool too_many_workers(struct worker_pool *pool)
803 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
804 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
805 int nr_busy = pool->nr_workers - nr_idle;
807 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 * Wake up functions.
814 /* Return the first idle worker. Safe with preemption disabled */
815 static struct worker *first_idle_worker(struct worker_pool *pool)
817 if (unlikely(list_empty(&pool->idle_list)))
818 return NULL;
820 return list_first_entry(&pool->idle_list, struct worker, entry);
824 * wake_up_worker - wake up an idle worker
825 * @pool: worker pool to wake worker from
827 * Wake up the first idle worker of @pool.
829 * CONTEXT:
830 * raw_spin_lock_irq(pool->lock).
832 static void wake_up_worker(struct worker_pool *pool)
834 struct worker *worker = first_idle_worker(pool);
836 if (likely(worker))
837 wake_up_process(worker->task);
841 * wq_worker_running - a worker is running again
842 * @task: task waking up
844 * This function is called when a worker returns from schedule()
846 void wq_worker_running(struct task_struct *task)
848 struct worker *worker = kthread_data(task);
850 if (!worker->sleeping)
851 return;
852 if (!(worker->flags & WORKER_NOT_RUNNING))
853 atomic_inc(&worker->pool->nr_running);
854 worker->sleeping = 0;
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
861 * This function is called from schedule() when a busy worker is
862 * going to sleep. Preemption needs to be disabled to protect ->sleeping
863 * assignment.
865 void wq_worker_sleeping(struct task_struct *task)
867 struct worker *next, *worker = kthread_data(task);
868 struct worker_pool *pool;
871 * Rescuers, which may not have all the fields set up like normal
872 * workers, also reach here, let's not access anything before
873 * checking NOT_RUNNING.
875 if (worker->flags & WORKER_NOT_RUNNING)
876 return;
878 pool = worker->pool;
880 /* Return if preempted before wq_worker_running() was reached */
881 if (worker->sleeping)
882 return;
884 worker->sleeping = 1;
885 raw_spin_lock_irq(&pool->lock);
888 * The counterpart of the following dec_and_test, implied mb,
889 * worklist not empty test sequence is in insert_work().
890 * Please read comment there.
892 * NOT_RUNNING is clear. This means that we're bound to and
893 * running on the local cpu w/ rq lock held and preemption
894 * disabled, which in turn means that none else could be
895 * manipulating idle_list, so dereferencing idle_list without pool
896 * lock is safe.
898 if (atomic_dec_and_test(&pool->nr_running) &&
899 !list_empty(&pool->worklist)) {
900 next = first_idle_worker(pool);
901 if (next)
902 wake_up_process(next->task);
904 raw_spin_unlock_irq(&pool->lock);
908 * wq_worker_last_func - retrieve worker's last work function
909 * @task: Task to retrieve last work function of.
911 * Determine the last function a worker executed. This is called from
912 * the scheduler to get a worker's last known identity.
914 * CONTEXT:
915 * raw_spin_lock_irq(rq->lock)
917 * This function is called during schedule() when a kworker is going
918 * to sleep. It's used by psi to identify aggregation workers during
919 * dequeuing, to allow periodic aggregation to shut-off when that
920 * worker is the last task in the system or cgroup to go to sleep.
922 * As this function doesn't involve any workqueue-related locking, it
923 * only returns stable values when called from inside the scheduler's
924 * queuing and dequeuing paths, when @task, which must be a kworker,
925 * is guaranteed to not be processing any works.
927 * Return:
928 * The last work function %current executed as a worker, NULL if it
929 * hasn't executed any work yet.
931 work_func_t wq_worker_last_func(struct task_struct *task)
933 struct worker *worker = kthread_data(task);
935 return worker->last_func;
939 * worker_set_flags - set worker flags and adjust nr_running accordingly
940 * @worker: self
941 * @flags: flags to set
943 * Set @flags in @worker->flags and adjust nr_running accordingly.
945 * CONTEXT:
946 * raw_spin_lock_irq(pool->lock)
948 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
950 struct worker_pool *pool = worker->pool;
952 WARN_ON_ONCE(worker->task != current);
954 /* If transitioning into NOT_RUNNING, adjust nr_running. */
955 if ((flags & WORKER_NOT_RUNNING) &&
956 !(worker->flags & WORKER_NOT_RUNNING)) {
957 atomic_dec(&pool->nr_running);
960 worker->flags |= flags;
964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
965 * @worker: self
966 * @flags: flags to clear
968 * Clear @flags in @worker->flags and adjust nr_running accordingly.
970 * CONTEXT:
971 * raw_spin_lock_irq(pool->lock)
973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
975 struct worker_pool *pool = worker->pool;
976 unsigned int oflags = worker->flags;
978 WARN_ON_ONCE(worker->task != current);
980 worker->flags &= ~flags;
983 * If transitioning out of NOT_RUNNING, increment nr_running. Note
984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
985 * of multiple flags, not a single flag.
987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 if (!(worker->flags & WORKER_NOT_RUNNING))
989 atomic_inc(&pool->nr_running);
993 * find_worker_executing_work - find worker which is executing a work
994 * @pool: pool of interest
995 * @work: work to find worker for
997 * Find a worker which is executing @work on @pool by searching
998 * @pool->busy_hash which is keyed by the address of @work. For a worker
999 * to match, its current execution should match the address of @work and
1000 * its work function. This is to avoid unwanted dependency between
1001 * unrelated work executions through a work item being recycled while still
1002 * being executed.
1004 * This is a bit tricky. A work item may be freed once its execution
1005 * starts and nothing prevents the freed area from being recycled for
1006 * another work item. If the same work item address ends up being reused
1007 * before the original execution finishes, workqueue will identify the
1008 * recycled work item as currently executing and make it wait until the
1009 * current execution finishes, introducing an unwanted dependency.
1011 * This function checks the work item address and work function to avoid
1012 * false positives. Note that this isn't complete as one may construct a
1013 * work function which can introduce dependency onto itself through a
1014 * recycled work item. Well, if somebody wants to shoot oneself in the
1015 * foot that badly, there's only so much we can do, and if such deadlock
1016 * actually occurs, it should be easy to locate the culprit work function.
1018 * CONTEXT:
1019 * raw_spin_lock_irq(pool->lock).
1021 * Return:
1022 * Pointer to worker which is executing @work if found, %NULL
1023 * otherwise.
1025 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1026 struct work_struct *work)
1028 struct worker *worker;
1030 hash_for_each_possible(pool->busy_hash, worker, hentry,
1031 (unsigned long)work)
1032 if (worker->current_work == work &&
1033 worker->current_func == work->func)
1034 return worker;
1036 return NULL;
1040 * move_linked_works - move linked works to a list
1041 * @work: start of series of works to be scheduled
1042 * @head: target list to append @work to
1043 * @nextp: out parameter for nested worklist walking
1045 * Schedule linked works starting from @work to @head. Work series to
1046 * be scheduled starts at @work and includes any consecutive work with
1047 * WORK_STRUCT_LINKED set in its predecessor.
1049 * If @nextp is not NULL, it's updated to point to the next work of
1050 * the last scheduled work. This allows move_linked_works() to be
1051 * nested inside outer list_for_each_entry_safe().
1053 * CONTEXT:
1054 * raw_spin_lock_irq(pool->lock).
1056 static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 struct work_struct **nextp)
1059 struct work_struct *n;
1062 * Linked worklist will always end before the end of the list,
1063 * use NULL for list head.
1065 list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 list_move_tail(&work->entry, head);
1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 break;
1072 * If we're already inside safe list traversal and have moved
1073 * multiple works to the scheduled queue, the next position
1074 * needs to be updated.
1076 if (nextp)
1077 *nextp = n;
1081 * get_pwq - get an extra reference on the specified pool_workqueue
1082 * @pwq: pool_workqueue to get
1084 * Obtain an extra reference on @pwq. The caller should guarantee that
1085 * @pwq has positive refcnt and be holding the matching pool->lock.
1087 static void get_pwq(struct pool_workqueue *pwq)
1089 lockdep_assert_held(&pwq->pool->lock);
1090 WARN_ON_ONCE(pwq->refcnt <= 0);
1091 pwq->refcnt++;
1095 * put_pwq - put a pool_workqueue reference
1096 * @pwq: pool_workqueue to put
1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1099 * destruction. The caller should be holding the matching pool->lock.
1101 static void put_pwq(struct pool_workqueue *pwq)
1103 lockdep_assert_held(&pwq->pool->lock);
1104 if (likely(--pwq->refcnt))
1105 return;
1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 return;
1109 * @pwq can't be released under pool->lock, bounce to
1110 * pwq_unbound_release_workfn(). This never recurses on the same
1111 * pool->lock as this path is taken only for unbound workqueues and
1112 * the release work item is scheduled on a per-cpu workqueue. To
1113 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 * subclass of 1 in get_unbound_pool().
1116 schedule_work(&pwq->unbound_release_work);
1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121 * @pwq: pool_workqueue to put (can be %NULL)
1123 * put_pwq() with locking. This function also allows %NULL @pwq.
1125 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1127 if (pwq) {
1129 * As both pwqs and pools are RCU protected, the
1130 * following lock operations are safe.
1132 raw_spin_lock_irq(&pwq->pool->lock);
1133 put_pwq(pwq);
1134 raw_spin_unlock_irq(&pwq->pool->lock);
1138 static void pwq_activate_delayed_work(struct work_struct *work)
1140 struct pool_workqueue *pwq = get_work_pwq(work);
1142 trace_workqueue_activate_work(work);
1143 if (list_empty(&pwq->pool->worklist))
1144 pwq->pool->watchdog_ts = jiffies;
1145 move_linked_works(work, &pwq->pool->worklist, NULL);
1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1147 pwq->nr_active++;
1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1152 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1153 struct work_struct, entry);
1155 pwq_activate_delayed_work(work);
1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160 * @pwq: pwq of interest
1161 * @color: color of work which left the queue
1163 * A work either has completed or is removed from pending queue,
1164 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1166 * CONTEXT:
1167 * raw_spin_lock_irq(pool->lock).
1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1171 /* uncolored work items don't participate in flushing or nr_active */
1172 if (color == WORK_NO_COLOR)
1173 goto out_put;
1175 pwq->nr_in_flight[color]--;
1177 pwq->nr_active--;
1178 if (!list_empty(&pwq->delayed_works)) {
1179 /* one down, submit a delayed one */
1180 if (pwq->nr_active < pwq->max_active)
1181 pwq_activate_first_delayed(pwq);
1184 /* is flush in progress and are we at the flushing tip? */
1185 if (likely(pwq->flush_color != color))
1186 goto out_put;
1188 /* are there still in-flight works? */
1189 if (pwq->nr_in_flight[color])
1190 goto out_put;
1192 /* this pwq is done, clear flush_color */
1193 pwq->flush_color = -1;
1196 * If this was the last pwq, wake up the first flusher. It
1197 * will handle the rest.
1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 complete(&pwq->wq->first_flusher->done);
1201 out_put:
1202 put_pwq(pwq);
1206 * try_to_grab_pending - steal work item from worklist and disable irq
1207 * @work: work item to steal
1208 * @is_dwork: @work is a delayed_work
1209 * @flags: place to store irq state
1211 * Try to grab PENDING bit of @work. This function can handle @work in any
1212 * stable state - idle, on timer or on worklist.
1214 * Return:
1215 * 1 if @work was pending and we successfully stole PENDING
1216 * 0 if @work was idle and we claimed PENDING
1217 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1218 * -ENOENT if someone else is canceling @work, this state may persist
1219 * for arbitrarily long
1221 * Note:
1222 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1223 * interrupted while holding PENDING and @work off queue, irq must be
1224 * disabled on entry. This, combined with delayed_work->timer being
1225 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1227 * On successful return, >= 0, irq is disabled and the caller is
1228 * responsible for releasing it using local_irq_restore(*@flags).
1230 * This function is safe to call from any context including IRQ handler.
1232 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1233 unsigned long *flags)
1235 struct worker_pool *pool;
1236 struct pool_workqueue *pwq;
1238 local_irq_save(*flags);
1240 /* try to steal the timer if it exists */
1241 if (is_dwork) {
1242 struct delayed_work *dwork = to_delayed_work(work);
1245 * dwork->timer is irqsafe. If del_timer() fails, it's
1246 * guaranteed that the timer is not queued anywhere and not
1247 * running on the local CPU.
1249 if (likely(del_timer(&dwork->timer)))
1250 return 1;
1253 /* try to claim PENDING the normal way */
1254 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1255 return 0;
1257 rcu_read_lock();
1259 * The queueing is in progress, or it is already queued. Try to
1260 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1262 pool = get_work_pool(work);
1263 if (!pool)
1264 goto fail;
1266 raw_spin_lock(&pool->lock);
1268 * work->data is guaranteed to point to pwq only while the work
1269 * item is queued on pwq->wq, and both updating work->data to point
1270 * to pwq on queueing and to pool on dequeueing are done under
1271 * pwq->pool->lock. This in turn guarantees that, if work->data
1272 * points to pwq which is associated with a locked pool, the work
1273 * item is currently queued on that pool.
1275 pwq = get_work_pwq(work);
1276 if (pwq && pwq->pool == pool) {
1277 debug_work_deactivate(work);
1280 * A delayed work item cannot be grabbed directly because
1281 * it might have linked NO_COLOR work items which, if left
1282 * on the delayed_list, will confuse pwq->nr_active
1283 * management later on and cause stall. Make sure the work
1284 * item is activated before grabbing.
1286 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1287 pwq_activate_delayed_work(work);
1289 list_del_init(&work->entry);
1290 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1292 /* work->data points to pwq iff queued, point to pool */
1293 set_work_pool_and_keep_pending(work, pool->id);
1295 raw_spin_unlock(&pool->lock);
1296 rcu_read_unlock();
1297 return 1;
1299 raw_spin_unlock(&pool->lock);
1300 fail:
1301 rcu_read_unlock();
1302 local_irq_restore(*flags);
1303 if (work_is_canceling(work))
1304 return -ENOENT;
1305 cpu_relax();
1306 return -EAGAIN;
1310 * insert_work - insert a work into a pool
1311 * @pwq: pwq @work belongs to
1312 * @work: work to insert
1313 * @head: insertion point
1314 * @extra_flags: extra WORK_STRUCT_* flags to set
1316 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1317 * work_struct flags.
1319 * CONTEXT:
1320 * raw_spin_lock_irq(pool->lock).
1322 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1323 struct list_head *head, unsigned int extra_flags)
1325 struct worker_pool *pool = pwq->pool;
1327 /* we own @work, set data and link */
1328 set_work_pwq(work, pwq, extra_flags);
1329 list_add_tail(&work->entry, head);
1330 get_pwq(pwq);
1333 * Ensure either wq_worker_sleeping() sees the above
1334 * list_add_tail() or we see zero nr_running to avoid workers lying
1335 * around lazily while there are works to be processed.
1337 smp_mb();
1339 if (__need_more_worker(pool))
1340 wake_up_worker(pool);
1344 * Test whether @work is being queued from another work executing on the
1345 * same workqueue.
1347 static bool is_chained_work(struct workqueue_struct *wq)
1349 struct worker *worker;
1351 worker = current_wq_worker();
1353 * Return %true iff I'm a worker executing a work item on @wq. If
1354 * I'm @worker, it's safe to dereference it without locking.
1356 return worker && worker->current_pwq->wq == wq;
1360 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1361 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1362 * avoid perturbing sensitive tasks.
1364 static int wq_select_unbound_cpu(int cpu)
1366 static bool printed_dbg_warning;
1367 int new_cpu;
1369 if (likely(!wq_debug_force_rr_cpu)) {
1370 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1371 return cpu;
1372 } else if (!printed_dbg_warning) {
1373 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1374 printed_dbg_warning = true;
1377 if (cpumask_empty(wq_unbound_cpumask))
1378 return cpu;
1380 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1381 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1382 if (unlikely(new_cpu >= nr_cpu_ids)) {
1383 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1384 if (unlikely(new_cpu >= nr_cpu_ids))
1385 return cpu;
1387 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1389 return new_cpu;
1392 static void __queue_work(int cpu, struct workqueue_struct *wq,
1393 struct work_struct *work)
1395 struct pool_workqueue *pwq;
1396 struct worker_pool *last_pool;
1397 struct list_head *worklist;
1398 unsigned int work_flags;
1399 unsigned int req_cpu = cpu;
1402 * While a work item is PENDING && off queue, a task trying to
1403 * steal the PENDING will busy-loop waiting for it to either get
1404 * queued or lose PENDING. Grabbing PENDING and queueing should
1405 * happen with IRQ disabled.
1407 lockdep_assert_irqs_disabled();
1409 debug_work_activate(work);
1411 /* if draining, only works from the same workqueue are allowed */
1412 if (unlikely(wq->flags & __WQ_DRAINING) &&
1413 WARN_ON_ONCE(!is_chained_work(wq)))
1414 return;
1415 rcu_read_lock();
1416 retry:
1417 /* pwq which will be used unless @work is executing elsewhere */
1418 if (wq->flags & WQ_UNBOUND) {
1419 if (req_cpu == WORK_CPU_UNBOUND)
1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1421 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1422 } else {
1423 if (req_cpu == WORK_CPU_UNBOUND)
1424 cpu = raw_smp_processor_id();
1425 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1429 * If @work was previously on a different pool, it might still be
1430 * running there, in which case the work needs to be queued on that
1431 * pool to guarantee non-reentrancy.
1433 last_pool = get_work_pool(work);
1434 if (last_pool && last_pool != pwq->pool) {
1435 struct worker *worker;
1437 raw_spin_lock(&last_pool->lock);
1439 worker = find_worker_executing_work(last_pool, work);
1441 if (worker && worker->current_pwq->wq == wq) {
1442 pwq = worker->current_pwq;
1443 } else {
1444 /* meh... not running there, queue here */
1445 raw_spin_unlock(&last_pool->lock);
1446 raw_spin_lock(&pwq->pool->lock);
1448 } else {
1449 raw_spin_lock(&pwq->pool->lock);
1453 * pwq is determined and locked. For unbound pools, we could have
1454 * raced with pwq release and it could already be dead. If its
1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1456 * without another pwq replacing it in the numa_pwq_tbl or while
1457 * work items are executing on it, so the retrying is guaranteed to
1458 * make forward-progress.
1460 if (unlikely(!pwq->refcnt)) {
1461 if (wq->flags & WQ_UNBOUND) {
1462 raw_spin_unlock(&pwq->pool->lock);
1463 cpu_relax();
1464 goto retry;
1466 /* oops */
1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 wq->name, cpu);
1471 /* pwq determined, queue */
1472 trace_workqueue_queue_work(req_cpu, pwq, work);
1474 if (WARN_ON(!list_empty(&work->entry)))
1475 goto out;
1477 pwq->nr_in_flight[pwq->work_color]++;
1478 work_flags = work_color_to_flags(pwq->work_color);
1480 if (likely(pwq->nr_active < pwq->max_active)) {
1481 trace_workqueue_activate_work(work);
1482 pwq->nr_active++;
1483 worklist = &pwq->pool->worklist;
1484 if (list_empty(worklist))
1485 pwq->pool->watchdog_ts = jiffies;
1486 } else {
1487 work_flags |= WORK_STRUCT_DELAYED;
1488 worklist = &pwq->delayed_works;
1491 insert_work(pwq, work, worklist, work_flags);
1493 out:
1494 raw_spin_unlock(&pwq->pool->lock);
1495 rcu_read_unlock();
1499 * queue_work_on - queue work on specific cpu
1500 * @cpu: CPU number to execute work on
1501 * @wq: workqueue to use
1502 * @work: work to queue
1504 * We queue the work to a specific CPU, the caller must ensure it
1505 * can't go away.
1507 * Return: %false if @work was already on a queue, %true otherwise.
1509 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 struct work_struct *work)
1512 bool ret = false;
1513 unsigned long flags;
1515 local_irq_save(flags);
1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1518 __queue_work(cpu, wq, work);
1519 ret = true;
1522 local_irq_restore(flags);
1523 return ret;
1525 EXPORT_SYMBOL(queue_work_on);
1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529 * @node: NUMA node ID that we want to select a CPU from
1531 * This function will attempt to find a "random" cpu available on a given
1532 * node. If there are no CPUs available on the given node it will return
1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534 * available CPU if we need to schedule this work.
1536 static int workqueue_select_cpu_near(int node)
1538 int cpu;
1540 /* No point in doing this if NUMA isn't enabled for workqueues */
1541 if (!wq_numa_enabled)
1542 return WORK_CPU_UNBOUND;
1544 /* Delay binding to CPU if node is not valid or online */
1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 return WORK_CPU_UNBOUND;
1548 /* Use local node/cpu if we are already there */
1549 cpu = raw_smp_processor_id();
1550 if (node == cpu_to_node(cpu))
1551 return cpu;
1553 /* Use "random" otherwise know as "first" online CPU of node */
1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1556 /* If CPU is valid return that, otherwise just defer */
1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562 * @node: NUMA node that we are targeting the work for
1563 * @wq: workqueue to use
1564 * @work: work to queue
1566 * We queue the work to a "random" CPU within a given NUMA node. The basic
1567 * idea here is to provide a way to somehow associate work with a given
1568 * NUMA node.
1570 * This function will only make a best effort attempt at getting this onto
1571 * the right NUMA node. If no node is requested or the requested node is
1572 * offline then we just fall back to standard queue_work behavior.
1574 * Currently the "random" CPU ends up being the first available CPU in the
1575 * intersection of cpu_online_mask and the cpumask of the node, unless we
1576 * are running on the node. In that case we just use the current CPU.
1578 * Return: %false if @work was already on a queue, %true otherwise.
1580 bool queue_work_node(int node, struct workqueue_struct *wq,
1581 struct work_struct *work)
1583 unsigned long flags;
1584 bool ret = false;
1587 * This current implementation is specific to unbound workqueues.
1588 * Specifically we only return the first available CPU for a given
1589 * node instead of cycling through individual CPUs within the node.
1591 * If this is used with a per-cpu workqueue then the logic in
1592 * workqueue_select_cpu_near would need to be updated to allow for
1593 * some round robin type logic.
1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1597 local_irq_save(flags);
1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 int cpu = workqueue_select_cpu_near(node);
1602 __queue_work(cpu, wq, work);
1603 ret = true;
1606 local_irq_restore(flags);
1607 return ret;
1609 EXPORT_SYMBOL_GPL(queue_work_node);
1611 void delayed_work_timer_fn(struct timer_list *t)
1613 struct delayed_work *dwork = from_timer(dwork, t, timer);
1615 /* should have been called from irqsafe timer with irq already off */
1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1618 EXPORT_SYMBOL(delayed_work_timer_fn);
1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 struct delayed_work *dwork, unsigned long delay)
1623 struct timer_list *timer = &dwork->timer;
1624 struct work_struct *work = &dwork->work;
1626 WARN_ON_ONCE(!wq);
1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1628 WARN_ON_ONCE(timer_pending(timer));
1629 WARN_ON_ONCE(!list_empty(&work->entry));
1632 * If @delay is 0, queue @dwork->work immediately. This is for
1633 * both optimization and correctness. The earliest @timer can
1634 * expire is on the closest next tick and delayed_work users depend
1635 * on that there's no such delay when @delay is 0.
1637 if (!delay) {
1638 __queue_work(cpu, wq, &dwork->work);
1639 return;
1642 dwork->wq = wq;
1643 dwork->cpu = cpu;
1644 timer->expires = jiffies + delay;
1646 if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 add_timer_on(timer, cpu);
1648 else
1649 add_timer(timer);
1653 * queue_delayed_work_on - queue work on specific CPU after delay
1654 * @cpu: CPU number to execute work on
1655 * @wq: workqueue to use
1656 * @dwork: work to queue
1657 * @delay: number of jiffies to wait before queueing
1659 * Return: %false if @work was already on a queue, %true otherwise. If
1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661 * execution.
1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 struct delayed_work *dwork, unsigned long delay)
1666 struct work_struct *work = &dwork->work;
1667 bool ret = false;
1668 unsigned long flags;
1670 /* read the comment in __queue_work() */
1671 local_irq_save(flags);
1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1674 __queue_delayed_work(cpu, wq, dwork, delay);
1675 ret = true;
1678 local_irq_restore(flags);
1679 return ret;
1681 EXPORT_SYMBOL(queue_delayed_work_on);
1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691 * modify @dwork's timer so that it expires after @delay. If @delay is
1692 * zero, @work is guaranteed to be scheduled immediately regardless of its
1693 * current state.
1695 * Return: %false if @dwork was idle and queued, %true if @dwork was
1696 * pending and its timer was modified.
1698 * This function is safe to call from any context including IRQ handler.
1699 * See try_to_grab_pending() for details.
1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 struct delayed_work *dwork, unsigned long delay)
1704 unsigned long flags;
1705 int ret;
1707 do {
1708 ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 } while (unlikely(ret == -EAGAIN));
1711 if (likely(ret >= 0)) {
1712 __queue_delayed_work(cpu, wq, dwork, delay);
1713 local_irq_restore(flags);
1716 /* -ENOENT from try_to_grab_pending() becomes %true */
1717 return ret;
1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1721 static void rcu_work_rcufn(struct rcu_head *rcu)
1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1725 /* read the comment in __queue_work() */
1726 local_irq_disable();
1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 local_irq_enable();
1732 * queue_rcu_work - queue work after a RCU grace period
1733 * @wq: workqueue to use
1734 * @rwork: work to queue
1736 * Return: %false if @rwork was already pending, %true otherwise. Note
1737 * that a full RCU grace period is guaranteed only after a %true return.
1738 * While @rwork is guaranteed to be executed after a %false return, the
1739 * execution may happen before a full RCU grace period has passed.
1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1743 struct work_struct *work = &rwork->work;
1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 rwork->wq = wq;
1747 call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 return true;
1751 return false;
1753 EXPORT_SYMBOL(queue_rcu_work);
1756 * worker_enter_idle - enter idle state
1757 * @worker: worker which is entering idle state
1759 * @worker is entering idle state. Update stats and idle timer if
1760 * necessary.
1762 * LOCKING:
1763 * raw_spin_lock_irq(pool->lock).
1765 static void worker_enter_idle(struct worker *worker)
1767 struct worker_pool *pool = worker->pool;
1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 (worker->hentry.next || worker->hentry.pprev)))
1772 return;
1774 /* can't use worker_set_flags(), also called from create_worker() */
1775 worker->flags |= WORKER_IDLE;
1776 pool->nr_idle++;
1777 worker->last_active = jiffies;
1779 /* idle_list is LIFO */
1780 list_add(&worker->entry, &pool->idle_list);
1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1786 * Sanity check nr_running. Because unbind_workers() releases
1787 * pool->lock between setting %WORKER_UNBOUND and zapping
1788 * nr_running, the warning may trigger spuriously. Check iff
1789 * unbind is not in progress.
1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1792 pool->nr_workers == pool->nr_idle &&
1793 atomic_read(&pool->nr_running));
1797 * worker_leave_idle - leave idle state
1798 * @worker: worker which is leaving idle state
1800 * @worker is leaving idle state. Update stats.
1802 * LOCKING:
1803 * raw_spin_lock_irq(pool->lock).
1805 static void worker_leave_idle(struct worker *worker)
1807 struct worker_pool *pool = worker->pool;
1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 return;
1811 worker_clr_flags(worker, WORKER_IDLE);
1812 pool->nr_idle--;
1813 list_del_init(&worker->entry);
1816 static struct worker *alloc_worker(int node)
1818 struct worker *worker;
1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1821 if (worker) {
1822 INIT_LIST_HEAD(&worker->entry);
1823 INIT_LIST_HEAD(&worker->scheduled);
1824 INIT_LIST_HEAD(&worker->node);
1825 /* on creation a worker is in !idle && prep state */
1826 worker->flags = WORKER_PREP;
1828 return worker;
1832 * worker_attach_to_pool() - attach a worker to a pool
1833 * @worker: worker to be attached
1834 * @pool: the target pool
1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1837 * cpu-binding of @worker are kept coordinated with the pool across
1838 * cpu-[un]hotplugs.
1840 static void worker_attach_to_pool(struct worker *worker,
1841 struct worker_pool *pool)
1843 mutex_lock(&wq_pool_attach_mutex);
1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 * online CPUs. It'll be re-applied when any of the CPUs come up.
1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 * stable across this function. See the comments above the flag
1854 * definition for details.
1856 if (pool->flags & POOL_DISASSOCIATED)
1857 worker->flags |= WORKER_UNBOUND;
1859 list_add_tail(&worker->node, &pool->workers);
1860 worker->pool = pool;
1862 mutex_unlock(&wq_pool_attach_mutex);
1866 * worker_detach_from_pool() - detach a worker from its pool
1867 * @worker: worker which is attached to its pool
1869 * Undo the attaching which had been done in worker_attach_to_pool(). The
1870 * caller worker shouldn't access to the pool after detached except it has
1871 * other reference to the pool.
1873 static void worker_detach_from_pool(struct worker *worker)
1875 struct worker_pool *pool = worker->pool;
1876 struct completion *detach_completion = NULL;
1878 mutex_lock(&wq_pool_attach_mutex);
1880 list_del(&worker->node);
1881 worker->pool = NULL;
1883 if (list_empty(&pool->workers))
1884 detach_completion = pool->detach_completion;
1885 mutex_unlock(&wq_pool_attach_mutex);
1887 /* clear leftover flags without pool->lock after it is detached */
1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1890 if (detach_completion)
1891 complete(detach_completion);
1895 * create_worker - create a new workqueue worker
1896 * @pool: pool the new worker will belong to
1898 * Create and start a new worker which is attached to @pool.
1900 * CONTEXT:
1901 * Might sleep. Does GFP_KERNEL allocations.
1903 * Return:
1904 * Pointer to the newly created worker.
1906 static struct worker *create_worker(struct worker_pool *pool)
1908 struct worker *worker = NULL;
1909 int id = -1;
1910 char id_buf[16];
1912 /* ID is needed to determine kthread name */
1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1914 if (id < 0)
1915 goto fail;
1917 worker = alloc_worker(pool->node);
1918 if (!worker)
1919 goto fail;
1921 worker->id = id;
1923 if (pool->cpu >= 0)
1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 pool->attrs->nice < 0 ? "H" : "");
1926 else
1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1930 "kworker/%s", id_buf);
1931 if (IS_ERR(worker->task))
1932 goto fail;
1934 set_user_nice(worker->task, pool->attrs->nice);
1935 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1937 /* successful, attach the worker to the pool */
1938 worker_attach_to_pool(worker, pool);
1940 /* start the newly created worker */
1941 raw_spin_lock_irq(&pool->lock);
1942 worker->pool->nr_workers++;
1943 worker_enter_idle(worker);
1944 wake_up_process(worker->task);
1945 raw_spin_unlock_irq(&pool->lock);
1947 return worker;
1949 fail:
1950 if (id >= 0)
1951 ida_simple_remove(&pool->worker_ida, id);
1952 kfree(worker);
1953 return NULL;
1957 * destroy_worker - destroy a workqueue worker
1958 * @worker: worker to be destroyed
1960 * Destroy @worker and adjust @pool stats accordingly. The worker should
1961 * be idle.
1963 * CONTEXT:
1964 * raw_spin_lock_irq(pool->lock).
1966 static void destroy_worker(struct worker *worker)
1968 struct worker_pool *pool = worker->pool;
1970 lockdep_assert_held(&pool->lock);
1972 /* sanity check frenzy */
1973 if (WARN_ON(worker->current_work) ||
1974 WARN_ON(!list_empty(&worker->scheduled)) ||
1975 WARN_ON(!(worker->flags & WORKER_IDLE)))
1976 return;
1978 pool->nr_workers--;
1979 pool->nr_idle--;
1981 list_del_init(&worker->entry);
1982 worker->flags |= WORKER_DIE;
1983 wake_up_process(worker->task);
1986 static void idle_worker_timeout(struct timer_list *t)
1988 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1990 raw_spin_lock_irq(&pool->lock);
1992 while (too_many_workers(pool)) {
1993 struct worker *worker;
1994 unsigned long expires;
1996 /* idle_list is kept in LIFO order, check the last one */
1997 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2000 if (time_before(jiffies, expires)) {
2001 mod_timer(&pool->idle_timer, expires);
2002 break;
2005 destroy_worker(worker);
2008 raw_spin_unlock_irq(&pool->lock);
2011 static void send_mayday(struct work_struct *work)
2013 struct pool_workqueue *pwq = get_work_pwq(work);
2014 struct workqueue_struct *wq = pwq->wq;
2016 lockdep_assert_held(&wq_mayday_lock);
2018 if (!wq->rescuer)
2019 return;
2021 /* mayday mayday mayday */
2022 if (list_empty(&pwq->mayday_node)) {
2024 * If @pwq is for an unbound wq, its base ref may be put at
2025 * any time due to an attribute change. Pin @pwq until the
2026 * rescuer is done with it.
2028 get_pwq(pwq);
2029 list_add_tail(&pwq->mayday_node, &wq->maydays);
2030 wake_up_process(wq->rescuer->task);
2034 static void pool_mayday_timeout(struct timer_list *t)
2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2037 struct work_struct *work;
2039 raw_spin_lock_irq(&pool->lock);
2040 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2042 if (need_to_create_worker(pool)) {
2044 * We've been trying to create a new worker but
2045 * haven't been successful. We might be hitting an
2046 * allocation deadlock. Send distress signals to
2047 * rescuers.
2049 list_for_each_entry(work, &pool->worklist, entry)
2050 send_mayday(work);
2053 raw_spin_unlock(&wq_mayday_lock);
2054 raw_spin_unlock_irq(&pool->lock);
2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2060 * maybe_create_worker - create a new worker if necessary
2061 * @pool: pool to create a new worker for
2063 * Create a new worker for @pool if necessary. @pool is guaranteed to
2064 * have at least one idle worker on return from this function. If
2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2066 * sent to all rescuers with works scheduled on @pool to resolve
2067 * possible allocation deadlock.
2069 * On return, need_to_create_worker() is guaranteed to be %false and
2070 * may_start_working() %true.
2072 * LOCKING:
2073 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2074 * multiple times. Does GFP_KERNEL allocations. Called only from
2075 * manager.
2077 static void maybe_create_worker(struct worker_pool *pool)
2078 __releases(&pool->lock)
2079 __acquires(&pool->lock)
2081 restart:
2082 raw_spin_unlock_irq(&pool->lock);
2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2087 while (true) {
2088 if (create_worker(pool) || !need_to_create_worker(pool))
2089 break;
2091 schedule_timeout_interruptible(CREATE_COOLDOWN);
2093 if (!need_to_create_worker(pool))
2094 break;
2097 del_timer_sync(&pool->mayday_timer);
2098 raw_spin_lock_irq(&pool->lock);
2100 * This is necessary even after a new worker was just successfully
2101 * created as @pool->lock was dropped and the new worker might have
2102 * already become busy.
2104 if (need_to_create_worker(pool))
2105 goto restart;
2109 * manage_workers - manage worker pool
2110 * @worker: self
2112 * Assume the manager role and manage the worker pool @worker belongs
2113 * to. At any given time, there can be only zero or one manager per
2114 * pool. The exclusion is handled automatically by this function.
2116 * The caller can safely start processing works on false return. On
2117 * true return, it's guaranteed that need_to_create_worker() is false
2118 * and may_start_working() is true.
2120 * CONTEXT:
2121 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2122 * multiple times. Does GFP_KERNEL allocations.
2124 * Return:
2125 * %false if the pool doesn't need management and the caller can safely
2126 * start processing works, %true if management function was performed and
2127 * the conditions that the caller verified before calling the function may
2128 * no longer be true.
2130 static bool manage_workers(struct worker *worker)
2132 struct worker_pool *pool = worker->pool;
2134 if (pool->flags & POOL_MANAGER_ACTIVE)
2135 return false;
2137 pool->flags |= POOL_MANAGER_ACTIVE;
2138 pool->manager = worker;
2140 maybe_create_worker(pool);
2142 pool->manager = NULL;
2143 pool->flags &= ~POOL_MANAGER_ACTIVE;
2144 rcuwait_wake_up(&manager_wait);
2145 return true;
2149 * process_one_work - process single work
2150 * @worker: self
2151 * @work: work to process
2153 * Process @work. This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing. As long as context requirement is met, any worker can
2157 * call this function to process a work.
2159 * CONTEXT:
2160 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2162 static void process_one_work(struct worker *worker, struct work_struct *work)
2163 __releases(&pool->lock)
2164 __acquires(&pool->lock)
2166 struct pool_workqueue *pwq = get_work_pwq(work);
2167 struct worker_pool *pool = worker->pool;
2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2169 int work_color;
2170 struct worker *collision;
2171 #ifdef CONFIG_LOCKDEP
2173 * It is permissible to free the struct work_struct from
2174 * inside the function that is called from it, this we need to
2175 * take into account for lockdep too. To avoid bogus "held
2176 * lock freed" warnings as well as problems when looking into
2177 * work->lockdep_map, make a copy and use that here.
2179 struct lockdep_map lockdep_map;
2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2182 #endif
2183 /* ensure we're on the correct CPU */
2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2185 raw_smp_processor_id() != pool->cpu);
2188 * A single work shouldn't be executed concurrently by
2189 * multiple workers on a single cpu. Check whether anyone is
2190 * already processing the work. If so, defer the work to the
2191 * currently executing one.
2193 collision = find_worker_executing_work(pool, work);
2194 if (unlikely(collision)) {
2195 move_linked_works(work, &collision->scheduled, NULL);
2196 return;
2199 /* claim and dequeue */
2200 debug_work_deactivate(work);
2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2202 worker->current_work = work;
2203 worker->current_func = work->func;
2204 worker->current_pwq = pwq;
2205 work_color = get_work_color(work);
2208 * Record wq name for cmdline and debug reporting, may get
2209 * overridden through set_worker_desc().
2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2213 list_del_init(&work->entry);
2216 * CPU intensive works don't participate in concurrency management.
2217 * They're the scheduler's responsibility. This takes @worker out
2218 * of concurrency management and the next code block will chain
2219 * execution of the pending work items.
2221 if (unlikely(cpu_intensive))
2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2225 * Wake up another worker if necessary. The condition is always
2226 * false for normal per-cpu workers since nr_running would always
2227 * be >= 1 at this point. This is used to chain execution of the
2228 * pending work items for WORKER_NOT_RUNNING workers such as the
2229 * UNBOUND and CPU_INTENSIVE ones.
2231 if (need_more_worker(pool))
2232 wake_up_worker(pool);
2235 * Record the last pool and clear PENDING which should be the last
2236 * update to @work. Also, do this inside @pool->lock so that
2237 * PENDING and queued state changes happen together while IRQ is
2238 * disabled.
2240 set_work_pool_and_clear_pending(work, pool->id);
2242 raw_spin_unlock_irq(&pool->lock);
2244 lock_map_acquire(&pwq->wq->lockdep_map);
2245 lock_map_acquire(&lockdep_map);
2247 * Strictly speaking we should mark the invariant state without holding
2248 * any locks, that is, before these two lock_map_acquire()'s.
2250 * However, that would result in:
2252 * A(W1)
2253 * WFC(C)
2254 * A(W1)
2255 * C(C)
2257 * Which would create W1->C->W1 dependencies, even though there is no
2258 * actual deadlock possible. There are two solutions, using a
2259 * read-recursive acquire on the work(queue) 'locks', but this will then
2260 * hit the lockdep limitation on recursive locks, or simply discard
2261 * these locks.
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for single-threaded
2265 * workqueues), so hiding them isn't a problem.
2267 lockdep_invariant_state(true);
2268 trace_workqueue_execute_start(work);
2269 worker->current_func(work);
2271 * While we must be careful to not use "work" after this, the trace
2272 * point will only record its address.
2274 trace_workqueue_execute_end(work, worker->current_func);
2275 lock_map_release(&lockdep_map);
2276 lock_map_release(&pwq->wq->lockdep_map);
2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280 " last function: %ps\n",
2281 current->comm, preempt_count(), task_pid_nr(current),
2282 worker->current_func);
2283 debug_show_held_locks(current);
2284 dump_stack();
2288 * The following prevents a kworker from hogging CPU on !PREEMPTION
2289 * kernels, where a requeueing work item waiting for something to
2290 * happen could deadlock with stop_machine as such work item could
2291 * indefinitely requeue itself while all other CPUs are trapped in
2292 * stop_machine. At the same time, report a quiescent RCU state so
2293 * the same condition doesn't freeze RCU.
2295 cond_resched();
2297 raw_spin_lock_irq(&pool->lock);
2299 /* clear cpu intensive status */
2300 if (unlikely(cpu_intensive))
2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2303 /* tag the worker for identification in schedule() */
2304 worker->last_func = worker->current_func;
2306 /* we're done with it, release */
2307 hash_del(&worker->hentry);
2308 worker->current_work = NULL;
2309 worker->current_func = NULL;
2310 worker->current_pwq = NULL;
2311 pwq_dec_nr_in_flight(pwq, work_color);
2315 * process_scheduled_works - process scheduled works
2316 * @worker: self
2318 * Process all scheduled works. Please note that the scheduled list
2319 * may change while processing a work, so this function repeatedly
2320 * fetches a work from the top and executes it.
2322 * CONTEXT:
2323 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2324 * multiple times.
2326 static void process_scheduled_works(struct worker *worker)
2328 while (!list_empty(&worker->scheduled)) {
2329 struct work_struct *work = list_first_entry(&worker->scheduled,
2330 struct work_struct, entry);
2331 process_one_work(worker, work);
2335 static void set_pf_worker(bool val)
2337 mutex_lock(&wq_pool_attach_mutex);
2338 if (val)
2339 current->flags |= PF_WQ_WORKER;
2340 else
2341 current->flags &= ~PF_WQ_WORKER;
2342 mutex_unlock(&wq_pool_attach_mutex);
2346 * worker_thread - the worker thread function
2347 * @__worker: self
2349 * The worker thread function. All workers belong to a worker_pool -
2350 * either a per-cpu one or dynamic unbound one. These workers process all
2351 * work items regardless of their specific target workqueue. The only
2352 * exception is work items which belong to workqueues with a rescuer which
2353 * will be explained in rescuer_thread().
2355 * Return: 0
2357 static int worker_thread(void *__worker)
2359 struct worker *worker = __worker;
2360 struct worker_pool *pool = worker->pool;
2362 /* tell the scheduler that this is a workqueue worker */
2363 set_pf_worker(true);
2364 woke_up:
2365 raw_spin_lock_irq(&pool->lock);
2367 /* am I supposed to die? */
2368 if (unlikely(worker->flags & WORKER_DIE)) {
2369 raw_spin_unlock_irq(&pool->lock);
2370 WARN_ON_ONCE(!list_empty(&worker->entry));
2371 set_pf_worker(false);
2373 set_task_comm(worker->task, "kworker/dying");
2374 ida_simple_remove(&pool->worker_ida, worker->id);
2375 worker_detach_from_pool(worker);
2376 kfree(worker);
2377 return 0;
2380 worker_leave_idle(worker);
2381 recheck:
2382 /* no more worker necessary? */
2383 if (!need_more_worker(pool))
2384 goto sleep;
2386 /* do we need to manage? */
2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2388 goto recheck;
2391 * ->scheduled list can only be filled while a worker is
2392 * preparing to process a work or actually processing it.
2393 * Make sure nobody diddled with it while I was sleeping.
2395 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2398 * Finish PREP stage. We're guaranteed to have at least one idle
2399 * worker or that someone else has already assumed the manager
2400 * role. This is where @worker starts participating in concurrency
2401 * management if applicable and concurrency management is restored
2402 * after being rebound. See rebind_workers() for details.
2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2406 do {
2407 struct work_struct *work =
2408 list_first_entry(&pool->worklist,
2409 struct work_struct, entry);
2411 pool->watchdog_ts = jiffies;
2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 /* optimization path, not strictly necessary */
2415 process_one_work(worker, work);
2416 if (unlikely(!list_empty(&worker->scheduled)))
2417 process_scheduled_works(worker);
2418 } else {
2419 move_linked_works(work, &worker->scheduled, NULL);
2420 process_scheduled_works(worker);
2422 } while (keep_working(pool));
2424 worker_set_flags(worker, WORKER_PREP);
2425 sleep:
2427 * pool->lock is held and there's no work to process and no need to
2428 * manage, sleep. Workers are woken up only while holding
2429 * pool->lock or from local cpu, so setting the current state
2430 * before releasing pool->lock is enough to prevent losing any
2431 * event.
2433 worker_enter_idle(worker);
2434 __set_current_state(TASK_IDLE);
2435 raw_spin_unlock_irq(&pool->lock);
2436 schedule();
2437 goto woke_up;
2441 * rescuer_thread - the rescuer thread function
2442 * @__rescuer: self
2444 * Workqueue rescuer thread function. There's one rescuer for each
2445 * workqueue which has WQ_MEM_RECLAIM set.
2447 * Regular work processing on a pool may block trying to create a new
2448 * worker which uses GFP_KERNEL allocation which has slight chance of
2449 * developing into deadlock if some works currently on the same queue
2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2451 * the problem rescuer solves.
2453 * When such condition is possible, the pool summons rescuers of all
2454 * workqueues which have works queued on the pool and let them process
2455 * those works so that forward progress can be guaranteed.
2457 * This should happen rarely.
2459 * Return: 0
2461 static int rescuer_thread(void *__rescuer)
2463 struct worker *rescuer = __rescuer;
2464 struct workqueue_struct *wq = rescuer->rescue_wq;
2465 struct list_head *scheduled = &rescuer->scheduled;
2466 bool should_stop;
2468 set_user_nice(current, RESCUER_NICE_LEVEL);
2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2472 * doesn't participate in concurrency management.
2474 set_pf_worker(true);
2475 repeat:
2476 set_current_state(TASK_IDLE);
2479 * By the time the rescuer is requested to stop, the workqueue
2480 * shouldn't have any work pending, but @wq->maydays may still have
2481 * pwq(s) queued. This can happen by non-rescuer workers consuming
2482 * all the work items before the rescuer got to them. Go through
2483 * @wq->maydays processing before acting on should_stop so that the
2484 * list is always empty on exit.
2486 should_stop = kthread_should_stop();
2488 /* see whether any pwq is asking for help */
2489 raw_spin_lock_irq(&wq_mayday_lock);
2491 while (!list_empty(&wq->maydays)) {
2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 struct pool_workqueue, mayday_node);
2494 struct worker_pool *pool = pwq->pool;
2495 struct work_struct *work, *n;
2496 bool first = true;
2498 __set_current_state(TASK_RUNNING);
2499 list_del_init(&pwq->mayday_node);
2501 raw_spin_unlock_irq(&wq_mayday_lock);
2503 worker_attach_to_pool(rescuer, pool);
2505 raw_spin_lock_irq(&pool->lock);
2508 * Slurp in all works issued via this workqueue and
2509 * process'em.
2511 WARN_ON_ONCE(!list_empty(scheduled));
2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 if (get_work_pwq(work) == pwq) {
2514 if (first)
2515 pool->watchdog_ts = jiffies;
2516 move_linked_works(work, scheduled, &n);
2518 first = false;
2521 if (!list_empty(scheduled)) {
2522 process_scheduled_works(rescuer);
2525 * The above execution of rescued work items could
2526 * have created more to rescue through
2527 * pwq_activate_first_delayed() or chained
2528 * queueing. Let's put @pwq back on mayday list so
2529 * that such back-to-back work items, which may be
2530 * being used to relieve memory pressure, don't
2531 * incur MAYDAY_INTERVAL delay inbetween.
2533 if (pwq->nr_active && need_to_create_worker(pool)) {
2534 raw_spin_lock(&wq_mayday_lock);
2536 * Queue iff we aren't racing destruction
2537 * and somebody else hasn't queued it already.
2539 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2540 get_pwq(pwq);
2541 list_add_tail(&pwq->mayday_node, &wq->maydays);
2543 raw_spin_unlock(&wq_mayday_lock);
2548 * Put the reference grabbed by send_mayday(). @pool won't
2549 * go away while we're still attached to it.
2551 put_pwq(pwq);
2554 * Leave this pool. If need_more_worker() is %true, notify a
2555 * regular worker; otherwise, we end up with 0 concurrency
2556 * and stalling the execution.
2558 if (need_more_worker(pool))
2559 wake_up_worker(pool);
2561 raw_spin_unlock_irq(&pool->lock);
2563 worker_detach_from_pool(rescuer);
2565 raw_spin_lock_irq(&wq_mayday_lock);
2568 raw_spin_unlock_irq(&wq_mayday_lock);
2570 if (should_stop) {
2571 __set_current_state(TASK_RUNNING);
2572 set_pf_worker(false);
2573 return 0;
2576 /* rescuers should never participate in concurrency management */
2577 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2578 schedule();
2579 goto repeat;
2583 * check_flush_dependency - check for flush dependency sanity
2584 * @target_wq: workqueue being flushed
2585 * @target_work: work item being flushed (NULL for workqueue flushes)
2587 * %current is trying to flush the whole @target_wq or @target_work on it.
2588 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2589 * reclaiming memory or running on a workqueue which doesn't have
2590 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2591 * a deadlock.
2593 static void check_flush_dependency(struct workqueue_struct *target_wq,
2594 struct work_struct *target_work)
2596 work_func_t target_func = target_work ? target_work->func : NULL;
2597 struct worker *worker;
2599 if (target_wq->flags & WQ_MEM_RECLAIM)
2600 return;
2602 worker = current_wq_worker();
2604 WARN_ONCE(current->flags & PF_MEMALLOC,
2605 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2606 current->pid, current->comm, target_wq->name, target_func);
2607 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2608 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2609 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2610 worker->current_pwq->wq->name, worker->current_func,
2611 target_wq->name, target_func);
2614 struct wq_barrier {
2615 struct work_struct work;
2616 struct completion done;
2617 struct task_struct *task; /* purely informational */
2620 static void wq_barrier_func(struct work_struct *work)
2622 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2623 complete(&barr->done);
2627 * insert_wq_barrier - insert a barrier work
2628 * @pwq: pwq to insert barrier into
2629 * @barr: wq_barrier to insert
2630 * @target: target work to attach @barr to
2631 * @worker: worker currently executing @target, NULL if @target is not executing
2633 * @barr is linked to @target such that @barr is completed only after
2634 * @target finishes execution. Please note that the ordering
2635 * guarantee is observed only with respect to @target and on the local
2636 * cpu.
2638 * Currently, a queued barrier can't be canceled. This is because
2639 * try_to_grab_pending() can't determine whether the work to be
2640 * grabbed is at the head of the queue and thus can't clear LINKED
2641 * flag of the previous work while there must be a valid next work
2642 * after a work with LINKED flag set.
2644 * Note that when @worker is non-NULL, @target may be modified
2645 * underneath us, so we can't reliably determine pwq from @target.
2647 * CONTEXT:
2648 * raw_spin_lock_irq(pool->lock).
2650 static void insert_wq_barrier(struct pool_workqueue *pwq,
2651 struct wq_barrier *barr,
2652 struct work_struct *target, struct worker *worker)
2654 struct list_head *head;
2655 unsigned int linked = 0;
2658 * debugobject calls are safe here even with pool->lock locked
2659 * as we know for sure that this will not trigger any of the
2660 * checks and call back into the fixup functions where we
2661 * might deadlock.
2663 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2664 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2666 init_completion_map(&barr->done, &target->lockdep_map);
2668 barr->task = current;
2671 * If @target is currently being executed, schedule the
2672 * barrier to the worker; otherwise, put it after @target.
2674 if (worker)
2675 head = worker->scheduled.next;
2676 else {
2677 unsigned long *bits = work_data_bits(target);
2679 head = target->entry.next;
2680 /* there can already be other linked works, inherit and set */
2681 linked = *bits & WORK_STRUCT_LINKED;
2682 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2685 debug_work_activate(&barr->work);
2686 insert_work(pwq, &barr->work, head,
2687 work_color_to_flags(WORK_NO_COLOR) | linked);
2691 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2692 * @wq: workqueue being flushed
2693 * @flush_color: new flush color, < 0 for no-op
2694 * @work_color: new work color, < 0 for no-op
2696 * Prepare pwqs for workqueue flushing.
2698 * If @flush_color is non-negative, flush_color on all pwqs should be
2699 * -1. If no pwq has in-flight commands at the specified color, all
2700 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2701 * has in flight commands, its pwq->flush_color is set to
2702 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2703 * wakeup logic is armed and %true is returned.
2705 * The caller should have initialized @wq->first_flusher prior to
2706 * calling this function with non-negative @flush_color. If
2707 * @flush_color is negative, no flush color update is done and %false
2708 * is returned.
2710 * If @work_color is non-negative, all pwqs should have the same
2711 * work_color which is previous to @work_color and all will be
2712 * advanced to @work_color.
2714 * CONTEXT:
2715 * mutex_lock(wq->mutex).
2717 * Return:
2718 * %true if @flush_color >= 0 and there's something to flush. %false
2719 * otherwise.
2721 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2722 int flush_color, int work_color)
2724 bool wait = false;
2725 struct pool_workqueue *pwq;
2727 if (flush_color >= 0) {
2728 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2729 atomic_set(&wq->nr_pwqs_to_flush, 1);
2732 for_each_pwq(pwq, wq) {
2733 struct worker_pool *pool = pwq->pool;
2735 raw_spin_lock_irq(&pool->lock);
2737 if (flush_color >= 0) {
2738 WARN_ON_ONCE(pwq->flush_color != -1);
2740 if (pwq->nr_in_flight[flush_color]) {
2741 pwq->flush_color = flush_color;
2742 atomic_inc(&wq->nr_pwqs_to_flush);
2743 wait = true;
2747 if (work_color >= 0) {
2748 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2749 pwq->work_color = work_color;
2752 raw_spin_unlock_irq(&pool->lock);
2755 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2756 complete(&wq->first_flusher->done);
2758 return wait;
2762 * flush_workqueue - ensure that any scheduled work has run to completion.
2763 * @wq: workqueue to flush
2765 * This function sleeps until all work items which were queued on entry
2766 * have finished execution, but it is not livelocked by new incoming ones.
2768 void flush_workqueue(struct workqueue_struct *wq)
2770 struct wq_flusher this_flusher = {
2771 .list = LIST_HEAD_INIT(this_flusher.list),
2772 .flush_color = -1,
2773 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2775 int next_color;
2777 if (WARN_ON(!wq_online))
2778 return;
2780 lock_map_acquire(&wq->lockdep_map);
2781 lock_map_release(&wq->lockdep_map);
2783 mutex_lock(&wq->mutex);
2786 * Start-to-wait phase
2788 next_color = work_next_color(wq->work_color);
2790 if (next_color != wq->flush_color) {
2792 * Color space is not full. The current work_color
2793 * becomes our flush_color and work_color is advanced
2794 * by one.
2796 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2797 this_flusher.flush_color = wq->work_color;
2798 wq->work_color = next_color;
2800 if (!wq->first_flusher) {
2801 /* no flush in progress, become the first flusher */
2802 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2804 wq->first_flusher = &this_flusher;
2806 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2807 wq->work_color)) {
2808 /* nothing to flush, done */
2809 wq->flush_color = next_color;
2810 wq->first_flusher = NULL;
2811 goto out_unlock;
2813 } else {
2814 /* wait in queue */
2815 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2816 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2817 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2819 } else {
2821 * Oops, color space is full, wait on overflow queue.
2822 * The next flush completion will assign us
2823 * flush_color and transfer to flusher_queue.
2825 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2828 check_flush_dependency(wq, NULL);
2830 mutex_unlock(&wq->mutex);
2832 wait_for_completion(&this_flusher.done);
2835 * Wake-up-and-cascade phase
2837 * First flushers are responsible for cascading flushes and
2838 * handling overflow. Non-first flushers can simply return.
2840 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2841 return;
2843 mutex_lock(&wq->mutex);
2845 /* we might have raced, check again with mutex held */
2846 if (wq->first_flusher != &this_flusher)
2847 goto out_unlock;
2849 WRITE_ONCE(wq->first_flusher, NULL);
2851 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2852 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2854 while (true) {
2855 struct wq_flusher *next, *tmp;
2857 /* complete all the flushers sharing the current flush color */
2858 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2859 if (next->flush_color != wq->flush_color)
2860 break;
2861 list_del_init(&next->list);
2862 complete(&next->done);
2865 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2866 wq->flush_color != work_next_color(wq->work_color));
2868 /* this flush_color is finished, advance by one */
2869 wq->flush_color = work_next_color(wq->flush_color);
2871 /* one color has been freed, handle overflow queue */
2872 if (!list_empty(&wq->flusher_overflow)) {
2874 * Assign the same color to all overflowed
2875 * flushers, advance work_color and append to
2876 * flusher_queue. This is the start-to-wait
2877 * phase for these overflowed flushers.
2879 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2880 tmp->flush_color = wq->work_color;
2882 wq->work_color = work_next_color(wq->work_color);
2884 list_splice_tail_init(&wq->flusher_overflow,
2885 &wq->flusher_queue);
2886 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2889 if (list_empty(&wq->flusher_queue)) {
2890 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2891 break;
2895 * Need to flush more colors. Make the next flusher
2896 * the new first flusher and arm pwqs.
2898 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2899 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2901 list_del_init(&next->list);
2902 wq->first_flusher = next;
2904 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2905 break;
2908 * Meh... this color is already done, clear first
2909 * flusher and repeat cascading.
2911 wq->first_flusher = NULL;
2914 out_unlock:
2915 mutex_unlock(&wq->mutex);
2917 EXPORT_SYMBOL(flush_workqueue);
2920 * drain_workqueue - drain a workqueue
2921 * @wq: workqueue to drain
2923 * Wait until the workqueue becomes empty. While draining is in progress,
2924 * only chain queueing is allowed. IOW, only currently pending or running
2925 * work items on @wq can queue further work items on it. @wq is flushed
2926 * repeatedly until it becomes empty. The number of flushing is determined
2927 * by the depth of chaining and should be relatively short. Whine if it
2928 * takes too long.
2930 void drain_workqueue(struct workqueue_struct *wq)
2932 unsigned int flush_cnt = 0;
2933 struct pool_workqueue *pwq;
2936 * __queue_work() needs to test whether there are drainers, is much
2937 * hotter than drain_workqueue() and already looks at @wq->flags.
2938 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2940 mutex_lock(&wq->mutex);
2941 if (!wq->nr_drainers++)
2942 wq->flags |= __WQ_DRAINING;
2943 mutex_unlock(&wq->mutex);
2944 reflush:
2945 flush_workqueue(wq);
2947 mutex_lock(&wq->mutex);
2949 for_each_pwq(pwq, wq) {
2950 bool drained;
2952 raw_spin_lock_irq(&pwq->pool->lock);
2953 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2954 raw_spin_unlock_irq(&pwq->pool->lock);
2956 if (drained)
2957 continue;
2959 if (++flush_cnt == 10 ||
2960 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2961 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2962 wq->name, flush_cnt);
2964 mutex_unlock(&wq->mutex);
2965 goto reflush;
2968 if (!--wq->nr_drainers)
2969 wq->flags &= ~__WQ_DRAINING;
2970 mutex_unlock(&wq->mutex);
2972 EXPORT_SYMBOL_GPL(drain_workqueue);
2974 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2975 bool from_cancel)
2977 struct worker *worker = NULL;
2978 struct worker_pool *pool;
2979 struct pool_workqueue *pwq;
2981 might_sleep();
2983 rcu_read_lock();
2984 pool = get_work_pool(work);
2985 if (!pool) {
2986 rcu_read_unlock();
2987 return false;
2990 raw_spin_lock_irq(&pool->lock);
2991 /* see the comment in try_to_grab_pending() with the same code */
2992 pwq = get_work_pwq(work);
2993 if (pwq) {
2994 if (unlikely(pwq->pool != pool))
2995 goto already_gone;
2996 } else {
2997 worker = find_worker_executing_work(pool, work);
2998 if (!worker)
2999 goto already_gone;
3000 pwq = worker->current_pwq;
3003 check_flush_dependency(pwq->wq, work);
3005 insert_wq_barrier(pwq, barr, work, worker);
3006 raw_spin_unlock_irq(&pool->lock);
3009 * Force a lock recursion deadlock when using flush_work() inside a
3010 * single-threaded or rescuer equipped workqueue.
3012 * For single threaded workqueues the deadlock happens when the work
3013 * is after the work issuing the flush_work(). For rescuer equipped
3014 * workqueues the deadlock happens when the rescuer stalls, blocking
3015 * forward progress.
3017 if (!from_cancel &&
3018 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3019 lock_map_acquire(&pwq->wq->lockdep_map);
3020 lock_map_release(&pwq->wq->lockdep_map);
3022 rcu_read_unlock();
3023 return true;
3024 already_gone:
3025 raw_spin_unlock_irq(&pool->lock);
3026 rcu_read_unlock();
3027 return false;
3030 static bool __flush_work(struct work_struct *work, bool from_cancel)
3032 struct wq_barrier barr;
3034 if (WARN_ON(!wq_online))
3035 return false;
3037 if (WARN_ON(!work->func))
3038 return false;
3040 if (!from_cancel) {
3041 lock_map_acquire(&work->lockdep_map);
3042 lock_map_release(&work->lockdep_map);
3045 if (start_flush_work(work, &barr, from_cancel)) {
3046 wait_for_completion(&barr.done);
3047 destroy_work_on_stack(&barr.work);
3048 return true;
3049 } else {
3050 return false;
3055 * flush_work - wait for a work to finish executing the last queueing instance
3056 * @work: the work to flush
3058 * Wait until @work has finished execution. @work is guaranteed to be idle
3059 * on return if it hasn't been requeued since flush started.
3061 * Return:
3062 * %true if flush_work() waited for the work to finish execution,
3063 * %false if it was already idle.
3065 bool flush_work(struct work_struct *work)
3067 return __flush_work(work, false);
3069 EXPORT_SYMBOL_GPL(flush_work);
3071 struct cwt_wait {
3072 wait_queue_entry_t wait;
3073 struct work_struct *work;
3076 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3078 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3080 if (cwait->work != key)
3081 return 0;
3082 return autoremove_wake_function(wait, mode, sync, key);
3085 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3087 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3088 unsigned long flags;
3089 int ret;
3091 do {
3092 ret = try_to_grab_pending(work, is_dwork, &flags);
3094 * If someone else is already canceling, wait for it to
3095 * finish. flush_work() doesn't work for PREEMPT_NONE
3096 * because we may get scheduled between @work's completion
3097 * and the other canceling task resuming and clearing
3098 * CANCELING - flush_work() will return false immediately
3099 * as @work is no longer busy, try_to_grab_pending() will
3100 * return -ENOENT as @work is still being canceled and the
3101 * other canceling task won't be able to clear CANCELING as
3102 * we're hogging the CPU.
3104 * Let's wait for completion using a waitqueue. As this
3105 * may lead to the thundering herd problem, use a custom
3106 * wake function which matches @work along with exclusive
3107 * wait and wakeup.
3109 if (unlikely(ret == -ENOENT)) {
3110 struct cwt_wait cwait;
3112 init_wait(&cwait.wait);
3113 cwait.wait.func = cwt_wakefn;
3114 cwait.work = work;
3116 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3117 TASK_UNINTERRUPTIBLE);
3118 if (work_is_canceling(work))
3119 schedule();
3120 finish_wait(&cancel_waitq, &cwait.wait);
3122 } while (unlikely(ret < 0));
3124 /* tell other tasks trying to grab @work to back off */
3125 mark_work_canceling(work);
3126 local_irq_restore(flags);
3129 * This allows canceling during early boot. We know that @work
3130 * isn't executing.
3132 if (wq_online)
3133 __flush_work(work, true);
3135 clear_work_data(work);
3138 * Paired with prepare_to_wait() above so that either
3139 * waitqueue_active() is visible here or !work_is_canceling() is
3140 * visible there.
3142 smp_mb();
3143 if (waitqueue_active(&cancel_waitq))
3144 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3146 return ret;
3150 * cancel_work_sync - cancel a work and wait for it to finish
3151 * @work: the work to cancel
3153 * Cancel @work and wait for its execution to finish. This function
3154 * can be used even if the work re-queues itself or migrates to
3155 * another workqueue. On return from this function, @work is
3156 * guaranteed to be not pending or executing on any CPU.
3158 * cancel_work_sync(&delayed_work->work) must not be used for
3159 * delayed_work's. Use cancel_delayed_work_sync() instead.
3161 * The caller must ensure that the workqueue on which @work was last
3162 * queued can't be destroyed before this function returns.
3164 * Return:
3165 * %true if @work was pending, %false otherwise.
3167 bool cancel_work_sync(struct work_struct *work)
3169 return __cancel_work_timer(work, false);
3171 EXPORT_SYMBOL_GPL(cancel_work_sync);
3174 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3175 * @dwork: the delayed work to flush
3177 * Delayed timer is cancelled and the pending work is queued for
3178 * immediate execution. Like flush_work(), this function only
3179 * considers the last queueing instance of @dwork.
3181 * Return:
3182 * %true if flush_work() waited for the work to finish execution,
3183 * %false if it was already idle.
3185 bool flush_delayed_work(struct delayed_work *dwork)
3187 local_irq_disable();
3188 if (del_timer_sync(&dwork->timer))
3189 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3190 local_irq_enable();
3191 return flush_work(&dwork->work);
3193 EXPORT_SYMBOL(flush_delayed_work);
3196 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3197 * @rwork: the rcu work to flush
3199 * Return:
3200 * %true if flush_rcu_work() waited for the work to finish execution,
3201 * %false if it was already idle.
3203 bool flush_rcu_work(struct rcu_work *rwork)
3205 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3206 rcu_barrier();
3207 flush_work(&rwork->work);
3208 return true;
3209 } else {
3210 return flush_work(&rwork->work);
3213 EXPORT_SYMBOL(flush_rcu_work);
3215 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3217 unsigned long flags;
3218 int ret;
3220 do {
3221 ret = try_to_grab_pending(work, is_dwork, &flags);
3222 } while (unlikely(ret == -EAGAIN));
3224 if (unlikely(ret < 0))
3225 return false;
3227 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3228 local_irq_restore(flags);
3229 return ret;
3233 * cancel_delayed_work - cancel a delayed work
3234 * @dwork: delayed_work to cancel
3236 * Kill off a pending delayed_work.
3238 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3239 * pending.
3241 * Note:
3242 * The work callback function may still be running on return, unless
3243 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3244 * use cancel_delayed_work_sync() to wait on it.
3246 * This function is safe to call from any context including IRQ handler.
3248 bool cancel_delayed_work(struct delayed_work *dwork)
3250 return __cancel_work(&dwork->work, true);
3252 EXPORT_SYMBOL(cancel_delayed_work);
3255 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3256 * @dwork: the delayed work cancel
3258 * This is cancel_work_sync() for delayed works.
3260 * Return:
3261 * %true if @dwork was pending, %false otherwise.
3263 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3265 return __cancel_work_timer(&dwork->work, true);
3267 EXPORT_SYMBOL(cancel_delayed_work_sync);
3270 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3271 * @func: the function to call
3273 * schedule_on_each_cpu() executes @func on each online CPU using the
3274 * system workqueue and blocks until all CPUs have completed.
3275 * schedule_on_each_cpu() is very slow.
3277 * Return:
3278 * 0 on success, -errno on failure.
3280 int schedule_on_each_cpu(work_func_t func)
3282 int cpu;
3283 struct work_struct __percpu *works;
3285 works = alloc_percpu(struct work_struct);
3286 if (!works)
3287 return -ENOMEM;
3289 get_online_cpus();
3291 for_each_online_cpu(cpu) {
3292 struct work_struct *work = per_cpu_ptr(works, cpu);
3294 INIT_WORK(work, func);
3295 schedule_work_on(cpu, work);
3298 for_each_online_cpu(cpu)
3299 flush_work(per_cpu_ptr(works, cpu));
3301 put_online_cpus();
3302 free_percpu(works);
3303 return 0;
3307 * execute_in_process_context - reliably execute the routine with user context
3308 * @fn: the function to execute
3309 * @ew: guaranteed storage for the execute work structure (must
3310 * be available when the work executes)
3312 * Executes the function immediately if process context is available,
3313 * otherwise schedules the function for delayed execution.
3315 * Return: 0 - function was executed
3316 * 1 - function was scheduled for execution
3318 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3320 if (!in_interrupt()) {
3321 fn(&ew->work);
3322 return 0;
3325 INIT_WORK(&ew->work, fn);
3326 schedule_work(&ew->work);
3328 return 1;
3330 EXPORT_SYMBOL_GPL(execute_in_process_context);
3333 * free_workqueue_attrs - free a workqueue_attrs
3334 * @attrs: workqueue_attrs to free
3336 * Undo alloc_workqueue_attrs().
3338 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3340 if (attrs) {
3341 free_cpumask_var(attrs->cpumask);
3342 kfree(attrs);
3347 * alloc_workqueue_attrs - allocate a workqueue_attrs
3349 * Allocate a new workqueue_attrs, initialize with default settings and
3350 * return it.
3352 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3354 struct workqueue_attrs *alloc_workqueue_attrs(void)
3356 struct workqueue_attrs *attrs;
3358 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3359 if (!attrs)
3360 goto fail;
3361 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3362 goto fail;
3364 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3365 return attrs;
3366 fail:
3367 free_workqueue_attrs(attrs);
3368 return NULL;
3371 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3372 const struct workqueue_attrs *from)
3374 to->nice = from->nice;
3375 cpumask_copy(to->cpumask, from->cpumask);
3377 * Unlike hash and equality test, this function doesn't ignore
3378 * ->no_numa as it is used for both pool and wq attrs. Instead,
3379 * get_unbound_pool() explicitly clears ->no_numa after copying.
3381 to->no_numa = from->no_numa;
3384 /* hash value of the content of @attr */
3385 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3387 u32 hash = 0;
3389 hash = jhash_1word(attrs->nice, hash);
3390 hash = jhash(cpumask_bits(attrs->cpumask),
3391 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3392 return hash;
3395 /* content equality test */
3396 static bool wqattrs_equal(const struct workqueue_attrs *a,
3397 const struct workqueue_attrs *b)
3399 if (a->nice != b->nice)
3400 return false;
3401 if (!cpumask_equal(a->cpumask, b->cpumask))
3402 return false;
3403 return true;
3407 * init_worker_pool - initialize a newly zalloc'd worker_pool
3408 * @pool: worker_pool to initialize
3410 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3412 * Return: 0 on success, -errno on failure. Even on failure, all fields
3413 * inside @pool proper are initialized and put_unbound_pool() can be called
3414 * on @pool safely to release it.
3416 static int init_worker_pool(struct worker_pool *pool)
3418 raw_spin_lock_init(&pool->lock);
3419 pool->id = -1;
3420 pool->cpu = -1;
3421 pool->node = NUMA_NO_NODE;
3422 pool->flags |= POOL_DISASSOCIATED;
3423 pool->watchdog_ts = jiffies;
3424 INIT_LIST_HEAD(&pool->worklist);
3425 INIT_LIST_HEAD(&pool->idle_list);
3426 hash_init(pool->busy_hash);
3428 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3430 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3432 INIT_LIST_HEAD(&pool->workers);
3434 ida_init(&pool->worker_ida);
3435 INIT_HLIST_NODE(&pool->hash_node);
3436 pool->refcnt = 1;
3438 /* shouldn't fail above this point */
3439 pool->attrs = alloc_workqueue_attrs();
3440 if (!pool->attrs)
3441 return -ENOMEM;
3442 return 0;
3445 #ifdef CONFIG_LOCKDEP
3446 static void wq_init_lockdep(struct workqueue_struct *wq)
3448 char *lock_name;
3450 lockdep_register_key(&wq->key);
3451 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3452 if (!lock_name)
3453 lock_name = wq->name;
3455 wq->lock_name = lock_name;
3456 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3459 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3461 lockdep_unregister_key(&wq->key);
3464 static void wq_free_lockdep(struct workqueue_struct *wq)
3466 if (wq->lock_name != wq->name)
3467 kfree(wq->lock_name);
3469 #else
3470 static void wq_init_lockdep(struct workqueue_struct *wq)
3474 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3478 static void wq_free_lockdep(struct workqueue_struct *wq)
3481 #endif
3483 static void rcu_free_wq(struct rcu_head *rcu)
3485 struct workqueue_struct *wq =
3486 container_of(rcu, struct workqueue_struct, rcu);
3488 wq_free_lockdep(wq);
3490 if (!(wq->flags & WQ_UNBOUND))
3491 free_percpu(wq->cpu_pwqs);
3492 else
3493 free_workqueue_attrs(wq->unbound_attrs);
3495 kfree(wq);
3498 static void rcu_free_pool(struct rcu_head *rcu)
3500 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3502 ida_destroy(&pool->worker_ida);
3503 free_workqueue_attrs(pool->attrs);
3504 kfree(pool);
3507 /* This returns with the lock held on success (pool manager is inactive). */
3508 static bool wq_manager_inactive(struct worker_pool *pool)
3510 raw_spin_lock_irq(&pool->lock);
3512 if (pool->flags & POOL_MANAGER_ACTIVE) {
3513 raw_spin_unlock_irq(&pool->lock);
3514 return false;
3516 return true;
3520 * put_unbound_pool - put a worker_pool
3521 * @pool: worker_pool to put
3523 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3524 * safe manner. get_unbound_pool() calls this function on its failure path
3525 * and this function should be able to release pools which went through,
3526 * successfully or not, init_worker_pool().
3528 * Should be called with wq_pool_mutex held.
3530 static void put_unbound_pool(struct worker_pool *pool)
3532 DECLARE_COMPLETION_ONSTACK(detach_completion);
3533 struct worker *worker;
3535 lockdep_assert_held(&wq_pool_mutex);
3537 if (--pool->refcnt)
3538 return;
3540 /* sanity checks */
3541 if (WARN_ON(!(pool->cpu < 0)) ||
3542 WARN_ON(!list_empty(&pool->worklist)))
3543 return;
3545 /* release id and unhash */
3546 if (pool->id >= 0)
3547 idr_remove(&worker_pool_idr, pool->id);
3548 hash_del(&pool->hash_node);
3551 * Become the manager and destroy all workers. This prevents
3552 * @pool's workers from blocking on attach_mutex. We're the last
3553 * manager and @pool gets freed with the flag set.
3554 * Because of how wq_manager_inactive() works, we will hold the
3555 * spinlock after a successful wait.
3557 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3558 TASK_UNINTERRUPTIBLE);
3559 pool->flags |= POOL_MANAGER_ACTIVE;
3561 while ((worker = first_idle_worker(pool)))
3562 destroy_worker(worker);
3563 WARN_ON(pool->nr_workers || pool->nr_idle);
3564 raw_spin_unlock_irq(&pool->lock);
3566 mutex_lock(&wq_pool_attach_mutex);
3567 if (!list_empty(&pool->workers))
3568 pool->detach_completion = &detach_completion;
3569 mutex_unlock(&wq_pool_attach_mutex);
3571 if (pool->detach_completion)
3572 wait_for_completion(pool->detach_completion);
3574 /* shut down the timers */
3575 del_timer_sync(&pool->idle_timer);
3576 del_timer_sync(&pool->mayday_timer);
3578 /* RCU protected to allow dereferences from get_work_pool() */
3579 call_rcu(&pool->rcu, rcu_free_pool);
3583 * get_unbound_pool - get a worker_pool with the specified attributes
3584 * @attrs: the attributes of the worker_pool to get
3586 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3587 * reference count and return it. If there already is a matching
3588 * worker_pool, it will be used; otherwise, this function attempts to
3589 * create a new one.
3591 * Should be called with wq_pool_mutex held.
3593 * Return: On success, a worker_pool with the same attributes as @attrs.
3594 * On failure, %NULL.
3596 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3598 u32 hash = wqattrs_hash(attrs);
3599 struct worker_pool *pool;
3600 int node;
3601 int target_node = NUMA_NO_NODE;
3603 lockdep_assert_held(&wq_pool_mutex);
3605 /* do we already have a matching pool? */
3606 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3607 if (wqattrs_equal(pool->attrs, attrs)) {
3608 pool->refcnt++;
3609 return pool;
3613 /* if cpumask is contained inside a NUMA node, we belong to that node */
3614 if (wq_numa_enabled) {
3615 for_each_node(node) {
3616 if (cpumask_subset(attrs->cpumask,
3617 wq_numa_possible_cpumask[node])) {
3618 target_node = node;
3619 break;
3624 /* nope, create a new one */
3625 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3626 if (!pool || init_worker_pool(pool) < 0)
3627 goto fail;
3629 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3630 copy_workqueue_attrs(pool->attrs, attrs);
3631 pool->node = target_node;
3634 * no_numa isn't a worker_pool attribute, always clear it. See
3635 * 'struct workqueue_attrs' comments for detail.
3637 pool->attrs->no_numa = false;
3639 if (worker_pool_assign_id(pool) < 0)
3640 goto fail;
3642 /* create and start the initial worker */
3643 if (wq_online && !create_worker(pool))
3644 goto fail;
3646 /* install */
3647 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3649 return pool;
3650 fail:
3651 if (pool)
3652 put_unbound_pool(pool);
3653 return NULL;
3656 static void rcu_free_pwq(struct rcu_head *rcu)
3658 kmem_cache_free(pwq_cache,
3659 container_of(rcu, struct pool_workqueue, rcu));
3663 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3664 * and needs to be destroyed.
3666 static void pwq_unbound_release_workfn(struct work_struct *work)
3668 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3669 unbound_release_work);
3670 struct workqueue_struct *wq = pwq->wq;
3671 struct worker_pool *pool = pwq->pool;
3672 bool is_last;
3674 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3675 return;
3677 mutex_lock(&wq->mutex);
3678 list_del_rcu(&pwq->pwqs_node);
3679 is_last = list_empty(&wq->pwqs);
3680 mutex_unlock(&wq->mutex);
3682 mutex_lock(&wq_pool_mutex);
3683 put_unbound_pool(pool);
3684 mutex_unlock(&wq_pool_mutex);
3686 call_rcu(&pwq->rcu, rcu_free_pwq);
3689 * If we're the last pwq going away, @wq is already dead and no one
3690 * is gonna access it anymore. Schedule RCU free.
3692 if (is_last) {
3693 wq_unregister_lockdep(wq);
3694 call_rcu(&wq->rcu, rcu_free_wq);
3699 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3700 * @pwq: target pool_workqueue
3702 * If @pwq isn't freezing, set @pwq->max_active to the associated
3703 * workqueue's saved_max_active and activate delayed work items
3704 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3706 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3708 struct workqueue_struct *wq = pwq->wq;
3709 bool freezable = wq->flags & WQ_FREEZABLE;
3710 unsigned long flags;
3712 /* for @wq->saved_max_active */
3713 lockdep_assert_held(&wq->mutex);
3715 /* fast exit for non-freezable wqs */
3716 if (!freezable && pwq->max_active == wq->saved_max_active)
3717 return;
3719 /* this function can be called during early boot w/ irq disabled */
3720 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3723 * During [un]freezing, the caller is responsible for ensuring that
3724 * this function is called at least once after @workqueue_freezing
3725 * is updated and visible.
3727 if (!freezable || !workqueue_freezing) {
3728 pwq->max_active = wq->saved_max_active;
3730 while (!list_empty(&pwq->delayed_works) &&
3731 pwq->nr_active < pwq->max_active)
3732 pwq_activate_first_delayed(pwq);
3735 * Need to kick a worker after thawed or an unbound wq's
3736 * max_active is bumped. It's a slow path. Do it always.
3738 wake_up_worker(pwq->pool);
3739 } else {
3740 pwq->max_active = 0;
3743 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3746 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3747 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3748 struct worker_pool *pool)
3750 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3752 memset(pwq, 0, sizeof(*pwq));
3754 pwq->pool = pool;
3755 pwq->wq = wq;
3756 pwq->flush_color = -1;
3757 pwq->refcnt = 1;
3758 INIT_LIST_HEAD(&pwq->delayed_works);
3759 INIT_LIST_HEAD(&pwq->pwqs_node);
3760 INIT_LIST_HEAD(&pwq->mayday_node);
3761 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3764 /* sync @pwq with the current state of its associated wq and link it */
3765 static void link_pwq(struct pool_workqueue *pwq)
3767 struct workqueue_struct *wq = pwq->wq;
3769 lockdep_assert_held(&wq->mutex);
3771 /* may be called multiple times, ignore if already linked */
3772 if (!list_empty(&pwq->pwqs_node))
3773 return;
3775 /* set the matching work_color */
3776 pwq->work_color = wq->work_color;
3778 /* sync max_active to the current setting */
3779 pwq_adjust_max_active(pwq);
3781 /* link in @pwq */
3782 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3785 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3786 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3787 const struct workqueue_attrs *attrs)
3789 struct worker_pool *pool;
3790 struct pool_workqueue *pwq;
3792 lockdep_assert_held(&wq_pool_mutex);
3794 pool = get_unbound_pool(attrs);
3795 if (!pool)
3796 return NULL;
3798 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3799 if (!pwq) {
3800 put_unbound_pool(pool);
3801 return NULL;
3804 init_pwq(pwq, wq, pool);
3805 return pwq;
3809 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3810 * @attrs: the wq_attrs of the default pwq of the target workqueue
3811 * @node: the target NUMA node
3812 * @cpu_going_down: if >= 0, the CPU to consider as offline
3813 * @cpumask: outarg, the resulting cpumask
3815 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3816 * @cpu_going_down is >= 0, that cpu is considered offline during
3817 * calculation. The result is stored in @cpumask.
3819 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3820 * enabled and @node has online CPUs requested by @attrs, the returned
3821 * cpumask is the intersection of the possible CPUs of @node and
3822 * @attrs->cpumask.
3824 * The caller is responsible for ensuring that the cpumask of @node stays
3825 * stable.
3827 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3828 * %false if equal.
3830 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3831 int cpu_going_down, cpumask_t *cpumask)
3833 if (!wq_numa_enabled || attrs->no_numa)
3834 goto use_dfl;
3836 /* does @node have any online CPUs @attrs wants? */
3837 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3838 if (cpu_going_down >= 0)
3839 cpumask_clear_cpu(cpu_going_down, cpumask);
3841 if (cpumask_empty(cpumask))
3842 goto use_dfl;
3844 /* yeap, return possible CPUs in @node that @attrs wants */
3845 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3847 if (cpumask_empty(cpumask)) {
3848 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3849 "possible intersect\n");
3850 return false;
3853 return !cpumask_equal(cpumask, attrs->cpumask);
3855 use_dfl:
3856 cpumask_copy(cpumask, attrs->cpumask);
3857 return false;
3860 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3861 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3862 int node,
3863 struct pool_workqueue *pwq)
3865 struct pool_workqueue *old_pwq;
3867 lockdep_assert_held(&wq_pool_mutex);
3868 lockdep_assert_held(&wq->mutex);
3870 /* link_pwq() can handle duplicate calls */
3871 link_pwq(pwq);
3873 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3874 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3875 return old_pwq;
3878 /* context to store the prepared attrs & pwqs before applying */
3879 struct apply_wqattrs_ctx {
3880 struct workqueue_struct *wq; /* target workqueue */
3881 struct workqueue_attrs *attrs; /* attrs to apply */
3882 struct list_head list; /* queued for batching commit */
3883 struct pool_workqueue *dfl_pwq;
3884 struct pool_workqueue *pwq_tbl[];
3887 /* free the resources after success or abort */
3888 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3890 if (ctx) {
3891 int node;
3893 for_each_node(node)
3894 put_pwq_unlocked(ctx->pwq_tbl[node]);
3895 put_pwq_unlocked(ctx->dfl_pwq);
3897 free_workqueue_attrs(ctx->attrs);
3899 kfree(ctx);
3903 /* allocate the attrs and pwqs for later installation */
3904 static struct apply_wqattrs_ctx *
3905 apply_wqattrs_prepare(struct workqueue_struct *wq,
3906 const struct workqueue_attrs *attrs)
3908 struct apply_wqattrs_ctx *ctx;
3909 struct workqueue_attrs *new_attrs, *tmp_attrs;
3910 int node;
3912 lockdep_assert_held(&wq_pool_mutex);
3914 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3916 new_attrs = alloc_workqueue_attrs();
3917 tmp_attrs = alloc_workqueue_attrs();
3918 if (!ctx || !new_attrs || !tmp_attrs)
3919 goto out_free;
3922 * Calculate the attrs of the default pwq.
3923 * If the user configured cpumask doesn't overlap with the
3924 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3926 copy_workqueue_attrs(new_attrs, attrs);
3927 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3928 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3929 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3932 * We may create multiple pwqs with differing cpumasks. Make a
3933 * copy of @new_attrs which will be modified and used to obtain
3934 * pools.
3936 copy_workqueue_attrs(tmp_attrs, new_attrs);
3939 * If something goes wrong during CPU up/down, we'll fall back to
3940 * the default pwq covering whole @attrs->cpumask. Always create
3941 * it even if we don't use it immediately.
3943 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3944 if (!ctx->dfl_pwq)
3945 goto out_free;
3947 for_each_node(node) {
3948 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3949 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3950 if (!ctx->pwq_tbl[node])
3951 goto out_free;
3952 } else {
3953 ctx->dfl_pwq->refcnt++;
3954 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3958 /* save the user configured attrs and sanitize it. */
3959 copy_workqueue_attrs(new_attrs, attrs);
3960 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3961 ctx->attrs = new_attrs;
3963 ctx->wq = wq;
3964 free_workqueue_attrs(tmp_attrs);
3965 return ctx;
3967 out_free:
3968 free_workqueue_attrs(tmp_attrs);
3969 free_workqueue_attrs(new_attrs);
3970 apply_wqattrs_cleanup(ctx);
3971 return NULL;
3974 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3975 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3977 int node;
3979 /* all pwqs have been created successfully, let's install'em */
3980 mutex_lock(&ctx->wq->mutex);
3982 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3984 /* save the previous pwq and install the new one */
3985 for_each_node(node)
3986 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3987 ctx->pwq_tbl[node]);
3989 /* @dfl_pwq might not have been used, ensure it's linked */
3990 link_pwq(ctx->dfl_pwq);
3991 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3993 mutex_unlock(&ctx->wq->mutex);
3996 static void apply_wqattrs_lock(void)
3998 /* CPUs should stay stable across pwq creations and installations */
3999 get_online_cpus();
4000 mutex_lock(&wq_pool_mutex);
4003 static void apply_wqattrs_unlock(void)
4005 mutex_unlock(&wq_pool_mutex);
4006 put_online_cpus();
4009 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4010 const struct workqueue_attrs *attrs)
4012 struct apply_wqattrs_ctx *ctx;
4014 /* only unbound workqueues can change attributes */
4015 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4016 return -EINVAL;
4018 /* creating multiple pwqs breaks ordering guarantee */
4019 if (!list_empty(&wq->pwqs)) {
4020 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4021 return -EINVAL;
4023 wq->flags &= ~__WQ_ORDERED;
4026 ctx = apply_wqattrs_prepare(wq, attrs);
4027 if (!ctx)
4028 return -ENOMEM;
4030 /* the ctx has been prepared successfully, let's commit it */
4031 apply_wqattrs_commit(ctx);
4032 apply_wqattrs_cleanup(ctx);
4034 return 0;
4038 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4039 * @wq: the target workqueue
4040 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4042 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4043 * machines, this function maps a separate pwq to each NUMA node with
4044 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4045 * NUMA node it was issued on. Older pwqs are released as in-flight work
4046 * items finish. Note that a work item which repeatedly requeues itself
4047 * back-to-back will stay on its current pwq.
4049 * Performs GFP_KERNEL allocations.
4051 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4053 * Return: 0 on success and -errno on failure.
4055 int apply_workqueue_attrs(struct workqueue_struct *wq,
4056 const struct workqueue_attrs *attrs)
4058 int ret;
4060 lockdep_assert_cpus_held();
4062 mutex_lock(&wq_pool_mutex);
4063 ret = apply_workqueue_attrs_locked(wq, attrs);
4064 mutex_unlock(&wq_pool_mutex);
4066 return ret;
4070 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4071 * @wq: the target workqueue
4072 * @cpu: the CPU coming up or going down
4073 * @online: whether @cpu is coming up or going down
4075 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4076 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4077 * @wq accordingly.
4079 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4080 * falls back to @wq->dfl_pwq which may not be optimal but is always
4081 * correct.
4083 * Note that when the last allowed CPU of a NUMA node goes offline for a
4084 * workqueue with a cpumask spanning multiple nodes, the workers which were
4085 * already executing the work items for the workqueue will lose their CPU
4086 * affinity and may execute on any CPU. This is similar to how per-cpu
4087 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4088 * affinity, it's the user's responsibility to flush the work item from
4089 * CPU_DOWN_PREPARE.
4091 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4092 bool online)
4094 int node = cpu_to_node(cpu);
4095 int cpu_off = online ? -1 : cpu;
4096 struct pool_workqueue *old_pwq = NULL, *pwq;
4097 struct workqueue_attrs *target_attrs;
4098 cpumask_t *cpumask;
4100 lockdep_assert_held(&wq_pool_mutex);
4102 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4103 wq->unbound_attrs->no_numa)
4104 return;
4107 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4108 * Let's use a preallocated one. The following buf is protected by
4109 * CPU hotplug exclusion.
4111 target_attrs = wq_update_unbound_numa_attrs_buf;
4112 cpumask = target_attrs->cpumask;
4114 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4115 pwq = unbound_pwq_by_node(wq, node);
4118 * Let's determine what needs to be done. If the target cpumask is
4119 * different from the default pwq's, we need to compare it to @pwq's
4120 * and create a new one if they don't match. If the target cpumask
4121 * equals the default pwq's, the default pwq should be used.
4123 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4124 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4125 return;
4126 } else {
4127 goto use_dfl_pwq;
4130 /* create a new pwq */
4131 pwq = alloc_unbound_pwq(wq, target_attrs);
4132 if (!pwq) {
4133 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4134 wq->name);
4135 goto use_dfl_pwq;
4138 /* Install the new pwq. */
4139 mutex_lock(&wq->mutex);
4140 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4141 goto out_unlock;
4143 use_dfl_pwq:
4144 mutex_lock(&wq->mutex);
4145 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4146 get_pwq(wq->dfl_pwq);
4147 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4148 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4149 out_unlock:
4150 mutex_unlock(&wq->mutex);
4151 put_pwq_unlocked(old_pwq);
4154 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4156 bool highpri = wq->flags & WQ_HIGHPRI;
4157 int cpu, ret;
4159 if (!(wq->flags & WQ_UNBOUND)) {
4160 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4161 if (!wq->cpu_pwqs)
4162 return -ENOMEM;
4164 for_each_possible_cpu(cpu) {
4165 struct pool_workqueue *pwq =
4166 per_cpu_ptr(wq->cpu_pwqs, cpu);
4167 struct worker_pool *cpu_pools =
4168 per_cpu(cpu_worker_pools, cpu);
4170 init_pwq(pwq, wq, &cpu_pools[highpri]);
4172 mutex_lock(&wq->mutex);
4173 link_pwq(pwq);
4174 mutex_unlock(&wq->mutex);
4176 return 0;
4179 get_online_cpus();
4180 if (wq->flags & __WQ_ORDERED) {
4181 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4182 /* there should only be single pwq for ordering guarantee */
4183 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4184 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4185 "ordering guarantee broken for workqueue %s\n", wq->name);
4186 } else {
4187 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4189 put_online_cpus();
4191 return ret;
4194 static int wq_clamp_max_active(int max_active, unsigned int flags,
4195 const char *name)
4197 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4199 if (max_active < 1 || max_active > lim)
4200 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4201 max_active, name, 1, lim);
4203 return clamp_val(max_active, 1, lim);
4207 * Workqueues which may be used during memory reclaim should have a rescuer
4208 * to guarantee forward progress.
4210 static int init_rescuer(struct workqueue_struct *wq)
4212 struct worker *rescuer;
4213 int ret;
4215 if (!(wq->flags & WQ_MEM_RECLAIM))
4216 return 0;
4218 rescuer = alloc_worker(NUMA_NO_NODE);
4219 if (!rescuer)
4220 return -ENOMEM;
4222 rescuer->rescue_wq = wq;
4223 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4224 if (IS_ERR(rescuer->task)) {
4225 ret = PTR_ERR(rescuer->task);
4226 kfree(rescuer);
4227 return ret;
4230 wq->rescuer = rescuer;
4231 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4232 wake_up_process(rescuer->task);
4234 return 0;
4237 __printf(1, 4)
4238 struct workqueue_struct *alloc_workqueue(const char *fmt,
4239 unsigned int flags,
4240 int max_active, ...)
4242 size_t tbl_size = 0;
4243 va_list args;
4244 struct workqueue_struct *wq;
4245 struct pool_workqueue *pwq;
4248 * Unbound && max_active == 1 used to imply ordered, which is no
4249 * longer the case on NUMA machines due to per-node pools. While
4250 * alloc_ordered_workqueue() is the right way to create an ordered
4251 * workqueue, keep the previous behavior to avoid subtle breakages
4252 * on NUMA.
4254 if ((flags & WQ_UNBOUND) && max_active == 1)
4255 flags |= __WQ_ORDERED;
4257 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4258 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4259 flags |= WQ_UNBOUND;
4261 /* allocate wq and format name */
4262 if (flags & WQ_UNBOUND)
4263 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4265 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4266 if (!wq)
4267 return NULL;
4269 if (flags & WQ_UNBOUND) {
4270 wq->unbound_attrs = alloc_workqueue_attrs();
4271 if (!wq->unbound_attrs)
4272 goto err_free_wq;
4275 va_start(args, max_active);
4276 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4277 va_end(args);
4279 max_active = max_active ?: WQ_DFL_ACTIVE;
4280 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4282 /* init wq */
4283 wq->flags = flags;
4284 wq->saved_max_active = max_active;
4285 mutex_init(&wq->mutex);
4286 atomic_set(&wq->nr_pwqs_to_flush, 0);
4287 INIT_LIST_HEAD(&wq->pwqs);
4288 INIT_LIST_HEAD(&wq->flusher_queue);
4289 INIT_LIST_HEAD(&wq->flusher_overflow);
4290 INIT_LIST_HEAD(&wq->maydays);
4292 wq_init_lockdep(wq);
4293 INIT_LIST_HEAD(&wq->list);
4295 if (alloc_and_link_pwqs(wq) < 0)
4296 goto err_unreg_lockdep;
4298 if (wq_online && init_rescuer(wq) < 0)
4299 goto err_destroy;
4301 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4302 goto err_destroy;
4305 * wq_pool_mutex protects global freeze state and workqueues list.
4306 * Grab it, adjust max_active and add the new @wq to workqueues
4307 * list.
4309 mutex_lock(&wq_pool_mutex);
4311 mutex_lock(&wq->mutex);
4312 for_each_pwq(pwq, wq)
4313 pwq_adjust_max_active(pwq);
4314 mutex_unlock(&wq->mutex);
4316 list_add_tail_rcu(&wq->list, &workqueues);
4318 mutex_unlock(&wq_pool_mutex);
4320 return wq;
4322 err_unreg_lockdep:
4323 wq_unregister_lockdep(wq);
4324 wq_free_lockdep(wq);
4325 err_free_wq:
4326 free_workqueue_attrs(wq->unbound_attrs);
4327 kfree(wq);
4328 return NULL;
4329 err_destroy:
4330 destroy_workqueue(wq);
4331 return NULL;
4333 EXPORT_SYMBOL_GPL(alloc_workqueue);
4335 static bool pwq_busy(struct pool_workqueue *pwq)
4337 int i;
4339 for (i = 0; i < WORK_NR_COLORS; i++)
4340 if (pwq->nr_in_flight[i])
4341 return true;
4343 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4344 return true;
4345 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4346 return true;
4348 return false;
4352 * destroy_workqueue - safely terminate a workqueue
4353 * @wq: target workqueue
4355 * Safely destroy a workqueue. All work currently pending will be done first.
4357 void destroy_workqueue(struct workqueue_struct *wq)
4359 struct pool_workqueue *pwq;
4360 int node;
4363 * Remove it from sysfs first so that sanity check failure doesn't
4364 * lead to sysfs name conflicts.
4366 workqueue_sysfs_unregister(wq);
4368 /* drain it before proceeding with destruction */
4369 drain_workqueue(wq);
4371 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4372 if (wq->rescuer) {
4373 struct worker *rescuer = wq->rescuer;
4375 /* this prevents new queueing */
4376 raw_spin_lock_irq(&wq_mayday_lock);
4377 wq->rescuer = NULL;
4378 raw_spin_unlock_irq(&wq_mayday_lock);
4380 /* rescuer will empty maydays list before exiting */
4381 kthread_stop(rescuer->task);
4382 kfree(rescuer);
4386 * Sanity checks - grab all the locks so that we wait for all
4387 * in-flight operations which may do put_pwq().
4389 mutex_lock(&wq_pool_mutex);
4390 mutex_lock(&wq->mutex);
4391 for_each_pwq(pwq, wq) {
4392 raw_spin_lock_irq(&pwq->pool->lock);
4393 if (WARN_ON(pwq_busy(pwq))) {
4394 pr_warn("%s: %s has the following busy pwq\n",
4395 __func__, wq->name);
4396 show_pwq(pwq);
4397 raw_spin_unlock_irq(&pwq->pool->lock);
4398 mutex_unlock(&wq->mutex);
4399 mutex_unlock(&wq_pool_mutex);
4400 show_workqueue_state();
4401 return;
4403 raw_spin_unlock_irq(&pwq->pool->lock);
4405 mutex_unlock(&wq->mutex);
4408 * wq list is used to freeze wq, remove from list after
4409 * flushing is complete in case freeze races us.
4411 list_del_rcu(&wq->list);
4412 mutex_unlock(&wq_pool_mutex);
4414 if (!(wq->flags & WQ_UNBOUND)) {
4415 wq_unregister_lockdep(wq);
4417 * The base ref is never dropped on per-cpu pwqs. Directly
4418 * schedule RCU free.
4420 call_rcu(&wq->rcu, rcu_free_wq);
4421 } else {
4423 * We're the sole accessor of @wq at this point. Directly
4424 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4425 * @wq will be freed when the last pwq is released.
4427 for_each_node(node) {
4428 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4429 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4430 put_pwq_unlocked(pwq);
4434 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4435 * put. Don't access it afterwards.
4437 pwq = wq->dfl_pwq;
4438 wq->dfl_pwq = NULL;
4439 put_pwq_unlocked(pwq);
4442 EXPORT_SYMBOL_GPL(destroy_workqueue);
4445 * workqueue_set_max_active - adjust max_active of a workqueue
4446 * @wq: target workqueue
4447 * @max_active: new max_active value.
4449 * Set max_active of @wq to @max_active.
4451 * CONTEXT:
4452 * Don't call from IRQ context.
4454 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4456 struct pool_workqueue *pwq;
4458 /* disallow meddling with max_active for ordered workqueues */
4459 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4460 return;
4462 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4464 mutex_lock(&wq->mutex);
4466 wq->flags &= ~__WQ_ORDERED;
4467 wq->saved_max_active = max_active;
4469 for_each_pwq(pwq, wq)
4470 pwq_adjust_max_active(pwq);
4472 mutex_unlock(&wq->mutex);
4474 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4477 * current_work - retrieve %current task's work struct
4479 * Determine if %current task is a workqueue worker and what it's working on.
4480 * Useful to find out the context that the %current task is running in.
4482 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4484 struct work_struct *current_work(void)
4486 struct worker *worker = current_wq_worker();
4488 return worker ? worker->current_work : NULL;
4490 EXPORT_SYMBOL(current_work);
4493 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4495 * Determine whether %current is a workqueue rescuer. Can be used from
4496 * work functions to determine whether it's being run off the rescuer task.
4498 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4500 bool current_is_workqueue_rescuer(void)
4502 struct worker *worker = current_wq_worker();
4504 return worker && worker->rescue_wq;
4508 * workqueue_congested - test whether a workqueue is congested
4509 * @cpu: CPU in question
4510 * @wq: target workqueue
4512 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4513 * no synchronization around this function and the test result is
4514 * unreliable and only useful as advisory hints or for debugging.
4516 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4517 * Note that both per-cpu and unbound workqueues may be associated with
4518 * multiple pool_workqueues which have separate congested states. A
4519 * workqueue being congested on one CPU doesn't mean the workqueue is also
4520 * contested on other CPUs / NUMA nodes.
4522 * Return:
4523 * %true if congested, %false otherwise.
4525 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4527 struct pool_workqueue *pwq;
4528 bool ret;
4530 rcu_read_lock();
4531 preempt_disable();
4533 if (cpu == WORK_CPU_UNBOUND)
4534 cpu = smp_processor_id();
4536 if (!(wq->flags & WQ_UNBOUND))
4537 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4538 else
4539 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4541 ret = !list_empty(&pwq->delayed_works);
4542 preempt_enable();
4543 rcu_read_unlock();
4545 return ret;
4547 EXPORT_SYMBOL_GPL(workqueue_congested);
4550 * work_busy - test whether a work is currently pending or running
4551 * @work: the work to be tested
4553 * Test whether @work is currently pending or running. There is no
4554 * synchronization around this function and the test result is
4555 * unreliable and only useful as advisory hints or for debugging.
4557 * Return:
4558 * OR'd bitmask of WORK_BUSY_* bits.
4560 unsigned int work_busy(struct work_struct *work)
4562 struct worker_pool *pool;
4563 unsigned long flags;
4564 unsigned int ret = 0;
4566 if (work_pending(work))
4567 ret |= WORK_BUSY_PENDING;
4569 rcu_read_lock();
4570 pool = get_work_pool(work);
4571 if (pool) {
4572 raw_spin_lock_irqsave(&pool->lock, flags);
4573 if (find_worker_executing_work(pool, work))
4574 ret |= WORK_BUSY_RUNNING;
4575 raw_spin_unlock_irqrestore(&pool->lock, flags);
4577 rcu_read_unlock();
4579 return ret;
4581 EXPORT_SYMBOL_GPL(work_busy);
4584 * set_worker_desc - set description for the current work item
4585 * @fmt: printf-style format string
4586 * @...: arguments for the format string
4588 * This function can be called by a running work function to describe what
4589 * the work item is about. If the worker task gets dumped, this
4590 * information will be printed out together to help debugging. The
4591 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4593 void set_worker_desc(const char *fmt, ...)
4595 struct worker *worker = current_wq_worker();
4596 va_list args;
4598 if (worker) {
4599 va_start(args, fmt);
4600 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4601 va_end(args);
4604 EXPORT_SYMBOL_GPL(set_worker_desc);
4607 * print_worker_info - print out worker information and description
4608 * @log_lvl: the log level to use when printing
4609 * @task: target task
4611 * If @task is a worker and currently executing a work item, print out the
4612 * name of the workqueue being serviced and worker description set with
4613 * set_worker_desc() by the currently executing work item.
4615 * This function can be safely called on any task as long as the
4616 * task_struct itself is accessible. While safe, this function isn't
4617 * synchronized and may print out mixups or garbages of limited length.
4619 void print_worker_info(const char *log_lvl, struct task_struct *task)
4621 work_func_t *fn = NULL;
4622 char name[WQ_NAME_LEN] = { };
4623 char desc[WORKER_DESC_LEN] = { };
4624 struct pool_workqueue *pwq = NULL;
4625 struct workqueue_struct *wq = NULL;
4626 struct worker *worker;
4628 if (!(task->flags & PF_WQ_WORKER))
4629 return;
4632 * This function is called without any synchronization and @task
4633 * could be in any state. Be careful with dereferences.
4635 worker = kthread_probe_data(task);
4638 * Carefully copy the associated workqueue's workfn, name and desc.
4639 * Keep the original last '\0' in case the original is garbage.
4641 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4642 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4643 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4644 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4645 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4647 if (fn || name[0] || desc[0]) {
4648 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4649 if (strcmp(name, desc))
4650 pr_cont(" (%s)", desc);
4651 pr_cont("\n");
4655 static void pr_cont_pool_info(struct worker_pool *pool)
4657 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4658 if (pool->node != NUMA_NO_NODE)
4659 pr_cont(" node=%d", pool->node);
4660 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4663 static void pr_cont_work(bool comma, struct work_struct *work)
4665 if (work->func == wq_barrier_func) {
4666 struct wq_barrier *barr;
4668 barr = container_of(work, struct wq_barrier, work);
4670 pr_cont("%s BAR(%d)", comma ? "," : "",
4671 task_pid_nr(barr->task));
4672 } else {
4673 pr_cont("%s %ps", comma ? "," : "", work->func);
4677 static void show_pwq(struct pool_workqueue *pwq)
4679 struct worker_pool *pool = pwq->pool;
4680 struct work_struct *work;
4681 struct worker *worker;
4682 bool has_in_flight = false, has_pending = false;
4683 int bkt;
4685 pr_info(" pwq %d:", pool->id);
4686 pr_cont_pool_info(pool);
4688 pr_cont(" active=%d/%d refcnt=%d%s\n",
4689 pwq->nr_active, pwq->max_active, pwq->refcnt,
4690 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4692 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4693 if (worker->current_pwq == pwq) {
4694 has_in_flight = true;
4695 break;
4698 if (has_in_flight) {
4699 bool comma = false;
4701 pr_info(" in-flight:");
4702 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4703 if (worker->current_pwq != pwq)
4704 continue;
4706 pr_cont("%s %d%s:%ps", comma ? "," : "",
4707 task_pid_nr(worker->task),
4708 worker->rescue_wq ? "(RESCUER)" : "",
4709 worker->current_func);
4710 list_for_each_entry(work, &worker->scheduled, entry)
4711 pr_cont_work(false, work);
4712 comma = true;
4714 pr_cont("\n");
4717 list_for_each_entry(work, &pool->worklist, entry) {
4718 if (get_work_pwq(work) == pwq) {
4719 has_pending = true;
4720 break;
4723 if (has_pending) {
4724 bool comma = false;
4726 pr_info(" pending:");
4727 list_for_each_entry(work, &pool->worklist, entry) {
4728 if (get_work_pwq(work) != pwq)
4729 continue;
4731 pr_cont_work(comma, work);
4732 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4734 pr_cont("\n");
4737 if (!list_empty(&pwq->delayed_works)) {
4738 bool comma = false;
4740 pr_info(" delayed:");
4741 list_for_each_entry(work, &pwq->delayed_works, entry) {
4742 pr_cont_work(comma, work);
4743 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4745 pr_cont("\n");
4750 * show_workqueue_state - dump workqueue state
4752 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4753 * all busy workqueues and pools.
4755 void show_workqueue_state(void)
4757 struct workqueue_struct *wq;
4758 struct worker_pool *pool;
4759 unsigned long flags;
4760 int pi;
4762 rcu_read_lock();
4764 pr_info("Showing busy workqueues and worker pools:\n");
4766 list_for_each_entry_rcu(wq, &workqueues, list) {
4767 struct pool_workqueue *pwq;
4768 bool idle = true;
4770 for_each_pwq(pwq, wq) {
4771 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4772 idle = false;
4773 break;
4776 if (idle)
4777 continue;
4779 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4781 for_each_pwq(pwq, wq) {
4782 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4783 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4784 show_pwq(pwq);
4785 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4787 * We could be printing a lot from atomic context, e.g.
4788 * sysrq-t -> show_workqueue_state(). Avoid triggering
4789 * hard lockup.
4791 touch_nmi_watchdog();
4795 for_each_pool(pool, pi) {
4796 struct worker *worker;
4797 bool first = true;
4799 raw_spin_lock_irqsave(&pool->lock, flags);
4800 if (pool->nr_workers == pool->nr_idle)
4801 goto next_pool;
4803 pr_info("pool %d:", pool->id);
4804 pr_cont_pool_info(pool);
4805 pr_cont(" hung=%us workers=%d",
4806 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4807 pool->nr_workers);
4808 if (pool->manager)
4809 pr_cont(" manager: %d",
4810 task_pid_nr(pool->manager->task));
4811 list_for_each_entry(worker, &pool->idle_list, entry) {
4812 pr_cont(" %s%d", first ? "idle: " : "",
4813 task_pid_nr(worker->task));
4814 first = false;
4816 pr_cont("\n");
4817 next_pool:
4818 raw_spin_unlock_irqrestore(&pool->lock, flags);
4820 * We could be printing a lot from atomic context, e.g.
4821 * sysrq-t -> show_workqueue_state(). Avoid triggering
4822 * hard lockup.
4824 touch_nmi_watchdog();
4827 rcu_read_unlock();
4830 /* used to show worker information through /proc/PID/{comm,stat,status} */
4831 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4833 int off;
4835 /* always show the actual comm */
4836 off = strscpy(buf, task->comm, size);
4837 if (off < 0)
4838 return;
4840 /* stabilize PF_WQ_WORKER and worker pool association */
4841 mutex_lock(&wq_pool_attach_mutex);
4843 if (task->flags & PF_WQ_WORKER) {
4844 struct worker *worker = kthread_data(task);
4845 struct worker_pool *pool = worker->pool;
4847 if (pool) {
4848 raw_spin_lock_irq(&pool->lock);
4850 * ->desc tracks information (wq name or
4851 * set_worker_desc()) for the latest execution. If
4852 * current, prepend '+', otherwise '-'.
4854 if (worker->desc[0] != '\0') {
4855 if (worker->current_work)
4856 scnprintf(buf + off, size - off, "+%s",
4857 worker->desc);
4858 else
4859 scnprintf(buf + off, size - off, "-%s",
4860 worker->desc);
4862 raw_spin_unlock_irq(&pool->lock);
4866 mutex_unlock(&wq_pool_attach_mutex);
4869 #ifdef CONFIG_SMP
4872 * CPU hotplug.
4874 * There are two challenges in supporting CPU hotplug. Firstly, there
4875 * are a lot of assumptions on strong associations among work, pwq and
4876 * pool which make migrating pending and scheduled works very
4877 * difficult to implement without impacting hot paths. Secondly,
4878 * worker pools serve mix of short, long and very long running works making
4879 * blocked draining impractical.
4881 * This is solved by allowing the pools to be disassociated from the CPU
4882 * running as an unbound one and allowing it to be reattached later if the
4883 * cpu comes back online.
4886 static void unbind_workers(int cpu)
4888 struct worker_pool *pool;
4889 struct worker *worker;
4891 for_each_cpu_worker_pool(pool, cpu) {
4892 mutex_lock(&wq_pool_attach_mutex);
4893 raw_spin_lock_irq(&pool->lock);
4896 * We've blocked all attach/detach operations. Make all workers
4897 * unbound and set DISASSOCIATED. Before this, all workers
4898 * except for the ones which are still executing works from
4899 * before the last CPU down must be on the cpu. After
4900 * this, they may become diasporas.
4902 for_each_pool_worker(worker, pool)
4903 worker->flags |= WORKER_UNBOUND;
4905 pool->flags |= POOL_DISASSOCIATED;
4907 raw_spin_unlock_irq(&pool->lock);
4908 mutex_unlock(&wq_pool_attach_mutex);
4911 * Call schedule() so that we cross rq->lock and thus can
4912 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4913 * This is necessary as scheduler callbacks may be invoked
4914 * from other cpus.
4916 schedule();
4919 * Sched callbacks are disabled now. Zap nr_running.
4920 * After this, nr_running stays zero and need_more_worker()
4921 * and keep_working() are always true as long as the
4922 * worklist is not empty. This pool now behaves as an
4923 * unbound (in terms of concurrency management) pool which
4924 * are served by workers tied to the pool.
4926 atomic_set(&pool->nr_running, 0);
4929 * With concurrency management just turned off, a busy
4930 * worker blocking could lead to lengthy stalls. Kick off
4931 * unbound chain execution of currently pending work items.
4933 raw_spin_lock_irq(&pool->lock);
4934 wake_up_worker(pool);
4935 raw_spin_unlock_irq(&pool->lock);
4940 * rebind_workers - rebind all workers of a pool to the associated CPU
4941 * @pool: pool of interest
4943 * @pool->cpu is coming online. Rebind all workers to the CPU.
4945 static void rebind_workers(struct worker_pool *pool)
4947 struct worker *worker;
4949 lockdep_assert_held(&wq_pool_attach_mutex);
4952 * Restore CPU affinity of all workers. As all idle workers should
4953 * be on the run-queue of the associated CPU before any local
4954 * wake-ups for concurrency management happen, restore CPU affinity
4955 * of all workers first and then clear UNBOUND. As we're called
4956 * from CPU_ONLINE, the following shouldn't fail.
4958 for_each_pool_worker(worker, pool)
4959 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4960 pool->attrs->cpumask) < 0);
4962 raw_spin_lock_irq(&pool->lock);
4964 pool->flags &= ~POOL_DISASSOCIATED;
4966 for_each_pool_worker(worker, pool) {
4967 unsigned int worker_flags = worker->flags;
4970 * A bound idle worker should actually be on the runqueue
4971 * of the associated CPU for local wake-ups targeting it to
4972 * work. Kick all idle workers so that they migrate to the
4973 * associated CPU. Doing this in the same loop as
4974 * replacing UNBOUND with REBOUND is safe as no worker will
4975 * be bound before @pool->lock is released.
4977 if (worker_flags & WORKER_IDLE)
4978 wake_up_process(worker->task);
4981 * We want to clear UNBOUND but can't directly call
4982 * worker_clr_flags() or adjust nr_running. Atomically
4983 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4984 * @worker will clear REBOUND using worker_clr_flags() when
4985 * it initiates the next execution cycle thus restoring
4986 * concurrency management. Note that when or whether
4987 * @worker clears REBOUND doesn't affect correctness.
4989 * WRITE_ONCE() is necessary because @worker->flags may be
4990 * tested without holding any lock in
4991 * wq_worker_running(). Without it, NOT_RUNNING test may
4992 * fail incorrectly leading to premature concurrency
4993 * management operations.
4995 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4996 worker_flags |= WORKER_REBOUND;
4997 worker_flags &= ~WORKER_UNBOUND;
4998 WRITE_ONCE(worker->flags, worker_flags);
5001 raw_spin_unlock_irq(&pool->lock);
5005 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5006 * @pool: unbound pool of interest
5007 * @cpu: the CPU which is coming up
5009 * An unbound pool may end up with a cpumask which doesn't have any online
5010 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5011 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5012 * online CPU before, cpus_allowed of all its workers should be restored.
5014 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5016 static cpumask_t cpumask;
5017 struct worker *worker;
5019 lockdep_assert_held(&wq_pool_attach_mutex);
5021 /* is @cpu allowed for @pool? */
5022 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5023 return;
5025 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5027 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5028 for_each_pool_worker(worker, pool)
5029 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5032 int workqueue_prepare_cpu(unsigned int cpu)
5034 struct worker_pool *pool;
5036 for_each_cpu_worker_pool(pool, cpu) {
5037 if (pool->nr_workers)
5038 continue;
5039 if (!create_worker(pool))
5040 return -ENOMEM;
5042 return 0;
5045 int workqueue_online_cpu(unsigned int cpu)
5047 struct worker_pool *pool;
5048 struct workqueue_struct *wq;
5049 int pi;
5051 mutex_lock(&wq_pool_mutex);
5053 for_each_pool(pool, pi) {
5054 mutex_lock(&wq_pool_attach_mutex);
5056 if (pool->cpu == cpu)
5057 rebind_workers(pool);
5058 else if (pool->cpu < 0)
5059 restore_unbound_workers_cpumask(pool, cpu);
5061 mutex_unlock(&wq_pool_attach_mutex);
5064 /* update NUMA affinity of unbound workqueues */
5065 list_for_each_entry(wq, &workqueues, list)
5066 wq_update_unbound_numa(wq, cpu, true);
5068 mutex_unlock(&wq_pool_mutex);
5069 return 0;
5072 int workqueue_offline_cpu(unsigned int cpu)
5074 struct workqueue_struct *wq;
5076 /* unbinding per-cpu workers should happen on the local CPU */
5077 if (WARN_ON(cpu != smp_processor_id()))
5078 return -1;
5080 unbind_workers(cpu);
5082 /* update NUMA affinity of unbound workqueues */
5083 mutex_lock(&wq_pool_mutex);
5084 list_for_each_entry(wq, &workqueues, list)
5085 wq_update_unbound_numa(wq, cpu, false);
5086 mutex_unlock(&wq_pool_mutex);
5088 return 0;
5091 struct work_for_cpu {
5092 struct work_struct work;
5093 long (*fn)(void *);
5094 void *arg;
5095 long ret;
5098 static void work_for_cpu_fn(struct work_struct *work)
5100 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5102 wfc->ret = wfc->fn(wfc->arg);
5106 * work_on_cpu - run a function in thread context on a particular cpu
5107 * @cpu: the cpu to run on
5108 * @fn: the function to run
5109 * @arg: the function arg
5111 * It is up to the caller to ensure that the cpu doesn't go offline.
5112 * The caller must not hold any locks which would prevent @fn from completing.
5114 * Return: The value @fn returns.
5116 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5118 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5120 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5121 schedule_work_on(cpu, &wfc.work);
5122 flush_work(&wfc.work);
5123 destroy_work_on_stack(&wfc.work);
5124 return wfc.ret;
5126 EXPORT_SYMBOL_GPL(work_on_cpu);
5129 * work_on_cpu_safe - run a function in thread context on a particular cpu
5130 * @cpu: the cpu to run on
5131 * @fn: the function to run
5132 * @arg: the function argument
5134 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5135 * any locks which would prevent @fn from completing.
5137 * Return: The value @fn returns.
5139 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5141 long ret = -ENODEV;
5143 get_online_cpus();
5144 if (cpu_online(cpu))
5145 ret = work_on_cpu(cpu, fn, arg);
5146 put_online_cpus();
5147 return ret;
5149 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5150 #endif /* CONFIG_SMP */
5152 #ifdef CONFIG_FREEZER
5155 * freeze_workqueues_begin - begin freezing workqueues
5157 * Start freezing workqueues. After this function returns, all freezable
5158 * workqueues will queue new works to their delayed_works list instead of
5159 * pool->worklist.
5161 * CONTEXT:
5162 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5164 void freeze_workqueues_begin(void)
5166 struct workqueue_struct *wq;
5167 struct pool_workqueue *pwq;
5169 mutex_lock(&wq_pool_mutex);
5171 WARN_ON_ONCE(workqueue_freezing);
5172 workqueue_freezing = true;
5174 list_for_each_entry(wq, &workqueues, list) {
5175 mutex_lock(&wq->mutex);
5176 for_each_pwq(pwq, wq)
5177 pwq_adjust_max_active(pwq);
5178 mutex_unlock(&wq->mutex);
5181 mutex_unlock(&wq_pool_mutex);
5185 * freeze_workqueues_busy - are freezable workqueues still busy?
5187 * Check whether freezing is complete. This function must be called
5188 * between freeze_workqueues_begin() and thaw_workqueues().
5190 * CONTEXT:
5191 * Grabs and releases wq_pool_mutex.
5193 * Return:
5194 * %true if some freezable workqueues are still busy. %false if freezing
5195 * is complete.
5197 bool freeze_workqueues_busy(void)
5199 bool busy = false;
5200 struct workqueue_struct *wq;
5201 struct pool_workqueue *pwq;
5203 mutex_lock(&wq_pool_mutex);
5205 WARN_ON_ONCE(!workqueue_freezing);
5207 list_for_each_entry(wq, &workqueues, list) {
5208 if (!(wq->flags & WQ_FREEZABLE))
5209 continue;
5211 * nr_active is monotonically decreasing. It's safe
5212 * to peek without lock.
5214 rcu_read_lock();
5215 for_each_pwq(pwq, wq) {
5216 WARN_ON_ONCE(pwq->nr_active < 0);
5217 if (pwq->nr_active) {
5218 busy = true;
5219 rcu_read_unlock();
5220 goto out_unlock;
5223 rcu_read_unlock();
5225 out_unlock:
5226 mutex_unlock(&wq_pool_mutex);
5227 return busy;
5231 * thaw_workqueues - thaw workqueues
5233 * Thaw workqueues. Normal queueing is restored and all collected
5234 * frozen works are transferred to their respective pool worklists.
5236 * CONTEXT:
5237 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5239 void thaw_workqueues(void)
5241 struct workqueue_struct *wq;
5242 struct pool_workqueue *pwq;
5244 mutex_lock(&wq_pool_mutex);
5246 if (!workqueue_freezing)
5247 goto out_unlock;
5249 workqueue_freezing = false;
5251 /* restore max_active and repopulate worklist */
5252 list_for_each_entry(wq, &workqueues, list) {
5253 mutex_lock(&wq->mutex);
5254 for_each_pwq(pwq, wq)
5255 pwq_adjust_max_active(pwq);
5256 mutex_unlock(&wq->mutex);
5259 out_unlock:
5260 mutex_unlock(&wq_pool_mutex);
5262 #endif /* CONFIG_FREEZER */
5264 static int workqueue_apply_unbound_cpumask(void)
5266 LIST_HEAD(ctxs);
5267 int ret = 0;
5268 struct workqueue_struct *wq;
5269 struct apply_wqattrs_ctx *ctx, *n;
5271 lockdep_assert_held(&wq_pool_mutex);
5273 list_for_each_entry(wq, &workqueues, list) {
5274 if (!(wq->flags & WQ_UNBOUND))
5275 continue;
5276 /* creating multiple pwqs breaks ordering guarantee */
5277 if (wq->flags & __WQ_ORDERED)
5278 continue;
5280 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5281 if (!ctx) {
5282 ret = -ENOMEM;
5283 break;
5286 list_add_tail(&ctx->list, &ctxs);
5289 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5290 if (!ret)
5291 apply_wqattrs_commit(ctx);
5292 apply_wqattrs_cleanup(ctx);
5295 return ret;
5299 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5300 * @cpumask: the cpumask to set
5302 * The low-level workqueues cpumask is a global cpumask that limits
5303 * the affinity of all unbound workqueues. This function check the @cpumask
5304 * and apply it to all unbound workqueues and updates all pwqs of them.
5306 * Retun: 0 - Success
5307 * -EINVAL - Invalid @cpumask
5308 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5310 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5312 int ret = -EINVAL;
5313 cpumask_var_t saved_cpumask;
5315 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5316 return -ENOMEM;
5319 * Not excluding isolated cpus on purpose.
5320 * If the user wishes to include them, we allow that.
5322 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5323 if (!cpumask_empty(cpumask)) {
5324 apply_wqattrs_lock();
5326 /* save the old wq_unbound_cpumask. */
5327 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5329 /* update wq_unbound_cpumask at first and apply it to wqs. */
5330 cpumask_copy(wq_unbound_cpumask, cpumask);
5331 ret = workqueue_apply_unbound_cpumask();
5333 /* restore the wq_unbound_cpumask when failed. */
5334 if (ret < 0)
5335 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5337 apply_wqattrs_unlock();
5340 free_cpumask_var(saved_cpumask);
5341 return ret;
5344 #ifdef CONFIG_SYSFS
5346 * Workqueues with WQ_SYSFS flag set is visible to userland via
5347 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5348 * following attributes.
5350 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5351 * max_active RW int : maximum number of in-flight work items
5353 * Unbound workqueues have the following extra attributes.
5355 * pool_ids RO int : the associated pool IDs for each node
5356 * nice RW int : nice value of the workers
5357 * cpumask RW mask : bitmask of allowed CPUs for the workers
5358 * numa RW bool : whether enable NUMA affinity
5360 struct wq_device {
5361 struct workqueue_struct *wq;
5362 struct device dev;
5365 static struct workqueue_struct *dev_to_wq(struct device *dev)
5367 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5369 return wq_dev->wq;
5372 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5373 char *buf)
5375 struct workqueue_struct *wq = dev_to_wq(dev);
5377 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5379 static DEVICE_ATTR_RO(per_cpu);
5381 static ssize_t max_active_show(struct device *dev,
5382 struct device_attribute *attr, char *buf)
5384 struct workqueue_struct *wq = dev_to_wq(dev);
5386 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5389 static ssize_t max_active_store(struct device *dev,
5390 struct device_attribute *attr, const char *buf,
5391 size_t count)
5393 struct workqueue_struct *wq = dev_to_wq(dev);
5394 int val;
5396 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5397 return -EINVAL;
5399 workqueue_set_max_active(wq, val);
5400 return count;
5402 static DEVICE_ATTR_RW(max_active);
5404 static struct attribute *wq_sysfs_attrs[] = {
5405 &dev_attr_per_cpu.attr,
5406 &dev_attr_max_active.attr,
5407 NULL,
5409 ATTRIBUTE_GROUPS(wq_sysfs);
5411 static ssize_t wq_pool_ids_show(struct device *dev,
5412 struct device_attribute *attr, char *buf)
5414 struct workqueue_struct *wq = dev_to_wq(dev);
5415 const char *delim = "";
5416 int node, written = 0;
5418 get_online_cpus();
5419 rcu_read_lock();
5420 for_each_node(node) {
5421 written += scnprintf(buf + written, PAGE_SIZE - written,
5422 "%s%d:%d", delim, node,
5423 unbound_pwq_by_node(wq, node)->pool->id);
5424 delim = " ";
5426 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5427 rcu_read_unlock();
5428 put_online_cpus();
5430 return written;
5433 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5434 char *buf)
5436 struct workqueue_struct *wq = dev_to_wq(dev);
5437 int written;
5439 mutex_lock(&wq->mutex);
5440 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5441 mutex_unlock(&wq->mutex);
5443 return written;
5446 /* prepare workqueue_attrs for sysfs store operations */
5447 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5449 struct workqueue_attrs *attrs;
5451 lockdep_assert_held(&wq_pool_mutex);
5453 attrs = alloc_workqueue_attrs();
5454 if (!attrs)
5455 return NULL;
5457 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5458 return attrs;
5461 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5462 const char *buf, size_t count)
5464 struct workqueue_struct *wq = dev_to_wq(dev);
5465 struct workqueue_attrs *attrs;
5466 int ret = -ENOMEM;
5468 apply_wqattrs_lock();
5470 attrs = wq_sysfs_prep_attrs(wq);
5471 if (!attrs)
5472 goto out_unlock;
5474 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5475 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5476 ret = apply_workqueue_attrs_locked(wq, attrs);
5477 else
5478 ret = -EINVAL;
5480 out_unlock:
5481 apply_wqattrs_unlock();
5482 free_workqueue_attrs(attrs);
5483 return ret ?: count;
5486 static ssize_t wq_cpumask_show(struct device *dev,
5487 struct device_attribute *attr, char *buf)
5489 struct workqueue_struct *wq = dev_to_wq(dev);
5490 int written;
5492 mutex_lock(&wq->mutex);
5493 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5494 cpumask_pr_args(wq->unbound_attrs->cpumask));
5495 mutex_unlock(&wq->mutex);
5496 return written;
5499 static ssize_t wq_cpumask_store(struct device *dev,
5500 struct device_attribute *attr,
5501 const char *buf, size_t count)
5503 struct workqueue_struct *wq = dev_to_wq(dev);
5504 struct workqueue_attrs *attrs;
5505 int ret = -ENOMEM;
5507 apply_wqattrs_lock();
5509 attrs = wq_sysfs_prep_attrs(wq);
5510 if (!attrs)
5511 goto out_unlock;
5513 ret = cpumask_parse(buf, attrs->cpumask);
5514 if (!ret)
5515 ret = apply_workqueue_attrs_locked(wq, attrs);
5517 out_unlock:
5518 apply_wqattrs_unlock();
5519 free_workqueue_attrs(attrs);
5520 return ret ?: count;
5523 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5524 char *buf)
5526 struct workqueue_struct *wq = dev_to_wq(dev);
5527 int written;
5529 mutex_lock(&wq->mutex);
5530 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5531 !wq->unbound_attrs->no_numa);
5532 mutex_unlock(&wq->mutex);
5534 return written;
5537 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5538 const char *buf, size_t count)
5540 struct workqueue_struct *wq = dev_to_wq(dev);
5541 struct workqueue_attrs *attrs;
5542 int v, ret = -ENOMEM;
5544 apply_wqattrs_lock();
5546 attrs = wq_sysfs_prep_attrs(wq);
5547 if (!attrs)
5548 goto out_unlock;
5550 ret = -EINVAL;
5551 if (sscanf(buf, "%d", &v) == 1) {
5552 attrs->no_numa = !v;
5553 ret = apply_workqueue_attrs_locked(wq, attrs);
5556 out_unlock:
5557 apply_wqattrs_unlock();
5558 free_workqueue_attrs(attrs);
5559 return ret ?: count;
5562 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5563 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5564 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5565 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5566 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5567 __ATTR_NULL,
5570 static struct bus_type wq_subsys = {
5571 .name = "workqueue",
5572 .dev_groups = wq_sysfs_groups,
5575 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5576 struct device_attribute *attr, char *buf)
5578 int written;
5580 mutex_lock(&wq_pool_mutex);
5581 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5582 cpumask_pr_args(wq_unbound_cpumask));
5583 mutex_unlock(&wq_pool_mutex);
5585 return written;
5588 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5589 struct device_attribute *attr, const char *buf, size_t count)
5591 cpumask_var_t cpumask;
5592 int ret;
5594 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5595 return -ENOMEM;
5597 ret = cpumask_parse(buf, cpumask);
5598 if (!ret)
5599 ret = workqueue_set_unbound_cpumask(cpumask);
5601 free_cpumask_var(cpumask);
5602 return ret ? ret : count;
5605 static struct device_attribute wq_sysfs_cpumask_attr =
5606 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5607 wq_unbound_cpumask_store);
5609 static int __init wq_sysfs_init(void)
5611 int err;
5613 err = subsys_virtual_register(&wq_subsys, NULL);
5614 if (err)
5615 return err;
5617 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5619 core_initcall(wq_sysfs_init);
5621 static void wq_device_release(struct device *dev)
5623 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5625 kfree(wq_dev);
5629 * workqueue_sysfs_register - make a workqueue visible in sysfs
5630 * @wq: the workqueue to register
5632 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5633 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5634 * which is the preferred method.
5636 * Workqueue user should use this function directly iff it wants to apply
5637 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5638 * apply_workqueue_attrs() may race against userland updating the
5639 * attributes.
5641 * Return: 0 on success, -errno on failure.
5643 int workqueue_sysfs_register(struct workqueue_struct *wq)
5645 struct wq_device *wq_dev;
5646 int ret;
5649 * Adjusting max_active or creating new pwqs by applying
5650 * attributes breaks ordering guarantee. Disallow exposing ordered
5651 * workqueues.
5653 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5654 return -EINVAL;
5656 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5657 if (!wq_dev)
5658 return -ENOMEM;
5660 wq_dev->wq = wq;
5661 wq_dev->dev.bus = &wq_subsys;
5662 wq_dev->dev.release = wq_device_release;
5663 dev_set_name(&wq_dev->dev, "%s", wq->name);
5666 * unbound_attrs are created separately. Suppress uevent until
5667 * everything is ready.
5669 dev_set_uevent_suppress(&wq_dev->dev, true);
5671 ret = device_register(&wq_dev->dev);
5672 if (ret) {
5673 put_device(&wq_dev->dev);
5674 wq->wq_dev = NULL;
5675 return ret;
5678 if (wq->flags & WQ_UNBOUND) {
5679 struct device_attribute *attr;
5681 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5682 ret = device_create_file(&wq_dev->dev, attr);
5683 if (ret) {
5684 device_unregister(&wq_dev->dev);
5685 wq->wq_dev = NULL;
5686 return ret;
5691 dev_set_uevent_suppress(&wq_dev->dev, false);
5692 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5693 return 0;
5697 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5698 * @wq: the workqueue to unregister
5700 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5702 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5704 struct wq_device *wq_dev = wq->wq_dev;
5706 if (!wq->wq_dev)
5707 return;
5709 wq->wq_dev = NULL;
5710 device_unregister(&wq_dev->dev);
5712 #else /* CONFIG_SYSFS */
5713 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5714 #endif /* CONFIG_SYSFS */
5717 * Workqueue watchdog.
5719 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5720 * flush dependency, a concurrency managed work item which stays RUNNING
5721 * indefinitely. Workqueue stalls can be very difficult to debug as the
5722 * usual warning mechanisms don't trigger and internal workqueue state is
5723 * largely opaque.
5725 * Workqueue watchdog monitors all worker pools periodically and dumps
5726 * state if some pools failed to make forward progress for a while where
5727 * forward progress is defined as the first item on ->worklist changing.
5729 * This mechanism is controlled through the kernel parameter
5730 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5731 * corresponding sysfs parameter file.
5733 #ifdef CONFIG_WQ_WATCHDOG
5735 static unsigned long wq_watchdog_thresh = 30;
5736 static struct timer_list wq_watchdog_timer;
5738 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5739 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5741 static void wq_watchdog_reset_touched(void)
5743 int cpu;
5745 wq_watchdog_touched = jiffies;
5746 for_each_possible_cpu(cpu)
5747 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5750 static void wq_watchdog_timer_fn(struct timer_list *unused)
5752 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5753 bool lockup_detected = false;
5754 struct worker_pool *pool;
5755 int pi;
5757 if (!thresh)
5758 return;
5760 rcu_read_lock();
5762 for_each_pool(pool, pi) {
5763 unsigned long pool_ts, touched, ts;
5765 if (list_empty(&pool->worklist))
5766 continue;
5768 /* get the latest of pool and touched timestamps */
5769 pool_ts = READ_ONCE(pool->watchdog_ts);
5770 touched = READ_ONCE(wq_watchdog_touched);
5772 if (time_after(pool_ts, touched))
5773 ts = pool_ts;
5774 else
5775 ts = touched;
5777 if (pool->cpu >= 0) {
5778 unsigned long cpu_touched =
5779 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5780 pool->cpu));
5781 if (time_after(cpu_touched, ts))
5782 ts = cpu_touched;
5785 /* did we stall? */
5786 if (time_after(jiffies, ts + thresh)) {
5787 lockup_detected = true;
5788 pr_emerg("BUG: workqueue lockup - pool");
5789 pr_cont_pool_info(pool);
5790 pr_cont(" stuck for %us!\n",
5791 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5795 rcu_read_unlock();
5797 if (lockup_detected)
5798 show_workqueue_state();
5800 wq_watchdog_reset_touched();
5801 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5804 notrace void wq_watchdog_touch(int cpu)
5806 if (cpu >= 0)
5807 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5808 else
5809 wq_watchdog_touched = jiffies;
5812 static void wq_watchdog_set_thresh(unsigned long thresh)
5814 wq_watchdog_thresh = 0;
5815 del_timer_sync(&wq_watchdog_timer);
5817 if (thresh) {
5818 wq_watchdog_thresh = thresh;
5819 wq_watchdog_reset_touched();
5820 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5824 static int wq_watchdog_param_set_thresh(const char *val,
5825 const struct kernel_param *kp)
5827 unsigned long thresh;
5828 int ret;
5830 ret = kstrtoul(val, 0, &thresh);
5831 if (ret)
5832 return ret;
5834 if (system_wq)
5835 wq_watchdog_set_thresh(thresh);
5836 else
5837 wq_watchdog_thresh = thresh;
5839 return 0;
5842 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5843 .set = wq_watchdog_param_set_thresh,
5844 .get = param_get_ulong,
5847 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5848 0644);
5850 static void wq_watchdog_init(void)
5852 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5853 wq_watchdog_set_thresh(wq_watchdog_thresh);
5856 #else /* CONFIG_WQ_WATCHDOG */
5858 static inline void wq_watchdog_init(void) { }
5860 #endif /* CONFIG_WQ_WATCHDOG */
5862 static void __init wq_numa_init(void)
5864 cpumask_var_t *tbl;
5865 int node, cpu;
5867 if (num_possible_nodes() <= 1)
5868 return;
5870 if (wq_disable_numa) {
5871 pr_info("workqueue: NUMA affinity support disabled\n");
5872 return;
5875 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5876 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5879 * We want masks of possible CPUs of each node which isn't readily
5880 * available. Build one from cpu_to_node() which should have been
5881 * fully initialized by now.
5883 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5884 BUG_ON(!tbl);
5886 for_each_node(node)
5887 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5888 node_online(node) ? node : NUMA_NO_NODE));
5890 for_each_possible_cpu(cpu) {
5891 node = cpu_to_node(cpu);
5892 if (WARN_ON(node == NUMA_NO_NODE)) {
5893 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5894 /* happens iff arch is bonkers, let's just proceed */
5895 return;
5897 cpumask_set_cpu(cpu, tbl[node]);
5900 wq_numa_possible_cpumask = tbl;
5901 wq_numa_enabled = true;
5905 * workqueue_init_early - early init for workqueue subsystem
5907 * This is the first half of two-staged workqueue subsystem initialization
5908 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5909 * idr are up. It sets up all the data structures and system workqueues
5910 * and allows early boot code to create workqueues and queue/cancel work
5911 * items. Actual work item execution starts only after kthreads can be
5912 * created and scheduled right before early initcalls.
5914 void __init workqueue_init_early(void)
5916 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5917 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5918 int i, cpu;
5920 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5922 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5923 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5925 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5927 /* initialize CPU pools */
5928 for_each_possible_cpu(cpu) {
5929 struct worker_pool *pool;
5931 i = 0;
5932 for_each_cpu_worker_pool(pool, cpu) {
5933 BUG_ON(init_worker_pool(pool));
5934 pool->cpu = cpu;
5935 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5936 pool->attrs->nice = std_nice[i++];
5937 pool->node = cpu_to_node(cpu);
5939 /* alloc pool ID */
5940 mutex_lock(&wq_pool_mutex);
5941 BUG_ON(worker_pool_assign_id(pool));
5942 mutex_unlock(&wq_pool_mutex);
5946 /* create default unbound and ordered wq attrs */
5947 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5948 struct workqueue_attrs *attrs;
5950 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5951 attrs->nice = std_nice[i];
5952 unbound_std_wq_attrs[i] = attrs;
5955 * An ordered wq should have only one pwq as ordering is
5956 * guaranteed by max_active which is enforced by pwqs.
5957 * Turn off NUMA so that dfl_pwq is used for all nodes.
5959 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5960 attrs->nice = std_nice[i];
5961 attrs->no_numa = true;
5962 ordered_wq_attrs[i] = attrs;
5965 system_wq = alloc_workqueue("events", 0, 0);
5966 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5967 system_long_wq = alloc_workqueue("events_long", 0, 0);
5968 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5969 WQ_UNBOUND_MAX_ACTIVE);
5970 system_freezable_wq = alloc_workqueue("events_freezable",
5971 WQ_FREEZABLE, 0);
5972 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5973 WQ_POWER_EFFICIENT, 0);
5974 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5975 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5977 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5978 !system_unbound_wq || !system_freezable_wq ||
5979 !system_power_efficient_wq ||
5980 !system_freezable_power_efficient_wq);
5984 * workqueue_init - bring workqueue subsystem fully online
5986 * This is the latter half of two-staged workqueue subsystem initialization
5987 * and invoked as soon as kthreads can be created and scheduled.
5988 * Workqueues have been created and work items queued on them, but there
5989 * are no kworkers executing the work items yet. Populate the worker pools
5990 * with the initial workers and enable future kworker creations.
5992 void __init workqueue_init(void)
5994 struct workqueue_struct *wq;
5995 struct worker_pool *pool;
5996 int cpu, bkt;
5999 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6000 * CPU to node mapping may not be available that early on some
6001 * archs such as power and arm64. As per-cpu pools created
6002 * previously could be missing node hint and unbound pools NUMA
6003 * affinity, fix them up.
6005 * Also, while iterating workqueues, create rescuers if requested.
6007 wq_numa_init();
6009 mutex_lock(&wq_pool_mutex);
6011 for_each_possible_cpu(cpu) {
6012 for_each_cpu_worker_pool(pool, cpu) {
6013 pool->node = cpu_to_node(cpu);
6017 list_for_each_entry(wq, &workqueues, list) {
6018 wq_update_unbound_numa(wq, smp_processor_id(), true);
6019 WARN(init_rescuer(wq),
6020 "workqueue: failed to create early rescuer for %s",
6021 wq->name);
6024 mutex_unlock(&wq_pool_mutex);
6026 /* create the initial workers */
6027 for_each_online_cpu(cpu) {
6028 for_each_cpu_worker_pool(pool, cpu) {
6029 pool->flags &= ~POOL_DISASSOCIATED;
6030 BUG_ON(!create_worker(pool));
6034 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6035 BUG_ON(!create_worker(pool));
6037 wq_online = true;
6038 wq_watchdog_init();