genirq: Warn when effective affinity is not updated
[linux/fpc-iii.git] / mm / page_ext.c
blob32f18911dedabfa7fc0cda117686f582cc44ebe9
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/page_ext.h>
5 #include <linux/memory.h>
6 #include <linux/vmalloc.h>
7 #include <linux/kmemleak.h>
8 #include <linux/page_owner.h>
9 #include <linux/page_idle.h>
12 * struct page extension
14 * This is the feature to manage memory for extended data per page.
16 * Until now, we must modify struct page itself to store extra data per page.
17 * This requires rebuilding the kernel and it is really time consuming process.
18 * And, sometimes, rebuild is impossible due to third party module dependency.
19 * At last, enlarging struct page could cause un-wanted system behaviour change.
21 * This feature is intended to overcome above mentioned problems. This feature
22 * allocates memory for extended data per page in certain place rather than
23 * the struct page itself. This memory can be accessed by the accessor
24 * functions provided by this code. During the boot process, it checks whether
25 * allocation of huge chunk of memory is needed or not. If not, it avoids
26 * allocating memory at all. With this advantage, we can include this feature
27 * into the kernel in default and can avoid rebuild and solve related problems.
29 * To help these things to work well, there are two callbacks for clients. One
30 * is the need callback which is mandatory if user wants to avoid useless
31 * memory allocation at boot-time. The other is optional, init callback, which
32 * is used to do proper initialization after memory is allocated.
34 * The need callback is used to decide whether extended memory allocation is
35 * needed or not. Sometimes users want to deactivate some features in this
36 * boot and extra memory would be unneccessary. In this case, to avoid
37 * allocating huge chunk of memory, each clients represent their need of
38 * extra memory through the need callback. If one of the need callbacks
39 * returns true, it means that someone needs extra memory so that
40 * page extension core should allocates memory for page extension. If
41 * none of need callbacks return true, memory isn't needed at all in this boot
42 * and page extension core can skip to allocate memory. As result,
43 * none of memory is wasted.
45 * When need callback returns true, page_ext checks if there is a request for
46 * extra memory through size in struct page_ext_operations. If it is non-zero,
47 * extra space is allocated for each page_ext entry and offset is returned to
48 * user through offset in struct page_ext_operations.
50 * The init callback is used to do proper initialization after page extension
51 * is completely initialized. In sparse memory system, extra memory is
52 * allocated some time later than memmap is allocated. In other words, lifetime
53 * of memory for page extension isn't same with memmap for struct page.
54 * Therefore, clients can't store extra data until page extension is
55 * initialized, even if pages are allocated and used freely. This could
56 * cause inadequate state of extra data per page, so, to prevent it, client
57 * can utilize this callback to initialize the state of it correctly.
60 static struct page_ext_operations *page_ext_ops[] = {
61 &debug_guardpage_ops,
62 #ifdef CONFIG_PAGE_OWNER
63 &page_owner_ops,
64 #endif
65 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
66 &page_idle_ops,
67 #endif
70 static unsigned long total_usage;
71 static unsigned long extra_mem;
73 static bool __init invoke_need_callbacks(void)
75 int i;
76 int entries = ARRAY_SIZE(page_ext_ops);
77 bool need = false;
79 for (i = 0; i < entries; i++) {
80 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
81 page_ext_ops[i]->offset = sizeof(struct page_ext) +
82 extra_mem;
83 extra_mem += page_ext_ops[i]->size;
84 need = true;
88 return need;
91 static void __init invoke_init_callbacks(void)
93 int i;
94 int entries = ARRAY_SIZE(page_ext_ops);
96 for (i = 0; i < entries; i++) {
97 if (page_ext_ops[i]->init)
98 page_ext_ops[i]->init();
102 static unsigned long get_entry_size(void)
104 return sizeof(struct page_ext) + extra_mem;
107 static inline struct page_ext *get_entry(void *base, unsigned long index)
109 return base + get_entry_size() * index;
112 #if !defined(CONFIG_SPARSEMEM)
115 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
117 pgdat->node_page_ext = NULL;
120 struct page_ext *lookup_page_ext(struct page *page)
122 unsigned long pfn = page_to_pfn(page);
123 unsigned long index;
124 struct page_ext *base;
126 base = NODE_DATA(page_to_nid(page))->node_page_ext;
127 #if defined(CONFIG_DEBUG_VM)
129 * The sanity checks the page allocator does upon freeing a
130 * page can reach here before the page_ext arrays are
131 * allocated when feeding a range of pages to the allocator
132 * for the first time during bootup or memory hotplug.
134 if (unlikely(!base))
135 return NULL;
136 #endif
137 index = pfn - round_down(node_start_pfn(page_to_nid(page)),
138 MAX_ORDER_NR_PAGES);
139 return get_entry(base, index);
142 static int __init alloc_node_page_ext(int nid)
144 struct page_ext *base;
145 unsigned long table_size;
146 unsigned long nr_pages;
148 nr_pages = NODE_DATA(nid)->node_spanned_pages;
149 if (!nr_pages)
150 return 0;
153 * Need extra space if node range is not aligned with
154 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
155 * checks buddy's status, range could be out of exact node range.
157 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
158 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
159 nr_pages += MAX_ORDER_NR_PAGES;
161 table_size = get_entry_size() * nr_pages;
163 base = memblock_virt_alloc_try_nid_nopanic(
164 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
165 BOOTMEM_ALLOC_ACCESSIBLE, nid);
166 if (!base)
167 return -ENOMEM;
168 NODE_DATA(nid)->node_page_ext = base;
169 total_usage += table_size;
170 return 0;
173 void __init page_ext_init_flatmem(void)
176 int nid, fail;
178 if (!invoke_need_callbacks())
179 return;
181 for_each_online_node(nid) {
182 fail = alloc_node_page_ext(nid);
183 if (fail)
184 goto fail;
186 pr_info("allocated %ld bytes of page_ext\n", total_usage);
187 invoke_init_callbacks();
188 return;
190 fail:
191 pr_crit("allocation of page_ext failed.\n");
192 panic("Out of memory");
195 #else /* CONFIG_FLAT_NODE_MEM_MAP */
197 struct page_ext *lookup_page_ext(struct page *page)
199 unsigned long pfn = page_to_pfn(page);
200 struct mem_section *section = __pfn_to_section(pfn);
201 #if defined(CONFIG_DEBUG_VM)
203 * The sanity checks the page allocator does upon freeing a
204 * page can reach here before the page_ext arrays are
205 * allocated when feeding a range of pages to the allocator
206 * for the first time during bootup or memory hotplug.
208 if (!section->page_ext)
209 return NULL;
210 #endif
211 return get_entry(section->page_ext, pfn);
214 static void *__meminit alloc_page_ext(size_t size, int nid)
216 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
217 void *addr = NULL;
219 addr = alloc_pages_exact_nid(nid, size, flags);
220 if (addr) {
221 kmemleak_alloc(addr, size, 1, flags);
222 return addr;
225 addr = vzalloc_node(size, nid);
227 return addr;
230 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
232 struct mem_section *section;
233 struct page_ext *base;
234 unsigned long table_size;
236 section = __pfn_to_section(pfn);
238 if (section->page_ext)
239 return 0;
241 table_size = get_entry_size() * PAGES_PER_SECTION;
242 base = alloc_page_ext(table_size, nid);
245 * The value stored in section->page_ext is (base - pfn)
246 * and it does not point to the memory block allocated above,
247 * causing kmemleak false positives.
249 kmemleak_not_leak(base);
251 if (!base) {
252 pr_err("page ext allocation failure\n");
253 return -ENOMEM;
257 * The passed "pfn" may not be aligned to SECTION. For the calculation
258 * we need to apply a mask.
260 pfn &= PAGE_SECTION_MASK;
261 section->page_ext = (void *)base - get_entry_size() * pfn;
262 total_usage += table_size;
263 return 0;
265 #ifdef CONFIG_MEMORY_HOTPLUG
266 static void free_page_ext(void *addr)
268 if (is_vmalloc_addr(addr)) {
269 vfree(addr);
270 } else {
271 struct page *page = virt_to_page(addr);
272 size_t table_size;
274 table_size = get_entry_size() * PAGES_PER_SECTION;
276 BUG_ON(PageReserved(page));
277 free_pages_exact(addr, table_size);
281 static void __free_page_ext(unsigned long pfn)
283 struct mem_section *ms;
284 struct page_ext *base;
286 ms = __pfn_to_section(pfn);
287 if (!ms || !ms->page_ext)
288 return;
289 base = get_entry(ms->page_ext, pfn);
290 free_page_ext(base);
291 ms->page_ext = NULL;
294 static int __meminit online_page_ext(unsigned long start_pfn,
295 unsigned long nr_pages,
296 int nid)
298 unsigned long start, end, pfn;
299 int fail = 0;
301 start = SECTION_ALIGN_DOWN(start_pfn);
302 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
304 if (nid == -1) {
306 * In this case, "nid" already exists and contains valid memory.
307 * "start_pfn" passed to us is a pfn which is an arg for
308 * online__pages(), and start_pfn should exist.
310 nid = pfn_to_nid(start_pfn);
311 VM_BUG_ON(!node_state(nid, N_ONLINE));
314 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
315 if (!pfn_present(pfn))
316 continue;
317 fail = init_section_page_ext(pfn, nid);
319 if (!fail)
320 return 0;
322 /* rollback */
323 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
324 __free_page_ext(pfn);
326 return -ENOMEM;
329 static int __meminit offline_page_ext(unsigned long start_pfn,
330 unsigned long nr_pages, int nid)
332 unsigned long start, end, pfn;
334 start = SECTION_ALIGN_DOWN(start_pfn);
335 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
337 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
338 __free_page_ext(pfn);
339 return 0;
343 static int __meminit page_ext_callback(struct notifier_block *self,
344 unsigned long action, void *arg)
346 struct memory_notify *mn = arg;
347 int ret = 0;
349 switch (action) {
350 case MEM_GOING_ONLINE:
351 ret = online_page_ext(mn->start_pfn,
352 mn->nr_pages, mn->status_change_nid);
353 break;
354 case MEM_OFFLINE:
355 offline_page_ext(mn->start_pfn,
356 mn->nr_pages, mn->status_change_nid);
357 break;
358 case MEM_CANCEL_ONLINE:
359 offline_page_ext(mn->start_pfn,
360 mn->nr_pages, mn->status_change_nid);
361 break;
362 case MEM_GOING_OFFLINE:
363 break;
364 case MEM_ONLINE:
365 case MEM_CANCEL_OFFLINE:
366 break;
369 return notifier_from_errno(ret);
372 #endif
374 void __init page_ext_init(void)
376 unsigned long pfn;
377 int nid;
379 if (!invoke_need_callbacks())
380 return;
382 for_each_node_state(nid, N_MEMORY) {
383 unsigned long start_pfn, end_pfn;
385 start_pfn = node_start_pfn(nid);
386 end_pfn = node_end_pfn(nid);
388 * start_pfn and end_pfn may not be aligned to SECTION and the
389 * page->flags of out of node pages are not initialized. So we
390 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
392 for (pfn = start_pfn; pfn < end_pfn;
393 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
395 if (!pfn_valid(pfn))
396 continue;
398 * Nodes's pfns can be overlapping.
399 * We know some arch can have a nodes layout such as
400 * -------------pfn-------------->
401 * N0 | N1 | N2 | N0 | N1 | N2|....
403 * Take into account DEFERRED_STRUCT_PAGE_INIT.
405 if (early_pfn_to_nid(pfn) != nid)
406 continue;
407 if (init_section_page_ext(pfn, nid))
408 goto oom;
409 cond_resched();
412 hotplug_memory_notifier(page_ext_callback, 0);
413 pr_info("allocated %ld bytes of page_ext\n", total_usage);
414 invoke_init_callbacks();
415 return;
417 oom:
418 panic("Out of memory");
421 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
425 #endif