2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
22 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
24 cputime_t cputime
= secs_to_cputime(rlim_new
);
26 spin_lock_irq(&task
->sighand
->siglock
);
27 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &cputime
, NULL
);
28 spin_unlock_irq(&task
->sighand
->siglock
);
31 static int check_clock(const clockid_t which_clock
)
34 struct task_struct
*p
;
35 const pid_t pid
= CPUCLOCK_PID(which_clock
);
37 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
44 p
= find_task_by_vpid(pid
);
45 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
46 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
57 unsigned long long ret
;
59 ret
= 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
61 ret
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
63 ret
= cputime_to_expires(timespec_to_cputime(tp
));
68 static void sample_to_timespec(const clockid_t which_clock
,
69 unsigned long long expires
,
72 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
73 *tp
= ns_to_timespec(expires
);
75 cputime_to_timespec((__force cputime_t
)expires
, tp
);
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
82 static void bump_cpu_timer(struct k_itimer
*timer
,
83 unsigned long long now
)
86 unsigned long long delta
, incr
;
88 if (timer
->it
.cpu
.incr
== 0)
91 if (now
< timer
->it
.cpu
.expires
)
94 incr
= timer
->it
.cpu
.incr
;
95 delta
= now
+ incr
- timer
->it
.cpu
.expires
;
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i
= 0; incr
< delta
- incr
; i
++)
101 for (; i
>= 0; incr
>>= 1, i
--) {
105 timer
->it
.cpu
.expires
+= incr
;
106 timer
->it_overrun
+= 1 << i
;
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
114 * @cputime: The struct to compare.
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
119 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
121 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
126 static inline unsigned long long prof_ticks(struct task_struct
*p
)
128 cputime_t utime
, stime
;
130 task_cputime(p
, &utime
, &stime
);
132 return cputime_to_expires(utime
+ stime
);
134 static inline unsigned long long virt_ticks(struct task_struct
*p
)
138 task_cputime(p
, &utime
, NULL
);
140 return cputime_to_expires(utime
);
144 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
146 int error
= check_clock(which_clock
);
149 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
150 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
163 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
169 int error
= check_clock(which_clock
);
178 * Sample a per-thread clock for the given task.
180 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
181 unsigned long long *sample
)
183 switch (CPUCLOCK_WHICH(which_clock
)) {
187 *sample
= prof_ticks(p
);
190 *sample
= virt_ticks(p
);
193 *sample
= task_sched_runtime(p
);
200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201 * to avoid race conditions with concurrent updates to cputime.
203 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
207 curr_cputime
= atomic64_read(cputime
);
208 if (sum_cputime
> curr_cputime
) {
209 if (atomic64_cmpxchg(cputime
, curr_cputime
, sum_cputime
) != curr_cputime
)
214 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
, struct task_cputime
*sum
)
216 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
217 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
218 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222 static inline void sample_cputime_atomic(struct task_cputime
*times
,
223 struct task_cputime_atomic
*atomic_times
)
225 times
->utime
= atomic64_read(&atomic_times
->utime
);
226 times
->stime
= atomic64_read(&atomic_times
->stime
);
227 times
->sum_exec_runtime
= atomic64_read(&atomic_times
->sum_exec_runtime
);
230 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
232 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
233 struct task_cputime sum
;
235 /* Check if cputimer isn't running. This is accessed without locking. */
236 if (!READ_ONCE(cputimer
->running
)) {
238 * The POSIX timer interface allows for absolute time expiry
239 * values through the TIMER_ABSTIME flag, therefore we have
240 * to synchronize the timer to the clock every time we start it.
242 thread_group_cputime(tsk
, &sum
);
243 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
246 * We're setting cputimer->running without a lock. Ensure
247 * this only gets written to in one operation. We set
248 * running after update_gt_cputime() as a small optimization,
249 * but barriers are not required because update_gt_cputime()
250 * can handle concurrent updates.
252 WRITE_ONCE(cputimer
->running
, 1);
254 sample_cputime_atomic(times
, &cputimer
->cputime_atomic
);
258 * Sample a process (thread group) clock for the given group_leader task.
259 * Must be called with task sighand lock held for safe while_each_thread()
262 static int cpu_clock_sample_group(const clockid_t which_clock
,
263 struct task_struct
*p
,
264 unsigned long long *sample
)
266 struct task_cputime cputime
;
268 switch (CPUCLOCK_WHICH(which_clock
)) {
272 thread_group_cputime(p
, &cputime
);
273 *sample
= cputime_to_expires(cputime
.utime
+ cputime
.stime
);
276 thread_group_cputime(p
, &cputime
);
277 *sample
= cputime_to_expires(cputime
.utime
);
280 thread_group_cputime(p
, &cputime
);
281 *sample
= cputime
.sum_exec_runtime
;
287 static int posix_cpu_clock_get_task(struct task_struct
*tsk
,
288 const clockid_t which_clock
,
292 unsigned long long rtn
;
294 if (CPUCLOCK_PERTHREAD(which_clock
)) {
295 if (same_thread_group(tsk
, current
))
296 err
= cpu_clock_sample(which_clock
, tsk
, &rtn
);
298 if (tsk
== current
|| thread_group_leader(tsk
))
299 err
= cpu_clock_sample_group(which_clock
, tsk
, &rtn
);
303 sample_to_timespec(which_clock
, rtn
, tp
);
309 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
311 const pid_t pid
= CPUCLOCK_PID(which_clock
);
316 * Special case constant value for our own clocks.
317 * We don't have to do any lookup to find ourselves.
319 err
= posix_cpu_clock_get_task(current
, which_clock
, tp
);
322 * Find the given PID, and validate that the caller
323 * should be able to see it.
325 struct task_struct
*p
;
327 p
= find_task_by_vpid(pid
);
329 err
= posix_cpu_clock_get_task(p
, which_clock
, tp
);
338 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
339 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
340 * new timer already all-zeros initialized.
342 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
345 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
346 struct task_struct
*p
;
348 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
351 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
354 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
358 p
= find_task_by_vpid(pid
);
359 if (p
&& !same_thread_group(p
, current
))
364 p
= current
->group_leader
;
366 p
= find_task_by_vpid(pid
);
367 if (p
&& !has_group_leader_pid(p
))
371 new_timer
->it
.cpu
.task
= p
;
383 * Clean up a CPU-clock timer that is about to be destroyed.
384 * This is called from timer deletion with the timer already locked.
385 * If we return TIMER_RETRY, it's necessary to release the timer's lock
386 * and try again. (This happens when the timer is in the middle of firing.)
388 static int posix_cpu_timer_del(struct k_itimer
*timer
)
392 struct sighand_struct
*sighand
;
393 struct task_struct
*p
= timer
->it
.cpu
.task
;
395 WARN_ON_ONCE(p
== NULL
);
398 * Protect against sighand release/switch in exit/exec and process/
399 * thread timer list entry concurrent read/writes.
401 sighand
= lock_task_sighand(p
, &flags
);
402 if (unlikely(sighand
== NULL
)) {
404 * We raced with the reaping of the task.
405 * The deletion should have cleared us off the list.
407 WARN_ON_ONCE(!list_empty(&timer
->it
.cpu
.entry
));
409 if (timer
->it
.cpu
.firing
)
412 list_del(&timer
->it
.cpu
.entry
);
414 unlock_task_sighand(p
, &flags
);
423 static void cleanup_timers_list(struct list_head
*head
)
425 struct cpu_timer_list
*timer
, *next
;
427 list_for_each_entry_safe(timer
, next
, head
, entry
)
428 list_del_init(&timer
->entry
);
432 * Clean out CPU timers still ticking when a thread exited. The task
433 * pointer is cleared, and the expiry time is replaced with the residual
434 * time for later timer_gettime calls to return.
435 * This must be called with the siglock held.
437 static void cleanup_timers(struct list_head
*head
)
439 cleanup_timers_list(head
);
440 cleanup_timers_list(++head
);
441 cleanup_timers_list(++head
);
445 * These are both called with the siglock held, when the current thread
446 * is being reaped. When the final (leader) thread in the group is reaped,
447 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
449 void posix_cpu_timers_exit(struct task_struct
*tsk
)
451 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
452 sizeof(unsigned long long));
453 cleanup_timers(tsk
->cpu_timers
);
456 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
458 cleanup_timers(tsk
->signal
->cpu_timers
);
461 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
463 return expires
== 0 || expires
> new_exp
;
467 * Insert the timer on the appropriate list before any timers that
468 * expire later. This must be called with the sighand lock held.
470 static void arm_timer(struct k_itimer
*timer
)
472 struct task_struct
*p
= timer
->it
.cpu
.task
;
473 struct list_head
*head
, *listpos
;
474 struct task_cputime
*cputime_expires
;
475 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
476 struct cpu_timer_list
*next
;
478 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
479 head
= p
->cpu_timers
;
480 cputime_expires
= &p
->cputime_expires
;
482 head
= p
->signal
->cpu_timers
;
483 cputime_expires
= &p
->signal
->cputime_expires
;
485 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
488 list_for_each_entry(next
, head
, entry
) {
489 if (nt
->expires
< next
->expires
)
491 listpos
= &next
->entry
;
493 list_add(&nt
->entry
, listpos
);
495 if (listpos
== head
) {
496 unsigned long long exp
= nt
->expires
;
499 * We are the new earliest-expiring POSIX 1.b timer, hence
500 * need to update expiration cache. Take into account that
501 * for process timers we share expiration cache with itimers
502 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
505 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
507 if (expires_gt(cputime_expires
->prof_exp
, expires_to_cputime(exp
)))
508 cputime_expires
->prof_exp
= expires_to_cputime(exp
);
511 if (expires_gt(cputime_expires
->virt_exp
, expires_to_cputime(exp
)))
512 cputime_expires
->virt_exp
= expires_to_cputime(exp
);
515 if (cputime_expires
->sched_exp
== 0 ||
516 cputime_expires
->sched_exp
> exp
)
517 cputime_expires
->sched_exp
= exp
;
524 * The timer is locked, fire it and arrange for its reload.
526 static void cpu_timer_fire(struct k_itimer
*timer
)
528 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
530 * User don't want any signal.
532 timer
->it
.cpu
.expires
= 0;
533 } else if (unlikely(timer
->sigq
== NULL
)) {
535 * This a special case for clock_nanosleep,
536 * not a normal timer from sys_timer_create.
538 wake_up_process(timer
->it_process
);
539 timer
->it
.cpu
.expires
= 0;
540 } else if (timer
->it
.cpu
.incr
== 0) {
542 * One-shot timer. Clear it as soon as it's fired.
544 posix_timer_event(timer
, 0);
545 timer
->it
.cpu
.expires
= 0;
546 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
548 * The signal did not get queued because the signal
549 * was ignored, so we won't get any callback to
550 * reload the timer. But we need to keep it
551 * ticking in case the signal is deliverable next time.
553 posix_cpu_timer_schedule(timer
);
558 * Sample a process (thread group) timer for the given group_leader task.
559 * Must be called with task sighand lock held for safe while_each_thread()
562 static int cpu_timer_sample_group(const clockid_t which_clock
,
563 struct task_struct
*p
,
564 unsigned long long *sample
)
566 struct task_cputime cputime
;
568 thread_group_cputimer(p
, &cputime
);
569 switch (CPUCLOCK_WHICH(which_clock
)) {
573 *sample
= cputime_to_expires(cputime
.utime
+ cputime
.stime
);
576 *sample
= cputime_to_expires(cputime
.utime
);
579 *sample
= cputime
.sum_exec_runtime
;
585 #ifdef CONFIG_NO_HZ_FULL
586 static void nohz_kick_work_fn(struct work_struct
*work
)
588 tick_nohz_full_kick_all();
591 static DECLARE_WORK(nohz_kick_work
, nohz_kick_work_fn
);
594 * We need the IPIs to be sent from sane process context.
595 * The posix cpu timers are always set with irqs disabled.
597 static void posix_cpu_timer_kick_nohz(void)
599 if (context_tracking_is_enabled())
600 schedule_work(&nohz_kick_work
);
603 bool posix_cpu_timers_can_stop_tick(struct task_struct
*tsk
)
605 if (!task_cputime_zero(&tsk
->cputime_expires
))
608 /* Check if cputimer is running. This is accessed without locking. */
609 if (READ_ONCE(tsk
->signal
->cputimer
.running
))
615 static inline void posix_cpu_timer_kick_nohz(void) { }
619 * Guts of sys_timer_settime for CPU timers.
620 * This is called with the timer locked and interrupts disabled.
621 * If we return TIMER_RETRY, it's necessary to release the timer's lock
622 * and try again. (This happens when the timer is in the middle of firing.)
624 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
625 struct itimerspec
*new, struct itimerspec
*old
)
628 struct sighand_struct
*sighand
;
629 struct task_struct
*p
= timer
->it
.cpu
.task
;
630 unsigned long long old_expires
, new_expires
, old_incr
, val
;
633 WARN_ON_ONCE(p
== NULL
);
635 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
638 * Protect against sighand release/switch in exit/exec and p->cpu_timers
639 * and p->signal->cpu_timers read/write in arm_timer()
641 sighand
= lock_task_sighand(p
, &flags
);
643 * If p has just been reaped, we can no
644 * longer get any information about it at all.
646 if (unlikely(sighand
== NULL
)) {
651 * Disarm any old timer after extracting its expiry time.
653 WARN_ON_ONCE(!irqs_disabled());
656 old_incr
= timer
->it
.cpu
.incr
;
657 old_expires
= timer
->it
.cpu
.expires
;
658 if (unlikely(timer
->it
.cpu
.firing
)) {
659 timer
->it
.cpu
.firing
= -1;
662 list_del_init(&timer
->it
.cpu
.entry
);
665 * We need to sample the current value to convert the new
666 * value from to relative and absolute, and to convert the
667 * old value from absolute to relative. To set a process
668 * timer, we need a sample to balance the thread expiry
669 * times (in arm_timer). With an absolute time, we must
670 * check if it's already passed. In short, we need a sample.
672 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
673 cpu_clock_sample(timer
->it_clock
, p
, &val
);
675 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
679 if (old_expires
== 0) {
680 old
->it_value
.tv_sec
= 0;
681 old
->it_value
.tv_nsec
= 0;
684 * Update the timer in case it has
685 * overrun already. If it has,
686 * we'll report it as having overrun
687 * and with the next reloaded timer
688 * already ticking, though we are
689 * swallowing that pending
690 * notification here to install the
693 bump_cpu_timer(timer
, val
);
694 if (val
< timer
->it
.cpu
.expires
) {
695 old_expires
= timer
->it
.cpu
.expires
- val
;
696 sample_to_timespec(timer
->it_clock
,
700 old
->it_value
.tv_nsec
= 1;
701 old
->it_value
.tv_sec
= 0;
708 * We are colliding with the timer actually firing.
709 * Punt after filling in the timer's old value, and
710 * disable this firing since we are already reporting
711 * it as an overrun (thanks to bump_cpu_timer above).
713 unlock_task_sighand(p
, &flags
);
717 if (new_expires
!= 0 && !(timer_flags
& TIMER_ABSTIME
)) {
722 * Install the new expiry time (or zero).
723 * For a timer with no notification action, we don't actually
724 * arm the timer (we'll just fake it for timer_gettime).
726 timer
->it
.cpu
.expires
= new_expires
;
727 if (new_expires
!= 0 && val
< new_expires
) {
731 unlock_task_sighand(p
, &flags
);
733 * Install the new reload setting, and
734 * set up the signal and overrun bookkeeping.
736 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
740 * This acts as a modification timestamp for the timer,
741 * so any automatic reload attempt will punt on seeing
742 * that we have reset the timer manually.
744 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
746 timer
->it_overrun_last
= 0;
747 timer
->it_overrun
= -1;
749 if (new_expires
!= 0 && !(val
< new_expires
)) {
751 * The designated time already passed, so we notify
752 * immediately, even if the thread never runs to
753 * accumulate more time on this clock.
755 cpu_timer_fire(timer
);
761 sample_to_timespec(timer
->it_clock
,
762 old_incr
, &old
->it_interval
);
765 posix_cpu_timer_kick_nohz();
769 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
771 unsigned long long now
;
772 struct task_struct
*p
= timer
->it
.cpu
.task
;
774 WARN_ON_ONCE(p
== NULL
);
777 * Easy part: convert the reload time.
779 sample_to_timespec(timer
->it_clock
,
780 timer
->it
.cpu
.incr
, &itp
->it_interval
);
782 if (timer
->it
.cpu
.expires
== 0) { /* Timer not armed at all. */
783 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
788 * Sample the clock to take the difference with the expiry time.
790 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
791 cpu_clock_sample(timer
->it_clock
, p
, &now
);
793 struct sighand_struct
*sighand
;
797 * Protect against sighand release/switch in exit/exec and
798 * also make timer sampling safe if it ends up calling
799 * thread_group_cputime().
801 sighand
= lock_task_sighand(p
, &flags
);
802 if (unlikely(sighand
== NULL
)) {
804 * The process has been reaped.
805 * We can't even collect a sample any more.
806 * Call the timer disarmed, nothing else to do.
808 timer
->it
.cpu
.expires
= 0;
809 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
812 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
813 unlock_task_sighand(p
, &flags
);
817 if (now
< timer
->it
.cpu
.expires
) {
818 sample_to_timespec(timer
->it_clock
,
819 timer
->it
.cpu
.expires
- now
,
823 * The timer should have expired already, but the firing
824 * hasn't taken place yet. Say it's just about to expire.
826 itp
->it_value
.tv_nsec
= 1;
827 itp
->it_value
.tv_sec
= 0;
831 static unsigned long long
832 check_timers_list(struct list_head
*timers
,
833 struct list_head
*firing
,
834 unsigned long long curr
)
838 while (!list_empty(timers
)) {
839 struct cpu_timer_list
*t
;
841 t
= list_first_entry(timers
, struct cpu_timer_list
, entry
);
843 if (!--maxfire
|| curr
< t
->expires
)
847 list_move_tail(&t
->entry
, firing
);
854 * Check for any per-thread CPU timers that have fired and move them off
855 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
856 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
858 static void check_thread_timers(struct task_struct
*tsk
,
859 struct list_head
*firing
)
861 struct list_head
*timers
= tsk
->cpu_timers
;
862 struct signal_struct
*const sig
= tsk
->signal
;
863 struct task_cputime
*tsk_expires
= &tsk
->cputime_expires
;
864 unsigned long long expires
;
867 expires
= check_timers_list(timers
, firing
, prof_ticks(tsk
));
868 tsk_expires
->prof_exp
= expires_to_cputime(expires
);
870 expires
= check_timers_list(++timers
, firing
, virt_ticks(tsk
));
871 tsk_expires
->virt_exp
= expires_to_cputime(expires
);
873 tsk_expires
->sched_exp
= check_timers_list(++timers
, firing
,
874 tsk
->se
.sum_exec_runtime
);
877 * Check for the special case thread timers.
879 soft
= READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
880 if (soft
!= RLIM_INFINITY
) {
882 READ_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
884 if (hard
!= RLIM_INFINITY
&&
885 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
887 * At the hard limit, we just die.
888 * No need to calculate anything else now.
890 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
893 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
895 * At the soft limit, send a SIGXCPU every second.
898 soft
+= USEC_PER_SEC
;
899 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
902 "RT Watchdog Timeout: %s[%d]\n",
903 tsk
->comm
, task_pid_nr(tsk
));
904 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
909 static inline void stop_process_timers(struct signal_struct
*sig
)
911 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
913 /* Turn off cputimer->running. This is done without locking. */
914 WRITE_ONCE(cputimer
->running
, 0);
917 static u32 onecputick
;
919 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
920 unsigned long long *expires
,
921 unsigned long long cur_time
, int signo
)
926 if (cur_time
>= it
->expires
) {
928 it
->expires
+= it
->incr
;
929 it
->error
+= it
->incr_error
;
930 if (it
->error
>= onecputick
) {
931 it
->expires
-= cputime_one_jiffy
;
932 it
->error
-= onecputick
;
938 trace_itimer_expire(signo
== SIGPROF
?
939 ITIMER_PROF
: ITIMER_VIRTUAL
,
940 tsk
->signal
->leader_pid
, cur_time
);
941 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
944 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
)) {
945 *expires
= it
->expires
;
950 * Check for any per-thread CPU timers that have fired and move them
951 * off the tsk->*_timers list onto the firing list. Per-thread timers
952 * have already been taken off.
954 static void check_process_timers(struct task_struct
*tsk
,
955 struct list_head
*firing
)
957 struct signal_struct
*const sig
= tsk
->signal
;
958 unsigned long long utime
, ptime
, virt_expires
, prof_expires
;
959 unsigned long long sum_sched_runtime
, sched_expires
;
960 struct list_head
*timers
= sig
->cpu_timers
;
961 struct task_cputime cputime
;
965 * Collect the current process totals.
967 thread_group_cputimer(tsk
, &cputime
);
968 utime
= cputime_to_expires(cputime
.utime
);
969 ptime
= utime
+ cputime_to_expires(cputime
.stime
);
970 sum_sched_runtime
= cputime
.sum_exec_runtime
;
972 prof_expires
= check_timers_list(timers
, firing
, ptime
);
973 virt_expires
= check_timers_list(++timers
, firing
, utime
);
974 sched_expires
= check_timers_list(++timers
, firing
, sum_sched_runtime
);
977 * Check for the special case process timers.
979 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
981 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
983 soft
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
984 if (soft
!= RLIM_INFINITY
) {
985 unsigned long psecs
= cputime_to_secs(ptime
);
987 READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
991 * At the hard limit, we just die.
992 * No need to calculate anything else now.
994 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
999 * At the soft limit, send a SIGXCPU every second.
1001 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1004 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
1007 x
= secs_to_cputime(soft
);
1008 if (!prof_expires
|| x
< prof_expires
) {
1013 sig
->cputime_expires
.prof_exp
= expires_to_cputime(prof_expires
);
1014 sig
->cputime_expires
.virt_exp
= expires_to_cputime(virt_expires
);
1015 sig
->cputime_expires
.sched_exp
= sched_expires
;
1016 if (task_cputime_zero(&sig
->cputime_expires
))
1017 stop_process_timers(sig
);
1021 * This is called from the signal code (via do_schedule_next_timer)
1022 * when the last timer signal was delivered and we have to reload the timer.
1024 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1026 struct sighand_struct
*sighand
;
1027 unsigned long flags
;
1028 struct task_struct
*p
= timer
->it
.cpu
.task
;
1029 unsigned long long now
;
1031 WARN_ON_ONCE(p
== NULL
);
1034 * Fetch the current sample and update the timer's expiry time.
1036 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1037 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1038 bump_cpu_timer(timer
, now
);
1039 if (unlikely(p
->exit_state
))
1042 /* Protect timer list r/w in arm_timer() */
1043 sighand
= lock_task_sighand(p
, &flags
);
1048 * Protect arm_timer() and timer sampling in case of call to
1049 * thread_group_cputime().
1051 sighand
= lock_task_sighand(p
, &flags
);
1052 if (unlikely(sighand
== NULL
)) {
1054 * The process has been reaped.
1055 * We can't even collect a sample any more.
1057 timer
->it
.cpu
.expires
= 0;
1059 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1060 unlock_task_sighand(p
, &flags
);
1061 /* Optimizations: if the process is dying, no need to rearm */
1064 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1065 bump_cpu_timer(timer
, now
);
1066 /* Leave the sighand locked for the call below. */
1070 * Now re-arm for the new expiry time.
1072 WARN_ON_ONCE(!irqs_disabled());
1074 unlock_task_sighand(p
, &flags
);
1076 /* Kick full dynticks CPUs in case they need to tick on the new timer */
1077 posix_cpu_timer_kick_nohz();
1079 timer
->it_overrun_last
= timer
->it_overrun
;
1080 timer
->it_overrun
= -1;
1081 ++timer
->it_requeue_pending
;
1085 * task_cputime_expired - Compare two task_cputime entities.
1087 * @sample: The task_cputime structure to be checked for expiration.
1088 * @expires: Expiration times, against which @sample will be checked.
1090 * Checks @sample against @expires to see if any field of @sample has expired.
1091 * Returns true if any field of the former is greater than the corresponding
1092 * field of the latter if the latter field is set. Otherwise returns false.
1094 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1095 const struct task_cputime
*expires
)
1097 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1099 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1101 if (expires
->sum_exec_runtime
!= 0 &&
1102 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1108 * fastpath_timer_check - POSIX CPU timers fast path.
1110 * @tsk: The task (thread) being checked.
1112 * Check the task and thread group timers. If both are zero (there are no
1113 * timers set) return false. Otherwise snapshot the task and thread group
1114 * timers and compare them with the corresponding expiration times. Return
1115 * true if a timer has expired, else return false.
1117 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1119 struct signal_struct
*sig
;
1120 cputime_t utime
, stime
;
1122 task_cputime(tsk
, &utime
, &stime
);
1124 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1125 struct task_cputime task_sample
= {
1128 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1131 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1136 /* Check if cputimer is running. This is accessed without locking. */
1137 if (READ_ONCE(sig
->cputimer
.running
)) {
1138 struct task_cputime group_sample
;
1140 sample_cputime_atomic(&group_sample
, &sig
->cputimer
.cputime_atomic
);
1142 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1150 * This is called from the timer interrupt handler. The irq handler has
1151 * already updated our counts. We need to check if any timers fire now.
1152 * Interrupts are disabled.
1154 void run_posix_cpu_timers(struct task_struct
*tsk
)
1157 struct k_itimer
*timer
, *next
;
1158 unsigned long flags
;
1160 WARN_ON_ONCE(!irqs_disabled());
1163 * The fast path checks that there are no expired thread or thread
1164 * group timers. If that's so, just return.
1166 if (!fastpath_timer_check(tsk
))
1169 if (!lock_task_sighand(tsk
, &flags
))
1172 * Here we take off tsk->signal->cpu_timers[N] and
1173 * tsk->cpu_timers[N] all the timers that are firing, and
1174 * put them on the firing list.
1176 check_thread_timers(tsk
, &firing
);
1178 * If there are any active process wide timers (POSIX 1.b, itimers,
1179 * RLIMIT_CPU) cputimer must be running.
1181 if (READ_ONCE(tsk
->signal
->cputimer
.running
))
1182 check_process_timers(tsk
, &firing
);
1185 * We must release these locks before taking any timer's lock.
1186 * There is a potential race with timer deletion here, as the
1187 * siglock now protects our private firing list. We have set
1188 * the firing flag in each timer, so that a deletion attempt
1189 * that gets the timer lock before we do will give it up and
1190 * spin until we've taken care of that timer below.
1192 unlock_task_sighand(tsk
, &flags
);
1195 * Now that all the timers on our list have the firing flag,
1196 * no one will touch their list entries but us. We'll take
1197 * each timer's lock before clearing its firing flag, so no
1198 * timer call will interfere.
1200 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1203 spin_lock(&timer
->it_lock
);
1204 list_del_init(&timer
->it
.cpu
.entry
);
1205 cpu_firing
= timer
->it
.cpu
.firing
;
1206 timer
->it
.cpu
.firing
= 0;
1208 * The firing flag is -1 if we collided with a reset
1209 * of the timer, which already reported this
1210 * almost-firing as an overrun. So don't generate an event.
1212 if (likely(cpu_firing
>= 0))
1213 cpu_timer_fire(timer
);
1214 spin_unlock(&timer
->it_lock
);
1219 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1220 * The tsk->sighand->siglock must be held by the caller.
1222 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1223 cputime_t
*newval
, cputime_t
*oldval
)
1225 unsigned long long now
;
1227 WARN_ON_ONCE(clock_idx
== CPUCLOCK_SCHED
);
1228 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1232 * We are setting itimer. The *oldval is absolute and we update
1233 * it to be relative, *newval argument is relative and we update
1234 * it to be absolute.
1237 if (*oldval
<= now
) {
1238 /* Just about to fire. */
1239 *oldval
= cputime_one_jiffy
;
1251 * Update expiration cache if we are the earliest timer, or eventually
1252 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1254 switch (clock_idx
) {
1256 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1257 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1260 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1261 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1265 posix_cpu_timer_kick_nohz();
1268 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1269 struct timespec
*rqtp
, struct itimerspec
*it
)
1271 struct k_itimer timer
;
1275 * Set up a temporary timer and then wait for it to go off.
1277 memset(&timer
, 0, sizeof timer
);
1278 spin_lock_init(&timer
.it_lock
);
1279 timer
.it_clock
= which_clock
;
1280 timer
.it_overrun
= -1;
1281 error
= posix_cpu_timer_create(&timer
);
1282 timer
.it_process
= current
;
1284 static struct itimerspec zero_it
;
1286 memset(it
, 0, sizeof *it
);
1287 it
->it_value
= *rqtp
;
1289 spin_lock_irq(&timer
.it_lock
);
1290 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1292 spin_unlock_irq(&timer
.it_lock
);
1296 while (!signal_pending(current
)) {
1297 if (timer
.it
.cpu
.expires
== 0) {
1299 * Our timer fired and was reset, below
1300 * deletion can not fail.
1302 posix_cpu_timer_del(&timer
);
1303 spin_unlock_irq(&timer
.it_lock
);
1308 * Block until cpu_timer_fire (or a signal) wakes us.
1310 __set_current_state(TASK_INTERRUPTIBLE
);
1311 spin_unlock_irq(&timer
.it_lock
);
1313 spin_lock_irq(&timer
.it_lock
);
1317 * We were interrupted by a signal.
1319 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1320 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1323 * Timer is now unarmed, deletion can not fail.
1325 posix_cpu_timer_del(&timer
);
1327 spin_unlock_irq(&timer
.it_lock
);
1329 while (error
== TIMER_RETRY
) {
1331 * We need to handle case when timer was or is in the
1332 * middle of firing. In other cases we already freed
1335 spin_lock_irq(&timer
.it_lock
);
1336 error
= posix_cpu_timer_del(&timer
);
1337 spin_unlock_irq(&timer
.it_lock
);
1340 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1342 * It actually did fire already.
1347 error
= -ERESTART_RESTARTBLOCK
;
1353 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1355 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1356 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1358 struct restart_block
*restart_block
= ¤t
->restart_block
;
1359 struct itimerspec it
;
1363 * Diagnose required errors first.
1365 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1366 (CPUCLOCK_PID(which_clock
) == 0 ||
1367 CPUCLOCK_PID(which_clock
) == current
->pid
))
1370 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1372 if (error
== -ERESTART_RESTARTBLOCK
) {
1374 if (flags
& TIMER_ABSTIME
)
1375 return -ERESTARTNOHAND
;
1377 * Report back to the user the time still remaining.
1379 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1382 restart_block
->fn
= posix_cpu_nsleep_restart
;
1383 restart_block
->nanosleep
.clockid
= which_clock
;
1384 restart_block
->nanosleep
.rmtp
= rmtp
;
1385 restart_block
->nanosleep
.expires
= timespec_to_ns(rqtp
);
1390 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1392 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1394 struct itimerspec it
;
1397 t
= ns_to_timespec(restart_block
->nanosleep
.expires
);
1399 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1401 if (error
== -ERESTART_RESTARTBLOCK
) {
1402 struct timespec __user
*rmtp
= restart_block
->nanosleep
.rmtp
;
1404 * Report back to the user the time still remaining.
1406 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1409 restart_block
->nanosleep
.expires
= timespec_to_ns(&t
);
1415 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1416 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1418 static int process_cpu_clock_getres(const clockid_t which_clock
,
1419 struct timespec
*tp
)
1421 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1423 static int process_cpu_clock_get(const clockid_t which_clock
,
1424 struct timespec
*tp
)
1426 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1428 static int process_cpu_timer_create(struct k_itimer
*timer
)
1430 timer
->it_clock
= PROCESS_CLOCK
;
1431 return posix_cpu_timer_create(timer
);
1433 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1434 struct timespec
*rqtp
,
1435 struct timespec __user
*rmtp
)
1437 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1439 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1443 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1444 struct timespec
*tp
)
1446 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1448 static int thread_cpu_clock_get(const clockid_t which_clock
,
1449 struct timespec
*tp
)
1451 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1453 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1455 timer
->it_clock
= THREAD_CLOCK
;
1456 return posix_cpu_timer_create(timer
);
1459 struct k_clock clock_posix_cpu
= {
1460 .clock_getres
= posix_cpu_clock_getres
,
1461 .clock_set
= posix_cpu_clock_set
,
1462 .clock_get
= posix_cpu_clock_get
,
1463 .timer_create
= posix_cpu_timer_create
,
1464 .nsleep
= posix_cpu_nsleep
,
1465 .nsleep_restart
= posix_cpu_nsleep_restart
,
1466 .timer_set
= posix_cpu_timer_set
,
1467 .timer_del
= posix_cpu_timer_del
,
1468 .timer_get
= posix_cpu_timer_get
,
1471 static __init
int init_posix_cpu_timers(void)
1473 struct k_clock process
= {
1474 .clock_getres
= process_cpu_clock_getres
,
1475 .clock_get
= process_cpu_clock_get
,
1476 .timer_create
= process_cpu_timer_create
,
1477 .nsleep
= process_cpu_nsleep
,
1478 .nsleep_restart
= process_cpu_nsleep_restart
,
1480 struct k_clock thread
= {
1481 .clock_getres
= thread_cpu_clock_getres
,
1482 .clock_get
= thread_cpu_clock_get
,
1483 .timer_create
= thread_cpu_timer_create
,
1487 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1488 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1490 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1491 onecputick
= ts
.tv_nsec
;
1492 WARN_ON(ts
.tv_sec
!= 0);
1496 __initcall(init_posix_cpu_timers
);