1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum
= 8;
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum
= 32;
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39 static struct blkcg_policy blkcg_policy_throtl
;
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct
*kthrotld_workqueue
;
45 * To implement hierarchical throttling, throtl_grps form a tree and bios
46 * are dispatched upwards level by level until they reach the top and get
47 * issued. When dispatching bios from the children and local group at each
48 * level, if the bios are dispatched into a single bio_list, there's a risk
49 * of a local or child group which can queue many bios at once filling up
50 * the list starving others.
52 * To avoid such starvation, dispatched bios are queued separately
53 * according to where they came from. When they are again dispatched to
54 * the parent, they're popped in round-robin order so that no single source
55 * hogs the dispatch window.
57 * throtl_qnode is used to keep the queued bios separated by their sources.
58 * Bios are queued to throtl_qnode which in turn is queued to
59 * throtl_service_queue and then dispatched in round-robin order.
61 * It's also used to track the reference counts on blkg's. A qnode always
62 * belongs to a throtl_grp and gets queued on itself or the parent, so
63 * incrementing the reference of the associated throtl_grp when a qnode is
64 * queued and decrementing when dequeued is enough to keep the whole blkg
65 * tree pinned while bios are in flight.
68 struct list_head node
; /* service_queue->queued[] */
69 struct bio_list bios
; /* queued bios */
70 struct throtl_grp
*tg
; /* tg this qnode belongs to */
73 struct throtl_service_queue
{
74 struct throtl_service_queue
*parent_sq
; /* the parent service_queue */
77 * Bios queued directly to this service_queue or dispatched from
78 * children throtl_grp's.
80 struct list_head queued
[2]; /* throtl_qnode [READ/WRITE] */
81 unsigned int nr_queued
[2]; /* number of queued bios */
84 * RB tree of active children throtl_grp's, which are sorted by
87 struct rb_root_cached pending_tree
; /* RB tree of active tgs */
88 unsigned int nr_pending
; /* # queued in the tree */
89 unsigned long first_pending_disptime
; /* disptime of the first tg */
90 struct timer_list pending_timer
; /* fires on first_pending_disptime */
94 THROTL_TG_PENDING
= 1 << 0, /* on parent's pending tree */
95 THROTL_TG_WAS_EMPTY
= 1 << 1, /* bio_lists[] became non-empty */
98 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
107 /* must be the first member */
108 struct blkg_policy_data pd
;
110 /* active throtl group service_queue member */
111 struct rb_node rb_node
;
113 /* throtl_data this group belongs to */
114 struct throtl_data
*td
;
116 /* this group's service queue */
117 struct throtl_service_queue service_queue
;
120 * qnode_on_self is used when bios are directly queued to this
121 * throtl_grp so that local bios compete fairly with bios
122 * dispatched from children. qnode_on_parent is used when bios are
123 * dispatched from this throtl_grp into its parent and will compete
124 * with the sibling qnode_on_parents and the parent's
127 struct throtl_qnode qnode_on_self
[2];
128 struct throtl_qnode qnode_on_parent
[2];
131 * Dispatch time in jiffies. This is the estimated time when group
132 * will unthrottle and is ready to dispatch more bio. It is used as
133 * key to sort active groups in service tree.
135 unsigned long disptime
;
139 /* are there any throtl rules between this group and td? */
142 /* internally used bytes per second rate limits */
143 uint64_t bps
[2][LIMIT_CNT
];
144 /* user configured bps limits */
145 uint64_t bps_conf
[2][LIMIT_CNT
];
147 /* internally used IOPS limits */
148 unsigned int iops
[2][LIMIT_CNT
];
149 /* user configured IOPS limits */
150 unsigned int iops_conf
[2][LIMIT_CNT
];
152 /* Number of bytes disptached in current slice */
153 uint64_t bytes_disp
[2];
154 /* Number of bio's dispatched in current slice */
155 unsigned int io_disp
[2];
157 unsigned long last_low_overflow_time
[2];
159 uint64_t last_bytes_disp
[2];
160 unsigned int last_io_disp
[2];
162 unsigned long last_check_time
;
164 unsigned long latency_target
; /* us */
165 unsigned long latency_target_conf
; /* us */
166 /* When did we start a new slice */
167 unsigned long slice_start
[2];
168 unsigned long slice_end
[2];
170 unsigned long last_finish_time
; /* ns / 1024 */
171 unsigned long checked_last_finish_time
; /* ns / 1024 */
172 unsigned long avg_idletime
; /* ns / 1024 */
173 unsigned long idletime_threshold
; /* us */
174 unsigned long idletime_threshold_conf
; /* us */
176 unsigned int bio_cnt
; /* total bios */
177 unsigned int bad_bio_cnt
; /* bios exceeding latency threshold */
178 unsigned long bio_cnt_reset_time
;
181 /* We measure latency for request size from <= 4k to >= 1M */
182 #define LATENCY_BUCKET_SIZE 9
184 struct latency_bucket
{
185 unsigned long total_latency
; /* ns / 1024 */
189 struct avg_latency_bucket
{
190 unsigned long latency
; /* ns / 1024 */
196 /* service tree for active throtl groups */
197 struct throtl_service_queue service_queue
;
199 struct request_queue
*queue
;
201 /* Total Number of queued bios on READ and WRITE lists */
202 unsigned int nr_queued
[2];
204 unsigned int throtl_slice
;
206 /* Work for dispatching throttled bios */
207 struct work_struct dispatch_work
;
208 unsigned int limit_index
;
209 bool limit_valid
[LIMIT_CNT
];
211 unsigned long low_upgrade_time
;
212 unsigned long low_downgrade_time
;
216 struct latency_bucket tmp_buckets
[2][LATENCY_BUCKET_SIZE
];
217 struct avg_latency_bucket avg_buckets
[2][LATENCY_BUCKET_SIZE
];
218 struct latency_bucket __percpu
*latency_buckets
[2];
219 unsigned long last_calculate_time
;
220 unsigned long filtered_latency
;
222 bool track_bio_latency
;
225 static void throtl_pending_timer_fn(struct timer_list
*t
);
227 static inline struct throtl_grp
*pd_to_tg(struct blkg_policy_data
*pd
)
229 return pd
? container_of(pd
, struct throtl_grp
, pd
) : NULL
;
232 static inline struct throtl_grp
*blkg_to_tg(struct blkcg_gq
*blkg
)
234 return pd_to_tg(blkg_to_pd(blkg
, &blkcg_policy_throtl
));
237 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
239 return pd_to_blkg(&tg
->pd
);
243 * sq_to_tg - return the throl_grp the specified service queue belongs to
244 * @sq: the throtl_service_queue of interest
246 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
247 * embedded in throtl_data, %NULL is returned.
249 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
251 if (sq
&& sq
->parent_sq
)
252 return container_of(sq
, struct throtl_grp
, service_queue
);
258 * sq_to_td - return throtl_data the specified service queue belongs to
259 * @sq: the throtl_service_queue of interest
261 * A service_queue can be embedded in either a throtl_grp or throtl_data.
262 * Determine the associated throtl_data accordingly and return it.
264 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
266 struct throtl_grp
*tg
= sq_to_tg(sq
);
271 return container_of(sq
, struct throtl_data
, service_queue
);
275 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
276 * make the IO dispatch more smooth.
277 * Scale up: linearly scale up according to lapsed time since upgrade. For
278 * every throtl_slice, the limit scales up 1/2 .low limit till the
279 * limit hits .max limit
280 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
282 static uint64_t throtl_adjusted_limit(uint64_t low
, struct throtl_data
*td
)
284 /* arbitrary value to avoid too big scale */
285 if (td
->scale
< 4096 && time_after_eq(jiffies
,
286 td
->low_upgrade_time
+ td
->scale
* td
->throtl_slice
))
287 td
->scale
= (jiffies
- td
->low_upgrade_time
) / td
->throtl_slice
;
289 return low
+ (low
>> 1) * td
->scale
;
292 static uint64_t tg_bps_limit(struct throtl_grp
*tg
, int rw
)
294 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
295 struct throtl_data
*td
;
298 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
302 ret
= tg
->bps
[rw
][td
->limit_index
];
303 if (ret
== 0 && td
->limit_index
== LIMIT_LOW
) {
304 /* intermediate node or iops isn't 0 */
305 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
306 tg
->iops
[rw
][td
->limit_index
])
309 return MIN_THROTL_BPS
;
312 if (td
->limit_index
== LIMIT_MAX
&& tg
->bps
[rw
][LIMIT_LOW
] &&
313 tg
->bps
[rw
][LIMIT_LOW
] != tg
->bps
[rw
][LIMIT_MAX
]) {
316 adjusted
= throtl_adjusted_limit(tg
->bps
[rw
][LIMIT_LOW
], td
);
317 ret
= min(tg
->bps
[rw
][LIMIT_MAX
], adjusted
);
322 static unsigned int tg_iops_limit(struct throtl_grp
*tg
, int rw
)
324 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
325 struct throtl_data
*td
;
328 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
332 ret
= tg
->iops
[rw
][td
->limit_index
];
333 if (ret
== 0 && tg
->td
->limit_index
== LIMIT_LOW
) {
334 /* intermediate node or bps isn't 0 */
335 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
336 tg
->bps
[rw
][td
->limit_index
])
339 return MIN_THROTL_IOPS
;
342 if (td
->limit_index
== LIMIT_MAX
&& tg
->iops
[rw
][LIMIT_LOW
] &&
343 tg
->iops
[rw
][LIMIT_LOW
] != tg
->iops
[rw
][LIMIT_MAX
]) {
346 adjusted
= throtl_adjusted_limit(tg
->iops
[rw
][LIMIT_LOW
], td
);
347 if (adjusted
> UINT_MAX
)
349 ret
= min_t(unsigned int, tg
->iops
[rw
][LIMIT_MAX
], adjusted
);
354 #define request_bucket_index(sectors) \
355 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
358 * throtl_log - log debug message via blktrace
359 * @sq: the service_queue being reported
360 * @fmt: printf format string
363 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
364 * throtl_grp; otherwise, just "throtl".
366 #define throtl_log(sq, fmt, args...) do { \
367 struct throtl_grp *__tg = sq_to_tg((sq)); \
368 struct throtl_data *__td = sq_to_td((sq)); \
371 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
374 blk_add_cgroup_trace_msg(__td->queue, \
375 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
381 static inline unsigned int throtl_bio_data_size(struct bio
*bio
)
383 /* assume it's one sector */
384 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
))
386 return bio
->bi_iter
.bi_size
;
389 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
391 INIT_LIST_HEAD(&qn
->node
);
392 bio_list_init(&qn
->bios
);
397 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
398 * @bio: bio being added
399 * @qn: qnode to add bio to
400 * @queued: the service_queue->queued[] list @qn belongs to
402 * Add @bio to @qn and put @qn on @queued if it's not already on.
403 * @qn->tg's reference count is bumped when @qn is activated. See the
404 * comment on top of throtl_qnode definition for details.
406 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
407 struct list_head
*queued
)
409 bio_list_add(&qn
->bios
, bio
);
410 if (list_empty(&qn
->node
)) {
411 list_add_tail(&qn
->node
, queued
);
412 blkg_get(tg_to_blkg(qn
->tg
));
417 * throtl_peek_queued - peek the first bio on a qnode list
418 * @queued: the qnode list to peek
420 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
422 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
425 if (list_empty(queued
))
428 bio
= bio_list_peek(&qn
->bios
);
434 * throtl_pop_queued - pop the first bio form a qnode list
435 * @queued: the qnode list to pop a bio from
436 * @tg_to_put: optional out argument for throtl_grp to put
438 * Pop the first bio from the qnode list @queued. After popping, the first
439 * qnode is removed from @queued if empty or moved to the end of @queued so
440 * that the popping order is round-robin.
442 * When the first qnode is removed, its associated throtl_grp should be put
443 * too. If @tg_to_put is NULL, this function automatically puts it;
444 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
445 * responsible for putting it.
447 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
448 struct throtl_grp
**tg_to_put
)
450 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
453 if (list_empty(queued
))
456 bio
= bio_list_pop(&qn
->bios
);
459 if (bio_list_empty(&qn
->bios
)) {
460 list_del_init(&qn
->node
);
464 blkg_put(tg_to_blkg(qn
->tg
));
466 list_move_tail(&qn
->node
, queued
);
472 /* init a service_queue, assumes the caller zeroed it */
473 static void throtl_service_queue_init(struct throtl_service_queue
*sq
)
475 INIT_LIST_HEAD(&sq
->queued
[0]);
476 INIT_LIST_HEAD(&sq
->queued
[1]);
477 sq
->pending_tree
= RB_ROOT_CACHED
;
478 timer_setup(&sq
->pending_timer
, throtl_pending_timer_fn
, 0);
481 static struct blkg_policy_data
*throtl_pd_alloc(gfp_t gfp
, int node
)
483 struct throtl_grp
*tg
;
486 tg
= kzalloc_node(sizeof(*tg
), gfp
, node
);
490 throtl_service_queue_init(&tg
->service_queue
);
492 for (rw
= READ
; rw
<= WRITE
; rw
++) {
493 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
494 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
497 RB_CLEAR_NODE(&tg
->rb_node
);
498 tg
->bps
[READ
][LIMIT_MAX
] = U64_MAX
;
499 tg
->bps
[WRITE
][LIMIT_MAX
] = U64_MAX
;
500 tg
->iops
[READ
][LIMIT_MAX
] = UINT_MAX
;
501 tg
->iops
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
502 tg
->bps_conf
[READ
][LIMIT_MAX
] = U64_MAX
;
503 tg
->bps_conf
[WRITE
][LIMIT_MAX
] = U64_MAX
;
504 tg
->iops_conf
[READ
][LIMIT_MAX
] = UINT_MAX
;
505 tg
->iops_conf
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
506 /* LIMIT_LOW will have default value 0 */
508 tg
->latency_target
= DFL_LATENCY_TARGET
;
509 tg
->latency_target_conf
= DFL_LATENCY_TARGET
;
510 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
511 tg
->idletime_threshold_conf
= DFL_IDLE_THRESHOLD
;
516 static void throtl_pd_init(struct blkg_policy_data
*pd
)
518 struct throtl_grp
*tg
= pd_to_tg(pd
);
519 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
520 struct throtl_data
*td
= blkg
->q
->td
;
521 struct throtl_service_queue
*sq
= &tg
->service_queue
;
524 * If on the default hierarchy, we switch to properly hierarchical
525 * behavior where limits on a given throtl_grp are applied to the
526 * whole subtree rather than just the group itself. e.g. If 16M
527 * read_bps limit is set on the root group, the whole system can't
528 * exceed 16M for the device.
530 * If not on the default hierarchy, the broken flat hierarchy
531 * behavior is retained where all throtl_grps are treated as if
532 * they're all separate root groups right below throtl_data.
533 * Limits of a group don't interact with limits of other groups
534 * regardless of the position of the group in the hierarchy.
536 sq
->parent_sq
= &td
->service_queue
;
537 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && blkg
->parent
)
538 sq
->parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
543 * Set has_rules[] if @tg or any of its parents have limits configured.
544 * This doesn't require walking up to the top of the hierarchy as the
545 * parent's has_rules[] is guaranteed to be correct.
547 static void tg_update_has_rules(struct throtl_grp
*tg
)
549 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
550 struct throtl_data
*td
= tg
->td
;
553 for (rw
= READ
; rw
<= WRITE
; rw
++)
554 tg
->has_rules
[rw
] = (parent_tg
&& parent_tg
->has_rules
[rw
]) ||
555 (td
->limit_valid
[td
->limit_index
] &&
556 (tg_bps_limit(tg
, rw
) != U64_MAX
||
557 tg_iops_limit(tg
, rw
) != UINT_MAX
));
560 static void throtl_pd_online(struct blkg_policy_data
*pd
)
562 struct throtl_grp
*tg
= pd_to_tg(pd
);
564 * We don't want new groups to escape the limits of its ancestors.
565 * Update has_rules[] after a new group is brought online.
567 tg_update_has_rules(tg
);
570 static void blk_throtl_update_limit_valid(struct throtl_data
*td
)
572 struct cgroup_subsys_state
*pos_css
;
573 struct blkcg_gq
*blkg
;
574 bool low_valid
= false;
577 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
578 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
580 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->bps
[WRITE
][LIMIT_LOW
] ||
581 tg
->iops
[READ
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
]) {
588 td
->limit_valid
[LIMIT_LOW
] = low_valid
;
591 static void throtl_upgrade_state(struct throtl_data
*td
);
592 static void throtl_pd_offline(struct blkg_policy_data
*pd
)
594 struct throtl_grp
*tg
= pd_to_tg(pd
);
596 tg
->bps
[READ
][LIMIT_LOW
] = 0;
597 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
598 tg
->iops
[READ
][LIMIT_LOW
] = 0;
599 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
601 blk_throtl_update_limit_valid(tg
->td
);
603 if (!tg
->td
->limit_valid
[tg
->td
->limit_index
])
604 throtl_upgrade_state(tg
->td
);
607 static void throtl_pd_free(struct blkg_policy_data
*pd
)
609 struct throtl_grp
*tg
= pd_to_tg(pd
);
611 del_timer_sync(&tg
->service_queue
.pending_timer
);
615 static struct throtl_grp
*
616 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
619 /* Service tree is empty */
620 if (!parent_sq
->nr_pending
)
623 n
= rb_first_cached(&parent_sq
->pending_tree
);
627 return rb_entry_tg(n
);
630 static void throtl_rb_erase(struct rb_node
*n
,
631 struct throtl_service_queue
*parent_sq
)
633 rb_erase_cached(n
, &parent_sq
->pending_tree
);
635 --parent_sq
->nr_pending
;
638 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
640 struct throtl_grp
*tg
;
642 tg
= throtl_rb_first(parent_sq
);
646 parent_sq
->first_pending_disptime
= tg
->disptime
;
649 static void tg_service_queue_add(struct throtl_grp
*tg
)
651 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
652 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_root
.rb_node
;
653 struct rb_node
*parent
= NULL
;
654 struct throtl_grp
*__tg
;
655 unsigned long key
= tg
->disptime
;
656 bool leftmost
= true;
658 while (*node
!= NULL
) {
660 __tg
= rb_entry_tg(parent
);
662 if (time_before(key
, __tg
->disptime
))
663 node
= &parent
->rb_left
;
665 node
= &parent
->rb_right
;
670 rb_link_node(&tg
->rb_node
, parent
, node
);
671 rb_insert_color_cached(&tg
->rb_node
, &parent_sq
->pending_tree
,
675 static void __throtl_enqueue_tg(struct throtl_grp
*tg
)
677 tg_service_queue_add(tg
);
678 tg
->flags
|= THROTL_TG_PENDING
;
679 tg
->service_queue
.parent_sq
->nr_pending
++;
682 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
684 if (!(tg
->flags
& THROTL_TG_PENDING
))
685 __throtl_enqueue_tg(tg
);
688 static void __throtl_dequeue_tg(struct throtl_grp
*tg
)
690 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
691 tg
->flags
&= ~THROTL_TG_PENDING
;
694 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
696 if (tg
->flags
& THROTL_TG_PENDING
)
697 __throtl_dequeue_tg(tg
);
700 /* Call with queue lock held */
701 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
702 unsigned long expires
)
704 unsigned long max_expire
= jiffies
+ 8 * sq_to_td(sq
)->throtl_slice
;
707 * Since we are adjusting the throttle limit dynamically, the sleep
708 * time calculated according to previous limit might be invalid. It's
709 * possible the cgroup sleep time is very long and no other cgroups
710 * have IO running so notify the limit changes. Make sure the cgroup
711 * doesn't sleep too long to avoid the missed notification.
713 if (time_after(expires
, max_expire
))
714 expires
= max_expire
;
715 mod_timer(&sq
->pending_timer
, expires
);
716 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
717 expires
- jiffies
, jiffies
);
721 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
722 * @sq: the service_queue to schedule dispatch for
723 * @force: force scheduling
725 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
726 * dispatch time of the first pending child. Returns %true if either timer
727 * is armed or there's no pending child left. %false if the current
728 * dispatch window is still open and the caller should continue
731 * If @force is %true, the dispatch timer is always scheduled and this
732 * function is guaranteed to return %true. This is to be used when the
733 * caller can't dispatch itself and needs to invoke pending_timer
734 * unconditionally. Note that forced scheduling is likely to induce short
735 * delay before dispatch starts even if @sq->first_pending_disptime is not
736 * in the future and thus shouldn't be used in hot paths.
738 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
741 /* any pending children left? */
745 update_min_dispatch_time(sq
);
747 /* is the next dispatch time in the future? */
748 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
749 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
753 /* tell the caller to continue dispatching */
757 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
758 bool rw
, unsigned long start
)
760 tg
->bytes_disp
[rw
] = 0;
764 * Previous slice has expired. We must have trimmed it after last
765 * bio dispatch. That means since start of last slice, we never used
766 * that bandwidth. Do try to make use of that bandwidth while giving
769 if (time_after_eq(start
, tg
->slice_start
[rw
]))
770 tg
->slice_start
[rw
] = start
;
772 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
773 throtl_log(&tg
->service_queue
,
774 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
775 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
776 tg
->slice_end
[rw
], jiffies
);
779 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
)
781 tg
->bytes_disp
[rw
] = 0;
783 tg
->slice_start
[rw
] = jiffies
;
784 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
785 throtl_log(&tg
->service_queue
,
786 "[%c] new slice start=%lu end=%lu jiffies=%lu",
787 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
788 tg
->slice_end
[rw
], jiffies
);
791 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
792 unsigned long jiffy_end
)
794 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
797 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
798 unsigned long jiffy_end
)
800 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
801 throtl_log(&tg
->service_queue
,
802 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
803 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
804 tg
->slice_end
[rw
], jiffies
);
807 /* Determine if previously allocated or extended slice is complete or not */
808 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
810 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
816 /* Trim the used slices and adjust slice start accordingly */
817 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
819 unsigned long nr_slices
, time_elapsed
, io_trim
;
822 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
825 * If bps are unlimited (-1), then time slice don't get
826 * renewed. Don't try to trim the slice if slice is used. A new
827 * slice will start when appropriate.
829 if (throtl_slice_used(tg
, rw
))
833 * A bio has been dispatched. Also adjust slice_end. It might happen
834 * that initially cgroup limit was very low resulting in high
835 * slice_end, but later limit was bumped up and bio was dispached
836 * sooner, then we need to reduce slice_end. A high bogus slice_end
837 * is bad because it does not allow new slice to start.
840 throtl_set_slice_end(tg
, rw
, jiffies
+ tg
->td
->throtl_slice
);
842 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
844 nr_slices
= time_elapsed
/ tg
->td
->throtl_slice
;
848 tmp
= tg_bps_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
;
852 io_trim
= (tg_iops_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
) /
855 if (!bytes_trim
&& !io_trim
)
858 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
859 tg
->bytes_disp
[rw
] -= bytes_trim
;
861 tg
->bytes_disp
[rw
] = 0;
863 if (tg
->io_disp
[rw
] >= io_trim
)
864 tg
->io_disp
[rw
] -= io_trim
;
868 tg
->slice_start
[rw
] += nr_slices
* tg
->td
->throtl_slice
;
870 throtl_log(&tg
->service_queue
,
871 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
872 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
873 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
876 static bool tg_with_in_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
879 bool rw
= bio_data_dir(bio
);
880 unsigned int io_allowed
;
881 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
884 jiffy_elapsed
= jiffies
- tg
->slice_start
[rw
];
886 /* Round up to the next throttle slice, wait time must be nonzero */
887 jiffy_elapsed_rnd
= roundup(jiffy_elapsed
+ 1, tg
->td
->throtl_slice
);
890 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
891 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
892 * will allow dispatch after 1 second and after that slice should
896 tmp
= (u64
)tg_iops_limit(tg
, rw
) * jiffy_elapsed_rnd
;
900 io_allowed
= UINT_MAX
;
904 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
910 /* Calc approx time to dispatch */
911 jiffy_wait
= jiffy_elapsed_rnd
- jiffy_elapsed
;
918 static bool tg_with_in_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
921 bool rw
= bio_data_dir(bio
);
922 u64 bytes_allowed
, extra_bytes
, tmp
;
923 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
924 unsigned int bio_size
= throtl_bio_data_size(bio
);
926 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
928 /* Slice has just started. Consider one slice interval */
930 jiffy_elapsed_rnd
= tg
->td
->throtl_slice
;
932 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, tg
->td
->throtl_slice
);
934 tmp
= tg_bps_limit(tg
, rw
) * jiffy_elapsed_rnd
;
938 if (tg
->bytes_disp
[rw
] + bio_size
<= bytes_allowed
) {
944 /* Calc approx time to dispatch */
945 extra_bytes
= tg
->bytes_disp
[rw
] + bio_size
- bytes_allowed
;
946 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg_bps_limit(tg
, rw
));
952 * This wait time is without taking into consideration the rounding
953 * up we did. Add that time also.
955 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
962 * Returns whether one can dispatch a bio or not. Also returns approx number
963 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
965 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
968 bool rw
= bio_data_dir(bio
);
969 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
972 * Currently whole state machine of group depends on first bio
973 * queued in the group bio list. So one should not be calling
974 * this function with a different bio if there are other bios
977 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
978 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
980 /* If tg->bps = -1, then BW is unlimited */
981 if (tg_bps_limit(tg
, rw
) == U64_MAX
&&
982 tg_iops_limit(tg
, rw
) == UINT_MAX
) {
989 * If previous slice expired, start a new one otherwise renew/extend
990 * existing slice to make sure it is at least throtl_slice interval
991 * long since now. New slice is started only for empty throttle group.
992 * If there is queued bio, that means there should be an active
993 * slice and it should be extended instead.
995 if (throtl_slice_used(tg
, rw
) && !(tg
->service_queue
.nr_queued
[rw
]))
996 throtl_start_new_slice(tg
, rw
);
998 if (time_before(tg
->slice_end
[rw
],
999 jiffies
+ tg
->td
->throtl_slice
))
1000 throtl_extend_slice(tg
, rw
,
1001 jiffies
+ tg
->td
->throtl_slice
);
1004 if (tg_with_in_bps_limit(tg
, bio
, &bps_wait
) &&
1005 tg_with_in_iops_limit(tg
, bio
, &iops_wait
)) {
1011 max_wait
= max(bps_wait
, iops_wait
);
1016 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
1017 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
1022 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
1024 bool rw
= bio_data_dir(bio
);
1025 unsigned int bio_size
= throtl_bio_data_size(bio
);
1027 /* Charge the bio to the group */
1028 tg
->bytes_disp
[rw
] += bio_size
;
1030 tg
->last_bytes_disp
[rw
] += bio_size
;
1031 tg
->last_io_disp
[rw
]++;
1034 * BIO_THROTTLED is used to prevent the same bio to be throttled
1035 * more than once as a throttled bio will go through blk-throtl the
1036 * second time when it eventually gets issued. Set it when a bio
1037 * is being charged to a tg.
1039 if (!bio_flagged(bio
, BIO_THROTTLED
))
1040 bio_set_flag(bio
, BIO_THROTTLED
);
1044 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1047 * @tg: the target throtl_grp
1049 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1050 * tg->qnode_on_self[] is used.
1052 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
1053 struct throtl_grp
*tg
)
1055 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1056 bool rw
= bio_data_dir(bio
);
1059 qn
= &tg
->qnode_on_self
[rw
];
1062 * If @tg doesn't currently have any bios queued in the same
1063 * direction, queueing @bio can change when @tg should be
1064 * dispatched. Mark that @tg was empty. This is automatically
1065 * cleaered on the next tg_update_disptime().
1067 if (!sq
->nr_queued
[rw
])
1068 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
1070 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
1072 sq
->nr_queued
[rw
]++;
1073 throtl_enqueue_tg(tg
);
1076 static void tg_update_disptime(struct throtl_grp
*tg
)
1078 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1079 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
1082 bio
= throtl_peek_queued(&sq
->queued
[READ
]);
1084 tg_may_dispatch(tg
, bio
, &read_wait
);
1086 bio
= throtl_peek_queued(&sq
->queued
[WRITE
]);
1088 tg_may_dispatch(tg
, bio
, &write_wait
);
1090 min_wait
= min(read_wait
, write_wait
);
1091 disptime
= jiffies
+ min_wait
;
1093 /* Update dispatch time */
1094 throtl_dequeue_tg(tg
);
1095 tg
->disptime
= disptime
;
1096 throtl_enqueue_tg(tg
);
1098 /* see throtl_add_bio_tg() */
1099 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
1102 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
1103 struct throtl_grp
*parent_tg
, bool rw
)
1105 if (throtl_slice_used(parent_tg
, rw
)) {
1106 throtl_start_new_slice_with_credit(parent_tg
, rw
,
1107 child_tg
->slice_start
[rw
]);
1112 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
1114 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1115 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
1116 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
1117 struct throtl_grp
*tg_to_put
= NULL
;
1121 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1122 * from @tg may put its reference and @parent_sq might end up
1123 * getting released prematurely. Remember the tg to put and put it
1124 * after @bio is transferred to @parent_sq.
1126 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
1127 sq
->nr_queued
[rw
]--;
1129 throtl_charge_bio(tg
, bio
);
1132 * If our parent is another tg, we just need to transfer @bio to
1133 * the parent using throtl_add_bio_tg(). If our parent is
1134 * @td->service_queue, @bio is ready to be issued. Put it on its
1135 * bio_lists[] and decrease total number queued. The caller is
1136 * responsible for issuing these bios.
1139 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
1140 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
1142 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
1143 &parent_sq
->queued
[rw
]);
1144 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
1145 tg
->td
->nr_queued
[rw
]--;
1148 throtl_trim_slice(tg
, rw
);
1151 blkg_put(tg_to_blkg(tg_to_put
));
1154 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
1156 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1157 unsigned int nr_reads
= 0, nr_writes
= 0;
1158 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
1159 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
1162 /* Try to dispatch 75% READS and 25% WRITES */
1164 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
1165 tg_may_dispatch(tg
, bio
, NULL
)) {
1167 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1170 if (nr_reads
>= max_nr_reads
)
1174 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
1175 tg_may_dispatch(tg
, bio
, NULL
)) {
1177 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1180 if (nr_writes
>= max_nr_writes
)
1184 return nr_reads
+ nr_writes
;
1187 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
1189 unsigned int nr_disp
= 0;
1192 struct throtl_grp
*tg
= throtl_rb_first(parent_sq
);
1193 struct throtl_service_queue
*sq
;
1198 if (time_before(jiffies
, tg
->disptime
))
1201 throtl_dequeue_tg(tg
);
1203 nr_disp
+= throtl_dispatch_tg(tg
);
1205 sq
= &tg
->service_queue
;
1206 if (sq
->nr_queued
[0] || sq
->nr_queued
[1])
1207 tg_update_disptime(tg
);
1209 if (nr_disp
>= throtl_quantum
)
1216 static bool throtl_can_upgrade(struct throtl_data
*td
,
1217 struct throtl_grp
*this_tg
);
1219 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1220 * @t: the pending_timer member of the throtl_service_queue being serviced
1222 * This timer is armed when a child throtl_grp with active bio's become
1223 * pending and queued on the service_queue's pending_tree and expires when
1224 * the first child throtl_grp should be dispatched. This function
1225 * dispatches bio's from the children throtl_grps to the parent
1228 * If the parent's parent is another throtl_grp, dispatching is propagated
1229 * by either arming its pending_timer or repeating dispatch directly. If
1230 * the top-level service_tree is reached, throtl_data->dispatch_work is
1231 * kicked so that the ready bio's are issued.
1233 static void throtl_pending_timer_fn(struct timer_list
*t
)
1235 struct throtl_service_queue
*sq
= from_timer(sq
, t
, pending_timer
);
1236 struct throtl_grp
*tg
= sq_to_tg(sq
);
1237 struct throtl_data
*td
= sq_to_td(sq
);
1238 struct request_queue
*q
= td
->queue
;
1239 struct throtl_service_queue
*parent_sq
;
1243 spin_lock_irq(&q
->queue_lock
);
1244 if (throtl_can_upgrade(td
, NULL
))
1245 throtl_upgrade_state(td
);
1248 parent_sq
= sq
->parent_sq
;
1252 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1253 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1254 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1256 ret
= throtl_select_dispatch(sq
);
1258 throtl_log(sq
, "bios disp=%u", ret
);
1262 if (throtl_schedule_next_dispatch(sq
, false))
1265 /* this dispatch windows is still open, relax and repeat */
1266 spin_unlock_irq(&q
->queue_lock
);
1268 spin_lock_irq(&q
->queue_lock
);
1275 /* @parent_sq is another throl_grp, propagate dispatch */
1276 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1277 tg_update_disptime(tg
);
1278 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1279 /* window is already open, repeat dispatching */
1286 /* reached the top-level, queue issueing */
1287 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1290 spin_unlock_irq(&q
->queue_lock
);
1294 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1295 * @work: work item being executed
1297 * This function is queued for execution when bio's reach the bio_lists[]
1298 * of throtl_data->service_queue. Those bio's are ready and issued by this
1301 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1303 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1305 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1306 struct request_queue
*q
= td
->queue
;
1307 struct bio_list bio_list_on_stack
;
1309 struct blk_plug plug
;
1312 bio_list_init(&bio_list_on_stack
);
1314 spin_lock_irq(&q
->queue_lock
);
1315 for (rw
= READ
; rw
<= WRITE
; rw
++)
1316 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1317 bio_list_add(&bio_list_on_stack
, bio
);
1318 spin_unlock_irq(&q
->queue_lock
);
1320 if (!bio_list_empty(&bio_list_on_stack
)) {
1321 blk_start_plug(&plug
);
1322 while((bio
= bio_list_pop(&bio_list_on_stack
)))
1323 generic_make_request(bio
);
1324 blk_finish_plug(&plug
);
1328 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1331 struct throtl_grp
*tg
= pd_to_tg(pd
);
1332 u64 v
= *(u64
*)((void *)tg
+ off
);
1336 return __blkg_prfill_u64(sf
, pd
, v
);
1339 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1342 struct throtl_grp
*tg
= pd_to_tg(pd
);
1343 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1347 return __blkg_prfill_u64(sf
, pd
, v
);
1350 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1352 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1353 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1357 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1359 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1360 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1364 static void tg_conf_updated(struct throtl_grp
*tg
, bool global
)
1366 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1367 struct cgroup_subsys_state
*pos_css
;
1368 struct blkcg_gq
*blkg
;
1370 throtl_log(&tg
->service_queue
,
1371 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1372 tg_bps_limit(tg
, READ
), tg_bps_limit(tg
, WRITE
),
1373 tg_iops_limit(tg
, READ
), tg_iops_limit(tg
, WRITE
));
1376 * Update has_rules[] flags for the updated tg's subtree. A tg is
1377 * considered to have rules if either the tg itself or any of its
1378 * ancestors has rules. This identifies groups without any
1379 * restrictions in the whole hierarchy and allows them to bypass
1382 blkg_for_each_descendant_pre(blkg
, pos_css
,
1383 global
? tg
->td
->queue
->root_blkg
: tg_to_blkg(tg
)) {
1384 struct throtl_grp
*this_tg
= blkg_to_tg(blkg
);
1385 struct throtl_grp
*parent_tg
;
1387 tg_update_has_rules(this_tg
);
1388 /* ignore root/second level */
1389 if (!cgroup_subsys_on_dfl(io_cgrp_subsys
) || !blkg
->parent
||
1390 !blkg
->parent
->parent
)
1392 parent_tg
= blkg_to_tg(blkg
->parent
);
1394 * make sure all children has lower idle time threshold and
1395 * higher latency target
1397 this_tg
->idletime_threshold
= min(this_tg
->idletime_threshold
,
1398 parent_tg
->idletime_threshold
);
1399 this_tg
->latency_target
= max(this_tg
->latency_target
,
1400 parent_tg
->latency_target
);
1404 * We're already holding queue_lock and know @tg is valid. Let's
1405 * apply the new config directly.
1407 * Restart the slices for both READ and WRITES. It might happen
1408 * that a group's limit are dropped suddenly and we don't want to
1409 * account recently dispatched IO with new low rate.
1411 throtl_start_new_slice(tg
, 0);
1412 throtl_start_new_slice(tg
, 1);
1414 if (tg
->flags
& THROTL_TG_PENDING
) {
1415 tg_update_disptime(tg
);
1416 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1420 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1421 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1423 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1424 struct blkg_conf_ctx ctx
;
1425 struct throtl_grp
*tg
;
1429 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1434 if (sscanf(ctx
.body
, "%llu", &v
) != 1)
1439 tg
= blkg_to_tg(ctx
.blkg
);
1442 *(u64
*)((void *)tg
+ of_cft(of
)->private) = v
;
1444 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = v
;
1446 tg_conf_updated(tg
, false);
1449 blkg_conf_finish(&ctx
);
1450 return ret
?: nbytes
;
1453 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1454 char *buf
, size_t nbytes
, loff_t off
)
1456 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1459 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1460 char *buf
, size_t nbytes
, loff_t off
)
1462 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1465 static struct cftype throtl_legacy_files
[] = {
1467 .name
= "throttle.read_bps_device",
1468 .private = offsetof(struct throtl_grp
, bps
[READ
][LIMIT_MAX
]),
1469 .seq_show
= tg_print_conf_u64
,
1470 .write
= tg_set_conf_u64
,
1473 .name
= "throttle.write_bps_device",
1474 .private = offsetof(struct throtl_grp
, bps
[WRITE
][LIMIT_MAX
]),
1475 .seq_show
= tg_print_conf_u64
,
1476 .write
= tg_set_conf_u64
,
1479 .name
= "throttle.read_iops_device",
1480 .private = offsetof(struct throtl_grp
, iops
[READ
][LIMIT_MAX
]),
1481 .seq_show
= tg_print_conf_uint
,
1482 .write
= tg_set_conf_uint
,
1485 .name
= "throttle.write_iops_device",
1486 .private = offsetof(struct throtl_grp
, iops
[WRITE
][LIMIT_MAX
]),
1487 .seq_show
= tg_print_conf_uint
,
1488 .write
= tg_set_conf_uint
,
1491 .name
= "throttle.io_service_bytes",
1492 .private = (unsigned long)&blkcg_policy_throtl
,
1493 .seq_show
= blkg_print_stat_bytes
,
1496 .name
= "throttle.io_service_bytes_recursive",
1497 .private = (unsigned long)&blkcg_policy_throtl
,
1498 .seq_show
= blkg_print_stat_bytes_recursive
,
1501 .name
= "throttle.io_serviced",
1502 .private = (unsigned long)&blkcg_policy_throtl
,
1503 .seq_show
= blkg_print_stat_ios
,
1506 .name
= "throttle.io_serviced_recursive",
1507 .private = (unsigned long)&blkcg_policy_throtl
,
1508 .seq_show
= blkg_print_stat_ios_recursive
,
1513 static u64
tg_prfill_limit(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1516 struct throtl_grp
*tg
= pd_to_tg(pd
);
1517 const char *dname
= blkg_dev_name(pd
->blkg
);
1518 char bufs
[4][21] = { "max", "max", "max", "max" };
1520 unsigned int iops_dft
;
1521 char idle_time
[26] = "";
1522 char latency_time
[26] = "";
1527 if (off
== LIMIT_LOW
) {
1532 iops_dft
= UINT_MAX
;
1535 if (tg
->bps_conf
[READ
][off
] == bps_dft
&&
1536 tg
->bps_conf
[WRITE
][off
] == bps_dft
&&
1537 tg
->iops_conf
[READ
][off
] == iops_dft
&&
1538 tg
->iops_conf
[WRITE
][off
] == iops_dft
&&
1539 (off
!= LIMIT_LOW
||
1540 (tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
&&
1541 tg
->latency_target_conf
== DFL_LATENCY_TARGET
)))
1544 if (tg
->bps_conf
[READ
][off
] != U64_MAX
)
1545 snprintf(bufs
[0], sizeof(bufs
[0]), "%llu",
1546 tg
->bps_conf
[READ
][off
]);
1547 if (tg
->bps_conf
[WRITE
][off
] != U64_MAX
)
1548 snprintf(bufs
[1], sizeof(bufs
[1]), "%llu",
1549 tg
->bps_conf
[WRITE
][off
]);
1550 if (tg
->iops_conf
[READ
][off
] != UINT_MAX
)
1551 snprintf(bufs
[2], sizeof(bufs
[2]), "%u",
1552 tg
->iops_conf
[READ
][off
]);
1553 if (tg
->iops_conf
[WRITE
][off
] != UINT_MAX
)
1554 snprintf(bufs
[3], sizeof(bufs
[3]), "%u",
1555 tg
->iops_conf
[WRITE
][off
]);
1556 if (off
== LIMIT_LOW
) {
1557 if (tg
->idletime_threshold_conf
== ULONG_MAX
)
1558 strcpy(idle_time
, " idle=max");
1560 snprintf(idle_time
, sizeof(idle_time
), " idle=%lu",
1561 tg
->idletime_threshold_conf
);
1563 if (tg
->latency_target_conf
== ULONG_MAX
)
1564 strcpy(latency_time
, " latency=max");
1566 snprintf(latency_time
, sizeof(latency_time
),
1567 " latency=%lu", tg
->latency_target_conf
);
1570 seq_printf(sf
, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1571 dname
, bufs
[0], bufs
[1], bufs
[2], bufs
[3], idle_time
,
1576 static int tg_print_limit(struct seq_file
*sf
, void *v
)
1578 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_limit
,
1579 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1583 static ssize_t
tg_set_limit(struct kernfs_open_file
*of
,
1584 char *buf
, size_t nbytes
, loff_t off
)
1586 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1587 struct blkg_conf_ctx ctx
;
1588 struct throtl_grp
*tg
;
1590 unsigned long idle_time
;
1591 unsigned long latency_time
;
1593 int index
= of_cft(of
)->private;
1595 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1599 tg
= blkg_to_tg(ctx
.blkg
);
1601 v
[0] = tg
->bps_conf
[READ
][index
];
1602 v
[1] = tg
->bps_conf
[WRITE
][index
];
1603 v
[2] = tg
->iops_conf
[READ
][index
];
1604 v
[3] = tg
->iops_conf
[WRITE
][index
];
1606 idle_time
= tg
->idletime_threshold_conf
;
1607 latency_time
= tg
->latency_target_conf
;
1609 char tok
[27]; /* wiops=18446744073709551616 */
1614 if (sscanf(ctx
.body
, "%26s%n", tok
, &len
) != 1)
1623 if (!p
|| (sscanf(p
, "%llu", &val
) != 1 && strcmp(p
, "max")))
1631 if (!strcmp(tok
, "rbps"))
1633 else if (!strcmp(tok
, "wbps"))
1635 else if (!strcmp(tok
, "riops"))
1636 v
[2] = min_t(u64
, val
, UINT_MAX
);
1637 else if (!strcmp(tok
, "wiops"))
1638 v
[3] = min_t(u64
, val
, UINT_MAX
);
1639 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "idle"))
1641 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "latency"))
1647 tg
->bps_conf
[READ
][index
] = v
[0];
1648 tg
->bps_conf
[WRITE
][index
] = v
[1];
1649 tg
->iops_conf
[READ
][index
] = v
[2];
1650 tg
->iops_conf
[WRITE
][index
] = v
[3];
1652 if (index
== LIMIT_MAX
) {
1653 tg
->bps
[READ
][index
] = v
[0];
1654 tg
->bps
[WRITE
][index
] = v
[1];
1655 tg
->iops
[READ
][index
] = v
[2];
1656 tg
->iops
[WRITE
][index
] = v
[3];
1658 tg
->bps
[READ
][LIMIT_LOW
] = min(tg
->bps_conf
[READ
][LIMIT_LOW
],
1659 tg
->bps_conf
[READ
][LIMIT_MAX
]);
1660 tg
->bps
[WRITE
][LIMIT_LOW
] = min(tg
->bps_conf
[WRITE
][LIMIT_LOW
],
1661 tg
->bps_conf
[WRITE
][LIMIT_MAX
]);
1662 tg
->iops
[READ
][LIMIT_LOW
] = min(tg
->iops_conf
[READ
][LIMIT_LOW
],
1663 tg
->iops_conf
[READ
][LIMIT_MAX
]);
1664 tg
->iops
[WRITE
][LIMIT_LOW
] = min(tg
->iops_conf
[WRITE
][LIMIT_LOW
],
1665 tg
->iops_conf
[WRITE
][LIMIT_MAX
]);
1666 tg
->idletime_threshold_conf
= idle_time
;
1667 tg
->latency_target_conf
= latency_time
;
1669 /* force user to configure all settings for low limit */
1670 if (!(tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
] ||
1671 tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
]) ||
1672 tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
||
1673 tg
->latency_target_conf
== DFL_LATENCY_TARGET
) {
1674 tg
->bps
[READ
][LIMIT_LOW
] = 0;
1675 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
1676 tg
->iops
[READ
][LIMIT_LOW
] = 0;
1677 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
1678 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
1679 tg
->latency_target
= DFL_LATENCY_TARGET
;
1680 } else if (index
== LIMIT_LOW
) {
1681 tg
->idletime_threshold
= tg
->idletime_threshold_conf
;
1682 tg
->latency_target
= tg
->latency_target_conf
;
1685 blk_throtl_update_limit_valid(tg
->td
);
1686 if (tg
->td
->limit_valid
[LIMIT_LOW
]) {
1687 if (index
== LIMIT_LOW
)
1688 tg
->td
->limit_index
= LIMIT_LOW
;
1690 tg
->td
->limit_index
= LIMIT_MAX
;
1691 tg_conf_updated(tg
, index
== LIMIT_LOW
&&
1692 tg
->td
->limit_valid
[LIMIT_LOW
]);
1695 blkg_conf_finish(&ctx
);
1696 return ret
?: nbytes
;
1699 static struct cftype throtl_files
[] = {
1700 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1703 .flags
= CFTYPE_NOT_ON_ROOT
,
1704 .seq_show
= tg_print_limit
,
1705 .write
= tg_set_limit
,
1706 .private = LIMIT_LOW
,
1711 .flags
= CFTYPE_NOT_ON_ROOT
,
1712 .seq_show
= tg_print_limit
,
1713 .write
= tg_set_limit
,
1714 .private = LIMIT_MAX
,
1719 static void throtl_shutdown_wq(struct request_queue
*q
)
1721 struct throtl_data
*td
= q
->td
;
1723 cancel_work_sync(&td
->dispatch_work
);
1726 static struct blkcg_policy blkcg_policy_throtl
= {
1727 .dfl_cftypes
= throtl_files
,
1728 .legacy_cftypes
= throtl_legacy_files
,
1730 .pd_alloc_fn
= throtl_pd_alloc
,
1731 .pd_init_fn
= throtl_pd_init
,
1732 .pd_online_fn
= throtl_pd_online
,
1733 .pd_offline_fn
= throtl_pd_offline
,
1734 .pd_free_fn
= throtl_pd_free
,
1737 static unsigned long __tg_last_low_overflow_time(struct throtl_grp
*tg
)
1739 unsigned long rtime
= jiffies
, wtime
= jiffies
;
1741 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
])
1742 rtime
= tg
->last_low_overflow_time
[READ
];
1743 if (tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
])
1744 wtime
= tg
->last_low_overflow_time
[WRITE
];
1745 return min(rtime
, wtime
);
1748 /* tg should not be an intermediate node */
1749 static unsigned long tg_last_low_overflow_time(struct throtl_grp
*tg
)
1751 struct throtl_service_queue
*parent_sq
;
1752 struct throtl_grp
*parent
= tg
;
1753 unsigned long ret
= __tg_last_low_overflow_time(tg
);
1756 parent_sq
= parent
->service_queue
.parent_sq
;
1757 parent
= sq_to_tg(parent_sq
);
1762 * The parent doesn't have low limit, it always reaches low
1763 * limit. Its overflow time is useless for children
1765 if (!parent
->bps
[READ
][LIMIT_LOW
] &&
1766 !parent
->iops
[READ
][LIMIT_LOW
] &&
1767 !parent
->bps
[WRITE
][LIMIT_LOW
] &&
1768 !parent
->iops
[WRITE
][LIMIT_LOW
])
1770 if (time_after(__tg_last_low_overflow_time(parent
), ret
))
1771 ret
= __tg_last_low_overflow_time(parent
);
1776 static bool throtl_tg_is_idle(struct throtl_grp
*tg
)
1779 * cgroup is idle if:
1780 * - single idle is too long, longer than a fixed value (in case user
1781 * configure a too big threshold) or 4 times of idletime threshold
1782 * - average think time is more than threshold
1783 * - IO latency is largely below threshold
1788 time
= min_t(unsigned long, MAX_IDLE_TIME
, 4 * tg
->idletime_threshold
);
1789 ret
= tg
->latency_target
== DFL_LATENCY_TARGET
||
1790 tg
->idletime_threshold
== DFL_IDLE_THRESHOLD
||
1791 (ktime_get_ns() >> 10) - tg
->last_finish_time
> time
||
1792 tg
->avg_idletime
> tg
->idletime_threshold
||
1793 (tg
->latency_target
&& tg
->bio_cnt
&&
1794 tg
->bad_bio_cnt
* 5 < tg
->bio_cnt
);
1795 throtl_log(&tg
->service_queue
,
1796 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1797 tg
->avg_idletime
, tg
->idletime_threshold
, tg
->bad_bio_cnt
,
1798 tg
->bio_cnt
, ret
, tg
->td
->scale
);
1802 static bool throtl_tg_can_upgrade(struct throtl_grp
*tg
)
1804 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1805 bool read_limit
, write_limit
;
1808 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1809 * reaches), it's ok to upgrade to next limit
1811 read_limit
= tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
];
1812 write_limit
= tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
];
1813 if (!read_limit
&& !write_limit
)
1815 if (read_limit
&& sq
->nr_queued
[READ
] &&
1816 (!write_limit
|| sq
->nr_queued
[WRITE
]))
1818 if (write_limit
&& sq
->nr_queued
[WRITE
] &&
1819 (!read_limit
|| sq
->nr_queued
[READ
]))
1822 if (time_after_eq(jiffies
,
1823 tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
) &&
1824 throtl_tg_is_idle(tg
))
1829 static bool throtl_hierarchy_can_upgrade(struct throtl_grp
*tg
)
1832 if (throtl_tg_can_upgrade(tg
))
1834 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1835 if (!tg
|| !tg_to_blkg(tg
)->parent
)
1841 static bool throtl_can_upgrade(struct throtl_data
*td
,
1842 struct throtl_grp
*this_tg
)
1844 struct cgroup_subsys_state
*pos_css
;
1845 struct blkcg_gq
*blkg
;
1847 if (td
->limit_index
!= LIMIT_LOW
)
1850 if (time_before(jiffies
, td
->low_downgrade_time
+ td
->throtl_slice
))
1854 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1855 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1859 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
1861 if (!throtl_hierarchy_can_upgrade(tg
)) {
1870 static void throtl_upgrade_check(struct throtl_grp
*tg
)
1872 unsigned long now
= jiffies
;
1874 if (tg
->td
->limit_index
!= LIMIT_LOW
)
1877 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
1880 tg
->last_check_time
= now
;
1882 if (!time_after_eq(now
,
1883 __tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
))
1886 if (throtl_can_upgrade(tg
->td
, NULL
))
1887 throtl_upgrade_state(tg
->td
);
1890 static void throtl_upgrade_state(struct throtl_data
*td
)
1892 struct cgroup_subsys_state
*pos_css
;
1893 struct blkcg_gq
*blkg
;
1895 throtl_log(&td
->service_queue
, "upgrade to max");
1896 td
->limit_index
= LIMIT_MAX
;
1897 td
->low_upgrade_time
= jiffies
;
1900 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1901 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1902 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1904 tg
->disptime
= jiffies
- 1;
1905 throtl_select_dispatch(sq
);
1906 throtl_schedule_next_dispatch(sq
, true);
1909 throtl_select_dispatch(&td
->service_queue
);
1910 throtl_schedule_next_dispatch(&td
->service_queue
, true);
1911 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1914 static void throtl_downgrade_state(struct throtl_data
*td
, int new)
1918 throtl_log(&td
->service_queue
, "downgrade, scale %d", td
->scale
);
1920 td
->low_upgrade_time
= jiffies
- td
->scale
* td
->throtl_slice
;
1924 td
->limit_index
= new;
1925 td
->low_downgrade_time
= jiffies
;
1928 static bool throtl_tg_can_downgrade(struct throtl_grp
*tg
)
1930 struct throtl_data
*td
= tg
->td
;
1931 unsigned long now
= jiffies
;
1934 * If cgroup is below low limit, consider downgrade and throttle other
1937 if (time_after_eq(now
, td
->low_upgrade_time
+ td
->throtl_slice
) &&
1938 time_after_eq(now
, tg_last_low_overflow_time(tg
) +
1939 td
->throtl_slice
) &&
1940 (!throtl_tg_is_idle(tg
) ||
1941 !list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
)))
1946 static bool throtl_hierarchy_can_downgrade(struct throtl_grp
*tg
)
1949 if (!throtl_tg_can_downgrade(tg
))
1951 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1952 if (!tg
|| !tg_to_blkg(tg
)->parent
)
1958 static void throtl_downgrade_check(struct throtl_grp
*tg
)
1962 unsigned long elapsed_time
;
1963 unsigned long now
= jiffies
;
1965 if (tg
->td
->limit_index
!= LIMIT_MAX
||
1966 !tg
->td
->limit_valid
[LIMIT_LOW
])
1968 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
1970 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
1973 elapsed_time
= now
- tg
->last_check_time
;
1974 tg
->last_check_time
= now
;
1976 if (time_before(now
, tg_last_low_overflow_time(tg
) +
1977 tg
->td
->throtl_slice
))
1980 if (tg
->bps
[READ
][LIMIT_LOW
]) {
1981 bps
= tg
->last_bytes_disp
[READ
] * HZ
;
1982 do_div(bps
, elapsed_time
);
1983 if (bps
>= tg
->bps
[READ
][LIMIT_LOW
])
1984 tg
->last_low_overflow_time
[READ
] = now
;
1987 if (tg
->bps
[WRITE
][LIMIT_LOW
]) {
1988 bps
= tg
->last_bytes_disp
[WRITE
] * HZ
;
1989 do_div(bps
, elapsed_time
);
1990 if (bps
>= tg
->bps
[WRITE
][LIMIT_LOW
])
1991 tg
->last_low_overflow_time
[WRITE
] = now
;
1994 if (tg
->iops
[READ
][LIMIT_LOW
]) {
1995 iops
= tg
->last_io_disp
[READ
] * HZ
/ elapsed_time
;
1996 if (iops
>= tg
->iops
[READ
][LIMIT_LOW
])
1997 tg
->last_low_overflow_time
[READ
] = now
;
2000 if (tg
->iops
[WRITE
][LIMIT_LOW
]) {
2001 iops
= tg
->last_io_disp
[WRITE
] * HZ
/ elapsed_time
;
2002 if (iops
>= tg
->iops
[WRITE
][LIMIT_LOW
])
2003 tg
->last_low_overflow_time
[WRITE
] = now
;
2007 * If cgroup is below low limit, consider downgrade and throttle other
2010 if (throtl_hierarchy_can_downgrade(tg
))
2011 throtl_downgrade_state(tg
->td
, LIMIT_LOW
);
2013 tg
->last_bytes_disp
[READ
] = 0;
2014 tg
->last_bytes_disp
[WRITE
] = 0;
2015 tg
->last_io_disp
[READ
] = 0;
2016 tg
->last_io_disp
[WRITE
] = 0;
2019 static void blk_throtl_update_idletime(struct throtl_grp
*tg
)
2021 unsigned long now
= ktime_get_ns() >> 10;
2022 unsigned long last_finish_time
= tg
->last_finish_time
;
2024 if (now
<= last_finish_time
|| last_finish_time
== 0 ||
2025 last_finish_time
== tg
->checked_last_finish_time
)
2028 tg
->avg_idletime
= (tg
->avg_idletime
* 7 + now
- last_finish_time
) >> 3;
2029 tg
->checked_last_finish_time
= last_finish_time
;
2032 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2033 static void throtl_update_latency_buckets(struct throtl_data
*td
)
2035 struct avg_latency_bucket avg_latency
[2][LATENCY_BUCKET_SIZE
];
2037 unsigned long last_latency
[2] = { 0 };
2038 unsigned long latency
[2];
2040 if (!blk_queue_nonrot(td
->queue
))
2042 if (time_before(jiffies
, td
->last_calculate_time
+ HZ
))
2044 td
->last_calculate_time
= jiffies
;
2046 memset(avg_latency
, 0, sizeof(avg_latency
));
2047 for (rw
= READ
; rw
<= WRITE
; rw
++) {
2048 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2049 struct latency_bucket
*tmp
= &td
->tmp_buckets
[rw
][i
];
2051 for_each_possible_cpu(cpu
) {
2052 struct latency_bucket
*bucket
;
2054 /* this isn't race free, but ok in practice */
2055 bucket
= per_cpu_ptr(td
->latency_buckets
[rw
],
2057 tmp
->total_latency
+= bucket
[i
].total_latency
;
2058 tmp
->samples
+= bucket
[i
].samples
;
2059 bucket
[i
].total_latency
= 0;
2060 bucket
[i
].samples
= 0;
2063 if (tmp
->samples
>= 32) {
2064 int samples
= tmp
->samples
;
2066 latency
[rw
] = tmp
->total_latency
;
2068 tmp
->total_latency
= 0;
2070 latency
[rw
] /= samples
;
2071 if (latency
[rw
] == 0)
2073 avg_latency
[rw
][i
].latency
= latency
[rw
];
2078 for (rw
= READ
; rw
<= WRITE
; rw
++) {
2079 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2080 if (!avg_latency
[rw
][i
].latency
) {
2081 if (td
->avg_buckets
[rw
][i
].latency
< last_latency
[rw
])
2082 td
->avg_buckets
[rw
][i
].latency
=
2087 if (!td
->avg_buckets
[rw
][i
].valid
)
2088 latency
[rw
] = avg_latency
[rw
][i
].latency
;
2090 latency
[rw
] = (td
->avg_buckets
[rw
][i
].latency
* 7 +
2091 avg_latency
[rw
][i
].latency
) >> 3;
2093 td
->avg_buckets
[rw
][i
].latency
= max(latency
[rw
],
2095 td
->avg_buckets
[rw
][i
].valid
= true;
2096 last_latency
[rw
] = td
->avg_buckets
[rw
][i
].latency
;
2100 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++)
2101 throtl_log(&td
->service_queue
,
2102 "Latency bucket %d: read latency=%ld, read valid=%d, "
2103 "write latency=%ld, write valid=%d", i
,
2104 td
->avg_buckets
[READ
][i
].latency
,
2105 td
->avg_buckets
[READ
][i
].valid
,
2106 td
->avg_buckets
[WRITE
][i
].latency
,
2107 td
->avg_buckets
[WRITE
][i
].valid
);
2110 static inline void throtl_update_latency_buckets(struct throtl_data
*td
)
2115 bool blk_throtl_bio(struct request_queue
*q
, struct blkcg_gq
*blkg
,
2118 struct throtl_qnode
*qn
= NULL
;
2119 struct throtl_grp
*tg
= blkg_to_tg(blkg
?: q
->root_blkg
);
2120 struct throtl_service_queue
*sq
;
2121 bool rw
= bio_data_dir(bio
);
2122 bool throttled
= false;
2123 struct throtl_data
*td
= tg
->td
;
2125 WARN_ON_ONCE(!rcu_read_lock_held());
2127 /* see throtl_charge_bio() */
2128 if (bio_flagged(bio
, BIO_THROTTLED
) || !tg
->has_rules
[rw
])
2131 spin_lock_irq(&q
->queue_lock
);
2133 throtl_update_latency_buckets(td
);
2135 blk_throtl_update_idletime(tg
);
2137 sq
= &tg
->service_queue
;
2141 if (tg
->last_low_overflow_time
[rw
] == 0)
2142 tg
->last_low_overflow_time
[rw
] = jiffies
;
2143 throtl_downgrade_check(tg
);
2144 throtl_upgrade_check(tg
);
2145 /* throtl is FIFO - if bios are already queued, should queue */
2146 if (sq
->nr_queued
[rw
])
2149 /* if above limits, break to queue */
2150 if (!tg_may_dispatch(tg
, bio
, NULL
)) {
2151 tg
->last_low_overflow_time
[rw
] = jiffies
;
2152 if (throtl_can_upgrade(td
, tg
)) {
2153 throtl_upgrade_state(td
);
2159 /* within limits, let's charge and dispatch directly */
2160 throtl_charge_bio(tg
, bio
);
2163 * We need to trim slice even when bios are not being queued
2164 * otherwise it might happen that a bio is not queued for
2165 * a long time and slice keeps on extending and trim is not
2166 * called for a long time. Now if limits are reduced suddenly
2167 * we take into account all the IO dispatched so far at new
2168 * low rate and * newly queued IO gets a really long dispatch
2171 * So keep on trimming slice even if bio is not queued.
2173 throtl_trim_slice(tg
, rw
);
2176 * @bio passed through this layer without being throttled.
2177 * Climb up the ladder. If we''re already at the top, it
2178 * can be executed directly.
2180 qn
= &tg
->qnode_on_parent
[rw
];
2187 /* out-of-limit, queue to @tg */
2188 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2189 rw
== READ
? 'R' : 'W',
2190 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
,
2191 tg_bps_limit(tg
, rw
),
2192 tg
->io_disp
[rw
], tg_iops_limit(tg
, rw
),
2193 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
2195 tg
->last_low_overflow_time
[rw
] = jiffies
;
2197 td
->nr_queued
[rw
]++;
2198 throtl_add_bio_tg(bio
, qn
, tg
);
2202 * Update @tg's dispatch time and force schedule dispatch if @tg
2203 * was empty before @bio. The forced scheduling isn't likely to
2204 * cause undue delay as @bio is likely to be dispatched directly if
2205 * its @tg's disptime is not in the future.
2207 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
2208 tg_update_disptime(tg
);
2209 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
2213 spin_unlock_irq(&q
->queue_lock
);
2215 bio_set_flag(bio
, BIO_THROTTLED
);
2217 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2218 if (throttled
|| !td
->track_bio_latency
)
2219 bio
->bi_issue
.value
|= BIO_ISSUE_THROTL_SKIP_LATENCY
;
2224 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2225 static void throtl_track_latency(struct throtl_data
*td
, sector_t size
,
2226 int op
, unsigned long time
)
2228 struct latency_bucket
*latency
;
2231 if (!td
|| td
->limit_index
!= LIMIT_LOW
||
2232 !(op
== REQ_OP_READ
|| op
== REQ_OP_WRITE
) ||
2233 !blk_queue_nonrot(td
->queue
))
2236 index
= request_bucket_index(size
);
2238 latency
= get_cpu_ptr(td
->latency_buckets
[op
]);
2239 latency
[index
].total_latency
+= time
;
2240 latency
[index
].samples
++;
2241 put_cpu_ptr(td
->latency_buckets
[op
]);
2244 void blk_throtl_stat_add(struct request
*rq
, u64 time_ns
)
2246 struct request_queue
*q
= rq
->q
;
2247 struct throtl_data
*td
= q
->td
;
2249 throtl_track_latency(td
, rq
->throtl_size
, req_op(rq
), time_ns
>> 10);
2252 void blk_throtl_bio_endio(struct bio
*bio
)
2254 struct blkcg_gq
*blkg
;
2255 struct throtl_grp
*tg
;
2257 unsigned long finish_time
;
2258 unsigned long start_time
;
2260 int rw
= bio_data_dir(bio
);
2262 blkg
= bio
->bi_blkg
;
2265 tg
= blkg_to_tg(blkg
);
2267 finish_time_ns
= ktime_get_ns();
2268 tg
->last_finish_time
= finish_time_ns
>> 10;
2270 start_time
= bio_issue_time(&bio
->bi_issue
) >> 10;
2271 finish_time
= __bio_issue_time(finish_time_ns
) >> 10;
2272 if (!start_time
|| finish_time
<= start_time
)
2275 lat
= finish_time
- start_time
;
2276 /* this is only for bio based driver */
2277 if (!(bio
->bi_issue
.value
& BIO_ISSUE_THROTL_SKIP_LATENCY
))
2278 throtl_track_latency(tg
->td
, bio_issue_size(&bio
->bi_issue
),
2281 if (tg
->latency_target
&& lat
>= tg
->td
->filtered_latency
) {
2283 unsigned int threshold
;
2285 bucket
= request_bucket_index(bio_issue_size(&bio
->bi_issue
));
2286 threshold
= tg
->td
->avg_buckets
[rw
][bucket
].latency
+
2288 if (lat
> threshold
)
2291 * Not race free, could get wrong count, which means cgroups
2297 if (time_after(jiffies
, tg
->bio_cnt_reset_time
) || tg
->bio_cnt
> 1024) {
2298 tg
->bio_cnt_reset_time
= tg
->td
->throtl_slice
+ jiffies
;
2300 tg
->bad_bio_cnt
/= 2;
2306 * Dispatch all bios from all children tg's queued on @parent_sq. On
2307 * return, @parent_sq is guaranteed to not have any active children tg's
2308 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2310 static void tg_drain_bios(struct throtl_service_queue
*parent_sq
)
2312 struct throtl_grp
*tg
;
2314 while ((tg
= throtl_rb_first(parent_sq
))) {
2315 struct throtl_service_queue
*sq
= &tg
->service_queue
;
2318 throtl_dequeue_tg(tg
);
2320 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
2321 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2322 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
2323 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2328 * blk_throtl_drain - drain throttled bios
2329 * @q: request_queue to drain throttled bios for
2331 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2333 void blk_throtl_drain(struct request_queue
*q
)
2334 __releases(&q
->queue_lock
) __acquires(&q
->queue_lock
)
2336 struct throtl_data
*td
= q
->td
;
2337 struct blkcg_gq
*blkg
;
2338 struct cgroup_subsys_state
*pos_css
;
2345 * Drain each tg while doing post-order walk on the blkg tree, so
2346 * that all bios are propagated to td->service_queue. It'd be
2347 * better to walk service_queue tree directly but blkg walk is
2350 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
)
2351 tg_drain_bios(&blkg_to_tg(blkg
)->service_queue
);
2353 /* finally, transfer bios from top-level tg's into the td */
2354 tg_drain_bios(&td
->service_queue
);
2357 spin_unlock_irq(&q
->queue_lock
);
2359 /* all bios now should be in td->service_queue, issue them */
2360 for (rw
= READ
; rw
<= WRITE
; rw
++)
2361 while ((bio
= throtl_pop_queued(&td
->service_queue
.queued
[rw
],
2363 generic_make_request(bio
);
2365 spin_lock_irq(&q
->queue_lock
);
2368 int blk_throtl_init(struct request_queue
*q
)
2370 struct throtl_data
*td
;
2373 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
2376 td
->latency_buckets
[READ
] = __alloc_percpu(sizeof(struct latency_bucket
) *
2377 LATENCY_BUCKET_SIZE
, __alignof__(u64
));
2378 if (!td
->latency_buckets
[READ
]) {
2382 td
->latency_buckets
[WRITE
] = __alloc_percpu(sizeof(struct latency_bucket
) *
2383 LATENCY_BUCKET_SIZE
, __alignof__(u64
));
2384 if (!td
->latency_buckets
[WRITE
]) {
2385 free_percpu(td
->latency_buckets
[READ
]);
2390 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
2391 throtl_service_queue_init(&td
->service_queue
);
2396 td
->limit_valid
[LIMIT_MAX
] = true;
2397 td
->limit_index
= LIMIT_MAX
;
2398 td
->low_upgrade_time
= jiffies
;
2399 td
->low_downgrade_time
= jiffies
;
2401 /* activate policy */
2402 ret
= blkcg_activate_policy(q
, &blkcg_policy_throtl
);
2404 free_percpu(td
->latency_buckets
[READ
]);
2405 free_percpu(td
->latency_buckets
[WRITE
]);
2411 void blk_throtl_exit(struct request_queue
*q
)
2414 throtl_shutdown_wq(q
);
2415 blkcg_deactivate_policy(q
, &blkcg_policy_throtl
);
2416 free_percpu(q
->td
->latency_buckets
[READ
]);
2417 free_percpu(q
->td
->latency_buckets
[WRITE
]);
2421 void blk_throtl_register_queue(struct request_queue
*q
)
2423 struct throtl_data
*td
;
2429 if (blk_queue_nonrot(q
)) {
2430 td
->throtl_slice
= DFL_THROTL_SLICE_SSD
;
2431 td
->filtered_latency
= LATENCY_FILTERED_SSD
;
2433 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2434 td
->filtered_latency
= LATENCY_FILTERED_HD
;
2435 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2436 td
->avg_buckets
[READ
][i
].latency
= DFL_HD_BASELINE_LATENCY
;
2437 td
->avg_buckets
[WRITE
][i
].latency
= DFL_HD_BASELINE_LATENCY
;
2440 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2441 /* if no low limit, use previous default */
2442 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2445 td
->track_bio_latency
= !queue_is_mq(q
);
2446 if (!td
->track_bio_latency
)
2447 blk_stat_enable_accounting(q
);
2450 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2451 ssize_t
blk_throtl_sample_time_show(struct request_queue
*q
, char *page
)
2455 return sprintf(page
, "%u\n", jiffies_to_msecs(q
->td
->throtl_slice
));
2458 ssize_t
blk_throtl_sample_time_store(struct request_queue
*q
,
2459 const char *page
, size_t count
)
2466 if (kstrtoul(page
, 10, &v
))
2468 t
= msecs_to_jiffies(v
);
2469 if (t
== 0 || t
> MAX_THROTL_SLICE
)
2471 q
->td
->throtl_slice
= t
;
2476 static int __init
throtl_init(void)
2478 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
2479 if (!kthrotld_workqueue
)
2480 panic("Failed to create kthrotld\n");
2482 return blkcg_policy_register(&blkcg_policy_throtl
);
2485 module_init(throtl_init
);