rt2800: initialize BBP_R104 on proper subroutines
[linux/fpc-iii.git] / drivers / media / i2c / ad9389b.c
blob58344b6c3a55ea19823553154d5c59294b268865
1 /*
2 * Analog Devices AD9389B/AD9889B video encoder driver
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
21 * References (c = chapter, p = page):
22 * REF_01 - Analog Devices, Programming Guide, AD9889B/AD9389B,
23 * HDMI Transitter, Rev. A, October 2010
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/delay.h>
31 #include <linux/videodev2.h>
32 #include <linux/workqueue.h>
33 #include <linux/v4l2-dv-timings.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-chip-ident.h>
36 #include <media/v4l2-common.h>
37 #include <media/v4l2-ctrls.h>
38 #include <media/ad9389b.h>
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
44 MODULE_DESCRIPTION("Analog Devices AD9389B/AD9889B video encoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>");
47 MODULE_LICENSE("GPL");
49 #define MASK_AD9389B_EDID_RDY_INT 0x04
50 #define MASK_AD9389B_MSEN_INT 0x40
51 #define MASK_AD9389B_HPD_INT 0x80
53 #define MASK_AD9389B_HPD_DETECT 0x40
54 #define MASK_AD9389B_MSEN_DETECT 0x20
55 #define MASK_AD9389B_EDID_RDY 0x10
57 #define EDID_MAX_RETRIES (8)
58 #define EDID_DELAY 250
59 #define EDID_MAX_SEGM 8
62 **********************************************************************
64 * Arrays with configuration parameters for the AD9389B
66 **********************************************************************
69 struct i2c_reg_value {
70 u8 reg;
71 u8 value;
74 struct ad9389b_state_edid {
75 /* total number of blocks */
76 u32 blocks;
77 /* Number of segments read */
78 u32 segments;
79 u8 data[EDID_MAX_SEGM * 256];
80 /* Number of EDID read retries left */
81 unsigned read_retries;
84 struct ad9389b_state {
85 struct ad9389b_platform_data pdata;
86 struct v4l2_subdev sd;
87 struct media_pad pad;
88 struct v4l2_ctrl_handler hdl;
89 int chip_revision;
90 /* Is the ad9389b powered on? */
91 bool power_on;
92 /* Did we receive hotplug and rx-sense signals? */
93 bool have_monitor;
94 /* timings from s_dv_timings */
95 struct v4l2_dv_timings dv_timings;
96 /* controls */
97 struct v4l2_ctrl *hdmi_mode_ctrl;
98 struct v4l2_ctrl *hotplug_ctrl;
99 struct v4l2_ctrl *rx_sense_ctrl;
100 struct v4l2_ctrl *have_edid0_ctrl;
101 struct v4l2_ctrl *rgb_quantization_range_ctrl;
102 struct i2c_client *edid_i2c_client;
103 struct ad9389b_state_edid edid;
104 /* Running counter of the number of detected EDIDs (for debugging) */
105 unsigned edid_detect_counter;
106 struct workqueue_struct *work_queue;
107 struct delayed_work edid_handler; /* work entry */
110 static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd);
111 static bool ad9389b_check_edid_status(struct v4l2_subdev *sd);
112 static void ad9389b_setup(struct v4l2_subdev *sd);
113 static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq);
114 static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq);
116 static inline struct ad9389b_state *get_ad9389b_state(struct v4l2_subdev *sd)
118 return container_of(sd, struct ad9389b_state, sd);
121 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
123 return &container_of(ctrl->handler, struct ad9389b_state, hdl)->sd;
126 /* ------------------------ I2C ----------------------------------------------- */
128 static int ad9389b_rd(struct v4l2_subdev *sd, u8 reg)
130 struct i2c_client *client = v4l2_get_subdevdata(sd);
132 return i2c_smbus_read_byte_data(client, reg);
135 static int ad9389b_wr(struct v4l2_subdev *sd, u8 reg, u8 val)
137 struct i2c_client *client = v4l2_get_subdevdata(sd);
138 int ret;
139 int i;
141 for (i = 0; i < 3; i++) {
142 ret = i2c_smbus_write_byte_data(client, reg, val);
143 if (ret == 0)
144 return 0;
146 v4l2_err(sd, "I2C Write Problem\n");
147 return ret;
150 /* To set specific bits in the register, a clear-mask is given (to be AND-ed),
151 and then the value-mask (to be OR-ed). */
152 static inline void ad9389b_wr_and_or(struct v4l2_subdev *sd, u8 reg,
153 u8 clr_mask, u8 val_mask)
155 ad9389b_wr(sd, reg, (ad9389b_rd(sd, reg) & clr_mask) | val_mask);
158 static void ad9389b_edid_rd(struct v4l2_subdev *sd, u16 len, u8 *buf)
160 struct ad9389b_state *state = get_ad9389b_state(sd);
161 int i;
163 v4l2_dbg(1, debug, sd, "%s:\n", __func__);
165 for (i = 0; i < len; i++)
166 buf[i] = i2c_smbus_read_byte_data(state->edid_i2c_client, i);
169 static inline bool ad9389b_have_hotplug(struct v4l2_subdev *sd)
171 return ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT;
174 static inline bool ad9389b_have_rx_sense(struct v4l2_subdev *sd)
176 return ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT;
179 static void ad9389b_csc_conversion_mode(struct v4l2_subdev *sd, u8 mode)
181 ad9389b_wr_and_or(sd, 0x17, 0xe7, (mode & 0x3)<<3);
182 ad9389b_wr_and_or(sd, 0x18, 0x9f, (mode & 0x3)<<5);
185 static void ad9389b_csc_coeff(struct v4l2_subdev *sd,
186 u16 A1, u16 A2, u16 A3, u16 A4,
187 u16 B1, u16 B2, u16 B3, u16 B4,
188 u16 C1, u16 C2, u16 C3, u16 C4)
190 /* A */
191 ad9389b_wr_and_or(sd, 0x18, 0xe0, A1>>8);
192 ad9389b_wr(sd, 0x19, A1);
193 ad9389b_wr_and_or(sd, 0x1A, 0xe0, A2>>8);
194 ad9389b_wr(sd, 0x1B, A2);
195 ad9389b_wr_and_or(sd, 0x1c, 0xe0, A3>>8);
196 ad9389b_wr(sd, 0x1d, A3);
197 ad9389b_wr_and_or(sd, 0x1e, 0xe0, A4>>8);
198 ad9389b_wr(sd, 0x1f, A4);
200 /* B */
201 ad9389b_wr_and_or(sd, 0x20, 0xe0, B1>>8);
202 ad9389b_wr(sd, 0x21, B1);
203 ad9389b_wr_and_or(sd, 0x22, 0xe0, B2>>8);
204 ad9389b_wr(sd, 0x23, B2);
205 ad9389b_wr_and_or(sd, 0x24, 0xe0, B3>>8);
206 ad9389b_wr(sd, 0x25, B3);
207 ad9389b_wr_and_or(sd, 0x26, 0xe0, B4>>8);
208 ad9389b_wr(sd, 0x27, B4);
210 /* C */
211 ad9389b_wr_and_or(sd, 0x28, 0xe0, C1>>8);
212 ad9389b_wr(sd, 0x29, C1);
213 ad9389b_wr_and_or(sd, 0x2A, 0xe0, C2>>8);
214 ad9389b_wr(sd, 0x2B, C2);
215 ad9389b_wr_and_or(sd, 0x2C, 0xe0, C3>>8);
216 ad9389b_wr(sd, 0x2D, C3);
217 ad9389b_wr_and_or(sd, 0x2E, 0xe0, C4>>8);
218 ad9389b_wr(sd, 0x2F, C4);
221 static void ad9389b_csc_rgb_full2limit(struct v4l2_subdev *sd, bool enable)
223 if (enable) {
224 u8 csc_mode = 0;
226 ad9389b_csc_conversion_mode(sd, csc_mode);
227 ad9389b_csc_coeff(sd,
228 4096-564, 0, 0, 256,
229 0, 4096-564, 0, 256,
230 0, 0, 4096-564, 256);
231 /* enable CSC */
232 ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x1);
233 /* AVI infoframe: Limited range RGB (16-235) */
234 ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x02);
235 } else {
236 /* disable CSC */
237 ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x0);
238 /* AVI infoframe: Full range RGB (0-255) */
239 ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x04);
243 static void ad9389b_set_IT_content_AVI_InfoFrame(struct v4l2_subdev *sd)
245 struct ad9389b_state *state = get_ad9389b_state(sd);
247 if (state->dv_timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
248 /* CEA format, not IT */
249 ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x00);
250 } else {
251 /* IT format */
252 ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x40);
256 static int ad9389b_set_rgb_quantization_mode(struct v4l2_subdev *sd, struct v4l2_ctrl *ctrl)
258 struct ad9389b_state *state = get_ad9389b_state(sd);
260 switch (ctrl->val) {
261 case V4L2_DV_RGB_RANGE_AUTO:
262 /* automatic */
263 if (state->dv_timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
264 /* cea format, RGB limited range (16-235) */
265 ad9389b_csc_rgb_full2limit(sd, true);
266 } else {
267 /* not cea format, RGB full range (0-255) */
268 ad9389b_csc_rgb_full2limit(sd, false);
270 break;
271 case V4L2_DV_RGB_RANGE_LIMITED:
272 /* RGB limited range (16-235) */
273 ad9389b_csc_rgb_full2limit(sd, true);
274 break;
275 case V4L2_DV_RGB_RANGE_FULL:
276 /* RGB full range (0-255) */
277 ad9389b_csc_rgb_full2limit(sd, false);
278 break;
279 default:
280 return -EINVAL;
282 return 0;
285 static void ad9389b_set_manual_pll_gear(struct v4l2_subdev *sd, u32 pixelclock)
287 u8 gear;
289 /* Workaround for TMDS PLL problem
290 * The TMDS PLL in AD9389b change gear when the chip is heated above a
291 * certain temperature. The output is disabled when the PLL change gear
292 * so the monitor has to lock on the signal again. A workaround for
293 * this is to use the manual PLL gears. This is a solution from Analog
294 * Devices that is not documented in the datasheets.
295 * 0x98 [7] = enable manual gearing. 0x98 [6:4] = gear
297 * The pixel frequency ranges are based on readout of the gear the
298 * automatic gearing selects for different pixel clocks
299 * (read from 0x9e [3:1]).
302 if (pixelclock > 140000000)
303 gear = 0xc0; /* 4th gear */
304 else if (pixelclock > 117000000)
305 gear = 0xb0; /* 3rd gear */
306 else if (pixelclock > 87000000)
307 gear = 0xa0; /* 2nd gear */
308 else if (pixelclock > 60000000)
309 gear = 0x90; /* 1st gear */
310 else
311 gear = 0x80; /* 0th gear */
313 ad9389b_wr_and_or(sd, 0x98, 0x0f, gear);
316 /* ------------------------------ CTRL OPS ------------------------------ */
318 static int ad9389b_s_ctrl(struct v4l2_ctrl *ctrl)
320 struct v4l2_subdev *sd = to_sd(ctrl);
321 struct ad9389b_state *state = get_ad9389b_state(sd);
323 v4l2_dbg(1, debug, sd,
324 "%s: ctrl id: %d, ctrl->val %d\n", __func__, ctrl->id, ctrl->val);
326 if (state->hdmi_mode_ctrl == ctrl) {
327 /* Set HDMI or DVI-D */
328 ad9389b_wr_and_or(sd, 0xaf, 0xfd,
329 ctrl->val == V4L2_DV_TX_MODE_HDMI ? 0x02 : 0x00);
330 return 0;
332 if (state->rgb_quantization_range_ctrl == ctrl)
333 return ad9389b_set_rgb_quantization_mode(sd, ctrl);
334 return -EINVAL;
337 static const struct v4l2_ctrl_ops ad9389b_ctrl_ops = {
338 .s_ctrl = ad9389b_s_ctrl,
341 /* ---------------------------- CORE OPS ------------------------------------------- */
343 #ifdef CONFIG_VIDEO_ADV_DEBUG
344 static int ad9389b_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
346 struct i2c_client *client = v4l2_get_subdevdata(sd);
348 if (!v4l2_chip_match_i2c_client(client, &reg->match))
349 return -EINVAL;
350 if (!capable(CAP_SYS_ADMIN))
351 return -EPERM;
352 reg->val = ad9389b_rd(sd, reg->reg & 0xff);
353 reg->size = 1;
354 return 0;
357 static int ad9389b_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg)
359 struct i2c_client *client = v4l2_get_subdevdata(sd);
361 if (!v4l2_chip_match_i2c_client(client, &reg->match))
362 return -EINVAL;
363 if (!capable(CAP_SYS_ADMIN))
364 return -EPERM;
365 ad9389b_wr(sd, reg->reg & 0xff, reg->val & 0xff);
366 return 0;
368 #endif
370 static int ad9389b_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip)
372 struct i2c_client *client = v4l2_get_subdevdata(sd);
374 return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_AD9389B, 0);
377 static int ad9389b_log_status(struct v4l2_subdev *sd)
379 struct ad9389b_state *state = get_ad9389b_state(sd);
380 struct ad9389b_state_edid *edid = &state->edid;
382 static const char * const states[] = {
383 "in reset",
384 "reading EDID",
385 "idle",
386 "initializing HDCP",
387 "HDCP enabled",
388 "initializing HDCP repeater",
389 "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"
391 static const char * const errors[] = {
392 "no error",
393 "bad receiver BKSV",
394 "Ri mismatch",
395 "Pj mismatch",
396 "i2c error",
397 "timed out",
398 "max repeater cascade exceeded",
399 "hash check failed",
400 "too many devices",
401 "9", "A", "B", "C", "D", "E", "F"
404 u8 manual_gear;
406 v4l2_info(sd, "chip revision %d\n", state->chip_revision);
407 v4l2_info(sd, "power %s\n", state->power_on ? "on" : "off");
408 v4l2_info(sd, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n",
409 (ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT) ?
410 "detected" : "no",
411 (ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT) ?
412 "detected" : "no",
413 edid->segments ? "found" : "no", edid->blocks);
414 if (state->have_monitor) {
415 v4l2_info(sd, "%s output %s\n",
416 (ad9389b_rd(sd, 0xaf) & 0x02) ?
417 "HDMI" : "DVI-D",
418 (ad9389b_rd(sd, 0xa1) & 0x3c) ?
419 "disabled" : "enabled");
421 v4l2_info(sd, "ad9389b: %s\n", (ad9389b_rd(sd, 0xb8) & 0x40) ?
422 "encrypted" : "no encryption");
423 v4l2_info(sd, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n",
424 states[ad9389b_rd(sd, 0xc8) & 0xf],
425 errors[ad9389b_rd(sd, 0xc8) >> 4],
426 state->edid_detect_counter,
427 ad9389b_rd(sd, 0x94), ad9389b_rd(sd, 0x96));
428 manual_gear = ad9389b_rd(sd, 0x98) & 0x80;
429 v4l2_info(sd, "ad9389b: RGB quantization: %s range\n",
430 ad9389b_rd(sd, 0x3b) & 0x01 ? "limited" : "full");
431 v4l2_info(sd, "ad9389b: %s gear %d\n",
432 manual_gear ? "manual" : "automatic",
433 manual_gear ? ((ad9389b_rd(sd, 0x98) & 0x70) >> 4) :
434 ((ad9389b_rd(sd, 0x9e) & 0x0e) >> 1));
435 if (state->have_monitor) {
436 if (ad9389b_rd(sd, 0xaf) & 0x02) {
437 /* HDMI only */
438 u8 manual_cts = ad9389b_rd(sd, 0x0a) & 0x80;
439 u32 N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 |
440 ad9389b_rd(sd, 0x02) << 8 |
441 ad9389b_rd(sd, 0x03);
442 u8 vic_detect = ad9389b_rd(sd, 0x3e) >> 2;
443 u8 vic_sent = ad9389b_rd(sd, 0x3d) & 0x3f;
444 u32 CTS;
446 if (manual_cts)
447 CTS = (ad9389b_rd(sd, 0x07) & 0xf) << 16 |
448 ad9389b_rd(sd, 0x08) << 8 |
449 ad9389b_rd(sd, 0x09);
450 else
451 CTS = (ad9389b_rd(sd, 0x04) & 0xf) << 16 |
452 ad9389b_rd(sd, 0x05) << 8 |
453 ad9389b_rd(sd, 0x06);
454 N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 |
455 ad9389b_rd(sd, 0x02) << 8 |
456 ad9389b_rd(sd, 0x03);
458 v4l2_info(sd, "ad9389b: CTS %s mode: N %d, CTS %d\n",
459 manual_cts ? "manual" : "automatic", N, CTS);
461 v4l2_info(sd, "ad9389b: VIC: detected %d, sent %d\n",
462 vic_detect, vic_sent);
465 if (state->dv_timings.type == V4L2_DV_BT_656_1120) {
466 struct v4l2_bt_timings *bt = bt = &state->dv_timings.bt;
467 u32 frame_width = bt->width + bt->hfrontporch +
468 bt->hsync + bt->hbackporch;
469 u32 frame_height = bt->height + bt->vfrontporch +
470 bt->vsync + bt->vbackporch;
471 u32 frame_size = frame_width * frame_height;
473 v4l2_info(sd, "timings: %ux%u%s%u (%ux%u). Pix freq. = %u Hz. Polarities = 0x%x\n",
474 bt->width, bt->height, bt->interlaced ? "i" : "p",
475 frame_size > 0 ? (unsigned)bt->pixelclock / frame_size : 0,
476 frame_width, frame_height,
477 (unsigned)bt->pixelclock, bt->polarities);
478 } else {
479 v4l2_info(sd, "no timings set\n");
481 return 0;
484 /* Power up/down ad9389b */
485 static int ad9389b_s_power(struct v4l2_subdev *sd, int on)
487 struct ad9389b_state *state = get_ad9389b_state(sd);
488 struct ad9389b_platform_data *pdata = &state->pdata;
489 const int retries = 20;
490 int i;
492 v4l2_dbg(1, debug, sd, "%s: power %s\n", __func__, on ? "on" : "off");
494 state->power_on = on;
496 if (!on) {
497 /* Power down */
498 ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40);
499 return true;
502 /* Power up */
503 /* The ad9389b does not always come up immediately.
504 Retry multiple times. */
505 for (i = 0; i < retries; i++) {
506 ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x0);
507 if ((ad9389b_rd(sd, 0x41) & 0x40) == 0)
508 break;
509 ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40);
510 msleep(10);
512 if (i == retries) {
513 v4l2_dbg(1, debug, sd, "failed to powerup the ad9389b\n");
514 ad9389b_s_power(sd, 0);
515 return false;
517 if (i > 1)
518 v4l2_dbg(1, debug, sd,
519 "needed %d retries to powerup the ad9389b\n", i);
521 /* Select chip: AD9389B */
522 ad9389b_wr_and_or(sd, 0xba, 0xef, 0x10);
524 /* Reserved registers that must be set according to REF_01 p. 11*/
525 ad9389b_wr_and_or(sd, 0x98, 0xf0, 0x07);
526 ad9389b_wr(sd, 0x9c, 0x38);
527 ad9389b_wr_and_or(sd, 0x9d, 0xfc, 0x01);
529 /* Differential output drive strength */
530 if (pdata->diff_data_drive_strength > 0)
531 ad9389b_wr(sd, 0xa2, pdata->diff_data_drive_strength);
532 else
533 ad9389b_wr(sd, 0xa2, 0x87);
535 if (pdata->diff_clk_drive_strength > 0)
536 ad9389b_wr(sd, 0xa3, pdata->diff_clk_drive_strength);
537 else
538 ad9389b_wr(sd, 0xa3, 0x87);
540 ad9389b_wr(sd, 0x0a, 0x01);
541 ad9389b_wr(sd, 0xbb, 0xff);
543 /* Set number of attempts to read the EDID */
544 ad9389b_wr(sd, 0xc9, 0xf);
545 return true;
548 /* Enable interrupts */
549 static void ad9389b_set_isr(struct v4l2_subdev *sd, bool enable)
551 u8 irqs = MASK_AD9389B_HPD_INT | MASK_AD9389B_MSEN_INT;
552 u8 irqs_rd;
553 int retries = 100;
555 /* The datasheet says that the EDID ready interrupt should be
556 disabled if there is no hotplug. */
557 if (!enable)
558 irqs = 0;
559 else if (ad9389b_have_hotplug(sd))
560 irqs |= MASK_AD9389B_EDID_RDY_INT;
563 * This i2c write can fail (approx. 1 in 1000 writes). But it
564 * is essential that this register is correct, so retry it
565 * multiple times.
567 * Note that the i2c write does not report an error, but the readback
568 * clearly shows the wrong value.
570 do {
571 ad9389b_wr(sd, 0x94, irqs);
572 irqs_rd = ad9389b_rd(sd, 0x94);
573 } while (retries-- && irqs_rd != irqs);
575 if (irqs_rd != irqs)
576 v4l2_err(sd, "Could not set interrupts: hw failure?\n");
579 /* Interrupt handler */
580 static int ad9389b_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
582 u8 irq_status;
584 /* disable interrupts to prevent a race condition */
585 ad9389b_set_isr(sd, false);
586 irq_status = ad9389b_rd(sd, 0x96);
587 /* clear detected interrupts */
588 ad9389b_wr(sd, 0x96, irq_status);
590 if (irq_status & (MASK_AD9389B_HPD_INT | MASK_AD9389B_MSEN_INT))
591 ad9389b_check_monitor_present_status(sd);
592 if (irq_status & MASK_AD9389B_EDID_RDY_INT)
593 ad9389b_check_edid_status(sd);
595 /* enable interrupts */
596 ad9389b_set_isr(sd, true);
597 *handled = true;
598 return 0;
601 static const struct v4l2_subdev_core_ops ad9389b_core_ops = {
602 .log_status = ad9389b_log_status,
603 .g_chip_ident = ad9389b_g_chip_ident,
604 #ifdef CONFIG_VIDEO_ADV_DEBUG
605 .g_register = ad9389b_g_register,
606 .s_register = ad9389b_s_register,
607 #endif
608 .s_power = ad9389b_s_power,
609 .interrupt_service_routine = ad9389b_isr,
612 /* ------------------------------ PAD OPS ------------------------------ */
614 static int ad9389b_get_edid(struct v4l2_subdev *sd, struct v4l2_subdev_edid *edid)
616 struct ad9389b_state *state = get_ad9389b_state(sd);
618 if (edid->pad != 0)
619 return -EINVAL;
620 if (edid->blocks == 0 || edid->blocks > 256)
621 return -EINVAL;
622 if (!edid->edid)
623 return -EINVAL;
624 if (!state->edid.segments) {
625 v4l2_dbg(1, debug, sd, "EDID segment 0 not found\n");
626 return -ENODATA;
628 if (edid->start_block >= state->edid.segments * 2)
629 return -E2BIG;
630 if (edid->blocks + edid->start_block >= state->edid.segments * 2)
631 edid->blocks = state->edid.segments * 2 - edid->start_block;
632 memcpy(edid->edid, &state->edid.data[edid->start_block * 128],
633 128 * edid->blocks);
634 return 0;
637 static const struct v4l2_subdev_pad_ops ad9389b_pad_ops = {
638 .get_edid = ad9389b_get_edid,
641 /* ------------------------------ VIDEO OPS ------------------------------ */
643 /* Enable/disable ad9389b output */
644 static int ad9389b_s_stream(struct v4l2_subdev *sd, int enable)
646 struct ad9389b_state *state = get_ad9389b_state(sd);
648 v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis"));
650 ad9389b_wr_and_or(sd, 0xa1, ~0x3c, (enable ? 0 : 0x3c));
651 if (enable) {
652 ad9389b_check_monitor_present_status(sd);
653 } else {
654 ad9389b_s_power(sd, 0);
655 state->have_monitor = false;
657 return 0;
660 static const struct v4l2_dv_timings ad9389b_timings[] = {
661 V4L2_DV_BT_CEA_720X480P59_94,
662 V4L2_DV_BT_CEA_720X576P50,
663 V4L2_DV_BT_CEA_1280X720P24,
664 V4L2_DV_BT_CEA_1280X720P25,
665 V4L2_DV_BT_CEA_1280X720P30,
666 V4L2_DV_BT_CEA_1280X720P50,
667 V4L2_DV_BT_CEA_1280X720P60,
668 V4L2_DV_BT_CEA_1920X1080P24,
669 V4L2_DV_BT_CEA_1920X1080P25,
670 V4L2_DV_BT_CEA_1920X1080P30,
671 V4L2_DV_BT_CEA_1920X1080P50,
672 V4L2_DV_BT_CEA_1920X1080P60,
674 V4L2_DV_BT_DMT_640X350P85,
675 V4L2_DV_BT_DMT_640X400P85,
676 V4L2_DV_BT_DMT_720X400P85,
677 V4L2_DV_BT_DMT_640X480P60,
678 V4L2_DV_BT_DMT_640X480P72,
679 V4L2_DV_BT_DMT_640X480P75,
680 V4L2_DV_BT_DMT_640X480P85,
681 V4L2_DV_BT_DMT_800X600P56,
682 V4L2_DV_BT_DMT_800X600P60,
683 V4L2_DV_BT_DMT_800X600P72,
684 V4L2_DV_BT_DMT_800X600P75,
685 V4L2_DV_BT_DMT_800X600P85,
686 V4L2_DV_BT_DMT_848X480P60,
687 V4L2_DV_BT_DMT_1024X768P60,
688 V4L2_DV_BT_DMT_1024X768P70,
689 V4L2_DV_BT_DMT_1024X768P75,
690 V4L2_DV_BT_DMT_1024X768P85,
691 V4L2_DV_BT_DMT_1152X864P75,
692 V4L2_DV_BT_DMT_1280X768P60_RB,
693 V4L2_DV_BT_DMT_1280X768P60,
694 V4L2_DV_BT_DMT_1280X768P75,
695 V4L2_DV_BT_DMT_1280X768P85,
696 V4L2_DV_BT_DMT_1280X800P60_RB,
697 V4L2_DV_BT_DMT_1280X800P60,
698 V4L2_DV_BT_DMT_1280X800P75,
699 V4L2_DV_BT_DMT_1280X800P85,
700 V4L2_DV_BT_DMT_1280X960P60,
701 V4L2_DV_BT_DMT_1280X960P85,
702 V4L2_DV_BT_DMT_1280X1024P60,
703 V4L2_DV_BT_DMT_1280X1024P75,
704 V4L2_DV_BT_DMT_1280X1024P85,
705 V4L2_DV_BT_DMT_1360X768P60,
706 V4L2_DV_BT_DMT_1400X1050P60_RB,
707 V4L2_DV_BT_DMT_1400X1050P60,
708 V4L2_DV_BT_DMT_1400X1050P75,
709 V4L2_DV_BT_DMT_1400X1050P85,
710 V4L2_DV_BT_DMT_1440X900P60_RB,
711 V4L2_DV_BT_DMT_1440X900P60,
712 V4L2_DV_BT_DMT_1600X1200P60,
713 V4L2_DV_BT_DMT_1680X1050P60_RB,
714 V4L2_DV_BT_DMT_1680X1050P60,
715 V4L2_DV_BT_DMT_1792X1344P60,
716 V4L2_DV_BT_DMT_1856X1392P60,
717 V4L2_DV_BT_DMT_1920X1200P60_RB,
718 V4L2_DV_BT_DMT_1366X768P60,
719 V4L2_DV_BT_DMT_1920X1080P60,
723 static int ad9389b_s_dv_timings(struct v4l2_subdev *sd,
724 struct v4l2_dv_timings *timings)
726 struct ad9389b_state *state = get_ad9389b_state(sd);
727 int i;
729 v4l2_dbg(1, debug, sd, "%s:\n", __func__);
731 /* quick sanity check */
732 if (timings->type != V4L2_DV_BT_656_1120)
733 return -EINVAL;
735 if (timings->bt.interlaced)
736 return -EINVAL;
737 if (timings->bt.pixelclock < 27000000 ||
738 timings->bt.pixelclock > 170000000)
739 return -EINVAL;
741 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
742 if the format is listed in ad9389b_timings[] */
743 for (i = 0; ad9389b_timings[i].bt.width; i++) {
744 if (v4l_match_dv_timings(timings, &ad9389b_timings[i], 0)) {
745 *timings = ad9389b_timings[i];
746 break;
750 timings->bt.flags &= ~V4L2_DV_FL_REDUCED_FPS;
752 /* save timings */
753 state->dv_timings = *timings;
755 /* update quantization range based on new dv_timings */
756 ad9389b_set_rgb_quantization_mode(sd, state->rgb_quantization_range_ctrl);
758 /* update PLL gear based on new dv_timings */
759 if (state->pdata.tmds_pll_gear == AD9389B_TMDS_PLL_GEAR_SEMI_AUTOMATIC)
760 ad9389b_set_manual_pll_gear(sd, (u32)timings->bt.pixelclock);
762 /* update AVI infoframe */
763 ad9389b_set_IT_content_AVI_InfoFrame(sd);
765 return 0;
768 static int ad9389b_g_dv_timings(struct v4l2_subdev *sd,
769 struct v4l2_dv_timings *timings)
771 struct ad9389b_state *state = get_ad9389b_state(sd);
773 v4l2_dbg(1, debug, sd, "%s:\n", __func__);
775 if (!timings)
776 return -EINVAL;
778 *timings = state->dv_timings;
780 return 0;
783 static int ad9389b_enum_dv_timings(struct v4l2_subdev *sd,
784 struct v4l2_enum_dv_timings *timings)
786 if (timings->index >= ARRAY_SIZE(ad9389b_timings))
787 return -EINVAL;
789 memset(timings->reserved, 0, sizeof(timings->reserved));
790 timings->timings = ad9389b_timings[timings->index];
791 return 0;
794 static int ad9389b_dv_timings_cap(struct v4l2_subdev *sd,
795 struct v4l2_dv_timings_cap *cap)
797 cap->type = V4L2_DV_BT_656_1120;
798 cap->bt.max_width = 1920;
799 cap->bt.max_height = 1200;
800 cap->bt.min_pixelclock = 27000000;
801 cap->bt.max_pixelclock = 170000000;
802 cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
803 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
804 cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
805 V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
806 return 0;
809 static const struct v4l2_subdev_video_ops ad9389b_video_ops = {
810 .s_stream = ad9389b_s_stream,
811 .s_dv_timings = ad9389b_s_dv_timings,
812 .g_dv_timings = ad9389b_g_dv_timings,
813 .enum_dv_timings = ad9389b_enum_dv_timings,
814 .dv_timings_cap = ad9389b_dv_timings_cap,
817 static int ad9389b_s_audio_stream(struct v4l2_subdev *sd, int enable)
819 v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis"));
821 if (enable)
822 ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x80);
823 else
824 ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x40);
826 return 0;
829 static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
831 u32 N;
833 switch (freq) {
834 case 32000: N = 4096; break;
835 case 44100: N = 6272; break;
836 case 48000: N = 6144; break;
837 case 88200: N = 12544; break;
838 case 96000: N = 12288; break;
839 case 176400: N = 25088; break;
840 case 192000: N = 24576; break;
841 default:
842 return -EINVAL;
845 /* Set N (used with CTS to regenerate the audio clock) */
846 ad9389b_wr(sd, 0x01, (N >> 16) & 0xf);
847 ad9389b_wr(sd, 0x02, (N >> 8) & 0xff);
848 ad9389b_wr(sd, 0x03, N & 0xff);
850 return 0;
853 static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq)
855 u32 i2s_sf;
857 switch (freq) {
858 case 32000: i2s_sf = 0x30; break;
859 case 44100: i2s_sf = 0x00; break;
860 case 48000: i2s_sf = 0x20; break;
861 case 88200: i2s_sf = 0x80; break;
862 case 96000: i2s_sf = 0xa0; break;
863 case 176400: i2s_sf = 0xc0; break;
864 case 192000: i2s_sf = 0xe0; break;
865 default:
866 return -EINVAL;
869 /* Set sampling frequency for I2S audio to 48 kHz */
870 ad9389b_wr_and_or(sd, 0x15, 0xf, i2s_sf);
872 return 0;
875 static int ad9389b_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config)
877 /* TODO based on input/output/config */
878 /* TODO See datasheet "Programmers guide" p. 39-40 */
880 /* Only 2 channels in use for application */
881 ad9389b_wr_and_or(sd, 0x50, 0x1f, 0x20);
882 /* Speaker mapping */
883 ad9389b_wr(sd, 0x51, 0x00);
885 /* TODO Where should this be placed? */
886 /* 16 bit audio word length */
887 ad9389b_wr_and_or(sd, 0x14, 0xf0, 0x02);
889 return 0;
892 static const struct v4l2_subdev_audio_ops ad9389b_audio_ops = {
893 .s_stream = ad9389b_s_audio_stream,
894 .s_clock_freq = ad9389b_s_clock_freq,
895 .s_i2s_clock_freq = ad9389b_s_i2s_clock_freq,
896 .s_routing = ad9389b_s_routing,
899 /* --------------------- SUBDEV OPS --------------------------------------- */
901 static const struct v4l2_subdev_ops ad9389b_ops = {
902 .core = &ad9389b_core_ops,
903 .video = &ad9389b_video_ops,
904 .audio = &ad9389b_audio_ops,
905 .pad = &ad9389b_pad_ops,
908 /* ----------------------------------------------------------------------- */
909 static void ad9389b_dbg_dump_edid(int lvl, int debug, struct v4l2_subdev *sd,
910 int segment, u8 *buf)
912 int i, j;
914 if (debug < lvl)
915 return;
917 v4l2_dbg(lvl, debug, sd, "edid segment %d\n", segment);
918 for (i = 0; i < 256; i += 16) {
919 u8 b[128];
920 u8 *bp = b;
922 if (i == 128)
923 v4l2_dbg(lvl, debug, sd, "\n");
924 for (j = i; j < i + 16; j++) {
925 sprintf(bp, "0x%02x, ", buf[j]);
926 bp += 6;
928 bp[0] = '\0';
929 v4l2_dbg(lvl, debug, sd, "%s\n", b);
933 static void ad9389b_edid_handler(struct work_struct *work)
935 struct delayed_work *dwork = to_delayed_work(work);
936 struct ad9389b_state *state = container_of(dwork,
937 struct ad9389b_state, edid_handler);
938 struct v4l2_subdev *sd = &state->sd;
939 struct ad9389b_edid_detect ed;
941 v4l2_dbg(1, debug, sd, "%s:\n", __func__);
943 if (ad9389b_check_edid_status(sd)) {
944 /* Return if we received the EDID. */
945 return;
948 if (ad9389b_have_hotplug(sd)) {
949 /* We must retry reading the EDID several times, it is possible
950 * that initially the EDID couldn't be read due to i2c errors
951 * (DVI connectors are particularly prone to this problem). */
952 if (state->edid.read_retries) {
953 state->edid.read_retries--;
954 /* EDID read failed, trigger a retry */
955 ad9389b_wr(sd, 0xc9, 0xf);
956 queue_delayed_work(state->work_queue,
957 &state->edid_handler, EDID_DELAY);
958 return;
962 /* We failed to read the EDID, so send an event for this. */
963 ed.present = false;
964 ed.segment = ad9389b_rd(sd, 0xc4);
965 v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed);
966 v4l2_dbg(1, debug, sd, "%s: no edid found\n", __func__);
969 static void ad9389b_audio_setup(struct v4l2_subdev *sd)
971 v4l2_dbg(1, debug, sd, "%s\n", __func__);
973 ad9389b_s_i2s_clock_freq(sd, 48000);
974 ad9389b_s_clock_freq(sd, 48000);
975 ad9389b_s_routing(sd, 0, 0, 0);
978 /* Initial setup of AD9389b */
980 /* Configure hdmi transmitter. */
981 static void ad9389b_setup(struct v4l2_subdev *sd)
983 struct ad9389b_state *state = get_ad9389b_state(sd);
985 v4l2_dbg(1, debug, sd, "%s\n", __func__);
987 /* Input format: RGB 4:4:4 */
988 ad9389b_wr_and_or(sd, 0x15, 0xf1, 0x0);
989 /* Output format: RGB 4:4:4 */
990 ad9389b_wr_and_or(sd, 0x16, 0x3f, 0x0);
991 /* CSC fixed point: +/-2, 1st order interpolation 4:2:2 -> 4:4:4 up
992 conversion, Aspect ratio: 16:9 */
993 ad9389b_wr_and_or(sd, 0x17, 0xe1, 0x0e);
994 /* Disable pixel repetition and CSC */
995 ad9389b_wr_and_or(sd, 0x3b, 0x9e, 0x0);
996 /* Output format: RGB 4:4:4, Active Format Information is valid. */
997 ad9389b_wr_and_or(sd, 0x45, 0xc7, 0x08);
998 /* Underscanned */
999 ad9389b_wr_and_or(sd, 0x46, 0x3f, 0x80);
1000 /* Setup video format */
1001 ad9389b_wr(sd, 0x3c, 0x0);
1002 /* Active format aspect ratio: same as picure. */
1003 ad9389b_wr(sd, 0x47, 0x80);
1004 /* No encryption */
1005 ad9389b_wr_and_or(sd, 0xaf, 0xef, 0x0);
1006 /* Positive clk edge capture for input video clock */
1007 ad9389b_wr_and_or(sd, 0xba, 0x1f, 0x60);
1009 ad9389b_audio_setup(sd);
1011 v4l2_ctrl_handler_setup(&state->hdl);
1013 ad9389b_set_IT_content_AVI_InfoFrame(sd);
1016 static void ad9389b_notify_monitor_detect(struct v4l2_subdev *sd)
1018 struct ad9389b_monitor_detect mdt;
1019 struct ad9389b_state *state = get_ad9389b_state(sd);
1021 mdt.present = state->have_monitor;
1022 v4l2_subdev_notify(sd, AD9389B_MONITOR_DETECT, (void *)&mdt);
1025 static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd)
1027 struct ad9389b_state *state = get_ad9389b_state(sd);
1028 /* read hotplug and rx-sense state */
1029 u8 status = ad9389b_rd(sd, 0x42);
1031 v4l2_dbg(1, debug, sd, "%s: status: 0x%x%s%s\n",
1032 __func__,
1033 status,
1034 status & MASK_AD9389B_HPD_DETECT ? ", hotplug" : "",
1035 status & MASK_AD9389B_MSEN_DETECT ? ", rx-sense" : "");
1037 if ((status & MASK_AD9389B_HPD_DETECT) &&
1038 ((status & MASK_AD9389B_MSEN_DETECT) || state->edid.segments)) {
1039 v4l2_dbg(1, debug, sd,
1040 "%s: hotplug and (rx-sense or edid)\n", __func__);
1041 if (!state->have_monitor) {
1042 v4l2_dbg(1, debug, sd, "%s: monitor detected\n", __func__);
1043 state->have_monitor = true;
1044 ad9389b_set_isr(sd, true);
1045 if (!ad9389b_s_power(sd, true)) {
1046 v4l2_dbg(1, debug, sd,
1047 "%s: monitor detected, powerup failed\n", __func__);
1048 return;
1050 ad9389b_setup(sd);
1051 ad9389b_notify_monitor_detect(sd);
1052 state->edid.read_retries = EDID_MAX_RETRIES;
1053 queue_delayed_work(state->work_queue,
1054 &state->edid_handler, EDID_DELAY);
1056 } else if (status & MASK_AD9389B_HPD_DETECT) {
1057 v4l2_dbg(1, debug, sd, "%s: hotplug detected\n", __func__);
1058 state->edid.read_retries = EDID_MAX_RETRIES;
1059 queue_delayed_work(state->work_queue,
1060 &state->edid_handler, EDID_DELAY);
1061 } else if (!(status & MASK_AD9389B_HPD_DETECT)) {
1062 v4l2_dbg(1, debug, sd, "%s: hotplug not detected\n", __func__);
1063 if (state->have_monitor) {
1064 v4l2_dbg(1, debug, sd, "%s: monitor not detected\n", __func__);
1065 state->have_monitor = false;
1066 ad9389b_notify_monitor_detect(sd);
1068 ad9389b_s_power(sd, false);
1069 memset(&state->edid, 0, sizeof(struct ad9389b_state_edid));
1072 /* update read only ctrls */
1073 v4l2_ctrl_s_ctrl(state->hotplug_ctrl, ad9389b_have_hotplug(sd) ? 0x1 : 0x0);
1074 v4l2_ctrl_s_ctrl(state->rx_sense_ctrl, ad9389b_have_rx_sense(sd) ? 0x1 : 0x0);
1075 v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0);
1078 static bool edid_block_verify_crc(u8 *edid_block)
1080 int i;
1081 u8 sum = 0;
1083 for (i = 0; i < 127; i++)
1084 sum += *(edid_block + i);
1085 return ((255 - sum + 1) == edid_block[127]);
1088 static bool edid_segment_verify_crc(struct v4l2_subdev *sd, u32 segment)
1090 struct ad9389b_state *state = get_ad9389b_state(sd);
1091 u32 blocks = state->edid.blocks;
1092 u8 *data = state->edid.data;
1094 if (edid_block_verify_crc(&data[segment * 256])) {
1095 if ((segment + 1) * 2 <= blocks)
1096 return edid_block_verify_crc(&data[segment * 256 + 128]);
1097 return true;
1099 return false;
1102 static bool ad9389b_check_edid_status(struct v4l2_subdev *sd)
1104 struct ad9389b_state *state = get_ad9389b_state(sd);
1105 struct ad9389b_edid_detect ed;
1106 int segment;
1107 u8 edidRdy = ad9389b_rd(sd, 0xc5);
1109 v4l2_dbg(1, debug, sd, "%s: edid ready (retries: %d)\n",
1110 __func__, EDID_MAX_RETRIES - state->edid.read_retries);
1112 if (!(edidRdy & MASK_AD9389B_EDID_RDY))
1113 return false;
1115 segment = ad9389b_rd(sd, 0xc4);
1116 if (segment >= EDID_MAX_SEGM) {
1117 v4l2_err(sd, "edid segment number too big\n");
1118 return false;
1120 v4l2_dbg(1, debug, sd, "%s: got segment %d\n", __func__, segment);
1121 ad9389b_edid_rd(sd, 256, &state->edid.data[segment * 256]);
1122 ad9389b_dbg_dump_edid(2, debug, sd, segment,
1123 &state->edid.data[segment * 256]);
1124 if (segment == 0) {
1125 state->edid.blocks = state->edid.data[0x7e] + 1;
1126 v4l2_dbg(1, debug, sd, "%s: %d blocks in total\n",
1127 __func__, state->edid.blocks);
1129 if (!edid_segment_verify_crc(sd, segment)) {
1130 /* edid crc error, force reread of edid segment */
1131 ad9389b_s_power(sd, false);
1132 ad9389b_s_power(sd, true);
1133 return false;
1135 /* one more segment read ok */
1136 state->edid.segments = segment + 1;
1137 if (((state->edid.data[0x7e] >> 1) + 1) > state->edid.segments) {
1138 /* Request next EDID segment */
1139 v4l2_dbg(1, debug, sd, "%s: request segment %d\n",
1140 __func__, state->edid.segments);
1141 ad9389b_wr(sd, 0xc9, 0xf);
1142 ad9389b_wr(sd, 0xc4, state->edid.segments);
1143 state->edid.read_retries = EDID_MAX_RETRIES;
1144 queue_delayed_work(state->work_queue,
1145 &state->edid_handler, EDID_DELAY);
1146 return false;
1149 /* report when we have all segments but report only for segment 0 */
1150 ed.present = true;
1151 ed.segment = 0;
1152 v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed);
1153 state->edid_detect_counter++;
1154 v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0);
1155 return ed.present;
1158 /* ----------------------------------------------------------------------- */
1160 static void ad9389b_init_setup(struct v4l2_subdev *sd)
1162 struct ad9389b_state *state = get_ad9389b_state(sd);
1163 struct ad9389b_state_edid *edid = &state->edid;
1165 v4l2_dbg(1, debug, sd, "%s\n", __func__);
1167 /* clear all interrupts */
1168 ad9389b_wr(sd, 0x96, 0xff);
1170 memset(edid, 0, sizeof(struct ad9389b_state_edid));
1171 state->have_monitor = false;
1172 ad9389b_set_isr(sd, false);
1175 static int ad9389b_probe(struct i2c_client *client, const struct i2c_device_id *id)
1177 const struct v4l2_dv_timings dv1080p60 = V4L2_DV_BT_CEA_1920X1080P60;
1178 struct ad9389b_state *state;
1179 struct ad9389b_platform_data *pdata = client->dev.platform_data;
1180 struct v4l2_ctrl_handler *hdl;
1181 struct v4l2_subdev *sd;
1182 int err = -EIO;
1184 /* Check if the adapter supports the needed features */
1185 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1186 return -EIO;
1188 v4l_dbg(1, debug, client, "detecting ad9389b client on address 0x%x\n",
1189 client->addr << 1);
1191 state = kzalloc(sizeof(struct ad9389b_state), GFP_KERNEL);
1192 if (!state)
1193 return -ENOMEM;
1195 /* Platform data */
1196 if (pdata == NULL) {
1197 v4l_err(client, "No platform data!\n");
1198 err = -ENODEV;
1199 goto err_free;
1201 memcpy(&state->pdata, pdata, sizeof(state->pdata));
1203 sd = &state->sd;
1204 v4l2_i2c_subdev_init(sd, client, &ad9389b_ops);
1205 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
1207 hdl = &state->hdl;
1208 v4l2_ctrl_handler_init(hdl, 5);
1210 /* private controls */
1212 state->hdmi_mode_ctrl = v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops,
1213 V4L2_CID_DV_TX_MODE, V4L2_DV_TX_MODE_HDMI,
1214 0, V4L2_DV_TX_MODE_DVI_D);
1215 state->hdmi_mode_ctrl->is_private = true;
1216 state->hotplug_ctrl = v4l2_ctrl_new_std(hdl, NULL,
1217 V4L2_CID_DV_TX_HOTPLUG, 0, 1, 0, 0);
1218 state->hotplug_ctrl->is_private = true;
1219 state->rx_sense_ctrl = v4l2_ctrl_new_std(hdl, NULL,
1220 V4L2_CID_DV_TX_RXSENSE, 0, 1, 0, 0);
1221 state->rx_sense_ctrl->is_private = true;
1222 state->have_edid0_ctrl = v4l2_ctrl_new_std(hdl, NULL,
1223 V4L2_CID_DV_TX_EDID_PRESENT, 0, 1, 0, 0);
1224 state->have_edid0_ctrl->is_private = true;
1225 state->rgb_quantization_range_ctrl =
1226 v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops,
1227 V4L2_CID_DV_TX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
1228 0, V4L2_DV_RGB_RANGE_AUTO);
1229 state->rgb_quantization_range_ctrl->is_private = true;
1230 sd->ctrl_handler = hdl;
1231 if (hdl->error) {
1232 err = hdl->error;
1234 goto err_hdl;
1237 state->pad.flags = MEDIA_PAD_FL_SINK;
1238 err = media_entity_init(&sd->entity, 1, &state->pad, 0);
1239 if (err)
1240 goto err_hdl;
1242 state->chip_revision = ad9389b_rd(sd, 0x0);
1243 if (state->chip_revision != 2) {
1244 v4l2_err(sd, "chip_revision %d != 2\n", state->chip_revision);
1245 err = -EIO;
1246 goto err_entity;
1248 v4l2_dbg(1, debug, sd, "reg 0x41 0x%x, chip version (reg 0x00) 0x%x\n",
1249 ad9389b_rd(sd, 0x41), state->chip_revision);
1251 state->edid_i2c_client = i2c_new_dummy(client->adapter, (0x7e>>1));
1252 if (state->edid_i2c_client == NULL) {
1253 v4l2_err(sd, "failed to register edid i2c client\n");
1254 goto err_entity;
1257 state->work_queue = create_singlethread_workqueue(sd->name);
1258 if (state->work_queue == NULL) {
1259 v4l2_err(sd, "could not create workqueue\n");
1260 goto err_unreg;
1263 INIT_DELAYED_WORK(&state->edid_handler, ad9389b_edid_handler);
1264 state->dv_timings = dv1080p60;
1266 ad9389b_init_setup(sd);
1267 ad9389b_set_isr(sd, true);
1269 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
1270 client->addr << 1, client->adapter->name);
1271 return 0;
1273 err_unreg:
1274 i2c_unregister_device(state->edid_i2c_client);
1275 err_entity:
1276 media_entity_cleanup(&sd->entity);
1277 err_hdl:
1278 v4l2_ctrl_handler_free(&state->hdl);
1279 err_free:
1280 kfree(state);
1281 return err;
1284 /* ----------------------------------------------------------------------- */
1286 static int ad9389b_remove(struct i2c_client *client)
1288 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1289 struct ad9389b_state *state = get_ad9389b_state(sd);
1291 state->chip_revision = -1;
1293 v4l2_dbg(1, debug, sd, "%s removed @ 0x%x (%s)\n", client->name,
1294 client->addr << 1, client->adapter->name);
1296 ad9389b_s_stream(sd, false);
1297 ad9389b_s_audio_stream(sd, false);
1298 ad9389b_init_setup(sd);
1299 cancel_delayed_work(&state->edid_handler);
1300 i2c_unregister_device(state->edid_i2c_client);
1301 destroy_workqueue(state->work_queue);
1302 v4l2_device_unregister_subdev(sd);
1303 media_entity_cleanup(&sd->entity);
1304 v4l2_ctrl_handler_free(sd->ctrl_handler);
1305 kfree(get_ad9389b_state(sd));
1306 return 0;
1309 /* ----------------------------------------------------------------------- */
1311 static struct i2c_device_id ad9389b_id[] = {
1312 { "ad9389b", V4L2_IDENT_AD9389B },
1313 { "ad9889b", V4L2_IDENT_AD9389B },
1316 MODULE_DEVICE_TABLE(i2c, ad9389b_id);
1318 static struct i2c_driver ad9389b_driver = {
1319 .driver = {
1320 .owner = THIS_MODULE,
1321 .name = "ad9389b",
1323 .probe = ad9389b_probe,
1324 .remove = ad9389b_remove,
1325 .id_table = ad9389b_id,
1328 module_i2c_driver(ad9389b_driver);