2 * Driver for the Conexant CX23885/7/8 PCIe bridge
4 * CX23888 Integrated Consumer Infrared Controller
6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
27 #include <media/v4l2-device.h>
28 #include <media/v4l2-chip-ident.h>
29 #include <media/rc-core.h>
32 #include "cx23888-ir.h"
34 static unsigned int ir_888_debug
;
35 module_param(ir_888_debug
, int, 0644);
36 MODULE_PARM_DESC(ir_888_debug
, "enable debug messages [CX23888 IR controller]");
38 #define CX23888_IR_REG_BASE 0x170000
40 * These CX23888 register offsets have a straightforward one to one mapping
41 * to the CX23885 register offsets of 0x200 through 0x218
43 #define CX23888_IR_CNTRL_REG 0x170000
44 #define CNTRL_WIN_3_3 0x00000000
45 #define CNTRL_WIN_4_3 0x00000001
46 #define CNTRL_WIN_3_4 0x00000002
47 #define CNTRL_WIN_4_4 0x00000003
48 #define CNTRL_WIN 0x00000003
49 #define CNTRL_EDG_NONE 0x00000000
50 #define CNTRL_EDG_FALL 0x00000004
51 #define CNTRL_EDG_RISE 0x00000008
52 #define CNTRL_EDG_BOTH 0x0000000C
53 #define CNTRL_EDG 0x0000000C
54 #define CNTRL_DMD 0x00000010
55 #define CNTRL_MOD 0x00000020
56 #define CNTRL_RFE 0x00000040
57 #define CNTRL_TFE 0x00000080
58 #define CNTRL_RXE 0x00000100
59 #define CNTRL_TXE 0x00000200
60 #define CNTRL_RIC 0x00000400
61 #define CNTRL_TIC 0x00000800
62 #define CNTRL_CPL 0x00001000
63 #define CNTRL_LBM 0x00002000
64 #define CNTRL_R 0x00004000
65 /* CX23888 specific control flag */
66 #define CNTRL_IVO 0x00008000
68 #define CX23888_IR_TXCLK_REG 0x170004
69 #define TXCLK_TCD 0x0000FFFF
71 #define CX23888_IR_RXCLK_REG 0x170008
72 #define RXCLK_RCD 0x0000FFFF
74 #define CX23888_IR_CDUTY_REG 0x17000C
75 #define CDUTY_CDC 0x0000000F
77 #define CX23888_IR_STATS_REG 0x170010
78 #define STATS_RTO 0x00000001
79 #define STATS_ROR 0x00000002
80 #define STATS_RBY 0x00000004
81 #define STATS_TBY 0x00000008
82 #define STATS_RSR 0x00000010
83 #define STATS_TSR 0x00000020
85 #define CX23888_IR_IRQEN_REG 0x170014
86 #define IRQEN_RTE 0x00000001
87 #define IRQEN_ROE 0x00000002
88 #define IRQEN_RSE 0x00000010
89 #define IRQEN_TSE 0x00000020
91 #define CX23888_IR_FILTR_REG 0x170018
92 #define FILTR_LPF 0x0000FFFF
94 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
95 #define CX23888_IR_FIFO_REG 0x170040
96 #define FIFO_RXTX 0x0000FFFF
97 #define FIFO_RXTX_LVL 0x00010000
98 #define FIFO_RXTX_RTO 0x0001FFFF
99 #define FIFO_RX_NDV 0x00020000
100 #define FIFO_RX_DEPTH 8
101 #define FIFO_TX_DEPTH 8
103 /* CX23888 unique registers */
104 #define CX23888_IR_SEEDP_REG 0x17001C
105 #define CX23888_IR_TIMOL_REG 0x170020
106 #define CX23888_IR_WAKE0_REG 0x170024
107 #define CX23888_IR_WAKE1_REG 0x170028
108 #define CX23888_IR_WAKE2_REG 0x17002C
109 #define CX23888_IR_MASK0_REG 0x170030
110 #define CX23888_IR_MASK1_REG 0x170034
111 #define CX23888_IR_MAKS2_REG 0x170038
112 #define CX23888_IR_DPIPG_REG 0x17003C
113 #define CX23888_IR_LEARN_REG 0x170044
115 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
116 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
119 * We use this union internally for convenience, but callers to tx_write
120 * and rx_read will be expecting records of type struct ir_raw_event.
121 * Always ensure the size of this union is dictated by struct ir_raw_event.
123 union cx23888_ir_fifo_rec
{
125 struct ir_raw_event ir_core_data
;
128 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
129 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
131 struct cx23888_ir_state
{
132 struct v4l2_subdev sd
;
133 struct cx23885_dev
*dev
;
137 struct v4l2_subdev_ir_parameters rx_params
;
138 struct mutex rx_params_lock
;
139 atomic_t rxclk_divider
;
142 struct kfifo rx_kfifo
;
143 spinlock_t rx_kfifo_lock
;
145 struct v4l2_subdev_ir_parameters tx_params
;
146 struct mutex tx_params_lock
;
147 atomic_t txclk_divider
;
150 static inline struct cx23888_ir_state
*to_state(struct v4l2_subdev
*sd
)
152 return v4l2_get_subdevdata(sd
);
156 * IR register block read and write functions
159 inline int cx23888_ir_write4(struct cx23885_dev
*dev
, u32 addr
, u32 value
)
161 cx_write(addr
, value
);
165 static inline u32
cx23888_ir_read4(struct cx23885_dev
*dev
, u32 addr
)
167 return cx_read(addr
);
170 static inline int cx23888_ir_and_or4(struct cx23885_dev
*dev
, u32 addr
,
171 u32 and_mask
, u32 or_value
)
173 cx_andor(addr
, ~and_mask
, or_value
);
178 * Rx and Tx Clock Divider register computations
180 * Note the largest clock divider value of 0xffff corresponds to:
181 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
182 * which fits in 21 bits, so we'll use unsigned int for time arguments.
184 static inline u16
count_to_clock_divider(unsigned int d
)
186 if (d
> RXCLK_RCD
+ 1)
195 static inline u16
ns_to_clock_divider(unsigned int ns
)
197 return count_to_clock_divider(
198 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
201 static inline unsigned int clock_divider_to_ns(unsigned int divider
)
203 /* Period of the Rx or Tx clock in ns */
204 return DIV_ROUND_CLOSEST((divider
+ 1) * 1000,
205 CX23888_IR_REFCLK_FREQ
/ 1000000);
208 static inline u16
carrier_freq_to_clock_divider(unsigned int freq
)
210 return count_to_clock_divider(
211 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* 16));
214 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider
)
216 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, (divider
+ 1) * 16);
219 static inline u16
freq_to_clock_divider(unsigned int freq
,
220 unsigned int rollovers
)
222 return count_to_clock_divider(
223 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
, freq
* rollovers
));
226 static inline unsigned int clock_divider_to_freq(unsigned int divider
,
227 unsigned int rollovers
)
229 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
,
230 (divider
+ 1) * rollovers
);
234 * Low Pass Filter register calculations
236 * Note the largest count value of 0xffff corresponds to:
237 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
238 * which fits in 21 bits, so we'll use unsigned int for time arguments.
240 static inline u16
count_to_lpf_count(unsigned int d
)
249 static inline u16
ns_to_lpf_count(unsigned int ns
)
251 return count_to_lpf_count(
252 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
255 static inline unsigned int lpf_count_to_ns(unsigned int count
)
257 /* Duration of the Low Pass Filter rejection window in ns */
258 return DIV_ROUND_CLOSEST(count
* 1000,
259 CX23888_IR_REFCLK_FREQ
/ 1000000);
262 static inline unsigned int lpf_count_to_us(unsigned int count
)
264 /* Duration of the Low Pass Filter rejection window in us */
265 return DIV_ROUND_CLOSEST(count
, CX23888_IR_REFCLK_FREQ
/ 1000000);
269 * FIFO register pulse width count compuations
271 static u32
clock_divider_to_resolution(u16 divider
)
274 * Resolution is the duration of 1 tick of the readable portion of
275 * of the pulse width counter as read from the FIFO. The two lsb's are
276 * not readable, hence the << 2. This function returns ns.
278 return DIV_ROUND_CLOSEST((1 << 2) * ((u32
) divider
+ 1) * 1000,
279 CX23888_IR_REFCLK_FREQ
/ 1000000);
282 static u64
pulse_width_count_to_ns(u16 count
, u16 divider
)
288 * The 2 lsb's of the pulse width timer count are not readable, hence
289 * the (count << 2) | 0x3
291 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1) * 1000; /* millicycles */
292 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => ns */
293 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
298 static unsigned int pulse_width_count_to_us(u16 count
, u16 divider
)
304 * The 2 lsb's of the pulse width timer count are not readable, hence
305 * the (count << 2) | 0x3
307 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1); /* cycles */
308 rem
= do_div(n
, CX23888_IR_REFCLK_FREQ
/ 1000000); /* / MHz => us */
309 if (rem
>= CX23888_IR_REFCLK_FREQ
/ 1000000 / 2)
311 return (unsigned int) n
;
315 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
317 * The total pulse clock count is an 18 bit pulse width timer count as the most
318 * significant part and (up to) 16 bit clock divider count as a modulus.
319 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
320 * width timer count's least significant bit.
322 static u64
ns_to_pulse_clocks(u32 ns
)
326 clocks
= CX23888_IR_REFCLK_FREQ
/ 1000000 * (u64
) ns
; /* millicycles */
327 rem
= do_div(clocks
, 1000); /* /1000 = cycles */
333 static u16
pulse_clocks_to_clock_divider(u64 count
)
335 do_div(count
, (FIFO_RXTX
<< 2) | 0x3);
337 /* net result needs to be rounded down and decremented by 1 */
338 if (count
> RXCLK_RCD
+ 1)
348 * IR Control Register helpers
350 enum tx_fifo_watermark
{
351 TX_FIFO_HALF_EMPTY
= 0,
352 TX_FIFO_EMPTY
= CNTRL_TIC
,
355 enum rx_fifo_watermark
{
356 RX_FIFO_HALF_FULL
= 0,
357 RX_FIFO_NOT_EMPTY
= CNTRL_RIC
,
360 static inline void control_tx_irq_watermark(struct cx23885_dev
*dev
,
361 enum tx_fifo_watermark level
)
363 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_TIC
, level
);
366 static inline void control_rx_irq_watermark(struct cx23885_dev
*dev
,
367 enum rx_fifo_watermark level
)
369 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_RIC
, level
);
372 static inline void control_tx_enable(struct cx23885_dev
*dev
, bool enable
)
374 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_TXE
| CNTRL_TFE
),
375 enable
? (CNTRL_TXE
| CNTRL_TFE
) : 0);
378 static inline void control_rx_enable(struct cx23885_dev
*dev
, bool enable
)
380 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~(CNTRL_RXE
| CNTRL_RFE
),
381 enable
? (CNTRL_RXE
| CNTRL_RFE
) : 0);
384 static inline void control_tx_modulation_enable(struct cx23885_dev
*dev
,
387 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_MOD
,
388 enable
? CNTRL_MOD
: 0);
391 static inline void control_rx_demodulation_enable(struct cx23885_dev
*dev
,
394 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_DMD
,
395 enable
? CNTRL_DMD
: 0);
398 static inline void control_rx_s_edge_detection(struct cx23885_dev
*dev
,
401 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_EDG_BOTH
,
402 edge_types
& CNTRL_EDG_BOTH
);
405 static void control_rx_s_carrier_window(struct cx23885_dev
*dev
,
406 unsigned int carrier
,
407 unsigned int *carrier_range_low
,
408 unsigned int *carrier_range_high
)
411 unsigned int c16
= carrier
* 16;
413 if (*carrier_range_low
< DIV_ROUND_CLOSEST(c16
, 16 + 3)) {
415 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 4);
418 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 3);
421 if (*carrier_range_high
> DIV_ROUND_CLOSEST(c16
, 16 - 3)) {
423 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 4);
426 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 3);
428 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_WIN
, v
);
431 static inline void control_tx_polarity_invert(struct cx23885_dev
*dev
,
434 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_CPL
,
435 invert
? CNTRL_CPL
: 0);
438 static inline void control_tx_level_invert(struct cx23885_dev
*dev
,
441 cx23888_ir_and_or4(dev
, CX23888_IR_CNTRL_REG
, ~CNTRL_IVO
,
442 invert
? CNTRL_IVO
: 0);
446 * IR Rx & Tx Clock Register helpers
448 static unsigned int txclk_tx_s_carrier(struct cx23885_dev
*dev
,
452 *divider
= carrier_freq_to_clock_divider(freq
);
453 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
454 return clock_divider_to_carrier_freq(*divider
);
457 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev
*dev
,
461 *divider
= carrier_freq_to_clock_divider(freq
);
462 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
463 return clock_divider_to_carrier_freq(*divider
);
466 static u32
txclk_tx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
471 if (ns
> IR_MAX_DURATION
)
472 ns
= IR_MAX_DURATION
;
473 pulse_clocks
= ns_to_pulse_clocks(ns
);
474 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
475 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, *divider
);
476 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
479 static u32
rxclk_rx_s_max_pulse_width(struct cx23885_dev
*dev
, u32 ns
,
484 if (ns
> IR_MAX_DURATION
)
485 ns
= IR_MAX_DURATION
;
486 pulse_clocks
= ns_to_pulse_clocks(ns
);
487 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
488 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, *divider
);
489 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
493 * IR Tx Carrier Duty Cycle register helpers
495 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev
*dev
,
496 unsigned int duty_cycle
)
499 n
= DIV_ROUND_CLOSEST(duty_cycle
* 100, 625); /* 16ths of 100% */
504 cx23888_ir_write4(dev
, CX23888_IR_CDUTY_REG
, n
);
505 return DIV_ROUND_CLOSEST((n
+ 1) * 100, 16);
509 * IR Filter Register helpers
511 static u32
filter_rx_s_min_width(struct cx23885_dev
*dev
, u32 min_width_ns
)
513 u32 count
= ns_to_lpf_count(min_width_ns
);
514 cx23888_ir_write4(dev
, CX23888_IR_FILTR_REG
, count
);
515 return lpf_count_to_ns(count
);
519 * IR IRQ Enable Register helpers
521 static inline void irqenable_rx(struct cx23885_dev
*dev
, u32 mask
)
523 mask
&= (IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
);
524 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
,
525 ~(IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
), mask
);
528 static inline void irqenable_tx(struct cx23885_dev
*dev
, u32 mask
)
531 cx23888_ir_and_or4(dev
, CX23888_IR_IRQEN_REG
, ~IRQEN_TSE
, mask
);
535 * V4L2 Subdevice IR Ops
537 static int cx23888_ir_irq_handler(struct v4l2_subdev
*sd
, u32 status
,
540 struct cx23888_ir_state
*state
= to_state(sd
);
541 struct cx23885_dev
*dev
= state
->dev
;
544 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
545 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
546 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
548 union cx23888_ir_fifo_rec rx_data
[FIFO_RX_DEPTH
];
549 unsigned int i
, j
, k
;
551 int tsr
, rsr
, rto
, ror
, tse
, rse
, rte
, roe
, kror
;
553 tsr
= stats
& STATS_TSR
; /* Tx FIFO Service Request */
554 rsr
= stats
& STATS_RSR
; /* Rx FIFO Service Request */
555 rto
= stats
& STATS_RTO
; /* Rx Pulse Width Timer Time Out */
556 ror
= stats
& STATS_ROR
; /* Rx FIFO Over Run */
558 tse
= irqen
& IRQEN_TSE
; /* Tx FIFO Service Request IRQ Enable */
559 rse
= irqen
& IRQEN_RSE
; /* Rx FIFO Service Reuqest IRQ Enable */
560 rte
= irqen
& IRQEN_RTE
; /* Rx Pulse Width Timer Time Out IRQ Enable */
561 roe
= irqen
& IRQEN_ROE
; /* Rx FIFO Over Run IRQ Enable */
564 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Status: %s %s %s %s %s %s\n",
565 tsr
? "tsr" : " ", rsr
? "rsr" : " ",
566 rto
? "rto" : " ", ror
? "ror" : " ",
567 stats
& STATS_TBY
? "tby" : " ",
568 stats
& STATS_RBY
? "rby" : " ");
570 v4l2_dbg(2, ir_888_debug
, sd
, "IRQ Enables: %s %s %s %s\n",
571 tse
? "tse" : " ", rse
? "rse" : " ",
572 rte
? "rte" : " ", roe
? "roe" : " ");
575 * Transmitter interrupt service
580 * Check the watermark threshold setting
581 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
582 * Push the data to the hardware FIFO.
583 * If there was nothing more to send in the tx_kfifo, disable
584 * the TSR IRQ and notify the v4l2_device.
585 * If there was something in the tx_kfifo, check the tx_kfifo
586 * level and notify the v4l2_device, if it is low.
588 /* For now, inhibit TSR interrupt until Tx is implemented */
589 irqenable_tx(dev
, 0);
590 events
= V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ
;
591 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_TX_NOTIFY
, &events
);
596 * Receiver interrupt service
599 if ((rse
&& rsr
) || (rte
&& rto
)) {
601 * Receive data on RSR to clear the STATS_RSR.
602 * Receive data on RTO, since we may not have yet hit the RSR
603 * watermark when we receive the RTO.
605 for (i
= 0, v
= FIFO_RX_NDV
;
606 (v
& FIFO_RX_NDV
) && !kror
; i
= 0) {
608 (v
& FIFO_RX_NDV
) && j
< FIFO_RX_DEPTH
; j
++) {
609 v
= cx23888_ir_read4(dev
, CX23888_IR_FIFO_REG
);
610 rx_data
[i
].hw_fifo_data
= v
& ~FIFO_RX_NDV
;
615 j
= i
* sizeof(union cx23888_ir_fifo_rec
);
616 k
= kfifo_in_locked(&state
->rx_kfifo
,
617 (unsigned char *) rx_data
, j
,
618 &state
->rx_kfifo_lock
);
620 kror
++; /* rx_kfifo over run */
628 events
|= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN
;
629 v4l2_err(sd
, "IR receiver software FIFO overrun\n");
633 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
634 * the Rx FIFO Over Run status (STATS_ROR)
637 events
|= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN
;
638 v4l2_err(sd
, "IR receiver hardware FIFO overrun\n");
642 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
643 * the Rx Pulse Width Timer Time Out (STATS_RTO)
646 events
|= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED
;
649 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
650 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
& ~v
);
651 cx23888_ir_write4(dev
, CX23888_IR_CNTRL_REG
, cntrl
);
655 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
656 if (kfifo_len(&state
->rx_kfifo
) >= CX23888_IR_RX_KFIFO_SIZE
/ 2)
657 events
|= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ
;
658 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
661 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_RX_NOTIFY
, &events
);
666 static int cx23888_ir_rx_read(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
669 struct cx23888_ir_state
*state
= to_state(sd
);
670 bool invert
= (bool) atomic_read(&state
->rx_invert
);
671 u16 divider
= (u16
) atomic_read(&state
->rxclk_divider
);
674 union cx23888_ir_fifo_rec
*p
;
677 n
= count
/ sizeof(union cx23888_ir_fifo_rec
)
678 * sizeof(union cx23888_ir_fifo_rec
);
684 n
= kfifo_out_locked(&state
->rx_kfifo
, buf
, n
, &state
->rx_kfifo_lock
);
686 n
/= sizeof(union cx23888_ir_fifo_rec
);
687 *num
= n
* sizeof(union cx23888_ir_fifo_rec
);
689 for (p
= (union cx23888_ir_fifo_rec
*) buf
, i
= 0; i
< n
; p
++, i
++) {
691 if ((p
->hw_fifo_data
& FIFO_RXTX_RTO
) == FIFO_RXTX_RTO
) {
692 /* Assume RTO was because of no IR light input */
696 u
= (p
->hw_fifo_data
& FIFO_RXTX_LVL
) ? 1 : 0;
702 v
= (unsigned) pulse_width_count_to_ns(
703 (u16
) (p
->hw_fifo_data
& FIFO_RXTX
), divider
);
704 if (v
> IR_MAX_DURATION
)
707 init_ir_raw_event(&p
->ir_core_data
);
708 p
->ir_core_data
.pulse
= u
;
709 p
->ir_core_data
.duration
= v
;
710 p
->ir_core_data
.timeout
= w
;
712 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: %10u ns %s %s\n",
713 v
, u
? "mark" : "space", w
? "(timed out)" : "");
715 v4l2_dbg(2, ir_888_debug
, sd
, "rx read: end of rx\n");
720 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev
*sd
,
721 struct v4l2_subdev_ir_parameters
*p
)
723 struct cx23888_ir_state
*state
= to_state(sd
);
724 mutex_lock(&state
->rx_params_lock
);
725 memcpy(p
, &state
->rx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
726 mutex_unlock(&state
->rx_params_lock
);
730 static int cx23888_ir_rx_shutdown(struct v4l2_subdev
*sd
)
732 struct cx23888_ir_state
*state
= to_state(sd
);
733 struct cx23885_dev
*dev
= state
->dev
;
735 mutex_lock(&state
->rx_params_lock
);
737 /* Disable or slow down all IR Rx circuits and counters */
738 irqenable_rx(dev
, 0);
739 control_rx_enable(dev
, false);
740 control_rx_demodulation_enable(dev
, false);
741 control_rx_s_edge_detection(dev
, CNTRL_EDG_NONE
);
742 filter_rx_s_min_width(dev
, 0);
743 cx23888_ir_write4(dev
, CX23888_IR_RXCLK_REG
, RXCLK_RCD
);
745 state
->rx_params
.shutdown
= true;
747 mutex_unlock(&state
->rx_params_lock
);
751 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev
*sd
,
752 struct v4l2_subdev_ir_parameters
*p
)
754 struct cx23888_ir_state
*state
= to_state(sd
);
755 struct cx23885_dev
*dev
= state
->dev
;
756 struct v4l2_subdev_ir_parameters
*o
= &state
->rx_params
;
760 return cx23888_ir_rx_shutdown(sd
);
762 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
765 mutex_lock(&state
->rx_params_lock
);
767 o
->shutdown
= p
->shutdown
;
769 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
771 o
->bytes_per_data_element
= p
->bytes_per_data_element
772 = sizeof(union cx23888_ir_fifo_rec
);
774 /* Before we tweak the hardware, we have to disable the receiver */
775 irqenable_rx(dev
, 0);
776 control_rx_enable(dev
, false);
778 control_rx_demodulation_enable(dev
, p
->modulation
);
779 o
->modulation
= p
->modulation
;
782 p
->carrier_freq
= rxclk_rx_s_carrier(dev
, p
->carrier_freq
,
785 o
->carrier_freq
= p
->carrier_freq
;
787 o
->duty_cycle
= p
->duty_cycle
= 50;
789 control_rx_s_carrier_window(dev
, p
->carrier_freq
,
790 &p
->carrier_range_lower
,
791 &p
->carrier_range_upper
);
792 o
->carrier_range_lower
= p
->carrier_range_lower
;
793 o
->carrier_range_upper
= p
->carrier_range_upper
;
796 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, rxclk_divider
);
799 rxclk_rx_s_max_pulse_width(dev
, p
->max_pulse_width
,
802 o
->max_pulse_width
= p
->max_pulse_width
;
803 atomic_set(&state
->rxclk_divider
, rxclk_divider
);
805 p
->noise_filter_min_width
=
806 filter_rx_s_min_width(dev
, p
->noise_filter_min_width
);
807 o
->noise_filter_min_width
= p
->noise_filter_min_width
;
809 p
->resolution
= clock_divider_to_resolution(rxclk_divider
);
810 o
->resolution
= p
->resolution
;
812 /* FIXME - make this dependent on resolution for better performance */
813 control_rx_irq_watermark(dev
, RX_FIFO_HALF_FULL
);
815 control_rx_s_edge_detection(dev
, CNTRL_EDG_BOTH
);
817 o
->invert_level
= p
->invert_level
;
818 atomic_set(&state
->rx_invert
, p
->invert_level
);
820 o
->interrupt_enable
= p
->interrupt_enable
;
821 o
->enable
= p
->enable
;
825 spin_lock_irqsave(&state
->rx_kfifo_lock
, flags
);
826 kfifo_reset(&state
->rx_kfifo
);
827 /* reset tx_fifo too if there is one... */
828 spin_unlock_irqrestore(&state
->rx_kfifo_lock
, flags
);
829 if (p
->interrupt_enable
)
830 irqenable_rx(dev
, IRQEN_RSE
| IRQEN_RTE
| IRQEN_ROE
);
831 control_rx_enable(dev
, p
->enable
);
834 mutex_unlock(&state
->rx_params_lock
);
839 static int cx23888_ir_tx_write(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
842 struct cx23888_ir_state
*state
= to_state(sd
);
843 struct cx23885_dev
*dev
= state
->dev
;
844 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
845 irqenable_tx(dev
, IRQEN_TSE
);
850 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev
*sd
,
851 struct v4l2_subdev_ir_parameters
*p
)
853 struct cx23888_ir_state
*state
= to_state(sd
);
854 mutex_lock(&state
->tx_params_lock
);
855 memcpy(p
, &state
->tx_params
, sizeof(struct v4l2_subdev_ir_parameters
));
856 mutex_unlock(&state
->tx_params_lock
);
860 static int cx23888_ir_tx_shutdown(struct v4l2_subdev
*sd
)
862 struct cx23888_ir_state
*state
= to_state(sd
);
863 struct cx23885_dev
*dev
= state
->dev
;
865 mutex_lock(&state
->tx_params_lock
);
867 /* Disable or slow down all IR Tx circuits and counters */
868 irqenable_tx(dev
, 0);
869 control_tx_enable(dev
, false);
870 control_tx_modulation_enable(dev
, false);
871 cx23888_ir_write4(dev
, CX23888_IR_TXCLK_REG
, TXCLK_TCD
);
873 state
->tx_params
.shutdown
= true;
875 mutex_unlock(&state
->tx_params_lock
);
879 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev
*sd
,
880 struct v4l2_subdev_ir_parameters
*p
)
882 struct cx23888_ir_state
*state
= to_state(sd
);
883 struct cx23885_dev
*dev
= state
->dev
;
884 struct v4l2_subdev_ir_parameters
*o
= &state
->tx_params
;
888 return cx23888_ir_tx_shutdown(sd
);
890 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
893 mutex_lock(&state
->tx_params_lock
);
895 o
->shutdown
= p
->shutdown
;
897 o
->mode
= p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
899 o
->bytes_per_data_element
= p
->bytes_per_data_element
900 = sizeof(union cx23888_ir_fifo_rec
);
902 /* Before we tweak the hardware, we have to disable the transmitter */
903 irqenable_tx(dev
, 0);
904 control_tx_enable(dev
, false);
906 control_tx_modulation_enable(dev
, p
->modulation
);
907 o
->modulation
= p
->modulation
;
910 p
->carrier_freq
= txclk_tx_s_carrier(dev
, p
->carrier_freq
,
912 o
->carrier_freq
= p
->carrier_freq
;
914 p
->duty_cycle
= cduty_tx_s_duty_cycle(dev
, p
->duty_cycle
);
915 o
->duty_cycle
= p
->duty_cycle
;
918 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, txclk_divider
);
921 txclk_tx_s_max_pulse_width(dev
, p
->max_pulse_width
,
924 o
->max_pulse_width
= p
->max_pulse_width
;
925 atomic_set(&state
->txclk_divider
, txclk_divider
);
927 p
->resolution
= clock_divider_to_resolution(txclk_divider
);
928 o
->resolution
= p
->resolution
;
930 /* FIXME - make this dependent on resolution for better performance */
931 control_tx_irq_watermark(dev
, TX_FIFO_HALF_EMPTY
);
933 control_tx_polarity_invert(dev
, p
->invert_carrier_sense
);
934 o
->invert_carrier_sense
= p
->invert_carrier_sense
;
936 control_tx_level_invert(dev
, p
->invert_level
);
937 o
->invert_level
= p
->invert_level
;
939 o
->interrupt_enable
= p
->interrupt_enable
;
940 o
->enable
= p
->enable
;
942 if (p
->interrupt_enable
)
943 irqenable_tx(dev
, IRQEN_TSE
);
944 control_tx_enable(dev
, p
->enable
);
947 mutex_unlock(&state
->tx_params_lock
);
953 * V4L2 Subdevice Core Ops
955 static int cx23888_ir_log_status(struct v4l2_subdev
*sd
)
957 struct cx23888_ir_state
*state
= to_state(sd
);
958 struct cx23885_dev
*dev
= state
->dev
;
962 u32 cntrl
= cx23888_ir_read4(dev
, CX23888_IR_CNTRL_REG
);
963 u32 txclk
= cx23888_ir_read4(dev
, CX23888_IR_TXCLK_REG
) & TXCLK_TCD
;
964 u32 rxclk
= cx23888_ir_read4(dev
, CX23888_IR_RXCLK_REG
) & RXCLK_RCD
;
965 u32 cduty
= cx23888_ir_read4(dev
, CX23888_IR_CDUTY_REG
) & CDUTY_CDC
;
966 u32 stats
= cx23888_ir_read4(dev
, CX23888_IR_STATS_REG
);
967 u32 irqen
= cx23888_ir_read4(dev
, CX23888_IR_IRQEN_REG
);
968 u32 filtr
= cx23888_ir_read4(dev
, CX23888_IR_FILTR_REG
) & FILTR_LPF
;
970 v4l2_info(sd
, "IR Receiver:\n");
971 v4l2_info(sd
, "\tEnabled: %s\n",
972 cntrl
& CNTRL_RXE
? "yes" : "no");
973 v4l2_info(sd
, "\tDemodulation from a carrier: %s\n",
974 cntrl
& CNTRL_DMD
? "enabled" : "disabled");
975 v4l2_info(sd
, "\tFIFO: %s\n",
976 cntrl
& CNTRL_RFE
? "enabled" : "disabled");
977 switch (cntrl
& CNTRL_EDG
) {
988 s
= "rising & falling edges";
994 v4l2_info(sd
, "\tPulse timers' start/stop trigger: %s\n", s
);
995 v4l2_info(sd
, "\tFIFO data on pulse timer overflow: %s\n",
996 cntrl
& CNTRL_R
? "not loaded" : "overflow marker");
997 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
998 cntrl
& CNTRL_RIC
? "not empty" : "half full or greater");
999 v4l2_info(sd
, "\tLoopback mode: %s\n",
1000 cntrl
& CNTRL_LBM
? "loopback active" : "normal receive");
1001 if (cntrl
& CNTRL_DMD
) {
1002 v4l2_info(sd
, "\tExpected carrier (16 clocks): %u Hz\n",
1003 clock_divider_to_carrier_freq(rxclk
));
1004 switch (cntrl
& CNTRL_WIN
) {
1026 v4l2_info(sd
, "\tNext carrier edge window: 16 clocks "
1027 "-%1d/+%1d, %u to %u Hz\n", i
, j
,
1028 clock_divider_to_freq(rxclk
, 16 + j
),
1029 clock_divider_to_freq(rxclk
, 16 - i
));
1031 v4l2_info(sd
, "\tMax measurable pulse width: %u us, %llu ns\n",
1032 pulse_width_count_to_us(FIFO_RXTX
, rxclk
),
1033 pulse_width_count_to_ns(FIFO_RXTX
, rxclk
));
1034 v4l2_info(sd
, "\tLow pass filter: %s\n",
1035 filtr
? "enabled" : "disabled");
1037 v4l2_info(sd
, "\tMin acceptable pulse width (LPF): %u us, "
1039 lpf_count_to_us(filtr
),
1040 lpf_count_to_ns(filtr
));
1041 v4l2_info(sd
, "\tPulse width timer timed-out: %s\n",
1042 stats
& STATS_RTO
? "yes" : "no");
1043 v4l2_info(sd
, "\tPulse width timer time-out intr: %s\n",
1044 irqen
& IRQEN_RTE
? "enabled" : "disabled");
1045 v4l2_info(sd
, "\tFIFO overrun: %s\n",
1046 stats
& STATS_ROR
? "yes" : "no");
1047 v4l2_info(sd
, "\tFIFO overrun interrupt: %s\n",
1048 irqen
& IRQEN_ROE
? "enabled" : "disabled");
1049 v4l2_info(sd
, "\tBusy: %s\n",
1050 stats
& STATS_RBY
? "yes" : "no");
1051 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1052 stats
& STATS_RSR
? "yes" : "no");
1053 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1054 irqen
& IRQEN_RSE
? "enabled" : "disabled");
1056 v4l2_info(sd
, "IR Transmitter:\n");
1057 v4l2_info(sd
, "\tEnabled: %s\n",
1058 cntrl
& CNTRL_TXE
? "yes" : "no");
1059 v4l2_info(sd
, "\tModulation onto a carrier: %s\n",
1060 cntrl
& CNTRL_MOD
? "enabled" : "disabled");
1061 v4l2_info(sd
, "\tFIFO: %s\n",
1062 cntrl
& CNTRL_TFE
? "enabled" : "disabled");
1063 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1064 cntrl
& CNTRL_TIC
? "not empty" : "half full or less");
1065 v4l2_info(sd
, "\tOutput pin level inversion %s\n",
1066 cntrl
& CNTRL_IVO
? "yes" : "no");
1067 v4l2_info(sd
, "\tCarrier polarity: %s\n",
1068 cntrl
& CNTRL_CPL
? "space:burst mark:noburst"
1069 : "space:noburst mark:burst");
1070 if (cntrl
& CNTRL_MOD
) {
1071 v4l2_info(sd
, "\tCarrier (16 clocks): %u Hz\n",
1072 clock_divider_to_carrier_freq(txclk
));
1073 v4l2_info(sd
, "\tCarrier duty cycle: %2u/16\n",
1076 v4l2_info(sd
, "\tMax pulse width: %u us, %llu ns\n",
1077 pulse_width_count_to_us(FIFO_RXTX
, txclk
),
1078 pulse_width_count_to_ns(FIFO_RXTX
, txclk
));
1079 v4l2_info(sd
, "\tBusy: %s\n",
1080 stats
& STATS_TBY
? "yes" : "no");
1081 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1082 stats
& STATS_TSR
? "yes" : "no");
1083 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1084 irqen
& IRQEN_TSE
? "enabled" : "disabled");
1089 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match
*match
)
1091 return match
->type
== V4L2_CHIP_MATCH_HOST
&& match
->addr
== 2;
1094 static int cx23888_ir_g_chip_ident(struct v4l2_subdev
*sd
,
1095 struct v4l2_dbg_chip_ident
*chip
)
1097 struct cx23888_ir_state
*state
= to_state(sd
);
1099 if (cx23888_ir_dbg_match(&chip
->match
)) {
1100 chip
->ident
= state
->id
;
1101 chip
->revision
= state
->rev
;
1106 #ifdef CONFIG_VIDEO_ADV_DEBUG
1107 static int cx23888_ir_g_register(struct v4l2_subdev
*sd
,
1108 struct v4l2_dbg_register
*reg
)
1110 struct cx23888_ir_state
*state
= to_state(sd
);
1111 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1113 if (!cx23888_ir_dbg_match(®
->match
))
1115 if ((addr
& 0x3) != 0)
1117 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1119 if (!capable(CAP_SYS_ADMIN
))
1122 reg
->val
= cx23888_ir_read4(state
->dev
, addr
);
1126 static int cx23888_ir_s_register(struct v4l2_subdev
*sd
,
1127 const struct v4l2_dbg_register
*reg
)
1129 struct cx23888_ir_state
*state
= to_state(sd
);
1130 u32 addr
= CX23888_IR_REG_BASE
+ (u32
) reg
->reg
;
1132 if (!cx23888_ir_dbg_match(®
->match
))
1134 if ((addr
& 0x3) != 0)
1136 if (addr
< CX23888_IR_CNTRL_REG
|| addr
> CX23888_IR_LEARN_REG
)
1138 if (!capable(CAP_SYS_ADMIN
))
1140 cx23888_ir_write4(state
->dev
, addr
, reg
->val
);
1145 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops
= {
1146 .g_chip_ident
= cx23888_ir_g_chip_ident
,
1147 .log_status
= cx23888_ir_log_status
,
1148 #ifdef CONFIG_VIDEO_ADV_DEBUG
1149 .g_register
= cx23888_ir_g_register
,
1150 .s_register
= cx23888_ir_s_register
,
1152 .interrupt_service_routine
= cx23888_ir_irq_handler
,
1155 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops
= {
1156 .rx_read
= cx23888_ir_rx_read
,
1157 .rx_g_parameters
= cx23888_ir_rx_g_parameters
,
1158 .rx_s_parameters
= cx23888_ir_rx_s_parameters
,
1160 .tx_write
= cx23888_ir_tx_write
,
1161 .tx_g_parameters
= cx23888_ir_tx_g_parameters
,
1162 .tx_s_parameters
= cx23888_ir_tx_s_parameters
,
1165 static const struct v4l2_subdev_ops cx23888_ir_controller_ops
= {
1166 .core
= &cx23888_ir_core_ops
,
1167 .ir
= &cx23888_ir_ir_ops
,
1170 static const struct v4l2_subdev_ir_parameters default_rx_params
= {
1171 .bytes_per_data_element
= sizeof(union cx23888_ir_fifo_rec
),
1172 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1175 .interrupt_enable
= false,
1179 .carrier_freq
= 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1181 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1182 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1183 .noise_filter_min_width
= 333333, /* ns */
1184 .carrier_range_lower
= 35000,
1185 .carrier_range_upper
= 37000,
1186 .invert_level
= false,
1189 static const struct v4l2_subdev_ir_parameters default_tx_params
= {
1190 .bytes_per_data_element
= sizeof(union cx23888_ir_fifo_rec
),
1191 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1194 .interrupt_enable
= false,
1198 .carrier_freq
= 36000, /* 36 kHz - RC-5 carrier */
1199 .duty_cycle
= 25, /* 25 % - RC-5 carrier */
1200 .invert_level
= false,
1201 .invert_carrier_sense
= false,
1204 int cx23888_ir_probe(struct cx23885_dev
*dev
)
1206 struct cx23888_ir_state
*state
;
1207 struct v4l2_subdev
*sd
;
1208 struct v4l2_subdev_ir_parameters default_params
;
1211 state
= kzalloc(sizeof(struct cx23888_ir_state
), GFP_KERNEL
);
1215 spin_lock_init(&state
->rx_kfifo_lock
);
1216 if (kfifo_alloc(&state
->rx_kfifo
, CX23888_IR_RX_KFIFO_SIZE
, GFP_KERNEL
))
1220 state
->id
= V4L2_IDENT_CX23888_IR
;
1224 v4l2_subdev_init(sd
, &cx23888_ir_controller_ops
);
1225 v4l2_set_subdevdata(sd
, state
);
1226 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1227 snprintf(sd
->name
, sizeof(sd
->name
), "%s/888-ir", dev
->name
);
1228 sd
->grp_id
= CX23885_HW_888_IR
;
1230 ret
= v4l2_device_register_subdev(&dev
->v4l2_dev
, sd
);
1233 * Ensure no interrupts arrive from '888 specific conditions,
1234 * since we ignore them in this driver to have commonality with
1235 * similar IR controller cores.
1237 cx23888_ir_write4(dev
, CX23888_IR_IRQEN_REG
, 0);
1239 mutex_init(&state
->rx_params_lock
);
1240 default_params
= default_rx_params
;
1241 v4l2_subdev_call(sd
, ir
, rx_s_parameters
, &default_params
);
1243 mutex_init(&state
->tx_params_lock
);
1244 default_params
= default_tx_params
;
1245 v4l2_subdev_call(sd
, ir
, tx_s_parameters
, &default_params
);
1247 kfifo_free(&state
->rx_kfifo
);
1252 int cx23888_ir_remove(struct cx23885_dev
*dev
)
1254 struct v4l2_subdev
*sd
;
1255 struct cx23888_ir_state
*state
;
1257 sd
= cx23885_find_hw(dev
, CX23885_HW_888_IR
);
1261 cx23888_ir_rx_shutdown(sd
);
1262 cx23888_ir_tx_shutdown(sd
);
1264 state
= to_state(sd
);
1265 v4l2_device_unregister_subdev(sd
);
1266 kfifo_free(&state
->rx_kfifo
);
1268 /* Nothing more to free() as state held the actual v4l2_subdev object */