2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/mmc/pm.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/card.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
39 #include <asm/div64.h>
41 #include <asm/sizes.h>
45 #define DRIVER_NAME "mmci-pl18x"
47 static unsigned int fmax
= 515633;
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 * is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 * is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
67 unsigned int clkreg_enable
;
68 unsigned int datalength_bits
;
69 unsigned int fifosize
;
70 unsigned int fifohalfsize
;
73 bool blksz_datactrl16
;
75 bool signal_direction
;
79 static struct variant_data variant_arm
= {
81 .fifohalfsize
= 8 * 4,
82 .datalength_bits
= 16,
83 .pwrreg_powerup
= MCI_PWR_UP
,
86 static struct variant_data variant_arm_extended_fifo
= {
88 .fifohalfsize
= 64 * 4,
89 .datalength_bits
= 16,
90 .pwrreg_powerup
= MCI_PWR_UP
,
93 static struct variant_data variant_arm_extended_fifo_hwfc
= {
95 .fifohalfsize
= 64 * 4,
96 .clkreg_enable
= MCI_ARM_HWFCEN
,
97 .datalength_bits
= 16,
98 .pwrreg_powerup
= MCI_PWR_UP
,
101 static struct variant_data variant_u300
= {
103 .fifohalfsize
= 8 * 4,
104 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
105 .datalength_bits
= 16,
107 .pwrreg_powerup
= MCI_PWR_ON
,
108 .signal_direction
= true,
109 .pwrreg_clkgate
= true,
112 static struct variant_data variant_nomadik
= {
114 .fifohalfsize
= 8 * 4,
115 .clkreg
= MCI_CLK_ENABLE
,
116 .datalength_bits
= 24,
119 .pwrreg_powerup
= MCI_PWR_ON
,
120 .signal_direction
= true,
121 .pwrreg_clkgate
= true,
124 static struct variant_data variant_ux500
= {
126 .fifohalfsize
= 8 * 4,
127 .clkreg
= MCI_CLK_ENABLE
,
128 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
129 .datalength_bits
= 24,
132 .pwrreg_powerup
= MCI_PWR_ON
,
133 .signal_direction
= true,
134 .pwrreg_clkgate
= true,
137 static struct variant_data variant_ux500v2
= {
139 .fifohalfsize
= 8 * 4,
140 .clkreg
= MCI_CLK_ENABLE
,
141 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
142 .datalength_bits
= 24,
145 .blksz_datactrl16
= true,
146 .pwrreg_powerup
= MCI_PWR_ON
,
147 .signal_direction
= true,
148 .pwrreg_clkgate
= true,
152 * Validate mmc prerequisites
154 static int mmci_validate_data(struct mmci_host
*host
,
155 struct mmc_data
*data
)
160 if (!is_power_of_2(data
->blksz
)) {
161 dev_err(mmc_dev(host
->mmc
),
162 "unsupported block size (%d bytes)\n", data
->blksz
);
170 * This must be called with host->lock held
172 static void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
174 if (host
->clk_reg
!= clk
) {
176 writel(clk
, host
->base
+ MMCICLOCK
);
181 * This must be called with host->lock held
183 static void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
185 if (host
->pwr_reg
!= pwr
) {
187 writel(pwr
, host
->base
+ MMCIPOWER
);
192 * This must be called with host->lock held
194 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
196 struct variant_data
*variant
= host
->variant
;
197 u32 clk
= variant
->clkreg
;
200 if (desired
>= host
->mclk
) {
201 clk
= MCI_CLK_BYPASS
;
202 if (variant
->st_clkdiv
)
203 clk
|= MCI_ST_UX500_NEG_EDGE
;
204 host
->cclk
= host
->mclk
;
205 } else if (variant
->st_clkdiv
) {
207 * DB8500 TRM says f = mclk / (clkdiv + 2)
208 * => clkdiv = (mclk / f) - 2
209 * Round the divider up so we don't exceed the max
212 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
215 host
->cclk
= host
->mclk
/ (clk
+ 2);
218 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
219 * => clkdiv = mclk / (2 * f) - 1
221 clk
= host
->mclk
/ (2 * desired
) - 1;
224 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
227 clk
|= variant
->clkreg_enable
;
228 clk
|= MCI_CLK_ENABLE
;
229 /* This hasn't proven to be worthwhile */
230 /* clk |= MCI_CLK_PWRSAVE; */
233 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
235 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
236 clk
|= MCI_ST_8BIT_BUS
;
238 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
)
239 clk
|= MCI_ST_UX500_NEG_EDGE
;
241 mmci_write_clkreg(host
, clk
);
245 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
247 writel(0, host
->base
+ MMCICOMMAND
);
254 mmc_request_done(host
->mmc
, mrq
);
256 pm_runtime_mark_last_busy(mmc_dev(host
->mmc
));
257 pm_runtime_put_autosuspend(mmc_dev(host
->mmc
));
260 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
262 void __iomem
*base
= host
->base
;
264 if (host
->singleirq
) {
265 unsigned int mask0
= readl(base
+ MMCIMASK0
);
267 mask0
&= ~MCI_IRQ1MASK
;
270 writel(mask0
, base
+ MMCIMASK0
);
273 writel(mask
, base
+ MMCIMASK1
);
276 static void mmci_stop_data(struct mmci_host
*host
)
278 writel(0, host
->base
+ MMCIDATACTRL
);
279 mmci_set_mask1(host
, 0);
283 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
285 unsigned int flags
= SG_MITER_ATOMIC
;
287 if (data
->flags
& MMC_DATA_READ
)
288 flags
|= SG_MITER_TO_SG
;
290 flags
|= SG_MITER_FROM_SG
;
292 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
296 * All the DMA operation mode stuff goes inside this ifdef.
297 * This assumes that you have a generic DMA device interface,
298 * no custom DMA interfaces are supported.
300 #ifdef CONFIG_DMA_ENGINE
301 static void mmci_dma_setup(struct mmci_host
*host
)
303 struct mmci_platform_data
*plat
= host
->plat
;
304 const char *rxname
, *txname
;
307 if (!plat
|| !plat
->dma_filter
) {
308 dev_info(mmc_dev(host
->mmc
), "no DMA platform data\n");
312 /* initialize pre request cookie */
313 host
->next_data
.cookie
= 1;
315 /* Try to acquire a generic DMA engine slave channel */
317 dma_cap_set(DMA_SLAVE
, mask
);
320 * If only an RX channel is specified, the driver will
321 * attempt to use it bidirectionally, however if it is
322 * is specified but cannot be located, DMA will be disabled.
324 if (plat
->dma_rx_param
) {
325 host
->dma_rx_channel
= dma_request_channel(mask
,
328 /* E.g if no DMA hardware is present */
329 if (!host
->dma_rx_channel
)
330 dev_err(mmc_dev(host
->mmc
), "no RX DMA channel\n");
333 if (plat
->dma_tx_param
) {
334 host
->dma_tx_channel
= dma_request_channel(mask
,
337 if (!host
->dma_tx_channel
)
338 dev_warn(mmc_dev(host
->mmc
), "no TX DMA channel\n");
340 host
->dma_tx_channel
= host
->dma_rx_channel
;
343 if (host
->dma_rx_channel
)
344 rxname
= dma_chan_name(host
->dma_rx_channel
);
348 if (host
->dma_tx_channel
)
349 txname
= dma_chan_name(host
->dma_tx_channel
);
353 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
357 * Limit the maximum segment size in any SG entry according to
358 * the parameters of the DMA engine device.
360 if (host
->dma_tx_channel
) {
361 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
362 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
364 if (max_seg_size
< host
->mmc
->max_seg_size
)
365 host
->mmc
->max_seg_size
= max_seg_size
;
367 if (host
->dma_rx_channel
) {
368 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
369 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
371 if (max_seg_size
< host
->mmc
->max_seg_size
)
372 host
->mmc
->max_seg_size
= max_seg_size
;
377 * This is used in or so inline it
378 * so it can be discarded.
380 static inline void mmci_dma_release(struct mmci_host
*host
)
382 struct mmci_platform_data
*plat
= host
->plat
;
384 if (host
->dma_rx_channel
)
385 dma_release_channel(host
->dma_rx_channel
);
386 if (host
->dma_tx_channel
&& plat
->dma_tx_param
)
387 dma_release_channel(host
->dma_tx_channel
);
388 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
391 static void mmci_dma_data_error(struct mmci_host
*host
)
393 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
394 dmaengine_terminate_all(host
->dma_current
);
395 host
->dma_current
= NULL
;
396 host
->dma_desc_current
= NULL
;
397 host
->data
->host_cookie
= 0;
400 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
402 struct dma_chan
*chan
;
403 enum dma_data_direction dir
;
405 if (data
->flags
& MMC_DATA_READ
) {
406 dir
= DMA_FROM_DEVICE
;
407 chan
= host
->dma_rx_channel
;
410 chan
= host
->dma_tx_channel
;
413 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
, dir
);
416 static void mmci_dma_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
421 /* Wait up to 1ms for the DMA to complete */
423 status
= readl(host
->base
+ MMCISTATUS
);
424 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
430 * Check to see whether we still have some data left in the FIFO -
431 * this catches DMA controllers which are unable to monitor the
432 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
433 * contiguous buffers. On TX, we'll get a FIFO underrun error.
435 if (status
& MCI_RXDATAAVLBLMASK
) {
436 mmci_dma_data_error(host
);
441 if (!data
->host_cookie
)
442 mmci_dma_unmap(host
, data
);
445 * Use of DMA with scatter-gather is impossible.
446 * Give up with DMA and switch back to PIO mode.
448 if (status
& MCI_RXDATAAVLBLMASK
) {
449 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
450 mmci_dma_release(host
);
453 host
->dma_current
= NULL
;
454 host
->dma_desc_current
= NULL
;
457 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
458 static int __mmci_dma_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
459 struct dma_chan
**dma_chan
,
460 struct dma_async_tx_descriptor
**dma_desc
)
462 struct variant_data
*variant
= host
->variant
;
463 struct dma_slave_config conf
= {
464 .src_addr
= host
->phybase
+ MMCIFIFO
,
465 .dst_addr
= host
->phybase
+ MMCIFIFO
,
466 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
467 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
468 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
469 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
472 struct dma_chan
*chan
;
473 struct dma_device
*device
;
474 struct dma_async_tx_descriptor
*desc
;
475 enum dma_data_direction buffer_dirn
;
478 if (data
->flags
& MMC_DATA_READ
) {
479 conf
.direction
= DMA_DEV_TO_MEM
;
480 buffer_dirn
= DMA_FROM_DEVICE
;
481 chan
= host
->dma_rx_channel
;
483 conf
.direction
= DMA_MEM_TO_DEV
;
484 buffer_dirn
= DMA_TO_DEVICE
;
485 chan
= host
->dma_tx_channel
;
488 /* If there's no DMA channel, fall back to PIO */
492 /* If less than or equal to the fifo size, don't bother with DMA */
493 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
496 device
= chan
->device
;
497 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
501 dmaengine_slave_config(chan
, &conf
);
502 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
503 conf
.direction
, DMA_CTRL_ACK
);
513 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
517 static inline int mmci_dma_prep_data(struct mmci_host
*host
,
518 struct mmc_data
*data
)
520 /* Check if next job is already prepared. */
521 if (host
->dma_current
&& host
->dma_desc_current
)
524 /* No job were prepared thus do it now. */
525 return __mmci_dma_prep_data(host
, data
, &host
->dma_current
,
526 &host
->dma_desc_current
);
529 static inline int mmci_dma_prep_next(struct mmci_host
*host
,
530 struct mmc_data
*data
)
532 struct mmci_host_next
*nd
= &host
->next_data
;
533 return __mmci_dma_prep_data(host
, data
, &nd
->dma_chan
, &nd
->dma_desc
);
536 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
539 struct mmc_data
*data
= host
->data
;
541 ret
= mmci_dma_prep_data(host
, host
->data
);
545 /* Okay, go for it. */
546 dev_vdbg(mmc_dev(host
->mmc
),
547 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
548 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
549 dmaengine_submit(host
->dma_desc_current
);
550 dma_async_issue_pending(host
->dma_current
);
552 datactrl
|= MCI_DPSM_DMAENABLE
;
554 /* Trigger the DMA transfer */
555 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
558 * Let the MMCI say when the data is ended and it's time
559 * to fire next DMA request. When that happens, MMCI will
560 * call mmci_data_end()
562 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
563 host
->base
+ MMCIMASK0
);
567 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
569 struct mmci_host_next
*next
= &host
->next_data
;
571 WARN_ON(data
->host_cookie
&& data
->host_cookie
!= next
->cookie
);
572 WARN_ON(!data
->host_cookie
&& (next
->dma_desc
|| next
->dma_chan
));
574 host
->dma_desc_current
= next
->dma_desc
;
575 host
->dma_current
= next
->dma_chan
;
576 next
->dma_desc
= NULL
;
577 next
->dma_chan
= NULL
;
580 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
583 struct mmci_host
*host
= mmc_priv(mmc
);
584 struct mmc_data
*data
= mrq
->data
;
585 struct mmci_host_next
*nd
= &host
->next_data
;
590 BUG_ON(data
->host_cookie
);
592 if (mmci_validate_data(host
, data
))
595 if (!mmci_dma_prep_next(host
, data
))
596 data
->host_cookie
= ++nd
->cookie
< 0 ? 1 : nd
->cookie
;
599 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
602 struct mmci_host
*host
= mmc_priv(mmc
);
603 struct mmc_data
*data
= mrq
->data
;
605 if (!data
|| !data
->host_cookie
)
608 mmci_dma_unmap(host
, data
);
611 struct mmci_host_next
*next
= &host
->next_data
;
612 struct dma_chan
*chan
;
613 if (data
->flags
& MMC_DATA_READ
)
614 chan
= host
->dma_rx_channel
;
616 chan
= host
->dma_tx_channel
;
617 dmaengine_terminate_all(chan
);
619 next
->dma_desc
= NULL
;
620 next
->dma_chan
= NULL
;
625 /* Blank functions if the DMA engine is not available */
626 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
629 static inline void mmci_dma_setup(struct mmci_host
*host
)
633 static inline void mmci_dma_release(struct mmci_host
*host
)
637 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
641 static inline void mmci_dma_finalize(struct mmci_host
*host
,
642 struct mmc_data
*data
)
646 static inline void mmci_dma_data_error(struct mmci_host
*host
)
650 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
655 #define mmci_pre_request NULL
656 #define mmci_post_request NULL
660 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
662 struct variant_data
*variant
= host
->variant
;
663 unsigned int datactrl
, timeout
, irqmask
;
664 unsigned long long clks
;
668 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
669 data
->blksz
, data
->blocks
, data
->flags
);
672 host
->size
= data
->blksz
* data
->blocks
;
673 data
->bytes_xfered
= 0;
675 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
676 do_div(clks
, 1000000000UL);
678 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
681 writel(timeout
, base
+ MMCIDATATIMER
);
682 writel(host
->size
, base
+ MMCIDATALENGTH
);
684 blksz_bits
= ffs(data
->blksz
) - 1;
685 BUG_ON(1 << blksz_bits
!= data
->blksz
);
687 if (variant
->blksz_datactrl16
)
688 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
690 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
692 if (data
->flags
& MMC_DATA_READ
)
693 datactrl
|= MCI_DPSM_DIRECTION
;
695 /* The ST Micro variants has a special bit to enable SDIO */
696 if (variant
->sdio
&& host
->mmc
->card
)
697 if (mmc_card_sdio(host
->mmc
->card
)) {
699 * The ST Micro variants has a special bit
704 datactrl
|= MCI_ST_DPSM_SDIOEN
;
707 * The ST Micro variant for SDIO small write transfers
708 * needs to have clock H/W flow control disabled,
709 * otherwise the transfer will not start. The threshold
710 * depends on the rate of MCLK.
712 if (data
->flags
& MMC_DATA_WRITE
&&
714 (host
->size
<= 8 && host
->mclk
> 50000000)))
715 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
717 clk
= host
->clk_reg
| variant
->clkreg_enable
;
719 mmci_write_clkreg(host
, clk
);
722 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
)
723 datactrl
|= MCI_ST_DPSM_DDRMODE
;
726 * Attempt to use DMA operation mode, if this
727 * should fail, fall back to PIO mode
729 if (!mmci_dma_start_data(host
, datactrl
))
732 /* IRQ mode, map the SG list for CPU reading/writing */
733 mmci_init_sg(host
, data
);
735 if (data
->flags
& MMC_DATA_READ
) {
736 irqmask
= MCI_RXFIFOHALFFULLMASK
;
739 * If we have less than the fifo 'half-full' threshold to
740 * transfer, trigger a PIO interrupt as soon as any data
743 if (host
->size
< variant
->fifohalfsize
)
744 irqmask
|= MCI_RXDATAAVLBLMASK
;
747 * We don't actually need to include "FIFO empty" here
748 * since its implicit in "FIFO half empty".
750 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
753 writel(datactrl
, base
+ MMCIDATACTRL
);
754 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
755 mmci_set_mask1(host
, irqmask
);
759 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
761 void __iomem
*base
= host
->base
;
763 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
764 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
766 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
767 writel(0, base
+ MMCICOMMAND
);
771 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
772 if (cmd
->flags
& MMC_RSP_PRESENT
) {
773 if (cmd
->flags
& MMC_RSP_136
)
774 c
|= MCI_CPSM_LONGRSP
;
775 c
|= MCI_CPSM_RESPONSE
;
778 c
|= MCI_CPSM_INTERRUPT
;
782 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
783 writel(c
, base
+ MMCICOMMAND
);
787 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
790 /* First check for errors */
791 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
792 MCI_TXUNDERRUN
|MCI_RXOVERRUN
)) {
795 /* Terminate the DMA transfer */
796 if (dma_inprogress(host
)) {
797 mmci_dma_data_error(host
);
798 mmci_dma_unmap(host
, data
);
802 * Calculate how far we are into the transfer. Note that
803 * the data counter gives the number of bytes transferred
804 * on the MMC bus, not on the host side. On reads, this
805 * can be as much as a FIFO-worth of data ahead. This
806 * matters for FIFO overruns only.
808 remain
= readl(host
->base
+ MMCIDATACNT
);
809 success
= data
->blksz
* data
->blocks
- remain
;
811 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
813 if (status
& MCI_DATACRCFAIL
) {
814 /* Last block was not successful */
816 data
->error
= -EILSEQ
;
817 } else if (status
& MCI_DATATIMEOUT
) {
818 data
->error
= -ETIMEDOUT
;
819 } else if (status
& MCI_STARTBITERR
) {
820 data
->error
= -ECOMM
;
821 } else if (status
& MCI_TXUNDERRUN
) {
823 } else if (status
& MCI_RXOVERRUN
) {
824 if (success
> host
->variant
->fifosize
)
825 success
-= host
->variant
->fifosize
;
830 data
->bytes_xfered
= round_down(success
, data
->blksz
);
833 if (status
& MCI_DATABLOCKEND
)
834 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
836 if (status
& MCI_DATAEND
|| data
->error
) {
837 if (dma_inprogress(host
))
838 mmci_dma_finalize(host
, data
);
839 mmci_stop_data(host
);
842 /* The error clause is handled above, success! */
843 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
846 mmci_request_end(host
, data
->mrq
);
848 mmci_start_command(host
, data
->stop
, 0);
854 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
857 void __iomem
*base
= host
->base
;
861 if (status
& MCI_CMDTIMEOUT
) {
862 cmd
->error
= -ETIMEDOUT
;
863 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
864 cmd
->error
= -EILSEQ
;
866 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
867 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
868 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
869 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
872 if (!cmd
->data
|| cmd
->error
) {
874 /* Terminate the DMA transfer */
875 if (dma_inprogress(host
)) {
876 mmci_dma_data_error(host
);
877 mmci_dma_unmap(host
, host
->data
);
879 mmci_stop_data(host
);
881 mmci_request_end(host
, cmd
->mrq
);
882 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
883 mmci_start_data(host
, cmd
->data
);
887 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
889 void __iomem
*base
= host
->base
;
892 int host_remain
= host
->size
;
895 int count
= host_remain
- (readl(base
+ MMCIFIFOCNT
) << 2);
904 * SDIO especially may want to send something that is
905 * not divisible by 4 (as opposed to card sectors
906 * etc). Therefore make sure to always read the last bytes
907 * while only doing full 32-bit reads towards the FIFO.
909 if (unlikely(count
& 0x3)) {
911 unsigned char buf
[4];
912 ioread32_rep(base
+ MMCIFIFO
, buf
, 1);
913 memcpy(ptr
, buf
, count
);
915 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
919 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
924 host_remain
-= count
;
929 status
= readl(base
+ MMCISTATUS
);
930 } while (status
& MCI_RXDATAAVLBL
);
935 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
937 struct variant_data
*variant
= host
->variant
;
938 void __iomem
*base
= host
->base
;
942 unsigned int count
, maxcnt
;
944 maxcnt
= status
& MCI_TXFIFOEMPTY
?
945 variant
->fifosize
: variant
->fifohalfsize
;
946 count
= min(remain
, maxcnt
);
949 * SDIO especially may want to send something that is
950 * not divisible by 4 (as opposed to card sectors
951 * etc), and the FIFO only accept full 32-bit writes.
952 * So compensate by adding +3 on the count, a single
953 * byte become a 32bit write, 7 bytes will be two
956 iowrite32_rep(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
964 status
= readl(base
+ MMCISTATUS
);
965 } while (status
& MCI_TXFIFOHALFEMPTY
);
971 * PIO data transfer IRQ handler.
973 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
975 struct mmci_host
*host
= dev_id
;
976 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
977 struct variant_data
*variant
= host
->variant
;
978 void __iomem
*base
= host
->base
;
982 status
= readl(base
+ MMCISTATUS
);
984 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
986 local_irq_save(flags
);
989 unsigned int remain
, len
;
993 * For write, we only need to test the half-empty flag
994 * here - if the FIFO is completely empty, then by
995 * definition it is more than half empty.
997 * For read, check for data available.
999 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
1002 if (!sg_miter_next(sg_miter
))
1005 buffer
= sg_miter
->addr
;
1006 remain
= sg_miter
->length
;
1009 if (status
& MCI_RXACTIVE
)
1010 len
= mmci_pio_read(host
, buffer
, remain
);
1011 if (status
& MCI_TXACTIVE
)
1012 len
= mmci_pio_write(host
, buffer
, remain
, status
);
1014 sg_miter
->consumed
= len
;
1022 status
= readl(base
+ MMCISTATUS
);
1025 sg_miter_stop(sg_miter
);
1027 local_irq_restore(flags
);
1030 * If we have less than the fifo 'half-full' threshold to transfer,
1031 * trigger a PIO interrupt as soon as any data is available.
1033 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
1034 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
1037 * If we run out of data, disable the data IRQs; this
1038 * prevents a race where the FIFO becomes empty before
1039 * the chip itself has disabled the data path, and
1040 * stops us racing with our data end IRQ.
1042 if (host
->size
== 0) {
1043 mmci_set_mask1(host
, 0);
1044 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1051 * Handle completion of command and data transfers.
1053 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
1055 struct mmci_host
*host
= dev_id
;
1059 spin_lock(&host
->lock
);
1062 struct mmc_command
*cmd
;
1063 struct mmc_data
*data
;
1065 status
= readl(host
->base
+ MMCISTATUS
);
1067 if (host
->singleirq
) {
1068 if (status
& readl(host
->base
+ MMCIMASK1
))
1069 mmci_pio_irq(irq
, dev_id
);
1071 status
&= ~MCI_IRQ1MASK
;
1074 status
&= readl(host
->base
+ MMCIMASK0
);
1075 writel(status
, host
->base
+ MMCICLEAR
);
1077 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1080 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
1081 MCI_TXUNDERRUN
|MCI_RXOVERRUN
|MCI_DATAEND
|
1082 MCI_DATABLOCKEND
) && data
)
1083 mmci_data_irq(host
, data
, status
);
1086 if (status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|MCI_CMDSENT
|MCI_CMDRESPEND
) && cmd
)
1087 mmci_cmd_irq(host
, cmd
, status
);
1092 spin_unlock(&host
->lock
);
1094 return IRQ_RETVAL(ret
);
1097 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1099 struct mmci_host
*host
= mmc_priv(mmc
);
1100 unsigned long flags
;
1102 WARN_ON(host
->mrq
!= NULL
);
1104 mrq
->cmd
->error
= mmci_validate_data(host
, mrq
->data
);
1105 if (mrq
->cmd
->error
) {
1106 mmc_request_done(mmc
, mrq
);
1110 pm_runtime_get_sync(mmc_dev(mmc
));
1112 spin_lock_irqsave(&host
->lock
, flags
);
1117 mmci_get_next_data(host
, mrq
->data
);
1119 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
1120 mmci_start_data(host
, mrq
->data
);
1122 mmci_start_command(host
, mrq
->cmd
, 0);
1124 spin_unlock_irqrestore(&host
->lock
, flags
);
1127 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1129 struct mmci_host
*host
= mmc_priv(mmc
);
1130 struct variant_data
*variant
= host
->variant
;
1132 unsigned long flags
;
1134 pm_runtime_get_sync(mmc_dev(mmc
));
1136 if (host
->plat
->ios_handler
&&
1137 host
->plat
->ios_handler(mmc_dev(mmc
), ios
))
1138 dev_err(mmc_dev(mmc
), "platform ios_handler failed\n");
1140 switch (ios
->power_mode
) {
1142 if (!IS_ERR(mmc
->supply
.vmmc
))
1143 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1145 if (!IS_ERR(mmc
->supply
.vqmmc
) &&
1146 regulator_is_enabled(mmc
->supply
.vqmmc
))
1147 regulator_disable(mmc
->supply
.vqmmc
);
1151 if (!IS_ERR(mmc
->supply
.vmmc
))
1152 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1155 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1156 * and instead uses MCI_PWR_ON so apply whatever value is
1157 * configured in the variant data.
1159 pwr
|= variant
->pwrreg_powerup
;
1163 if (!IS_ERR(mmc
->supply
.vqmmc
) &&
1164 !regulator_is_enabled(mmc
->supply
.vqmmc
))
1165 regulator_enable(mmc
->supply
.vqmmc
);
1171 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1173 * The ST Micro variant has some additional bits
1174 * indicating signal direction for the signals in
1175 * the SD/MMC bus and feedback-clock usage.
1177 pwr
|= host
->plat
->sigdir
;
1179 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1180 pwr
&= ~MCI_ST_DATA74DIREN
;
1181 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1182 pwr
&= (~MCI_ST_DATA74DIREN
&
1183 ~MCI_ST_DATA31DIREN
&
1184 ~MCI_ST_DATA2DIREN
);
1187 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
) {
1188 if (host
->hw_designer
!= AMBA_VENDOR_ST
)
1192 * The ST Micro variant use the ROD bit for something
1193 * else and only has OD (Open Drain).
1200 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1201 * gating the clock, the MCI_PWR_ON bit is cleared.
1203 if (!ios
->clock
&& variant
->pwrreg_clkgate
)
1206 spin_lock_irqsave(&host
->lock
, flags
);
1208 mmci_set_clkreg(host
, ios
->clock
);
1209 mmci_write_pwrreg(host
, pwr
);
1211 spin_unlock_irqrestore(&host
->lock
, flags
);
1213 pm_runtime_mark_last_busy(mmc_dev(mmc
));
1214 pm_runtime_put_autosuspend(mmc_dev(mmc
));
1217 static int mmci_get_ro(struct mmc_host
*mmc
)
1219 struct mmci_host
*host
= mmc_priv(mmc
);
1221 if (host
->gpio_wp
== -ENOSYS
)
1224 return gpio_get_value_cansleep(host
->gpio_wp
);
1227 static int mmci_get_cd(struct mmc_host
*mmc
)
1229 struct mmci_host
*host
= mmc_priv(mmc
);
1230 struct mmci_platform_data
*plat
= host
->plat
;
1231 unsigned int status
;
1233 if (host
->gpio_cd
== -ENOSYS
) {
1235 return 1; /* Assume always present */
1237 status
= plat
->status(mmc_dev(host
->mmc
));
1239 status
= !!gpio_get_value_cansleep(host
->gpio_cd
)
1243 * Use positive logic throughout - status is zero for no card,
1244 * non-zero for card inserted.
1249 static irqreturn_t
mmci_cd_irq(int irq
, void *dev_id
)
1251 struct mmci_host
*host
= dev_id
;
1253 mmc_detect_change(host
->mmc
, msecs_to_jiffies(500));
1258 static const struct mmc_host_ops mmci_ops
= {
1259 .request
= mmci_request
,
1260 .pre_req
= mmci_pre_request
,
1261 .post_req
= mmci_post_request
,
1262 .set_ios
= mmci_set_ios
,
1263 .get_ro
= mmci_get_ro
,
1264 .get_cd
= mmci_get_cd
,
1268 static void mmci_dt_populate_generic_pdata(struct device_node
*np
,
1269 struct mmci_platform_data
*pdata
)
1273 pdata
->gpio_wp
= of_get_named_gpio(np
, "wp-gpios", 0);
1274 pdata
->gpio_cd
= of_get_named_gpio(np
, "cd-gpios", 0);
1276 if (of_get_property(np
, "cd-inverted", NULL
))
1277 pdata
->cd_invert
= true;
1279 pdata
->cd_invert
= false;
1281 of_property_read_u32(np
, "max-frequency", &pdata
->f_max
);
1283 pr_warn("%s has no 'max-frequency' property\n", np
->full_name
);
1285 if (of_get_property(np
, "mmc-cap-mmc-highspeed", NULL
))
1286 pdata
->capabilities
|= MMC_CAP_MMC_HIGHSPEED
;
1287 if (of_get_property(np
, "mmc-cap-sd-highspeed", NULL
))
1288 pdata
->capabilities
|= MMC_CAP_SD_HIGHSPEED
;
1290 of_property_read_u32(np
, "bus-width", &bus_width
);
1291 switch (bus_width
) {
1293 /* No bus-width supplied. */
1296 pdata
->capabilities
|= MMC_CAP_4_BIT_DATA
;
1299 pdata
->capabilities
|= MMC_CAP_8_BIT_DATA
;
1302 pr_warn("%s: Unsupported bus width\n", np
->full_name
);
1306 static void mmci_dt_populate_generic_pdata(struct device_node
*np
,
1307 struct mmci_platform_data
*pdata
)
1313 static int mmci_probe(struct amba_device
*dev
,
1314 const struct amba_id
*id
)
1316 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1317 struct device_node
*np
= dev
->dev
.of_node
;
1318 struct variant_data
*variant
= id
->data
;
1319 struct mmci_host
*host
;
1320 struct mmc_host
*mmc
;
1323 /* Must have platform data or Device Tree. */
1325 dev_err(&dev
->dev
, "No plat data or DT found\n");
1330 plat
= devm_kzalloc(&dev
->dev
, sizeof(*plat
), GFP_KERNEL
);
1336 mmci_dt_populate_generic_pdata(np
, plat
);
1338 ret
= amba_request_regions(dev
, DRIVER_NAME
);
1342 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1348 host
= mmc_priv(mmc
);
1351 host
->gpio_wp
= -ENOSYS
;
1352 host
->gpio_cd
= -ENOSYS
;
1353 host
->gpio_cd_irq
= -1;
1355 host
->hw_designer
= amba_manf(dev
);
1356 host
->hw_revision
= amba_rev(dev
);
1357 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1358 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1360 host
->clk
= clk_get(&dev
->dev
, NULL
);
1361 if (IS_ERR(host
->clk
)) {
1362 ret
= PTR_ERR(host
->clk
);
1367 ret
= clk_prepare_enable(host
->clk
);
1372 host
->variant
= variant
;
1373 host
->mclk
= clk_get_rate(host
->clk
);
1375 * According to the spec, mclk is max 100 MHz,
1376 * so we try to adjust the clock down to this,
1379 if (host
->mclk
> 100000000) {
1380 ret
= clk_set_rate(host
->clk
, 100000000);
1383 host
->mclk
= clk_get_rate(host
->clk
);
1384 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1387 host
->phybase
= dev
->res
.start
;
1388 host
->base
= ioremap(dev
->res
.start
, resource_size(&dev
->res
));
1394 mmc
->ops
= &mmci_ops
;
1396 * The ARM and ST versions of the block have slightly different
1397 * clock divider equations which means that the minimum divider
1400 if (variant
->st_clkdiv
)
1401 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
1403 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
1405 * If the platform data supplies a maximum operating
1406 * frequency, this takes precedence. Else, we fall back
1407 * to using the module parameter, which has a (low)
1408 * default value in case it is not specified. Either
1409 * value must not exceed the clock rate into the block,
1413 mmc
->f_max
= min(host
->mclk
, plat
->f_max
);
1415 mmc
->f_max
= min(host
->mclk
, fmax
);
1416 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1418 host
->pinctrl
= devm_pinctrl_get(&dev
->dev
);
1419 if (IS_ERR(host
->pinctrl
)) {
1420 ret
= PTR_ERR(host
->pinctrl
);
1424 host
->pins_default
= pinctrl_lookup_state(host
->pinctrl
,
1425 PINCTRL_STATE_DEFAULT
);
1427 /* enable pins to be muxed in and configured */
1428 if (!IS_ERR(host
->pins_default
)) {
1429 ret
= pinctrl_select_state(host
->pinctrl
, host
->pins_default
);
1431 dev_warn(&dev
->dev
, "could not set default pins\n");
1433 dev_warn(&dev
->dev
, "could not get default pinstate\n");
1435 /* Get regulators and the supported OCR mask */
1436 mmc_regulator_get_supply(mmc
);
1437 if (!mmc
->ocr_avail
)
1438 mmc
->ocr_avail
= plat
->ocr_mask
;
1439 else if (plat
->ocr_mask
)
1440 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1442 mmc
->caps
= plat
->capabilities
;
1443 mmc
->caps2
= plat
->capabilities2
;
1445 /* We support these PM capabilities. */
1446 mmc
->pm_caps
= MMC_PM_KEEP_POWER
;
1451 mmc
->max_segs
= NR_SG
;
1454 * Since only a certain number of bits are valid in the data length
1455 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1458 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1461 * Set the maximum segment size. Since we aren't doing DMA
1462 * (yet) we are only limited by the data length register.
1464 mmc
->max_seg_size
= mmc
->max_req_size
;
1467 * Block size can be up to 2048 bytes, but must be a power of two.
1469 mmc
->max_blk_size
= 1 << 11;
1472 * Limit the number of blocks transferred so that we don't overflow
1473 * the maximum request size.
1475 mmc
->max_blk_count
= mmc
->max_req_size
>> 11;
1477 spin_lock_init(&host
->lock
);
1479 writel(0, host
->base
+ MMCIMASK0
);
1480 writel(0, host
->base
+ MMCIMASK1
);
1481 writel(0xfff, host
->base
+ MMCICLEAR
);
1483 if (plat
->gpio_cd
== -EPROBE_DEFER
) {
1484 ret
= -EPROBE_DEFER
;
1487 if (gpio_is_valid(plat
->gpio_cd
)) {
1488 ret
= gpio_request(plat
->gpio_cd
, DRIVER_NAME
" (cd)");
1490 ret
= gpio_direction_input(plat
->gpio_cd
);
1492 host
->gpio_cd
= plat
->gpio_cd
;
1493 else if (ret
!= -ENOSYS
)
1497 * A gpio pin that will detect cards when inserted and removed
1498 * will most likely want to trigger on the edges if it is
1499 * 0 when ejected and 1 when inserted (or mutatis mutandis
1500 * for the inverted case) so we request triggers on both
1503 ret
= request_any_context_irq(gpio_to_irq(plat
->gpio_cd
),
1505 IRQF_TRIGGER_RISING
| IRQF_TRIGGER_FALLING
,
1506 DRIVER_NAME
" (cd)", host
);
1508 host
->gpio_cd_irq
= gpio_to_irq(plat
->gpio_cd
);
1510 if (plat
->gpio_wp
== -EPROBE_DEFER
) {
1511 ret
= -EPROBE_DEFER
;
1514 if (gpio_is_valid(plat
->gpio_wp
)) {
1515 ret
= gpio_request(plat
->gpio_wp
, DRIVER_NAME
" (wp)");
1517 ret
= gpio_direction_input(plat
->gpio_wp
);
1519 host
->gpio_wp
= plat
->gpio_wp
;
1520 else if (ret
!= -ENOSYS
)
1524 if ((host
->plat
->status
|| host
->gpio_cd
!= -ENOSYS
)
1525 && host
->gpio_cd_irq
< 0)
1526 mmc
->caps
|= MMC_CAP_NEEDS_POLL
;
1528 ret
= request_irq(dev
->irq
[0], mmci_irq
, IRQF_SHARED
, DRIVER_NAME
" (cmd)", host
);
1533 host
->singleirq
= true;
1535 ret
= request_irq(dev
->irq
[1], mmci_pio_irq
, IRQF_SHARED
,
1536 DRIVER_NAME
" (pio)", host
);
1541 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1543 amba_set_drvdata(dev
, mmc
);
1545 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1546 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1547 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1548 dev
->irq
[0], dev
->irq
[1]);
1550 mmci_dma_setup(host
);
1552 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
1553 pm_runtime_use_autosuspend(&dev
->dev
);
1554 pm_runtime_put(&dev
->dev
);
1561 free_irq(dev
->irq
[0], host
);
1563 if (host
->gpio_wp
!= -ENOSYS
)
1564 gpio_free(host
->gpio_wp
);
1566 if (host
->gpio_cd_irq
>= 0)
1567 free_irq(host
->gpio_cd_irq
, host
);
1568 if (host
->gpio_cd
!= -ENOSYS
)
1569 gpio_free(host
->gpio_cd
);
1571 iounmap(host
->base
);
1573 clk_disable_unprepare(host
->clk
);
1579 amba_release_regions(dev
);
1584 static int mmci_remove(struct amba_device
*dev
)
1586 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1588 amba_set_drvdata(dev
, NULL
);
1591 struct mmci_host
*host
= mmc_priv(mmc
);
1594 * Undo pm_runtime_put() in probe. We use the _sync
1595 * version here so that we can access the primecell.
1597 pm_runtime_get_sync(&dev
->dev
);
1599 mmc_remove_host(mmc
);
1601 writel(0, host
->base
+ MMCIMASK0
);
1602 writel(0, host
->base
+ MMCIMASK1
);
1604 writel(0, host
->base
+ MMCICOMMAND
);
1605 writel(0, host
->base
+ MMCIDATACTRL
);
1607 mmci_dma_release(host
);
1608 free_irq(dev
->irq
[0], host
);
1609 if (!host
->singleirq
)
1610 free_irq(dev
->irq
[1], host
);
1612 if (host
->gpio_wp
!= -ENOSYS
)
1613 gpio_free(host
->gpio_wp
);
1614 if (host
->gpio_cd_irq
>= 0)
1615 free_irq(host
->gpio_cd_irq
, host
);
1616 if (host
->gpio_cd
!= -ENOSYS
)
1617 gpio_free(host
->gpio_cd
);
1619 iounmap(host
->base
);
1620 clk_disable_unprepare(host
->clk
);
1625 amba_release_regions(dev
);
1631 #ifdef CONFIG_SUSPEND
1632 static int mmci_suspend(struct device
*dev
)
1634 struct amba_device
*adev
= to_amba_device(dev
);
1635 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1639 struct mmci_host
*host
= mmc_priv(mmc
);
1641 ret
= mmc_suspend_host(mmc
);
1643 pm_runtime_get_sync(dev
);
1644 writel(0, host
->base
+ MMCIMASK0
);
1651 static int mmci_resume(struct device
*dev
)
1653 struct amba_device
*adev
= to_amba_device(dev
);
1654 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1658 struct mmci_host
*host
= mmc_priv(mmc
);
1660 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1661 pm_runtime_put(dev
);
1663 ret
= mmc_resume_host(mmc
);
1670 #ifdef CONFIG_PM_RUNTIME
1671 static int mmci_runtime_suspend(struct device
*dev
)
1673 struct amba_device
*adev
= to_amba_device(dev
);
1674 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1677 struct mmci_host
*host
= mmc_priv(mmc
);
1678 clk_disable_unprepare(host
->clk
);
1684 static int mmci_runtime_resume(struct device
*dev
)
1686 struct amba_device
*adev
= to_amba_device(dev
);
1687 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1690 struct mmci_host
*host
= mmc_priv(mmc
);
1691 clk_prepare_enable(host
->clk
);
1698 static const struct dev_pm_ops mmci_dev_pm_ops
= {
1699 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend
, mmci_resume
)
1700 SET_RUNTIME_PM_OPS(mmci_runtime_suspend
, mmci_runtime_resume
, NULL
)
1703 static struct amba_id mmci_ids
[] = {
1707 .data
= &variant_arm
,
1712 .data
= &variant_arm_extended_fifo
,
1717 .data
= &variant_arm_extended_fifo_hwfc
,
1722 .data
= &variant_arm
,
1724 /* ST Micro variants */
1728 .data
= &variant_u300
,
1733 .data
= &variant_nomadik
,
1738 .data
= &variant_u300
,
1743 .data
= &variant_ux500
,
1748 .data
= &variant_ux500v2
,
1753 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
1755 static struct amba_driver mmci_driver
= {
1757 .name
= DRIVER_NAME
,
1758 .pm
= &mmci_dev_pm_ops
,
1760 .probe
= mmci_probe
,
1761 .remove
= mmci_remove
,
1762 .id_table
= mmci_ids
,
1765 module_amba_driver(mmci_driver
);
1767 module_param(fmax
, uint
, 0444);
1769 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1770 MODULE_LICENSE("GPL");