2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
52 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE 50
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH 8
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS 0
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG 0
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG 0
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS 32
90 static uint first_id_byte
= CONFIG_NANDSIM_FIRST_ID_BYTE
;
91 static uint second_id_byte
= CONFIG_NANDSIM_SECOND_ID_BYTE
;
92 static uint third_id_byte
= CONFIG_NANDSIM_THIRD_ID_BYTE
;
93 static uint fourth_id_byte
= CONFIG_NANDSIM_FOURTH_ID_BYTE
;
94 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
95 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
96 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
97 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
98 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
99 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
100 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
101 static uint log
= CONFIG_NANDSIM_LOG
;
102 static uint dbg
= CONFIG_NANDSIM_DBG
;
103 static unsigned long parts
[CONFIG_NANDSIM_MAX_PARTS
];
104 static unsigned int parts_num
;
105 static char *badblocks
= NULL
;
106 static char *weakblocks
= NULL
;
107 static char *weakpages
= NULL
;
108 static unsigned int bitflips
= 0;
109 static char *gravepages
= NULL
;
110 static unsigned int overridesize
= 0;
111 static char *cache_file
= NULL
;
112 static unsigned int bbt
;
113 static unsigned int bch
;
115 module_param(first_id_byte
, uint
, 0400);
116 module_param(second_id_byte
, uint
, 0400);
117 module_param(third_id_byte
, uint
, 0400);
118 module_param(fourth_id_byte
, uint
, 0400);
119 module_param(access_delay
, uint
, 0400);
120 module_param(programm_delay
, uint
, 0400);
121 module_param(erase_delay
, uint
, 0400);
122 module_param(output_cycle
, uint
, 0400);
123 module_param(input_cycle
, uint
, 0400);
124 module_param(bus_width
, uint
, 0400);
125 module_param(do_delays
, uint
, 0400);
126 module_param(log
, uint
, 0400);
127 module_param(dbg
, uint
, 0400);
128 module_param_array(parts
, ulong
, &parts_num
, 0400);
129 module_param(badblocks
, charp
, 0400);
130 module_param(weakblocks
, charp
, 0400);
131 module_param(weakpages
, charp
, 0400);
132 module_param(bitflips
, uint
, 0400);
133 module_param(gravepages
, charp
, 0400);
134 module_param(overridesize
, uint
, 0400);
135 module_param(cache_file
, charp
, 0400);
136 module_param(bbt
, uint
, 0400);
137 module_param(bch
, uint
, 0400);
139 MODULE_PARM_DESC(first_id_byte
, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command");
142 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command");
143 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microseconds)");
144 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
145 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
146 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanoseconds)");
147 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanoseconds)");
148 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
149 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
150 MODULE_PARM_DESC(log
, "Perform logging if not zero");
151 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
152 MODULE_PARM_DESC(parts
, "Partition sizes (in erase blocks) separated by commas");
153 /* Page and erase block positions for the following parameters are independent of any partitions */
154 MODULE_PARM_DESC(badblocks
, "Erase blocks that are initially marked bad, separated by commas");
155 MODULE_PARM_DESC(weakblocks
, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156 " separated by commas e.g. 113:2 means eb 113"
157 " can be erased only twice before failing");
158 MODULE_PARM_DESC(weakpages
, "Weak pages [: maximum writes (defaults to 3)]"
159 " separated by commas e.g. 1401:2 means page 1401"
160 " can be written only twice before failing");
161 MODULE_PARM_DESC(bitflips
, "Maximum number of random bit flips per page (zero by default)");
162 MODULE_PARM_DESC(gravepages
, "Pages that lose data [: maximum reads (defaults to 3)]"
163 " separated by commas e.g. 1401:2 means page 1401"
164 " can be read only twice before failing");
165 MODULE_PARM_DESC(overridesize
, "Specifies the NAND Flash size overriding the ID bytes. "
166 "The size is specified in erase blocks and as the exponent of a power of two"
167 " e.g. 5 means a size of 32 erase blocks");
168 MODULE_PARM_DESC(cache_file
, "File to use to cache nand pages instead of memory");
169 MODULE_PARM_DESC(bbt
, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
170 MODULE_PARM_DESC(bch
, "Enable BCH ecc and set how many bits should "
171 "be correctable in 512-byte blocks");
173 /* The largest possible page size */
174 #define NS_LARGEST_PAGE_SIZE 4096
176 /* The prefix for simulator output */
177 #define NS_OUTPUT_PREFIX "[nandsim]"
179 /* Simulator's output macros (logging, debugging, warning, error) */
180 #define NS_LOG(args...) \
181 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
182 #define NS_DBG(args...) \
183 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
184 #define NS_WARN(args...) \
185 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
186 #define NS_ERR(args...) \
187 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
188 #define NS_INFO(args...) \
189 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
191 /* Busy-wait delay macros (microseconds, milliseconds) */
192 #define NS_UDELAY(us) \
193 do { if (do_delays) udelay(us); } while(0)
194 #define NS_MDELAY(us) \
195 do { if (do_delays) mdelay(us); } while(0)
197 /* Is the nandsim structure initialized ? */
198 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
200 /* Good operation completion status */
201 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
203 /* Operation failed completion status */
204 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
206 /* Calculate the page offset in flash RAM image by (row, column) address */
207 #define NS_RAW_OFFSET(ns) \
208 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
210 /* Calculate the OOB offset in flash RAM image by (row, column) address */
211 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
213 /* After a command is input, the simulator goes to one of the following states */
214 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
215 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
216 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
217 #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
218 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
219 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
220 #define STATE_CMD_STATUS 0x00000007 /* read status */
221 #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
222 #define STATE_CMD_READID 0x0000000A /* read ID */
223 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
224 #define STATE_CMD_RESET 0x0000000C /* reset */
225 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
226 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
227 #define STATE_CMD_MASK 0x0000000F /* command states mask */
229 /* After an address is input, the simulator goes to one of these states */
230 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
231 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
232 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
233 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
234 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
236 /* During data input/output the simulator is in these states */
237 #define STATE_DATAIN 0x00000100 /* waiting for data input */
238 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
240 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
241 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
242 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
243 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
244 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
246 /* Previous operation is done, ready to accept new requests */
247 #define STATE_READY 0x00000000
249 /* This state is used to mark that the next state isn't known yet */
250 #define STATE_UNKNOWN 0x10000000
252 /* Simulator's actions bit masks */
253 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
254 #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
255 #define ACTION_SECERASE 0x00300000 /* erase sector */
256 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
257 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
258 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
259 #define ACTION_MASK 0x00700000 /* action mask */
261 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
262 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
264 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
265 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
266 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
267 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
268 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
269 #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
270 #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
271 #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */
273 /* Remove action bits from state */
274 #define NS_STATE(x) ((x) & ~ACTION_MASK)
277 * Maximum previous states which need to be saved. Currently saving is
278 * only needed for page program operation with preceded read command
279 * (which is only valid for 512-byte pages).
281 #define NS_MAX_PREVSTATES 1
283 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
284 #define NS_MAX_HELD_PAGES 16
286 struct nandsim_debug_info
{
287 struct dentry
*dfs_root
;
288 struct dentry
*dfs_wear_report
;
292 * A union to represent flash memory contents and flash buffer.
295 u_char
*byte
; /* for byte access */
296 uint16_t *word
; /* for 16-bit word access */
300 * The structure which describes all the internal simulator data.
303 struct mtd_partition partitions
[CONFIG_NANDSIM_MAX_PARTS
];
304 unsigned int nbparts
;
306 uint busw
; /* flash chip bus width (8 or 16) */
307 u_char ids
[4]; /* chip's ID bytes */
308 uint32_t options
; /* chip's characteristic bits */
309 uint32_t state
; /* current chip state */
310 uint32_t nxstate
; /* next expected state */
312 uint32_t *op
; /* current operation, NULL operations isn't known yet */
313 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
314 uint16_t npstates
; /* number of previous states saved */
315 uint16_t stateidx
; /* current state index */
317 /* The simulated NAND flash pages array */
320 /* Slab allocator for nand pages */
321 struct kmem_cache
*nand_pages_slab
;
323 /* Internal buffer of page + OOB size bytes */
326 /* NAND flash "geometry" */
328 uint64_t totsz
; /* total flash size, bytes */
329 uint32_t secsz
; /* flash sector (erase block) size, bytes */
330 uint pgsz
; /* NAND flash page size, bytes */
331 uint oobsz
; /* page OOB area size, bytes */
332 uint64_t totszoob
; /* total flash size including OOB, bytes */
333 uint pgszoob
; /* page size including OOB , bytes*/
334 uint secszoob
; /* sector size including OOB, bytes */
335 uint pgnum
; /* total number of pages */
336 uint pgsec
; /* number of pages per sector */
337 uint secshift
; /* bits number in sector size */
338 uint pgshift
; /* bits number in page size */
339 uint oobshift
; /* bits number in OOB size */
340 uint pgaddrbytes
; /* bytes per page address */
341 uint secaddrbytes
; /* bytes per sector address */
342 uint idbytes
; /* the number ID bytes that this chip outputs */
345 /* NAND flash internal registers */
347 unsigned command
; /* the command register */
348 u_char status
; /* the status register */
349 uint row
; /* the page number */
350 uint column
; /* the offset within page */
351 uint count
; /* internal counter */
352 uint num
; /* number of bytes which must be processed */
353 uint off
; /* fixed page offset */
356 /* NAND flash lines state */
358 int ce
; /* chip Enable */
359 int cle
; /* command Latch Enable */
360 int ale
; /* address Latch Enable */
361 int wp
; /* write Protect */
364 /* Fields needed when using a cache file */
365 struct file
*cfile
; /* Open file */
366 unsigned char *pages_written
; /* Which pages have been written */
368 struct page
*held_pages
[NS_MAX_HELD_PAGES
];
371 struct nandsim_debug_info dbg
;
375 * Operations array. To perform any operation the simulator must pass
376 * through the correspondent states chain.
378 static struct nandsim_operations
{
379 uint32_t reqopts
; /* options which are required to perform the operation */
380 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
381 } ops
[NS_OPER_NUM
] = {
382 /* Read page + OOB from the beginning */
383 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
384 STATE_DATAOUT
, STATE_READY
}},
385 /* Read page + OOB from the second half */
386 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
387 STATE_DATAOUT
, STATE_READY
}},
389 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
390 STATE_DATAOUT
, STATE_READY
}},
391 /* Program page starting from the beginning */
392 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
393 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
394 /* Program page starting from the beginning */
395 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
396 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
397 /* Program page starting from the second half */
398 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
399 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
401 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
402 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
404 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
406 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
408 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
409 /* Large page devices read page */
410 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
411 STATE_DATAOUT
, STATE_READY
}},
412 /* Large page devices random page read */
413 {OPT_LARGEPAGE
, {STATE_CMD_RNDOUT
, STATE_ADDR_COLUMN
, STATE_CMD_RNDOUTSTART
| ACTION_CPY
,
414 STATE_DATAOUT
, STATE_READY
}},
418 struct list_head list
;
419 unsigned int erase_block_no
;
420 unsigned int max_erases
;
421 unsigned int erases_done
;
424 static LIST_HEAD(weak_blocks
);
427 struct list_head list
;
428 unsigned int page_no
;
429 unsigned int max_writes
;
430 unsigned int writes_done
;
433 static LIST_HEAD(weak_pages
);
436 struct list_head list
;
437 unsigned int page_no
;
438 unsigned int max_reads
;
439 unsigned int reads_done
;
442 static LIST_HEAD(grave_pages
);
444 static unsigned long *erase_block_wear
= NULL
;
445 static unsigned int wear_eb_count
= 0;
446 static unsigned long total_wear
= 0;
448 /* MTD structure for NAND controller */
449 static struct mtd_info
*nsmtd
;
451 static int nandsim_debugfs_show(struct seq_file
*m
, void *private)
453 unsigned long wmin
= -1, wmax
= 0, avg
;
454 unsigned long deciles
[10], decile_max
[10], tot
= 0;
457 /* Calc wear stats */
458 for (i
= 0; i
< wear_eb_count
; ++i
) {
459 unsigned long wear
= erase_block_wear
[i
];
467 for (i
= 0; i
< 9; ++i
) {
469 decile_max
[i
] = (wmax
* (i
+ 1) + 5) / 10;
472 decile_max
[9] = wmax
;
473 for (i
= 0; i
< wear_eb_count
; ++i
) {
475 unsigned long wear
= erase_block_wear
[i
];
476 for (d
= 0; d
< 10; ++d
)
477 if (wear
<= decile_max
[d
]) {
482 avg
= tot
/ wear_eb_count
;
484 /* Output wear report */
485 seq_printf(m
, "Total numbers of erases: %lu\n", tot
);
486 seq_printf(m
, "Number of erase blocks: %u\n", wear_eb_count
);
487 seq_printf(m
, "Average number of erases: %lu\n", avg
);
488 seq_printf(m
, "Maximum number of erases: %lu\n", wmax
);
489 seq_printf(m
, "Minimum number of erases: %lu\n", wmin
);
490 for (i
= 0; i
< 10; ++i
) {
491 unsigned long from
= (i
? decile_max
[i
- 1] + 1 : 0);
492 if (from
> decile_max
[i
])
494 seq_printf(m
, "Number of ebs with erase counts from %lu to %lu : %lu\n",
503 static int nandsim_debugfs_open(struct inode
*inode
, struct file
*file
)
505 return single_open(file
, nandsim_debugfs_show
, inode
->i_private
);
508 static const struct file_operations dfs_fops
= {
509 .open
= nandsim_debugfs_open
,
512 .release
= single_release
,
516 * nandsim_debugfs_create - initialize debugfs
517 * @dev: nandsim device description object
519 * This function creates all debugfs files for UBI device @ubi. Returns zero in
520 * case of success and a negative error code in case of failure.
522 static int nandsim_debugfs_create(struct nandsim
*dev
)
524 struct nandsim_debug_info
*dbg
= &dev
->dbg
;
528 if (!IS_ENABLED(CONFIG_DEBUG_FS
))
531 dent
= debugfs_create_dir("nandsim", NULL
);
532 if (IS_ERR_OR_NULL(dent
)) {
533 int err
= dent
? -ENODEV
: PTR_ERR(dent
);
535 NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
539 dbg
->dfs_root
= dent
;
541 dent
= debugfs_create_file("wear_report", S_IRUSR
,
542 dbg
->dfs_root
, dev
, &dfs_fops
);
543 if (IS_ERR_OR_NULL(dent
))
545 dbg
->dfs_wear_report
= dent
;
550 debugfs_remove_recursive(dbg
->dfs_root
);
551 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
556 * nandsim_debugfs_remove - destroy all debugfs files
558 static void nandsim_debugfs_remove(struct nandsim
*ns
)
560 if (IS_ENABLED(CONFIG_DEBUG_FS
))
561 debugfs_remove_recursive(ns
->dbg
.dfs_root
);
565 * Allocate array of page pointers, create slab allocation for an array
566 * and initialize the array by NULL pointers.
568 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
570 static int alloc_device(struct nandsim
*ns
)
576 cfile
= filp_open(cache_file
, O_CREAT
| O_RDWR
| O_LARGEFILE
, 0600);
578 return PTR_ERR(cfile
);
579 if (!cfile
->f_op
|| (!cfile
->f_op
->read
&& !cfile
->f_op
->aio_read
)) {
580 NS_ERR("alloc_device: cache file not readable\n");
584 if (!cfile
->f_op
->write
&& !cfile
->f_op
->aio_write
) {
585 NS_ERR("alloc_device: cache file not writeable\n");
589 ns
->pages_written
= vzalloc(ns
->geom
.pgnum
);
590 if (!ns
->pages_written
) {
591 NS_ERR("alloc_device: unable to allocate pages written array\n");
595 ns
->file_buf
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
597 NS_ERR("alloc_device: unable to allocate file buf\n");
605 ns
->pages
= vmalloc(ns
->geom
.pgnum
* sizeof(union ns_mem
));
607 NS_ERR("alloc_device: unable to allocate page array\n");
610 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
611 ns
->pages
[i
].byte
= NULL
;
613 ns
->nand_pages_slab
= kmem_cache_create("nandsim",
614 ns
->geom
.pgszoob
, 0, 0, NULL
);
615 if (!ns
->nand_pages_slab
) {
616 NS_ERR("cache_create: unable to create kmem_cache\n");
623 vfree(ns
->pages_written
);
625 filp_close(cfile
, NULL
);
630 * Free any allocated pages, and free the array of page pointers.
632 static void free_device(struct nandsim
*ns
)
638 vfree(ns
->pages_written
);
639 filp_close(ns
->cfile
, NULL
);
644 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
645 if (ns
->pages
[i
].byte
)
646 kmem_cache_free(ns
->nand_pages_slab
,
649 kmem_cache_destroy(ns
->nand_pages_slab
);
654 static char *get_partition_name(int i
)
657 sprintf(buf
, "NAND simulator partition %d", i
);
658 return kstrdup(buf
, GFP_KERNEL
);
662 * Initialize the nandsim structure.
664 * RETURNS: 0 if success, -ERRNO if failure.
666 static int init_nandsim(struct mtd_info
*mtd
)
668 struct nand_chip
*chip
= mtd
->priv
;
669 struct nandsim
*ns
= chip
->priv
;
672 uint64_t next_offset
;
674 if (NS_IS_INITIALIZED(ns
)) {
675 NS_ERR("init_nandsim: nandsim is already initialized\n");
679 /* Force mtd to not do delays */
680 chip
->chip_delay
= 0;
682 /* Initialize the NAND flash parameters */
683 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
684 ns
->geom
.totsz
= mtd
->size
;
685 ns
->geom
.pgsz
= mtd
->writesize
;
686 ns
->geom
.oobsz
= mtd
->oobsize
;
687 ns
->geom
.secsz
= mtd
->erasesize
;
688 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
689 ns
->geom
.pgnum
= div_u64(ns
->geom
.totsz
, ns
->geom
.pgsz
);
690 ns
->geom
.totszoob
= ns
->geom
.totsz
+ (uint64_t)ns
->geom
.pgnum
* ns
->geom
.oobsz
;
691 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
692 ns
->geom
.pgshift
= chip
->page_shift
;
693 ns
->geom
.oobshift
= ffs(ns
->geom
.oobsz
) - 1;
694 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
695 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
698 if (ns
->geom
.pgsz
== 512) {
699 ns
->options
|= OPT_PAGE512
;
701 ns
->options
|= OPT_PAGE512_8BIT
;
702 } else if (ns
->geom
.pgsz
== 2048) {
703 ns
->options
|= OPT_PAGE2048
;
704 } else if (ns
->geom
.pgsz
== 4096) {
705 ns
->options
|= OPT_PAGE4096
;
707 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
711 if (ns
->options
& OPT_SMALLPAGE
) {
712 if (ns
->geom
.totsz
<= (32 << 20)) {
713 ns
->geom
.pgaddrbytes
= 3;
714 ns
->geom
.secaddrbytes
= 2;
716 ns
->geom
.pgaddrbytes
= 4;
717 ns
->geom
.secaddrbytes
= 3;
720 if (ns
->geom
.totsz
<= (128 << 20)) {
721 ns
->geom
.pgaddrbytes
= 4;
722 ns
->geom
.secaddrbytes
= 2;
724 ns
->geom
.pgaddrbytes
= 5;
725 ns
->geom
.secaddrbytes
= 3;
729 /* Fill the partition_info structure */
730 if (parts_num
> ARRAY_SIZE(ns
->partitions
)) {
731 NS_ERR("too many partitions.\n");
735 remains
= ns
->geom
.totsz
;
737 for (i
= 0; i
< parts_num
; ++i
) {
738 uint64_t part_sz
= (uint64_t)parts
[i
] * ns
->geom
.secsz
;
740 if (!part_sz
|| part_sz
> remains
) {
741 NS_ERR("bad partition size.\n");
745 ns
->partitions
[i
].name
= get_partition_name(i
);
746 ns
->partitions
[i
].offset
= next_offset
;
747 ns
->partitions
[i
].size
= part_sz
;
748 next_offset
+= ns
->partitions
[i
].size
;
749 remains
-= ns
->partitions
[i
].size
;
751 ns
->nbparts
= parts_num
;
753 if (parts_num
+ 1 > ARRAY_SIZE(ns
->partitions
)) {
754 NS_ERR("too many partitions.\n");
758 ns
->partitions
[i
].name
= get_partition_name(i
);
759 ns
->partitions
[i
].offset
= next_offset
;
760 ns
->partitions
[i
].size
= remains
;
764 /* Detect how many ID bytes the NAND chip outputs */
765 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
766 if (second_id_byte
!= nand_flash_ids
[i
].dev_id
)
771 NS_WARN("16-bit flashes support wasn't tested\n");
773 printk("flash size: %llu MiB\n",
774 (unsigned long long)ns
->geom
.totsz
>> 20);
775 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
776 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
777 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
778 printk("pages number: %u\n", ns
->geom
.pgnum
);
779 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
780 printk("bus width: %u\n", ns
->busw
);
781 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
782 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
783 printk("bits in OOB size: %u\n", ns
->geom
.oobshift
);
784 printk("flash size with OOB: %llu KiB\n",
785 (unsigned long long)ns
->geom
.totszoob
>> 10);
786 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
787 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
788 printk("options: %#x\n", ns
->options
);
790 if ((ret
= alloc_device(ns
)) != 0)
793 /* Allocate / initialize the internal buffer */
794 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
796 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
801 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
812 * Free the nandsim structure.
814 static void free_nandsim(struct nandsim
*ns
)
822 static int parse_badblocks(struct nandsim
*ns
, struct mtd_info
*mtd
)
826 unsigned int erase_block_no
;
833 zero_ok
= (*w
== '0' ? 1 : 0);
834 erase_block_no
= simple_strtoul(w
, &w
, 0);
835 if (!zero_ok
&& !erase_block_no
) {
836 NS_ERR("invalid badblocks.\n");
839 offset
= erase_block_no
* ns
->geom
.secsz
;
840 if (mtd_block_markbad(mtd
, offset
)) {
841 NS_ERR("invalid badblocks.\n");
850 static int parse_weakblocks(void)
854 unsigned int erase_block_no
;
855 unsigned int max_erases
;
856 struct weak_block
*wb
;
862 zero_ok
= (*w
== '0' ? 1 : 0);
863 erase_block_no
= simple_strtoul(w
, &w
, 0);
864 if (!zero_ok
&& !erase_block_no
) {
865 NS_ERR("invalid weakblocks.\n");
871 max_erases
= simple_strtoul(w
, &w
, 0);
875 wb
= kzalloc(sizeof(*wb
), GFP_KERNEL
);
877 NS_ERR("unable to allocate memory.\n");
880 wb
->erase_block_no
= erase_block_no
;
881 wb
->max_erases
= max_erases
;
882 list_add(&wb
->list
, &weak_blocks
);
887 static int erase_error(unsigned int erase_block_no
)
889 struct weak_block
*wb
;
891 list_for_each_entry(wb
, &weak_blocks
, list
)
892 if (wb
->erase_block_no
== erase_block_no
) {
893 if (wb
->erases_done
>= wb
->max_erases
)
895 wb
->erases_done
+= 1;
901 static int parse_weakpages(void)
905 unsigned int page_no
;
906 unsigned int max_writes
;
907 struct weak_page
*wp
;
913 zero_ok
= (*w
== '0' ? 1 : 0);
914 page_no
= simple_strtoul(w
, &w
, 0);
915 if (!zero_ok
&& !page_no
) {
916 NS_ERR("invalid weakpagess.\n");
922 max_writes
= simple_strtoul(w
, &w
, 0);
926 wp
= kzalloc(sizeof(*wp
), GFP_KERNEL
);
928 NS_ERR("unable to allocate memory.\n");
931 wp
->page_no
= page_no
;
932 wp
->max_writes
= max_writes
;
933 list_add(&wp
->list
, &weak_pages
);
938 static int write_error(unsigned int page_no
)
940 struct weak_page
*wp
;
942 list_for_each_entry(wp
, &weak_pages
, list
)
943 if (wp
->page_no
== page_no
) {
944 if (wp
->writes_done
>= wp
->max_writes
)
946 wp
->writes_done
+= 1;
952 static int parse_gravepages(void)
956 unsigned int page_no
;
957 unsigned int max_reads
;
958 struct grave_page
*gp
;
964 zero_ok
= (*g
== '0' ? 1 : 0);
965 page_no
= simple_strtoul(g
, &g
, 0);
966 if (!zero_ok
&& !page_no
) {
967 NS_ERR("invalid gravepagess.\n");
973 max_reads
= simple_strtoul(g
, &g
, 0);
977 gp
= kzalloc(sizeof(*gp
), GFP_KERNEL
);
979 NS_ERR("unable to allocate memory.\n");
982 gp
->page_no
= page_no
;
983 gp
->max_reads
= max_reads
;
984 list_add(&gp
->list
, &grave_pages
);
989 static int read_error(unsigned int page_no
)
991 struct grave_page
*gp
;
993 list_for_each_entry(gp
, &grave_pages
, list
)
994 if (gp
->page_no
== page_no
) {
995 if (gp
->reads_done
>= gp
->max_reads
)
1003 static void free_lists(void)
1005 struct list_head
*pos
, *n
;
1006 list_for_each_safe(pos
, n
, &weak_blocks
) {
1008 kfree(list_entry(pos
, struct weak_block
, list
));
1010 list_for_each_safe(pos
, n
, &weak_pages
) {
1012 kfree(list_entry(pos
, struct weak_page
, list
));
1014 list_for_each_safe(pos
, n
, &grave_pages
) {
1016 kfree(list_entry(pos
, struct grave_page
, list
));
1018 kfree(erase_block_wear
);
1021 static int setup_wear_reporting(struct mtd_info
*mtd
)
1025 wear_eb_count
= div_u64(mtd
->size
, mtd
->erasesize
);
1026 mem
= wear_eb_count
* sizeof(unsigned long);
1027 if (mem
/ sizeof(unsigned long) != wear_eb_count
) {
1028 NS_ERR("Too many erase blocks for wear reporting\n");
1031 erase_block_wear
= kzalloc(mem
, GFP_KERNEL
);
1032 if (!erase_block_wear
) {
1033 NS_ERR("Too many erase blocks for wear reporting\n");
1039 static void update_wear(unsigned int erase_block_no
)
1041 if (!erase_block_wear
)
1045 * TODO: Notify this through a debugfs entry,
1046 * instead of showing an error message.
1048 if (total_wear
== 0)
1049 NS_ERR("Erase counter total overflow\n");
1050 erase_block_wear
[erase_block_no
] += 1;
1051 if (erase_block_wear
[erase_block_no
] == 0)
1052 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no
);
1056 * Returns the string representation of 'state' state.
1058 static char *get_state_name(uint32_t state
)
1060 switch (NS_STATE(state
)) {
1061 case STATE_CMD_READ0
:
1062 return "STATE_CMD_READ0";
1063 case STATE_CMD_READ1
:
1064 return "STATE_CMD_READ1";
1065 case STATE_CMD_PAGEPROG
:
1066 return "STATE_CMD_PAGEPROG";
1067 case STATE_CMD_READOOB
:
1068 return "STATE_CMD_READOOB";
1069 case STATE_CMD_READSTART
:
1070 return "STATE_CMD_READSTART";
1071 case STATE_CMD_ERASE1
:
1072 return "STATE_CMD_ERASE1";
1073 case STATE_CMD_STATUS
:
1074 return "STATE_CMD_STATUS";
1075 case STATE_CMD_SEQIN
:
1076 return "STATE_CMD_SEQIN";
1077 case STATE_CMD_READID
:
1078 return "STATE_CMD_READID";
1079 case STATE_CMD_ERASE2
:
1080 return "STATE_CMD_ERASE2";
1081 case STATE_CMD_RESET
:
1082 return "STATE_CMD_RESET";
1083 case STATE_CMD_RNDOUT
:
1084 return "STATE_CMD_RNDOUT";
1085 case STATE_CMD_RNDOUTSTART
:
1086 return "STATE_CMD_RNDOUTSTART";
1087 case STATE_ADDR_PAGE
:
1088 return "STATE_ADDR_PAGE";
1089 case STATE_ADDR_SEC
:
1090 return "STATE_ADDR_SEC";
1091 case STATE_ADDR_ZERO
:
1092 return "STATE_ADDR_ZERO";
1093 case STATE_ADDR_COLUMN
:
1094 return "STATE_ADDR_COLUMN";
1096 return "STATE_DATAIN";
1098 return "STATE_DATAOUT";
1099 case STATE_DATAOUT_ID
:
1100 return "STATE_DATAOUT_ID";
1101 case STATE_DATAOUT_STATUS
:
1102 return "STATE_DATAOUT_STATUS";
1103 case STATE_DATAOUT_STATUS_M
:
1104 return "STATE_DATAOUT_STATUS_M";
1106 return "STATE_READY";
1108 return "STATE_UNKNOWN";
1111 NS_ERR("get_state_name: unknown state, BUG\n");
1116 * Check if command is valid.
1118 * RETURNS: 1 if wrong command, 0 if right.
1120 static int check_command(int cmd
)
1124 case NAND_CMD_READ0
:
1125 case NAND_CMD_READ1
:
1126 case NAND_CMD_READSTART
:
1127 case NAND_CMD_PAGEPROG
:
1128 case NAND_CMD_READOOB
:
1129 case NAND_CMD_ERASE1
:
1130 case NAND_CMD_STATUS
:
1131 case NAND_CMD_SEQIN
:
1132 case NAND_CMD_READID
:
1133 case NAND_CMD_ERASE2
:
1134 case NAND_CMD_RESET
:
1135 case NAND_CMD_RNDOUT
:
1136 case NAND_CMD_RNDOUTSTART
:
1145 * Returns state after command is accepted by command number.
1147 static uint32_t get_state_by_command(unsigned command
)
1150 case NAND_CMD_READ0
:
1151 return STATE_CMD_READ0
;
1152 case NAND_CMD_READ1
:
1153 return STATE_CMD_READ1
;
1154 case NAND_CMD_PAGEPROG
:
1155 return STATE_CMD_PAGEPROG
;
1156 case NAND_CMD_READSTART
:
1157 return STATE_CMD_READSTART
;
1158 case NAND_CMD_READOOB
:
1159 return STATE_CMD_READOOB
;
1160 case NAND_CMD_ERASE1
:
1161 return STATE_CMD_ERASE1
;
1162 case NAND_CMD_STATUS
:
1163 return STATE_CMD_STATUS
;
1164 case NAND_CMD_SEQIN
:
1165 return STATE_CMD_SEQIN
;
1166 case NAND_CMD_READID
:
1167 return STATE_CMD_READID
;
1168 case NAND_CMD_ERASE2
:
1169 return STATE_CMD_ERASE2
;
1170 case NAND_CMD_RESET
:
1171 return STATE_CMD_RESET
;
1172 case NAND_CMD_RNDOUT
:
1173 return STATE_CMD_RNDOUT
;
1174 case NAND_CMD_RNDOUTSTART
:
1175 return STATE_CMD_RNDOUTSTART
;
1178 NS_ERR("get_state_by_command: unknown command, BUG\n");
1183 * Move an address byte to the correspondent internal register.
1185 static inline void accept_addr_byte(struct nandsim
*ns
, u_char bt
)
1187 uint byte
= (uint
)bt
;
1189 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
1190 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
1192 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
1193 ns
->geom
.pgaddrbytes
+
1194 ns
->geom
.secaddrbytes
));
1201 * Switch to STATE_READY state.
1203 static inline void switch_to_ready_state(struct nandsim
*ns
, u_char status
)
1205 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
1207 ns
->state
= STATE_READY
;
1208 ns
->nxstate
= STATE_UNKNOWN
;
1216 ns
->regs
.column
= 0;
1217 ns
->regs
.status
= status
;
1221 * If the operation isn't known yet, try to find it in the global array
1222 * of supported operations.
1224 * Operation can be unknown because of the following.
1225 * 1. New command was accepted and this is the first call to find the
1226 * correspondent states chain. In this case ns->npstates = 0;
1227 * 2. There are several operations which begin with the same command(s)
1228 * (for example program from the second half and read from the
1229 * second half operations both begin with the READ1 command). In this
1230 * case the ns->pstates[] array contains previous states.
1232 * Thus, the function tries to find operation containing the following
1233 * states (if the 'flag' parameter is 0):
1234 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1236 * If (one and only one) matching operation is found, it is accepted (
1237 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1240 * If there are several matches, the current state is pushed to the
1243 * The operation can be unknown only while commands are input to the chip.
1244 * As soon as address command is accepted, the operation must be known.
1245 * In such situation the function is called with 'flag' != 0, and the
1246 * operation is searched using the following pattern:
1247 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1249 * It is supposed that this pattern must either match one operation or
1250 * none. There can't be ambiguity in that case.
1252 * If no matches found, the function does the following:
1253 * 1. if there are saved states present, try to ignore them and search
1254 * again only using the last command. If nothing was found, switch
1255 * to the STATE_READY state.
1256 * 2. if there are no saved states, switch to the STATE_READY state.
1258 * RETURNS: -2 - no matched operations found.
1259 * -1 - several matches.
1260 * 0 - operation is found.
1262 static int find_operation(struct nandsim
*ns
, uint32_t flag
)
1267 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
1271 if (!(ns
->options
& ops
[i
].reqopts
))
1272 /* Ignore operations we can't perform */
1276 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
1279 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
1283 for (j
= 0; j
< ns
->npstates
; j
++)
1284 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
1285 && (ns
->options
& ops
[idx
].reqopts
)) {
1296 if (opsfound
== 1) {
1298 ns
->op
= &ops
[idx
].states
[0];
1301 * In this case the find_operation function was
1302 * called when address has just began input. But it isn't
1303 * yet fully input and the current state must
1304 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1305 * state must be the next state (ns->nxstate).
1307 ns
->stateidx
= ns
->npstates
- 1;
1309 ns
->stateidx
= ns
->npstates
;
1312 ns
->state
= ns
->op
[ns
->stateidx
];
1313 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1314 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1315 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1319 if (opsfound
== 0) {
1320 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1321 if (ns
->npstates
!= 0) {
1322 NS_DBG("find_operation: no operation found, try again with state %s\n",
1323 get_state_name(ns
->state
));
1325 return find_operation(ns
, 0);
1328 NS_DBG("find_operation: no operations found\n");
1329 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1334 /* This shouldn't happen */
1335 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1339 NS_DBG("find_operation: there is still ambiguity\n");
1341 ns
->pstates
[ns
->npstates
++] = ns
->state
;
1346 static void put_pages(struct nandsim
*ns
)
1350 for (i
= 0; i
< ns
->held_cnt
; i
++)
1351 page_cache_release(ns
->held_pages
[i
]);
1354 /* Get page cache pages in advance to provide NOFS memory allocation */
1355 static int get_pages(struct nandsim
*ns
, struct file
*file
, size_t count
, loff_t pos
)
1357 pgoff_t index
, start_index
, end_index
;
1359 struct address_space
*mapping
= file
->f_mapping
;
1361 start_index
= pos
>> PAGE_CACHE_SHIFT
;
1362 end_index
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1363 if (end_index
- start_index
+ 1 > NS_MAX_HELD_PAGES
)
1366 for (index
= start_index
; index
<= end_index
; index
++) {
1367 page
= find_get_page(mapping
, index
);
1369 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1371 write_inode_now(mapping
->host
, 1);
1372 page
= find_or_create_page(mapping
, index
, GFP_NOFS
);
1380 ns
->held_pages
[ns
->held_cnt
++] = page
;
1385 static int set_memalloc(void)
1387 if (current
->flags
& PF_MEMALLOC
)
1389 current
->flags
|= PF_MEMALLOC
;
1393 static void clear_memalloc(int memalloc
)
1396 current
->flags
&= ~PF_MEMALLOC
;
1399 static ssize_t
read_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t pos
)
1404 err
= get_pages(ns
, file
, count
, pos
);
1407 memalloc
= set_memalloc();
1408 tx
= kernel_read(file
, pos
, buf
, count
);
1409 clear_memalloc(memalloc
);
1414 static ssize_t
write_file(struct nandsim
*ns
, struct file
*file
, void *buf
, size_t count
, loff_t pos
)
1419 err
= get_pages(ns
, file
, count
, pos
);
1422 memalloc
= set_memalloc();
1423 tx
= kernel_write(file
, buf
, count
, pos
);
1424 clear_memalloc(memalloc
);
1430 * Returns a pointer to the current page.
1432 static inline union ns_mem
*NS_GET_PAGE(struct nandsim
*ns
)
1434 return &(ns
->pages
[ns
->regs
.row
]);
1438 * Retuns a pointer to the current byte, within the current page.
1440 static inline u_char
*NS_PAGE_BYTE_OFF(struct nandsim
*ns
)
1442 return NS_GET_PAGE(ns
)->byte
+ ns
->regs
.column
+ ns
->regs
.off
;
1445 int do_read_error(struct nandsim
*ns
, int num
)
1447 unsigned int page_no
= ns
->regs
.row
;
1449 if (read_error(page_no
)) {
1450 prandom_bytes(ns
->buf
.byte
, num
);
1451 NS_WARN("simulating read error in page %u\n", page_no
);
1457 void do_bit_flips(struct nandsim
*ns
, int num
)
1459 if (bitflips
&& prandom_u32() < (1 << 22)) {
1462 flips
= (prandom_u32() % (int) bitflips
) + 1;
1464 int pos
= prandom_u32() % (num
* 8);
1465 ns
->buf
.byte
[pos
/ 8] ^= (1 << (pos
% 8));
1466 NS_WARN("read_page: flipping bit %d in page %d "
1467 "reading from %d ecc: corrected=%u failed=%u\n",
1468 pos
, ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
,
1469 nsmtd
->ecc_stats
.corrected
, nsmtd
->ecc_stats
.failed
);
1475 * Fill the NAND buffer with data read from the specified page.
1477 static void read_page(struct nandsim
*ns
, int num
)
1479 union ns_mem
*mypage
;
1482 if (!ns
->pages_written
[ns
->regs
.row
]) {
1483 NS_DBG("read_page: page %d not written\n", ns
->regs
.row
);
1484 memset(ns
->buf
.byte
, 0xFF, num
);
1489 NS_DBG("read_page: page %d written, reading from %d\n",
1490 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1491 if (do_read_error(ns
, num
))
1493 pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
+ ns
->regs
.column
+ ns
->regs
.off
;
1494 tx
= read_file(ns
, ns
->cfile
, ns
->buf
.byte
, num
, pos
);
1496 NS_ERR("read_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1499 do_bit_flips(ns
, num
);
1504 mypage
= NS_GET_PAGE(ns
);
1505 if (mypage
->byte
== NULL
) {
1506 NS_DBG("read_page: page %d not allocated\n", ns
->regs
.row
);
1507 memset(ns
->buf
.byte
, 0xFF, num
);
1509 NS_DBG("read_page: page %d allocated, reading from %d\n",
1510 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1511 if (do_read_error(ns
, num
))
1513 memcpy(ns
->buf
.byte
, NS_PAGE_BYTE_OFF(ns
), num
);
1514 do_bit_flips(ns
, num
);
1519 * Erase all pages in the specified sector.
1521 static void erase_sector(struct nandsim
*ns
)
1523 union ns_mem
*mypage
;
1527 for (i
= 0; i
< ns
->geom
.pgsec
; i
++)
1528 if (ns
->pages_written
[ns
->regs
.row
+ i
]) {
1529 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+ i
);
1530 ns
->pages_written
[ns
->regs
.row
+ i
] = 0;
1535 mypage
= NS_GET_PAGE(ns
);
1536 for (i
= 0; i
< ns
->geom
.pgsec
; i
++) {
1537 if (mypage
->byte
!= NULL
) {
1538 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+i
);
1539 kmem_cache_free(ns
->nand_pages_slab
, mypage
->byte
);
1540 mypage
->byte
= NULL
;
1547 * Program the specified page with the contents from the NAND buffer.
1549 static int prog_page(struct nandsim
*ns
, int num
)
1552 union ns_mem
*mypage
;
1560 NS_DBG("prog_page: writing page %d\n", ns
->regs
.row
);
1561 pg_off
= ns
->file_buf
+ ns
->regs
.column
+ ns
->regs
.off
;
1562 off
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
+ ns
->regs
.column
+ ns
->regs
.off
;
1563 if (!ns
->pages_written
[ns
->regs
.row
]) {
1565 memset(ns
->file_buf
, 0xff, ns
->geom
.pgszoob
);
1568 tx
= read_file(ns
, ns
->cfile
, pg_off
, num
, off
);
1570 NS_ERR("prog_page: read error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1574 for (i
= 0; i
< num
; i
++)
1575 pg_off
[i
] &= ns
->buf
.byte
[i
];
1577 loff_t pos
= (loff_t
)ns
->regs
.row
* ns
->geom
.pgszoob
;
1578 tx
= write_file(ns
, ns
->cfile
, ns
->file_buf
, ns
->geom
.pgszoob
, pos
);
1579 if (tx
!= ns
->geom
.pgszoob
) {
1580 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1583 ns
->pages_written
[ns
->regs
.row
] = 1;
1585 tx
= write_file(ns
, ns
->cfile
, pg_off
, num
, off
);
1587 NS_ERR("prog_page: write error for page %d ret %ld\n", ns
->regs
.row
, (long)tx
);
1594 mypage
= NS_GET_PAGE(ns
);
1595 if (mypage
->byte
== NULL
) {
1596 NS_DBG("prog_page: allocating page %d\n", ns
->regs
.row
);
1598 * We allocate memory with GFP_NOFS because a flash FS may
1599 * utilize this. If it is holding an FS lock, then gets here,
1600 * then kernel memory alloc runs writeback which goes to the FS
1601 * again and deadlocks. This was seen in practice.
1603 mypage
->byte
= kmem_cache_alloc(ns
->nand_pages_slab
, GFP_NOFS
);
1604 if (mypage
->byte
== NULL
) {
1605 NS_ERR("prog_page: error allocating memory for page %d\n", ns
->regs
.row
);
1608 memset(mypage
->byte
, 0xFF, ns
->geom
.pgszoob
);
1611 pg_off
= NS_PAGE_BYTE_OFF(ns
);
1612 for (i
= 0; i
< num
; i
++)
1613 pg_off
[i
] &= ns
->buf
.byte
[i
];
1619 * If state has any action bit, perform this action.
1621 * RETURNS: 0 if success, -1 if error.
1623 static int do_state_action(struct nandsim
*ns
, uint32_t action
)
1626 int busdiv
= ns
->busw
== 8 ? 1 : 2;
1627 unsigned int erase_block_no
, page_no
;
1629 action
&= ACTION_MASK
;
1631 /* Check that page address input is correct */
1632 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
1633 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
1641 * Copy page data to the internal buffer.
1644 /* Column shouldn't be very large */
1645 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
1646 NS_ERR("do_state_action: column number is too large\n");
1649 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1652 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1653 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1655 if (ns
->regs
.off
== 0)
1656 NS_LOG("read page %d\n", ns
->regs
.row
);
1657 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
1658 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
1660 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
1662 NS_UDELAY(access_delay
);
1663 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1667 case ACTION_SECERASE
:
1673 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1677 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
1678 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
1679 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
1683 ns
->regs
.row
= (ns
->regs
.row
<<
1684 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
1685 ns
->regs
.column
= 0;
1687 erase_block_no
= ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
);
1689 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1690 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
1691 NS_LOG("erase sector %u\n", erase_block_no
);
1695 NS_MDELAY(erase_delay
);
1697 if (erase_block_wear
)
1698 update_wear(erase_block_no
);
1700 if (erase_error(erase_block_no
)) {
1701 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no
);
1707 case ACTION_PRGPAGE
:
1709 * Program page - move internal buffer data to the page.
1713 NS_WARN("do_state_action: device is write-protected, programm\n");
1717 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1718 if (num
!= ns
->regs
.count
) {
1719 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1720 ns
->regs
.count
, num
);
1724 if (prog_page(ns
, num
) == -1)
1727 page_no
= ns
->regs
.row
;
1729 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1730 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1731 NS_LOG("programm page %d\n", ns
->regs
.row
);
1733 NS_UDELAY(programm_delay
);
1734 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1736 if (write_error(page_no
)) {
1737 NS_WARN("simulating write failure in page %u\n", page_no
);
1743 case ACTION_ZEROOFF
:
1744 NS_DBG("do_state_action: set internal offset to 0\n");
1748 case ACTION_HALFOFF
:
1749 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
1750 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1751 "byte page size 8x chips\n");
1754 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
1755 ns
->regs
.off
= ns
->geom
.pgsz
/2;
1759 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
1760 ns
->regs
.off
= ns
->geom
.pgsz
;
1764 NS_DBG("do_state_action: BUG! unknown action\n");
1771 * Switch simulator's state.
1773 static void switch_state(struct nandsim
*ns
)
1777 * The current operation have already been identified.
1778 * Just follow the states chain.
1782 ns
->state
= ns
->nxstate
;
1783 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1785 NS_DBG("switch_state: operation is known, switch to the next state, "
1786 "state: %s, nxstate: %s\n",
1787 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1789 /* See, whether we need to do some action */
1790 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1791 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1797 * We don't yet know which operation we perform.
1798 * Try to identify it.
1802 * The only event causing the switch_state function to
1803 * be called with yet unknown operation is new command.
1805 ns
->state
= get_state_by_command(ns
->regs
.command
);
1807 NS_DBG("switch_state: operation is unknown, try to find it\n");
1809 if (find_operation(ns
, 0) != 0)
1812 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1813 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1818 /* For 16x devices column means the page offset in words */
1819 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
1820 NS_DBG("switch_state: double the column number for 16x device\n");
1821 ns
->regs
.column
<<= 1;
1824 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
1826 * The current state is the last. Return to STATE_READY
1829 u_char status
= NS_STATUS_OK(ns
);
1831 /* In case of data states, see if all bytes were input/output */
1832 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
1833 && ns
->regs
.count
!= ns
->regs
.num
) {
1834 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1835 ns
->regs
.num
- ns
->regs
.count
);
1836 status
= NS_STATUS_FAILED(ns
);
1839 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1841 switch_to_ready_state(ns
, status
);
1844 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1846 * If the next state is data input/output, switch to it now
1849 ns
->state
= ns
->nxstate
;
1850 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1851 ns
->regs
.num
= ns
->regs
.count
= 0;
1853 NS_DBG("switch_state: the next state is data I/O, switch, "
1854 "state: %s, nxstate: %s\n",
1855 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1858 * Set the internal register to the count of bytes which
1859 * are expected to be input or output
1861 switch (NS_STATE(ns
->state
)) {
1864 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1867 case STATE_DATAOUT_ID
:
1868 ns
->regs
.num
= ns
->geom
.idbytes
;
1871 case STATE_DATAOUT_STATUS
:
1872 case STATE_DATAOUT_STATUS_M
:
1873 ns
->regs
.count
= ns
->regs
.num
= 0;
1877 NS_ERR("switch_state: BUG! unknown data state\n");
1880 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1882 * If the next state is address input, set the internal
1883 * register to the number of expected address bytes
1888 switch (NS_STATE(ns
->nxstate
)) {
1889 case STATE_ADDR_PAGE
:
1890 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1893 case STATE_ADDR_SEC
:
1894 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1897 case STATE_ADDR_ZERO
:
1901 case STATE_ADDR_COLUMN
:
1902 /* Column address is always 2 bytes */
1903 ns
->regs
.num
= ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
;
1907 NS_ERR("switch_state: BUG! unknown address state\n");
1911 * Just reset internal counters.
1919 static u_char
ns_nand_read_byte(struct mtd_info
*mtd
)
1921 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1924 /* Sanity and correctness checks */
1925 if (!ns
->lines
.ce
) {
1926 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1929 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1930 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1933 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1934 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1935 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1939 /* Status register may be read as many times as it is wanted */
1940 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1941 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1942 return ns
->regs
.status
;
1945 /* Check if there is any data in the internal buffer which may be read */
1946 if (ns
->regs
.count
== ns
->regs
.num
) {
1947 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1951 switch (NS_STATE(ns
->state
)) {
1953 if (ns
->busw
== 8) {
1954 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1955 ns
->regs
.count
+= 1;
1957 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1958 ns
->regs
.count
+= 2;
1961 case STATE_DATAOUT_ID
:
1962 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1963 outb
= ns
->ids
[ns
->regs
.count
];
1964 ns
->regs
.count
+= 1;
1970 if (ns
->regs
.count
== ns
->regs
.num
) {
1971 NS_DBG("read_byte: all bytes were read\n");
1973 if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1980 static void ns_nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
1982 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1984 /* Sanity and correctness checks */
1985 if (!ns
->lines
.ce
) {
1986 NS_ERR("write_byte: chip is disabled, ignore write\n");
1989 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1990 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1994 if (ns
->lines
.cle
== 1) {
1996 * The byte written is a command.
1999 if (byte
== NAND_CMD_RESET
) {
2000 NS_LOG("reset chip\n");
2001 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
2005 /* Check that the command byte is correct */
2006 if (check_command(byte
)) {
2007 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
2011 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
2012 || NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS_M
2013 || NS_STATE(ns
->state
) == STATE_DATAOUT
) {
2014 int row
= ns
->regs
.row
;
2017 if (byte
== NAND_CMD_RNDOUT
)
2021 /* Check if chip is expecting command */
2022 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
2023 /* Do not warn if only 2 id bytes are read */
2024 if (!(ns
->regs
.command
== NAND_CMD_READID
&&
2025 NS_STATE(ns
->state
) == STATE_DATAOUT_ID
&& ns
->regs
.count
== 2)) {
2027 * We are in situation when something else (not command)
2028 * was expected but command was input. In this case ignore
2029 * previous command(s)/state(s) and accept the last one.
2031 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2032 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
2034 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2037 NS_DBG("command byte corresponding to %s state accepted\n",
2038 get_state_name(get_state_by_command(byte
)));
2039 ns
->regs
.command
= byte
;
2042 } else if (ns
->lines
.ale
== 1) {
2044 * The byte written is an address.
2047 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
2049 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2051 if (find_operation(ns
, 1) < 0)
2054 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
2055 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2060 switch (NS_STATE(ns
->nxstate
)) {
2061 case STATE_ADDR_PAGE
:
2062 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
2064 case STATE_ADDR_SEC
:
2065 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
2067 case STATE_ADDR_ZERO
:
2075 /* Check that chip is expecting address */
2076 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
2077 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2078 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
2079 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2083 /* Check if this is expected byte */
2084 if (ns
->regs
.count
== ns
->regs
.num
) {
2085 NS_ERR("write_byte: no more address bytes expected\n");
2086 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2090 accept_addr_byte(ns
, byte
);
2092 ns
->regs
.count
+= 1;
2094 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2095 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
2097 if (ns
->regs
.count
== ns
->regs
.num
) {
2098 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
2104 * The byte written is an input data.
2107 /* Check that chip is expecting data input */
2108 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2109 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2110 "switch to %s\n", (uint
)byte
,
2111 get_state_name(ns
->state
), get_state_name(STATE_READY
));
2112 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2116 /* Check if this is expected byte */
2117 if (ns
->regs
.count
== ns
->regs
.num
) {
2118 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2123 if (ns
->busw
== 8) {
2124 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
2125 ns
->regs
.count
+= 1;
2127 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
2128 ns
->regs
.count
+= 2;
2135 static void ns_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int bitmask
)
2137 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2139 ns
->lines
.cle
= bitmask
& NAND_CLE
? 1 : 0;
2140 ns
->lines
.ale
= bitmask
& NAND_ALE
? 1 : 0;
2141 ns
->lines
.ce
= bitmask
& NAND_NCE
? 1 : 0;
2143 if (cmd
!= NAND_CMD_NONE
)
2144 ns_nand_write_byte(mtd
, cmd
);
2147 static int ns_device_ready(struct mtd_info
*mtd
)
2149 NS_DBG("device_ready\n");
2153 static uint16_t ns_nand_read_word(struct mtd_info
*mtd
)
2155 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
2157 NS_DBG("read_word\n");
2159 return chip
->read_byte(mtd
) | (chip
->read_byte(mtd
) << 8);
2162 static void ns_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
2164 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2166 /* Check that chip is expecting data input */
2167 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
2168 NS_ERR("write_buf: data input isn't expected, state is %s, "
2169 "switch to STATE_READY\n", get_state_name(ns
->state
));
2170 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2174 /* Check if these are expected bytes */
2175 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2176 NS_ERR("write_buf: too many input bytes\n");
2177 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2181 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
2182 ns
->regs
.count
+= len
;
2184 if (ns
->regs
.count
== ns
->regs
.num
) {
2185 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
2189 static void ns_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
2191 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
2193 /* Sanity and correctness checks */
2194 if (!ns
->lines
.ce
) {
2195 NS_ERR("read_buf: chip is disabled\n");
2198 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
2199 NS_ERR("read_buf: ALE or CLE pin is high\n");
2202 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
2203 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2204 get_state_name(ns
->state
));
2208 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
2211 for (i
= 0; i
< len
; i
++)
2212 buf
[i
] = ((struct nand_chip
*)mtd
->priv
)->read_byte(mtd
);
2217 /* Check if these are expected bytes */
2218 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
2219 NS_ERR("read_buf: too many bytes to read\n");
2220 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
2224 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
2225 ns
->regs
.count
+= len
;
2227 if (ns
->regs
.count
== ns
->regs
.num
) {
2228 if (NS_STATE(ns
->nxstate
) == STATE_READY
)
2236 * Module initialization function
2238 static int __init
ns_init_module(void)
2240 struct nand_chip
*chip
;
2241 struct nandsim
*nand
;
2242 int retval
= -ENOMEM
, i
;
2244 if (bus_width
!= 8 && bus_width
!= 16) {
2245 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
2249 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2250 nsmtd
= kzalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
)
2251 + sizeof(struct nandsim
), GFP_KERNEL
);
2253 NS_ERR("unable to allocate core structures.\n");
2256 chip
= (struct nand_chip
*)(nsmtd
+ 1);
2257 nsmtd
->priv
= (void *)chip
;
2258 nand
= (struct nandsim
*)(chip
+ 1);
2259 chip
->priv
= (void *)nand
;
2262 * Register simulator's callbacks.
2264 chip
->cmd_ctrl
= ns_hwcontrol
;
2265 chip
->read_byte
= ns_nand_read_byte
;
2266 chip
->dev_ready
= ns_device_ready
;
2267 chip
->write_buf
= ns_nand_write_buf
;
2268 chip
->read_buf
= ns_nand_read_buf
;
2269 chip
->read_word
= ns_nand_read_word
;
2270 chip
->ecc
.mode
= NAND_ECC_SOFT
;
2271 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2272 /* and 'badblocks' parameters to work */
2273 chip
->options
|= NAND_SKIP_BBTSCAN
;
2277 chip
->bbt_options
|= NAND_BBT_NO_OOB
;
2279 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
2283 NS_ERR("bbt has to be 0..2\n");
2288 * Perform minimum nandsim structure initialization to handle
2289 * the initial ID read command correctly
2291 if (third_id_byte
!= 0xFF || fourth_id_byte
!= 0xFF)
2292 nand
->geom
.idbytes
= 4;
2294 nand
->geom
.idbytes
= 2;
2295 nand
->regs
.status
= NS_STATUS_OK(nand
);
2296 nand
->nxstate
= STATE_UNKNOWN
;
2297 nand
->options
|= OPT_PAGE512
; /* temporary value */
2298 nand
->ids
[0] = first_id_byte
;
2299 nand
->ids
[1] = second_id_byte
;
2300 nand
->ids
[2] = third_id_byte
;
2301 nand
->ids
[3] = fourth_id_byte
;
2302 if (bus_width
== 16) {
2304 chip
->options
|= NAND_BUSWIDTH_16
;
2307 nsmtd
->owner
= THIS_MODULE
;
2309 if ((retval
= parse_weakblocks()) != 0)
2312 if ((retval
= parse_weakpages()) != 0)
2315 if ((retval
= parse_gravepages()) != 0)
2318 retval
= nand_scan_ident(nsmtd
, 1, NULL
);
2320 NS_ERR("cannot scan NAND Simulator device\n");
2327 unsigned int eccsteps
, eccbytes
;
2328 if (!mtd_nand_has_bch()) {
2329 NS_ERR("BCH ECC support is disabled\n");
2333 /* use 512-byte ecc blocks */
2334 eccsteps
= nsmtd
->writesize
/512;
2335 eccbytes
= (bch
*13+7)/8;
2336 /* do not bother supporting small page devices */
2337 if ((nsmtd
->oobsize
< 64) || !eccsteps
) {
2338 NS_ERR("bch not available on small page devices\n");
2342 if ((eccbytes
*eccsteps
+2) > nsmtd
->oobsize
) {
2343 NS_ERR("invalid bch value %u\n", bch
);
2347 chip
->ecc
.mode
= NAND_ECC_SOFT_BCH
;
2348 chip
->ecc
.size
= 512;
2349 chip
->ecc
.bytes
= eccbytes
;
2350 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch
, chip
->ecc
.size
);
2353 retval
= nand_scan_tail(nsmtd
);
2355 NS_ERR("can't register NAND Simulator\n");
2362 uint64_t new_size
= (uint64_t)nsmtd
->erasesize
<< overridesize
;
2363 if (new_size
>> overridesize
!= nsmtd
->erasesize
) {
2364 NS_ERR("overridesize is too big\n");
2368 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2369 nsmtd
->size
= new_size
;
2370 chip
->chipsize
= new_size
;
2371 chip
->chip_shift
= ffs(nsmtd
->erasesize
) + overridesize
- 1;
2372 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
2375 if ((retval
= setup_wear_reporting(nsmtd
)) != 0)
2378 if ((retval
= nandsim_debugfs_create(nand
)) != 0)
2381 if ((retval
= init_nandsim(nsmtd
)) != 0)
2384 if ((retval
= nand_default_bbt(nsmtd
)) != 0)
2387 if ((retval
= parse_badblocks(nand
, nsmtd
)) != 0)
2390 /* Register NAND partitions */
2391 retval
= mtd_device_register(nsmtd
, &nand
->partitions
[0],
2400 nand_release(nsmtd
);
2401 for (i
= 0;i
< ARRAY_SIZE(nand
->partitions
); ++i
)
2402 kfree(nand
->partitions
[i
].name
);
2410 module_init(ns_init_module
);
2413 * Module clean-up function
2415 static void __exit
ns_cleanup_module(void)
2417 struct nandsim
*ns
= ((struct nand_chip
*)nsmtd
->priv
)->priv
;
2420 nandsim_debugfs_remove(ns
);
2421 free_nandsim(ns
); /* Free nandsim private resources */
2422 nand_release(nsmtd
); /* Unregister driver */
2423 for (i
= 0;i
< ARRAY_SIZE(ns
->partitions
); ++i
)
2424 kfree(ns
->partitions
[i
].name
);
2425 kfree(nsmtd
); /* Free other structures */
2429 module_exit(ns_cleanup_module
);
2431 MODULE_LICENSE ("GPL");
2432 MODULE_AUTHOR ("Artem B. Bityuckiy");
2433 MODULE_DESCRIPTION ("The NAND flash simulator");