2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
45 static kmem_zone_t
*xfs_buf_zone
;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp
->b_addr
&& bp
->b_page_count
> 1;
79 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
99 if (bp
->b_flags
& (XBF_NO_IOACCT
|_XBF_IN_FLIGHT
))
102 ASSERT(bp
->b_flags
& XBF_ASYNC
);
103 bp
->b_flags
|= _XBF_IN_FLIGHT
;
104 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
115 if (!(bp
->b_flags
& _XBF_IN_FLIGHT
))
118 bp
->b_flags
&= ~_XBF_IN_FLIGHT
;
119 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
128 * This prevents build-up of stale buffers on the LRU.
134 ASSERT(xfs_buf_islocked(bp
));
136 bp
->b_flags
|= XBF_STALE
;
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
143 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
151 xfs_buf_ioacct_dec(bp
);
153 spin_lock(&bp
->b_lock
);
154 atomic_set(&bp
->b_lru_ref
, 0);
155 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
156 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
157 atomic_dec(&bp
->b_hold
);
159 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
160 spin_unlock(&bp
->b_lock
);
168 ASSERT(bp
->b_maps
== NULL
);
169 bp
->b_map_count
= map_count
;
171 if (map_count
== 1) {
172 bp
->b_maps
= &bp
->__b_map
;
176 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
184 * Frees b_pages if it was allocated.
190 if (bp
->b_maps
!= &bp
->__b_map
) {
191 kmem_free(bp
->b_maps
);
198 struct xfs_buftarg
*target
,
199 struct xfs_buf_map
*map
,
201 xfs_buf_flags_t flags
)
207 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
215 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
217 atomic_set(&bp
->b_hold
, 1);
218 atomic_set(&bp
->b_lru_ref
, 1);
219 init_completion(&bp
->b_iowait
);
220 INIT_LIST_HEAD(&bp
->b_lru
);
221 INIT_LIST_HEAD(&bp
->b_list
);
222 RB_CLEAR_NODE(&bp
->b_rbnode
);
223 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
224 spin_lock_init(&bp
->b_lock
);
226 bp
->b_target
= target
;
230 * Set length and io_length to the same value initially.
231 * I/O routines should use io_length, which will be the same in
232 * most cases but may be reset (e.g. XFS recovery).
234 error
= xfs_buf_get_maps(bp
, nmaps
);
236 kmem_zone_free(xfs_buf_zone
, bp
);
240 bp
->b_bn
= map
[0].bm_bn
;
242 for (i
= 0; i
< nmaps
; i
++) {
243 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
244 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
245 bp
->b_length
+= map
[i
].bm_len
;
247 bp
->b_io_length
= bp
->b_length
;
249 atomic_set(&bp
->b_pin_count
, 0);
250 init_waitqueue_head(&bp
->b_waiters
);
252 XFS_STATS_INC(target
->bt_mount
, xb_create
);
253 trace_xfs_buf_init(bp
, _RET_IP_
);
259 * Allocate a page array capable of holding a specified number
260 * of pages, and point the page buf at it.
267 /* Make sure that we have a page list */
268 if (bp
->b_pages
== NULL
) {
269 bp
->b_page_count
= page_count
;
270 if (page_count
<= XB_PAGES
) {
271 bp
->b_pages
= bp
->b_page_array
;
273 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
274 page_count
, KM_NOFS
);
275 if (bp
->b_pages
== NULL
)
278 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
284 * Frees b_pages if it was allocated.
290 if (bp
->b_pages
!= bp
->b_page_array
) {
291 kmem_free(bp
->b_pages
);
297 * Releases the specified buffer.
299 * The modification state of any associated pages is left unchanged.
300 * The buffer must not be on any hash - use xfs_buf_rele instead for
301 * hashed and refcounted buffers
307 trace_xfs_buf_free(bp
, _RET_IP_
);
309 ASSERT(list_empty(&bp
->b_lru
));
311 if (bp
->b_flags
& _XBF_PAGES
) {
314 if (xfs_buf_is_vmapped(bp
))
315 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
318 for (i
= 0; i
< bp
->b_page_count
; i
++) {
319 struct page
*page
= bp
->b_pages
[i
];
323 } else if (bp
->b_flags
& _XBF_KMEM
)
324 kmem_free(bp
->b_addr
);
325 _xfs_buf_free_pages(bp
);
326 xfs_buf_free_maps(bp
);
327 kmem_zone_free(xfs_buf_zone
, bp
);
331 * Allocates all the pages for buffer in question and builds it's page list.
334 xfs_buf_allocate_memory(
339 size_t nbytes
, offset
;
340 gfp_t gfp_mask
= xb_to_gfp(flags
);
341 unsigned short page_count
, i
;
342 xfs_off_t start
, end
;
346 * for buffers that are contained within a single page, just allocate
347 * the memory from the heap - there's no need for the complexity of
348 * page arrays to keep allocation down to order 0.
350 size
= BBTOB(bp
->b_length
);
351 if (size
< PAGE_SIZE
) {
352 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
354 /* low memory - use alloc_page loop instead */
358 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
359 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
360 /* b_addr spans two pages - use alloc_page instead */
361 kmem_free(bp
->b_addr
);
365 bp
->b_offset
= offset_in_page(bp
->b_addr
);
366 bp
->b_pages
= bp
->b_page_array
;
367 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
368 bp
->b_page_count
= 1;
369 bp
->b_flags
|= _XBF_KMEM
;
374 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
375 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
377 page_count
= end
- start
;
378 error
= _xfs_buf_get_pages(bp
, page_count
);
382 offset
= bp
->b_offset
;
383 bp
->b_flags
|= _XBF_PAGES
;
385 for (i
= 0; i
< bp
->b_page_count
; i
++) {
389 page
= alloc_page(gfp_mask
);
390 if (unlikely(page
== NULL
)) {
391 if (flags
& XBF_READ_AHEAD
) {
392 bp
->b_page_count
= i
;
398 * This could deadlock.
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
403 if (!(++retries
% 100))
405 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
406 current
->comm
, current
->pid
,
409 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_retries
);
410 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
414 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_found
);
416 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
418 bp
->b_pages
[i
] = page
;
424 for (i
= 0; i
< bp
->b_page_count
; i
++)
425 __free_page(bp
->b_pages
[i
]);
430 * Map buffer into kernel address-space if necessary.
437 ASSERT(bp
->b_flags
& _XBF_PAGES
);
438 if (bp
->b_page_count
== 1) {
439 /* A single page buffer is always mappable */
440 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
441 } else if (flags
& XBF_UNMAPPED
) {
448 * vm_map_ram() will allocate auxillary structures (e.g.
449 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 * memory reclaim re-entering the filesystem here and
453 * potentially deadlocking.
455 noio_flag
= memalloc_noio_save();
457 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
462 } while (retried
++ <= 1);
463 memalloc_noio_restore(noio_flag
);
467 bp
->b_addr
+= bp
->b_offset
;
474 * Finding and Reading Buffers
478 * Look up, and creates if absent, a lockable buffer for
479 * a given range of an inode. The buffer is returned
480 * locked. No I/O is implied by this call.
484 struct xfs_buftarg
*btp
,
485 struct xfs_buf_map
*map
,
487 xfs_buf_flags_t flags
,
490 struct xfs_perag
*pag
;
491 struct rb_node
**rbp
;
492 struct rb_node
*parent
;
494 xfs_daddr_t blkno
= map
[0].bm_bn
;
499 for (i
= 0; i
< nmaps
; i
++)
500 numblks
+= map
[i
].bm_len
;
502 /* Check for IOs smaller than the sector size / not sector aligned */
503 ASSERT(!(BBTOB(numblks
) < btp
->bt_meta_sectorsize
));
504 ASSERT(!(BBTOB(blkno
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
507 * Corrupted block numbers can get through to here, unfortunately, so we
508 * have to check that the buffer falls within the filesystem bounds.
510 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
511 if (blkno
< 0 || blkno
>= eofs
) {
513 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
514 * but none of the higher level infrastructure supports
515 * returning a specific error on buffer lookup failures.
517 xfs_alert(btp
->bt_mount
,
518 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
519 __func__
, blkno
, eofs
);
525 pag
= xfs_perag_get(btp
->bt_mount
,
526 xfs_daddr_to_agno(btp
->bt_mount
, blkno
));
529 spin_lock(&pag
->pag_buf_lock
);
530 rbp
= &pag
->pag_buf_tree
.rb_node
;
535 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
537 if (blkno
< bp
->b_bn
)
538 rbp
= &(*rbp
)->rb_left
;
539 else if (blkno
> bp
->b_bn
)
540 rbp
= &(*rbp
)->rb_right
;
543 * found a block number match. If the range doesn't
544 * match, the only way this is allowed is if the buffer
545 * in the cache is stale and the transaction that made
546 * it stale has not yet committed. i.e. we are
547 * reallocating a busy extent. Skip this buffer and
548 * continue searching to the right for an exact match.
550 if (bp
->b_length
!= numblks
) {
551 ASSERT(bp
->b_flags
& XBF_STALE
);
552 rbp
= &(*rbp
)->rb_right
;
555 atomic_inc(&bp
->b_hold
);
562 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
563 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
564 /* the buffer keeps the perag reference until it is freed */
566 spin_unlock(&pag
->pag_buf_lock
);
568 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
569 spin_unlock(&pag
->pag_buf_lock
);
575 spin_unlock(&pag
->pag_buf_lock
);
578 if (!xfs_buf_trylock(bp
)) {
579 if (flags
& XBF_TRYLOCK
) {
581 XFS_STATS_INC(btp
->bt_mount
, xb_busy_locked
);
585 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked_waited
);
589 * if the buffer is stale, clear all the external state associated with
590 * it. We need to keep flags such as how we allocated the buffer memory
593 if (bp
->b_flags
& XBF_STALE
) {
594 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
595 ASSERT(bp
->b_iodone
== NULL
);
596 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
600 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
601 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
606 * Assembles a buffer covering the specified range. The code is optimised for
607 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
608 * more hits than misses.
612 struct xfs_buftarg
*target
,
613 struct xfs_buf_map
*map
,
615 xfs_buf_flags_t flags
)
618 struct xfs_buf
*new_bp
;
621 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, NULL
);
625 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
626 if (unlikely(!new_bp
))
629 error
= xfs_buf_allocate_memory(new_bp
, flags
);
631 xfs_buf_free(new_bp
);
635 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
);
637 xfs_buf_free(new_bp
);
642 xfs_buf_free(new_bp
);
646 error
= _xfs_buf_map_pages(bp
, flags
);
647 if (unlikely(error
)) {
648 xfs_warn(target
->bt_mount
,
649 "%s: failed to map pagesn", __func__
);
656 * Clear b_error if this is a lookup from a caller that doesn't expect
657 * valid data to be found in the buffer.
659 if (!(flags
& XBF_READ
))
660 xfs_buf_ioerror(bp
, 0);
662 XFS_STATS_INC(target
->bt_mount
, xb_get
);
663 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
670 xfs_buf_flags_t flags
)
672 ASSERT(!(flags
& XBF_WRITE
));
673 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
675 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
676 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
678 if (flags
& XBF_ASYNC
) {
682 return xfs_buf_submit_wait(bp
);
687 struct xfs_buftarg
*target
,
688 struct xfs_buf_map
*map
,
690 xfs_buf_flags_t flags
,
691 const struct xfs_buf_ops
*ops
)
697 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
699 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
701 if (!(bp
->b_flags
& XBF_DONE
)) {
702 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
704 _xfs_buf_read(bp
, flags
);
705 } else if (flags
& XBF_ASYNC
) {
707 * Read ahead call which is already satisfied,
713 /* We do not want read in the flags */
714 bp
->b_flags
&= ~XBF_READ
;
722 * If we are not low on memory then do the readahead in a deadlock
726 xfs_buf_readahead_map(
727 struct xfs_buftarg
*target
,
728 struct xfs_buf_map
*map
,
730 const struct xfs_buf_ops
*ops
)
732 if (bdi_read_congested(target
->bt_bdi
))
735 xfs_buf_read_map(target
, map
, nmaps
,
736 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
740 * Read an uncached buffer from disk. Allocates and returns a locked
741 * buffer containing the disk contents or nothing.
744 xfs_buf_read_uncached(
745 struct xfs_buftarg
*target
,
749 struct xfs_buf
**bpp
,
750 const struct xfs_buf_ops
*ops
)
756 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
760 /* set up the buffer for a read IO */
761 ASSERT(bp
->b_map_count
== 1);
762 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
763 bp
->b_maps
[0].bm_bn
= daddr
;
764 bp
->b_flags
|= XBF_READ
;
767 xfs_buf_submit_wait(bp
);
769 int error
= bp
->b_error
;
779 * Return a buffer allocated as an empty buffer and associated to external
780 * memory via xfs_buf_associate_memory() back to it's empty state.
788 _xfs_buf_free_pages(bp
);
791 bp
->b_page_count
= 0;
793 bp
->b_length
= numblks
;
794 bp
->b_io_length
= numblks
;
796 ASSERT(bp
->b_map_count
== 1);
797 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
798 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
799 bp
->b_maps
[0].bm_len
= bp
->b_length
;
802 static inline struct page
*
806 if ((!is_vmalloc_addr(addr
))) {
807 return virt_to_page(addr
);
809 return vmalloc_to_page(addr
);
814 xfs_buf_associate_memory(
821 unsigned long pageaddr
;
822 unsigned long offset
;
826 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
827 offset
= (unsigned long)mem
- pageaddr
;
828 buflen
= PAGE_ALIGN(len
+ offset
);
829 page_count
= buflen
>> PAGE_SHIFT
;
831 /* Free any previous set of page pointers */
833 _xfs_buf_free_pages(bp
);
838 rval
= _xfs_buf_get_pages(bp
, page_count
);
842 bp
->b_offset
= offset
;
844 for (i
= 0; i
< bp
->b_page_count
; i
++) {
845 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
846 pageaddr
+= PAGE_SIZE
;
849 bp
->b_io_length
= BTOBB(len
);
850 bp
->b_length
= BTOBB(buflen
);
856 xfs_buf_get_uncached(
857 struct xfs_buftarg
*target
,
861 unsigned long page_count
;
864 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
866 /* flags might contain irrelevant bits, pass only what we care about */
867 bp
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
);
868 if (unlikely(bp
== NULL
))
871 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
872 error
= _xfs_buf_get_pages(bp
, page_count
);
876 for (i
= 0; i
< page_count
; i
++) {
877 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
881 bp
->b_flags
|= _XBF_PAGES
;
883 error
= _xfs_buf_map_pages(bp
, 0);
884 if (unlikely(error
)) {
885 xfs_warn(target
->bt_mount
,
886 "%s: failed to map pages", __func__
);
890 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
895 __free_page(bp
->b_pages
[i
]);
896 _xfs_buf_free_pages(bp
);
898 xfs_buf_free_maps(bp
);
899 kmem_zone_free(xfs_buf_zone
, bp
);
905 * Increment reference count on buffer, to hold the buffer concurrently
906 * with another thread which may release (free) the buffer asynchronously.
907 * Must hold the buffer already to call this function.
913 trace_xfs_buf_hold(bp
, _RET_IP_
);
914 atomic_inc(&bp
->b_hold
);
918 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
919 * placed on LRU or freed (depending on b_lru_ref).
925 struct xfs_perag
*pag
= bp
->b_pag
;
927 bool freebuf
= false;
929 trace_xfs_buf_rele(bp
, _RET_IP_
);
932 ASSERT(list_empty(&bp
->b_lru
));
933 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
934 if (atomic_dec_and_test(&bp
->b_hold
)) {
935 xfs_buf_ioacct_dec(bp
);
941 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
943 ASSERT(atomic_read(&bp
->b_hold
) > 0);
945 release
= atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
);
946 spin_lock(&bp
->b_lock
);
949 * Drop the in-flight state if the buffer is already on the LRU
950 * and it holds the only reference. This is racy because we
951 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
952 * ensures the decrement occurs only once per-buf.
954 if ((atomic_read(&bp
->b_hold
) == 1) && !list_empty(&bp
->b_lru
))
955 xfs_buf_ioacct_dec(bp
);
959 /* the last reference has been dropped ... */
960 xfs_buf_ioacct_dec(bp
);
961 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
963 * If the buffer is added to the LRU take a new reference to the
964 * buffer for the LRU and clear the (now stale) dispose list
967 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
968 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
969 atomic_inc(&bp
->b_hold
);
971 spin_unlock(&pag
->pag_buf_lock
);
974 * most of the time buffers will already be removed from the
975 * LRU, so optimise that case by checking for the
976 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
977 * was on was the disposal list
979 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
980 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
982 ASSERT(list_empty(&bp
->b_lru
));
985 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
986 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
987 spin_unlock(&pag
->pag_buf_lock
);
993 spin_unlock(&bp
->b_lock
);
1001 * Lock a buffer object, if it is not already locked.
1003 * If we come across a stale, pinned, locked buffer, we know that we are
1004 * being asked to lock a buffer that has been reallocated. Because it is
1005 * pinned, we know that the log has not been pushed to disk and hence it
1006 * will still be locked. Rather than continuing to have trylock attempts
1007 * fail until someone else pushes the log, push it ourselves before
1008 * returning. This means that the xfsaild will not get stuck trying
1009 * to push on stale inode buffers.
1017 locked
= down_trylock(&bp
->b_sema
) == 0;
1020 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1022 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1028 * Lock a buffer object.
1030 * If we come across a stale, pinned, locked buffer, we know that we
1031 * are being asked to lock a buffer that has been reallocated. Because
1032 * it is pinned, we know that the log has not been pushed to disk and
1033 * hence it will still be locked. Rather than sleeping until someone
1034 * else pushes the log, push it ourselves before trying to get the lock.
1040 trace_xfs_buf_lock(bp
, _RET_IP_
);
1042 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1043 xfs_log_force(bp
->b_target
->bt_mount
, 0);
1047 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1057 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1064 DECLARE_WAITQUEUE (wait
, current
);
1066 if (atomic_read(&bp
->b_pin_count
) == 0)
1069 add_wait_queue(&bp
->b_waiters
, &wait
);
1071 set_current_state(TASK_UNINTERRUPTIBLE
);
1072 if (atomic_read(&bp
->b_pin_count
) == 0)
1076 remove_wait_queue(&bp
->b_waiters
, &wait
);
1077 set_current_state(TASK_RUNNING
);
1081 * Buffer Utility Routines
1088 bool read
= bp
->b_flags
& XBF_READ
;
1090 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1092 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1095 * Pull in IO completion errors now. We are guaranteed to be running
1096 * single threaded, so we don't need the lock to read b_io_error.
1098 if (!bp
->b_error
&& bp
->b_io_error
)
1099 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1101 /* Only validate buffers that were read without errors */
1102 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1103 ASSERT(!bp
->b_iodone
);
1104 bp
->b_ops
->verify_read(bp
);
1108 bp
->b_flags
|= XBF_DONE
;
1111 (*(bp
->b_iodone
))(bp
);
1112 else if (bp
->b_flags
& XBF_ASYNC
)
1115 complete(&bp
->b_iowait
);
1120 struct work_struct
*work
)
1122 struct xfs_buf
*bp
=
1123 container_of(work
, xfs_buf_t
, b_ioend_work
);
1129 xfs_buf_ioend_async(
1132 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1133 queue_work(bp
->b_ioend_wq
, &bp
->b_ioend_work
);
1141 ASSERT(error
<= 0 && error
>= -1000);
1142 bp
->b_error
= error
;
1143 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1147 xfs_buf_ioerror_alert(
1151 xfs_alert(bp
->b_target
->bt_mount
,
1152 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1153 (__uint64_t
)XFS_BUF_ADDR(bp
), func
, -bp
->b_error
, bp
->b_length
);
1162 ASSERT(xfs_buf_islocked(bp
));
1164 bp
->b_flags
|= XBF_WRITE
;
1165 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1166 XBF_WRITE_FAIL
| XBF_DONE
);
1168 error
= xfs_buf_submit_wait(bp
);
1170 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1171 SHUTDOWN_META_IO_ERROR
);
1180 struct xfs_buf
*bp
= (struct xfs_buf
*)bio
->bi_private
;
1183 * don't overwrite existing errors - otherwise we can lose errors on
1184 * buffers that require multiple bios to complete.
1187 cmpxchg(&bp
->b_io_error
, 0, bio
->bi_error
);
1189 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1190 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1192 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1193 xfs_buf_ioend_async(bp
);
1198 xfs_buf_ioapply_map(
1207 int total_nr_pages
= bp
->b_page_count
;
1210 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1214 total_nr_pages
= bp
->b_page_count
;
1216 /* skip the pages in the buffer before the start offset */
1218 offset
= *buf_offset
;
1219 while (offset
>= PAGE_SIZE
) {
1221 offset
-= PAGE_SIZE
;
1225 * Limit the IO size to the length of the current vector, and update the
1226 * remaining IO count for the next time around.
1228 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1230 *buf_offset
+= size
;
1233 atomic_inc(&bp
->b_io_remaining
);
1234 nr_pages
= min(total_nr_pages
, BIO_MAX_PAGES
);
1236 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1237 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1238 bio
->bi_iter
.bi_sector
= sector
;
1239 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1240 bio
->bi_private
= bp
;
1241 bio_set_op_attrs(bio
, op
, op_flags
);
1243 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1244 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1249 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1251 if (rbytes
< nbytes
)
1255 sector
+= BTOBB(nbytes
);
1260 if (likely(bio
->bi_iter
.bi_size
)) {
1261 if (xfs_buf_is_vmapped(bp
)) {
1262 flush_kernel_vmap_range(bp
->b_addr
,
1263 xfs_buf_vmap_len(bp
));
1270 * This is guaranteed not to be the last io reference count
1271 * because the caller (xfs_buf_submit) holds a count itself.
1273 atomic_dec(&bp
->b_io_remaining
);
1274 xfs_buf_ioerror(bp
, -EIO
);
1284 struct blk_plug plug
;
1292 * Make sure we capture only current IO errors rather than stale errors
1293 * left over from previous use of the buffer (e.g. failed readahead).
1298 * Initialize the I/O completion workqueue if we haven't yet or the
1299 * submitter has not opted to specify a custom one.
1301 if (!bp
->b_ioend_wq
)
1302 bp
->b_ioend_wq
= bp
->b_target
->bt_mount
->m_buf_workqueue
;
1304 if (bp
->b_flags
& XBF_WRITE
) {
1306 if (bp
->b_flags
& XBF_SYNCIO
)
1307 op_flags
= WRITE_SYNC
;
1308 if (bp
->b_flags
& XBF_FUA
)
1309 op_flags
|= REQ_FUA
;
1310 if (bp
->b_flags
& XBF_FLUSH
)
1311 op_flags
|= REQ_PREFLUSH
;
1314 * Run the write verifier callback function if it exists. If
1315 * this function fails it will mark the buffer with an error and
1316 * the IO should not be dispatched.
1319 bp
->b_ops
->verify_write(bp
);
1321 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1322 SHUTDOWN_CORRUPT_INCORE
);
1325 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1326 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
1329 * non-crc filesystems don't attach verifiers during
1330 * log recovery, so don't warn for such filesystems.
1332 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1334 "%s: no ops on block 0x%llx/0x%x",
1335 __func__
, bp
->b_bn
, bp
->b_length
);
1336 xfs_hex_dump(bp
->b_addr
, 64);
1340 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1342 op_flags
= REQ_RAHEAD
;
1347 /* we only use the buffer cache for meta-data */
1348 op_flags
|= REQ_META
;
1351 * Walk all the vectors issuing IO on them. Set up the initial offset
1352 * into the buffer and the desired IO size before we start -
1353 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1356 offset
= bp
->b_offset
;
1357 size
= BBTOB(bp
->b_io_length
);
1358 blk_start_plug(&plug
);
1359 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1360 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, op
, op_flags
);
1364 break; /* all done */
1366 blk_finish_plug(&plug
);
1370 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1371 * the current reference to the IO. It is not safe to reference the buffer after
1372 * a call to this function unless the caller holds an additional reference
1379 trace_xfs_buf_submit(bp
, _RET_IP_
);
1381 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1382 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1384 /* on shutdown we stale and complete the buffer immediately */
1385 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1386 xfs_buf_ioerror(bp
, -EIO
);
1387 bp
->b_flags
&= ~XBF_DONE
;
1393 if (bp
->b_flags
& XBF_WRITE
)
1394 xfs_buf_wait_unpin(bp
);
1396 /* clear the internal error state to avoid spurious errors */
1400 * The caller's reference is released during I/O completion.
1401 * This occurs some time after the last b_io_remaining reference is
1402 * released, so after we drop our Io reference we have to have some
1403 * other reference to ensure the buffer doesn't go away from underneath
1404 * us. Take a direct reference to ensure we have safe access to the
1405 * buffer until we are finished with it.
1410 * Set the count to 1 initially, this will stop an I/O completion
1411 * callout which happens before we have started all the I/O from calling
1412 * xfs_buf_ioend too early.
1414 atomic_set(&bp
->b_io_remaining
, 1);
1415 xfs_buf_ioacct_inc(bp
);
1416 _xfs_buf_ioapply(bp
);
1419 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1420 * reference we took above. If we drop it to zero, run completion so
1421 * that we don't return to the caller with completion still pending.
1423 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1427 xfs_buf_ioend_async(bp
);
1431 /* Note: it is not safe to reference bp now we've dropped our ref */
1435 * Synchronous buffer IO submission path, read or write.
1438 xfs_buf_submit_wait(
1443 trace_xfs_buf_submit_wait(bp
, _RET_IP_
);
1445 ASSERT(!(bp
->b_flags
& (_XBF_DELWRI_Q
| XBF_ASYNC
)));
1447 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1448 xfs_buf_ioerror(bp
, -EIO
);
1450 bp
->b_flags
&= ~XBF_DONE
;
1454 if (bp
->b_flags
& XBF_WRITE
)
1455 xfs_buf_wait_unpin(bp
);
1457 /* clear the internal error state to avoid spurious errors */
1461 * For synchronous IO, the IO does not inherit the submitters reference
1462 * count, nor the buffer lock. Hence we cannot release the reference we
1463 * are about to take until we've waited for all IO completion to occur,
1464 * including any xfs_buf_ioend_async() work that may be pending.
1469 * Set the count to 1 initially, this will stop an I/O completion
1470 * callout which happens before we have started all the I/O from calling
1471 * xfs_buf_ioend too early.
1473 atomic_set(&bp
->b_io_remaining
, 1);
1474 _xfs_buf_ioapply(bp
);
1477 * make sure we run completion synchronously if it raced with us and is
1480 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1483 /* wait for completion before gathering the error from the buffer */
1484 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1485 wait_for_completion(&bp
->b_iowait
);
1486 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1487 error
= bp
->b_error
;
1490 * all done now, we can release the hold that keeps the buffer
1491 * referenced for the entire IO.
1505 return bp
->b_addr
+ offset
;
1507 offset
+= bp
->b_offset
;
1508 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1509 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1513 * Move data into or out of a buffer.
1517 xfs_buf_t
*bp
, /* buffer to process */
1518 size_t boff
, /* starting buffer offset */
1519 size_t bsize
, /* length to copy */
1520 void *data
, /* data address */
1521 xfs_buf_rw_t mode
) /* read/write/zero flag */
1525 bend
= boff
+ bsize
;
1526 while (boff
< bend
) {
1528 int page_index
, page_offset
, csize
;
1530 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1531 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1532 page
= bp
->b_pages
[page_index
];
1533 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1534 BBTOB(bp
->b_io_length
) - boff
);
1536 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1540 memset(page_address(page
) + page_offset
, 0, csize
);
1543 memcpy(data
, page_address(page
) + page_offset
, csize
);
1546 memcpy(page_address(page
) + page_offset
, data
, csize
);
1555 * Handling of buffer targets (buftargs).
1559 * Wait for any bufs with callbacks that have been submitted but have not yet
1560 * returned. These buffers will have an elevated hold count, so wait on those
1561 * while freeing all the buffers only held by the LRU.
1563 static enum lru_status
1564 xfs_buftarg_wait_rele(
1565 struct list_head
*item
,
1566 struct list_lru_one
*lru
,
1567 spinlock_t
*lru_lock
,
1571 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1572 struct list_head
*dispose
= arg
;
1574 if (atomic_read(&bp
->b_hold
) > 1) {
1575 /* need to wait, so skip it this pass */
1576 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1579 if (!spin_trylock(&bp
->b_lock
))
1583 * clear the LRU reference count so the buffer doesn't get
1584 * ignored in xfs_buf_rele().
1586 atomic_set(&bp
->b_lru_ref
, 0);
1587 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1588 list_lru_isolate_move(lru
, item
, dispose
);
1589 spin_unlock(&bp
->b_lock
);
1595 struct xfs_buftarg
*btp
)
1601 * First wait on the buftarg I/O count for all in-flight buffers to be
1602 * released. This is critical as new buffers do not make the LRU until
1603 * they are released.
1605 * Next, flush the buffer workqueue to ensure all completion processing
1606 * has finished. Just waiting on buffer locks is not sufficient for
1607 * async IO as the reference count held over IO is not released until
1608 * after the buffer lock is dropped. Hence we need to ensure here that
1609 * all reference counts have been dropped before we start walking the
1612 while (percpu_counter_sum(&btp
->bt_io_count
))
1614 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1616 /* loop until there is nothing left on the lru list. */
1617 while (list_lru_count(&btp
->bt_lru
)) {
1618 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1619 &dispose
, LONG_MAX
);
1621 while (!list_empty(&dispose
)) {
1623 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1624 list_del_init(&bp
->b_lru
);
1625 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1626 xfs_alert(btp
->bt_mount
,
1627 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1628 (long long)bp
->b_bn
);
1629 xfs_alert(btp
->bt_mount
,
1630 "Please run xfs_repair to determine the extent of the problem.");
1639 static enum lru_status
1640 xfs_buftarg_isolate(
1641 struct list_head
*item
,
1642 struct list_lru_one
*lru
,
1643 spinlock_t
*lru_lock
,
1646 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1647 struct list_head
*dispose
= arg
;
1650 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1651 * If we fail to get the lock, just skip it.
1653 if (!spin_trylock(&bp
->b_lock
))
1656 * Decrement the b_lru_ref count unless the value is already
1657 * zero. If the value is already zero, we need to reclaim the
1658 * buffer, otherwise it gets another trip through the LRU.
1660 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1661 spin_unlock(&bp
->b_lock
);
1665 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1666 list_lru_isolate_move(lru
, item
, dispose
);
1667 spin_unlock(&bp
->b_lock
);
1671 static unsigned long
1672 xfs_buftarg_shrink_scan(
1673 struct shrinker
*shrink
,
1674 struct shrink_control
*sc
)
1676 struct xfs_buftarg
*btp
= container_of(shrink
,
1677 struct xfs_buftarg
, bt_shrinker
);
1679 unsigned long freed
;
1681 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1682 xfs_buftarg_isolate
, &dispose
);
1684 while (!list_empty(&dispose
)) {
1686 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1687 list_del_init(&bp
->b_lru
);
1694 static unsigned long
1695 xfs_buftarg_shrink_count(
1696 struct shrinker
*shrink
,
1697 struct shrink_control
*sc
)
1699 struct xfs_buftarg
*btp
= container_of(shrink
,
1700 struct xfs_buftarg
, bt_shrinker
);
1701 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1706 struct xfs_mount
*mp
,
1707 struct xfs_buftarg
*btp
)
1709 unregister_shrinker(&btp
->bt_shrinker
);
1710 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
1711 percpu_counter_destroy(&btp
->bt_io_count
);
1712 list_lru_destroy(&btp
->bt_lru
);
1714 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1715 xfs_blkdev_issue_flush(btp
);
1721 xfs_setsize_buftarg(
1723 unsigned int sectorsize
)
1725 /* Set up metadata sector size info */
1726 btp
->bt_meta_sectorsize
= sectorsize
;
1727 btp
->bt_meta_sectormask
= sectorsize
- 1;
1729 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1730 xfs_warn(btp
->bt_mount
,
1731 "Cannot set_blocksize to %u on device %pg",
1732 sectorsize
, btp
->bt_bdev
);
1736 /* Set up device logical sector size mask */
1737 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1738 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1744 * When allocating the initial buffer target we have not yet
1745 * read in the superblock, so don't know what sized sectors
1746 * are being used at this early stage. Play safe.
1749 xfs_setsize_buftarg_early(
1751 struct block_device
*bdev
)
1753 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1758 struct xfs_mount
*mp
,
1759 struct block_device
*bdev
)
1763 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
| KM_NOFS
);
1766 btp
->bt_dev
= bdev
->bd_dev
;
1767 btp
->bt_bdev
= bdev
;
1768 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1770 if (xfs_setsize_buftarg_early(btp
, bdev
))
1773 if (list_lru_init(&btp
->bt_lru
))
1776 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
1779 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1780 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1781 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1782 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1783 register_shrinker(&btp
->bt_shrinker
);
1792 * Add a buffer to the delayed write list.
1794 * This queues a buffer for writeout if it hasn't already been. Note that
1795 * neither this routine nor the buffer list submission functions perform
1796 * any internal synchronization. It is expected that the lists are thread-local
1799 * Returns true if we queued up the buffer, or false if it already had
1800 * been on the buffer list.
1803 xfs_buf_delwri_queue(
1805 struct list_head
*list
)
1807 ASSERT(xfs_buf_islocked(bp
));
1808 ASSERT(!(bp
->b_flags
& XBF_READ
));
1811 * If the buffer is already marked delwri it already is queued up
1812 * by someone else for imediate writeout. Just ignore it in that
1815 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1816 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1820 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1823 * If a buffer gets written out synchronously or marked stale while it
1824 * is on a delwri list we lazily remove it. To do this, the other party
1825 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1826 * It remains referenced and on the list. In a rare corner case it
1827 * might get readded to a delwri list after the synchronous writeout, in
1828 * which case we need just need to re-add the flag here.
1830 bp
->b_flags
|= _XBF_DELWRI_Q
;
1831 if (list_empty(&bp
->b_list
)) {
1832 atomic_inc(&bp
->b_hold
);
1833 list_add_tail(&bp
->b_list
, list
);
1840 * Compare function is more complex than it needs to be because
1841 * the return value is only 32 bits and we are doing comparisons
1847 struct list_head
*a
,
1848 struct list_head
*b
)
1850 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1851 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1854 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1863 * submit buffers for write.
1865 * When we have a large buffer list, we do not want to hold all the buffers
1866 * locked while we block on the request queue waiting for IO dispatch. To avoid
1867 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1868 * the lock hold times for lists which may contain thousands of objects.
1870 * To do this, we sort the buffer list before we walk the list to lock and
1871 * submit buffers, and we plug and unplug around each group of buffers we
1875 xfs_buf_delwri_submit_buffers(
1876 struct list_head
*buffer_list
,
1877 struct list_head
*wait_list
)
1879 struct xfs_buf
*bp
, *n
;
1880 LIST_HEAD (submit_list
);
1882 struct blk_plug plug
;
1884 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
1886 blk_start_plug(&plug
);
1887 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1889 if (xfs_buf_ispinned(bp
)) {
1893 if (!xfs_buf_trylock(bp
))
1900 * Someone else might have written the buffer synchronously or
1901 * marked it stale in the meantime. In that case only the
1902 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1903 * reference and remove it from the list here.
1905 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1906 list_del_init(&bp
->b_list
);
1911 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1914 * We do all IO submission async. This means if we need
1915 * to wait for IO completion we need to take an extra
1916 * reference so the buffer is still valid on the other
1917 * side. We need to move the buffer onto the io_list
1918 * at this point so the caller can still access it.
1920 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_WRITE_FAIL
);
1921 bp
->b_flags
|= XBF_WRITE
| XBF_ASYNC
;
1924 list_move_tail(&bp
->b_list
, wait_list
);
1926 list_del_init(&bp
->b_list
);
1930 blk_finish_plug(&plug
);
1936 * Write out a buffer list asynchronously.
1938 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1939 * out and not wait for I/O completion on any of the buffers. This interface
1940 * is only safely useable for callers that can track I/O completion by higher
1941 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1945 xfs_buf_delwri_submit_nowait(
1946 struct list_head
*buffer_list
)
1948 return xfs_buf_delwri_submit_buffers(buffer_list
, NULL
);
1952 * Write out a buffer list synchronously.
1954 * This will take the @buffer_list, write all buffers out and wait for I/O
1955 * completion on all of the buffers. @buffer_list is consumed by the function,
1956 * so callers must have some other way of tracking buffers if they require such
1960 xfs_buf_delwri_submit(
1961 struct list_head
*buffer_list
)
1963 LIST_HEAD (wait_list
);
1964 int error
= 0, error2
;
1967 xfs_buf_delwri_submit_buffers(buffer_list
, &wait_list
);
1969 /* Wait for IO to complete. */
1970 while (!list_empty(&wait_list
)) {
1971 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
1973 list_del_init(&bp
->b_list
);
1975 /* locking the buffer will wait for async IO completion. */
1977 error2
= bp
->b_error
;
1989 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
1990 KM_ZONE_HWALIGN
, NULL
);
2001 xfs_buf_terminate(void)
2003 kmem_zone_destroy(xfs_buf_zone
);