2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
42 * Allocate and initialise an xfs_inode.
52 * if this didn't occur in transactions, we could use
53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 * code up to do this anyway.
56 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
59 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
60 kmem_zone_free(xfs_inode_zone
, ip
);
64 /* VFS doesn't initialise i_mode! */
65 VFS_I(ip
)->i_mode
= 0;
67 XFS_STATS_INC(mp
, vn_active
);
68 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
69 ASSERT(!spin_is_locked(&ip
->i_flags_lock
));
70 ASSERT(!xfs_isiflocked(ip
));
71 ASSERT(ip
->i_ino
== 0);
73 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
75 /* initialise the xfs inode */
78 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
82 ip
->i_cformat
= XFS_DINODE_FMT_EXTENTS
;
83 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
85 ip
->i_delayed_blks
= 0;
86 memset(&ip
->i_d
, 0, sizeof(ip
->i_d
));
92 xfs_inode_free_callback(
93 struct rcu_head
*head
)
95 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
96 struct xfs_inode
*ip
= XFS_I(inode
);
98 switch (VFS_I(ip
)->i_mode
& S_IFMT
) {
102 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
107 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
109 xfs_idestroy_fork(ip
, XFS_COW_FORK
);
112 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
113 xfs_inode_item_destroy(ip
);
117 kmem_zone_free(xfs_inode_zone
, ip
);
122 struct xfs_inode
*ip
)
124 /* asserts to verify all state is correct here */
125 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
126 ASSERT(!xfs_isiflocked(ip
));
127 XFS_STATS_DEC(ip
->i_mount
, vn_active
);
129 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
134 struct xfs_inode
*ip
)
137 * Because we use RCU freeing we need to ensure the inode always
138 * appears to be reclaimed with an invalid inode number when in the
139 * free state. The ip->i_flags_lock provides the barrier against lookup
142 spin_lock(&ip
->i_flags_lock
);
143 ip
->i_flags
= XFS_IRECLAIM
;
145 spin_unlock(&ip
->i_flags_lock
);
147 __xfs_inode_free(ip
);
151 * Queue a new inode reclaim pass if there are reclaimable inodes and there
152 * isn't a reclaim pass already in progress. By default it runs every 5s based
153 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
154 * tunable, but that can be done if this method proves to be ineffective or too
158 xfs_reclaim_work_queue(
159 struct xfs_mount
*mp
)
163 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
164 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
165 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
171 * This is a fast pass over the inode cache to try to get reclaim moving on as
172 * many inodes as possible in a short period of time. It kicks itself every few
173 * seconds, as well as being kicked by the inode cache shrinker when memory
174 * goes low. It scans as quickly as possible avoiding locked inodes or those
175 * already being flushed, and once done schedules a future pass.
179 struct work_struct
*work
)
181 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
182 struct xfs_mount
, m_reclaim_work
);
184 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
185 xfs_reclaim_work_queue(mp
);
189 xfs_perag_set_reclaim_tag(
190 struct xfs_perag
*pag
)
192 struct xfs_mount
*mp
= pag
->pag_mount
;
194 ASSERT(spin_is_locked(&pag
->pag_ici_lock
));
195 if (pag
->pag_ici_reclaimable
++)
198 /* propagate the reclaim tag up into the perag radix tree */
199 spin_lock(&mp
->m_perag_lock
);
200 radix_tree_tag_set(&mp
->m_perag_tree
, pag
->pag_agno
,
201 XFS_ICI_RECLAIM_TAG
);
202 spin_unlock(&mp
->m_perag_lock
);
204 /* schedule periodic background inode reclaim */
205 xfs_reclaim_work_queue(mp
);
207 trace_xfs_perag_set_reclaim(mp
, pag
->pag_agno
, -1, _RET_IP_
);
211 xfs_perag_clear_reclaim_tag(
212 struct xfs_perag
*pag
)
214 struct xfs_mount
*mp
= pag
->pag_mount
;
216 ASSERT(spin_is_locked(&pag
->pag_ici_lock
));
217 if (--pag
->pag_ici_reclaimable
)
220 /* clear the reclaim tag from the perag radix tree */
221 spin_lock(&mp
->m_perag_lock
);
222 radix_tree_tag_clear(&mp
->m_perag_tree
, pag
->pag_agno
,
223 XFS_ICI_RECLAIM_TAG
);
224 spin_unlock(&mp
->m_perag_lock
);
225 trace_xfs_perag_clear_reclaim(mp
, pag
->pag_agno
, -1, _RET_IP_
);
230 * We set the inode flag atomically with the radix tree tag.
231 * Once we get tag lookups on the radix tree, this inode flag
235 xfs_inode_set_reclaim_tag(
236 struct xfs_inode
*ip
)
238 struct xfs_mount
*mp
= ip
->i_mount
;
239 struct xfs_perag
*pag
;
241 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
242 spin_lock(&pag
->pag_ici_lock
);
243 spin_lock(&ip
->i_flags_lock
);
245 radix_tree_tag_set(&pag
->pag_ici_root
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
246 XFS_ICI_RECLAIM_TAG
);
247 xfs_perag_set_reclaim_tag(pag
);
248 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
250 spin_unlock(&ip
->i_flags_lock
);
251 spin_unlock(&pag
->pag_ici_lock
);
256 xfs_inode_clear_reclaim_tag(
257 struct xfs_perag
*pag
,
260 radix_tree_tag_clear(&pag
->pag_ici_root
,
261 XFS_INO_TO_AGINO(pag
->pag_mount
, ino
),
262 XFS_ICI_RECLAIM_TAG
);
263 xfs_perag_clear_reclaim_tag(pag
);
267 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
268 * part of the structure. This is made more complex by the fact we store
269 * information about the on-disk values in the VFS inode and so we can't just
270 * overwrite the values unconditionally. Hence we save the parameters we
271 * need to retain across reinitialisation, and rewrite them into the VFS inode
272 * after reinitialisation even if it fails.
276 struct xfs_mount
*mp
,
280 uint32_t nlink
= inode
->i_nlink
;
281 uint32_t generation
= inode
->i_generation
;
282 uint64_t version
= inode
->i_version
;
283 umode_t mode
= inode
->i_mode
;
285 error
= inode_init_always(mp
->m_super
, inode
);
287 set_nlink(inode
, nlink
);
288 inode
->i_generation
= generation
;
289 inode
->i_version
= version
;
290 inode
->i_mode
= mode
;
295 * Check the validity of the inode we just found it the cache
299 struct xfs_perag
*pag
,
300 struct xfs_inode
*ip
,
303 int lock_flags
) __releases(RCU
)
305 struct inode
*inode
= VFS_I(ip
);
306 struct xfs_mount
*mp
= ip
->i_mount
;
310 * check for re-use of an inode within an RCU grace period due to the
311 * radix tree nodes not being updated yet. We monitor for this by
312 * setting the inode number to zero before freeing the inode structure.
313 * If the inode has been reallocated and set up, then the inode number
314 * will not match, so check for that, too.
316 spin_lock(&ip
->i_flags_lock
);
317 if (ip
->i_ino
!= ino
) {
318 trace_xfs_iget_skip(ip
);
319 XFS_STATS_INC(mp
, xs_ig_frecycle
);
326 * If we are racing with another cache hit that is currently
327 * instantiating this inode or currently recycling it out of
328 * reclaimabe state, wait for the initialisation to complete
331 * XXX(hch): eventually we should do something equivalent to
332 * wait_on_inode to wait for these flags to be cleared
333 * instead of polling for it.
335 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
336 trace_xfs_iget_skip(ip
);
337 XFS_STATS_INC(mp
, xs_ig_frecycle
);
343 * If lookup is racing with unlink return an error immediately.
345 if (VFS_I(ip
)->i_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
351 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
352 * Need to carefully get it back into useable state.
354 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
355 trace_xfs_iget_reclaim(ip
);
358 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
359 * from stomping over us while we recycle the inode. We can't
360 * clear the radix tree reclaimable tag yet as it requires
361 * pag_ici_lock to be held exclusive.
363 ip
->i_flags
|= XFS_IRECLAIM
;
365 spin_unlock(&ip
->i_flags_lock
);
368 error
= xfs_reinit_inode(mp
, inode
);
371 * Re-initializing the inode failed, and we are in deep
372 * trouble. Try to re-add it to the reclaim list.
375 spin_lock(&ip
->i_flags_lock
);
377 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
378 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
379 trace_xfs_iget_reclaim_fail(ip
);
383 spin_lock(&pag
->pag_ici_lock
);
384 spin_lock(&ip
->i_flags_lock
);
387 * Clear the per-lifetime state in the inode as we are now
388 * effectively a new inode and need to return to the initial
389 * state before reuse occurs.
391 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
392 ip
->i_flags
|= XFS_INEW
;
393 xfs_inode_clear_reclaim_tag(pag
, ip
->i_ino
);
394 inode
->i_state
= I_NEW
;
396 ASSERT(!rwsem_is_locked(&ip
->i_iolock
.mr_lock
));
397 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
399 spin_unlock(&ip
->i_flags_lock
);
400 spin_unlock(&pag
->pag_ici_lock
);
402 /* If the VFS inode is being torn down, pause and try again. */
404 trace_xfs_iget_skip(ip
);
409 /* We've got a live one. */
410 spin_unlock(&ip
->i_flags_lock
);
412 trace_xfs_iget_hit(ip
);
416 xfs_ilock(ip
, lock_flags
);
418 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
419 XFS_STATS_INC(mp
, xs_ig_found
);
424 spin_unlock(&ip
->i_flags_lock
);
432 struct xfs_mount
*mp
,
433 struct xfs_perag
*pag
,
436 struct xfs_inode
**ipp
,
440 struct xfs_inode
*ip
;
442 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
445 ip
= xfs_inode_alloc(mp
, ino
);
449 error
= xfs_iread(mp
, tp
, ip
, flags
);
453 trace_xfs_iget_miss(ip
);
455 if ((VFS_I(ip
)->i_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
461 * Preload the radix tree so we can insert safely under the
462 * write spinlock. Note that we cannot sleep inside the preload
463 * region. Since we can be called from transaction context, don't
464 * recurse into the file system.
466 if (radix_tree_preload(GFP_NOFS
)) {
472 * Because the inode hasn't been added to the radix-tree yet it can't
473 * be found by another thread, so we can do the non-sleeping lock here.
476 if (!xfs_ilock_nowait(ip
, lock_flags
))
481 * These values must be set before inserting the inode into the radix
482 * tree as the moment it is inserted a concurrent lookup (allowed by the
483 * RCU locking mechanism) can find it and that lookup must see that this
484 * is an inode currently under construction (i.e. that XFS_INEW is set).
485 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
486 * memory barrier that ensures this detection works correctly at lookup
490 if (flags
& XFS_IGET_DONTCACHE
)
491 iflags
|= XFS_IDONTCACHE
;
495 xfs_iflags_set(ip
, iflags
);
497 /* insert the new inode */
498 spin_lock(&pag
->pag_ici_lock
);
499 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
500 if (unlikely(error
)) {
501 WARN_ON(error
!= -EEXIST
);
502 XFS_STATS_INC(mp
, xs_ig_dup
);
504 goto out_preload_end
;
506 spin_unlock(&pag
->pag_ici_lock
);
507 radix_tree_preload_end();
513 spin_unlock(&pag
->pag_ici_lock
);
514 radix_tree_preload_end();
516 xfs_iunlock(ip
, lock_flags
);
518 __destroy_inode(VFS_I(ip
));
524 * Look up an inode by number in the given file system.
525 * The inode is looked up in the cache held in each AG.
526 * If the inode is found in the cache, initialise the vfs inode
529 * If it is not in core, read it in from the file system's device,
530 * add it to the cache and initialise the vfs inode.
532 * The inode is locked according to the value of the lock_flags parameter.
533 * This flag parameter indicates how and if the inode's IO lock and inode lock
536 * mp -- the mount point structure for the current file system. It points
537 * to the inode hash table.
538 * tp -- a pointer to the current transaction if there is one. This is
539 * simply passed through to the xfs_iread() call.
540 * ino -- the number of the inode desired. This is the unique identifier
541 * within the file system for the inode being requested.
542 * lock_flags -- flags indicating how to lock the inode. See the comment
543 * for xfs_ilock() for a list of valid values.
560 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
561 * doesn't get freed while it's being referenced during a
562 * radix tree traversal here. It assumes this function
563 * aqcuires only the ILOCK (and therefore it has no need to
564 * involve the IOLOCK in this synchronization).
566 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
568 /* reject inode numbers outside existing AGs */
569 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
572 XFS_STATS_INC(mp
, xs_ig_attempts
);
574 /* get the perag structure and ensure that it's inode capable */
575 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
576 agino
= XFS_INO_TO_AGINO(mp
, ino
);
581 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
584 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
586 goto out_error_or_again
;
589 XFS_STATS_INC(mp
, xs_ig_missed
);
591 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
594 goto out_error_or_again
;
601 * If we have a real type for an on-disk inode, we can setup the inode
602 * now. If it's a new inode being created, xfs_ialloc will handle it.
604 if (xfs_iflags_test(ip
, XFS_INEW
) && VFS_I(ip
)->i_mode
!= 0)
605 xfs_setup_existing_inode(ip
);
609 if (error
== -EAGAIN
) {
618 * The inode lookup is done in batches to keep the amount of lock traffic and
619 * radix tree lookups to a minimum. The batch size is a trade off between
620 * lookup reduction and stack usage. This is in the reclaim path, so we can't
623 #define XFS_LOOKUP_BATCH 32
626 xfs_inode_ag_walk_grab(
627 struct xfs_inode
*ip
)
629 struct inode
*inode
= VFS_I(ip
);
631 ASSERT(rcu_read_lock_held());
634 * check for stale RCU freed inode
636 * If the inode has been reallocated, it doesn't matter if it's not in
637 * the AG we are walking - we are walking for writeback, so if it
638 * passes all the "valid inode" checks and is dirty, then we'll write
639 * it back anyway. If it has been reallocated and still being
640 * initialised, the XFS_INEW check below will catch it.
642 spin_lock(&ip
->i_flags_lock
);
644 goto out_unlock_noent
;
646 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
647 if (__xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
648 goto out_unlock_noent
;
649 spin_unlock(&ip
->i_flags_lock
);
651 /* nothing to sync during shutdown */
652 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
653 return -EFSCORRUPTED
;
655 /* If we can't grab the inode, it must on it's way to reclaim. */
663 spin_unlock(&ip
->i_flags_lock
);
669 struct xfs_mount
*mp
,
670 struct xfs_perag
*pag
,
671 int (*execute
)(struct xfs_inode
*ip
, int flags
,
677 uint32_t first_index
;
689 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
696 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
697 (void **)batch
, first_index
,
700 nr_found
= radix_tree_gang_lookup_tag(
702 (void **) batch
, first_index
,
703 XFS_LOOKUP_BATCH
, tag
);
711 * Grab the inodes before we drop the lock. if we found
712 * nothing, nr == 0 and the loop will be skipped.
714 for (i
= 0; i
< nr_found
; i
++) {
715 struct xfs_inode
*ip
= batch
[i
];
717 if (done
|| xfs_inode_ag_walk_grab(ip
))
721 * Update the index for the next lookup. Catch
722 * overflows into the next AG range which can occur if
723 * we have inodes in the last block of the AG and we
724 * are currently pointing to the last inode.
726 * Because we may see inodes that are from the wrong AG
727 * due to RCU freeing and reallocation, only update the
728 * index if it lies in this AG. It was a race that lead
729 * us to see this inode, so another lookup from the
730 * same index will not find it again.
732 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
734 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
735 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
739 /* unlock now we've grabbed the inodes. */
742 for (i
= 0; i
< nr_found
; i
++) {
745 error
= execute(batch
[i
], flags
, args
);
747 if (error
== -EAGAIN
) {
751 if (error
&& last_error
!= -EFSCORRUPTED
)
755 /* bail out if the filesystem is corrupted. */
756 if (error
== -EFSCORRUPTED
)
761 } while (nr_found
&& !done
);
771 * Background scanning to trim post-EOF preallocated space. This is queued
772 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
776 struct xfs_mount
*mp
)
779 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
780 queue_delayed_work(mp
->m_eofblocks_workqueue
,
781 &mp
->m_eofblocks_work
,
782 msecs_to_jiffies(xfs_eofb_secs
* 1000));
787 xfs_eofblocks_worker(
788 struct work_struct
*work
)
790 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
791 struct xfs_mount
, m_eofblocks_work
);
792 xfs_icache_free_eofblocks(mp
, NULL
);
793 xfs_queue_eofblocks(mp
);
797 * Background scanning to trim preallocated CoW space. This is queued
798 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
799 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
803 struct xfs_mount
*mp
)
806 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_COWBLOCKS_TAG
))
807 queue_delayed_work(mp
->m_eofblocks_workqueue
,
808 &mp
->m_cowblocks_work
,
809 msecs_to_jiffies(xfs_cowb_secs
* 1000));
814 xfs_cowblocks_worker(
815 struct work_struct
*work
)
817 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
818 struct xfs_mount
, m_cowblocks_work
);
819 xfs_icache_free_cowblocks(mp
, NULL
);
820 xfs_queue_cowblocks(mp
);
824 xfs_inode_ag_iterator(
825 struct xfs_mount
*mp
,
826 int (*execute
)(struct xfs_inode
*ip
, int flags
,
831 struct xfs_perag
*pag
;
837 while ((pag
= xfs_perag_get(mp
, ag
))) {
838 ag
= pag
->pag_agno
+ 1;
839 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1);
843 if (error
== -EFSCORRUPTED
)
851 xfs_inode_ag_iterator_tag(
852 struct xfs_mount
*mp
,
853 int (*execute
)(struct xfs_inode
*ip
, int flags
,
859 struct xfs_perag
*pag
;
865 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
866 ag
= pag
->pag_agno
+ 1;
867 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
);
871 if (error
== -EFSCORRUPTED
)
879 * Grab the inode for reclaim exclusively.
880 * Return 0 if we grabbed it, non-zero otherwise.
883 xfs_reclaim_inode_grab(
884 struct xfs_inode
*ip
,
887 ASSERT(rcu_read_lock_held());
889 /* quick check for stale RCU freed inode */
894 * If we are asked for non-blocking operation, do unlocked checks to
895 * see if the inode already is being flushed or in reclaim to avoid
898 if ((flags
& SYNC_TRYLOCK
) &&
899 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
903 * The radix tree lock here protects a thread in xfs_iget from racing
904 * with us starting reclaim on the inode. Once we have the
905 * XFS_IRECLAIM flag set it will not touch us.
907 * Due to RCU lookup, we may find inodes that have been freed and only
908 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
909 * aren't candidates for reclaim at all, so we must check the
910 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
912 spin_lock(&ip
->i_flags_lock
);
913 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
914 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
915 /* not a reclaim candidate. */
916 spin_unlock(&ip
->i_flags_lock
);
919 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
920 spin_unlock(&ip
->i_flags_lock
);
925 * Inodes in different states need to be treated differently. The following
926 * table lists the inode states and the reclaim actions necessary:
928 * inode state iflush ret required action
929 * --------------- ---------- ---------------
931 * shutdown EIO unpin and reclaim
932 * clean, unpinned 0 reclaim
933 * stale, unpinned 0 reclaim
934 * clean, pinned(*) 0 requeue
935 * stale, pinned EAGAIN requeue
936 * dirty, async - requeue
937 * dirty, sync 0 reclaim
939 * (*) dgc: I don't think the clean, pinned state is possible but it gets
940 * handled anyway given the order of checks implemented.
942 * Also, because we get the flush lock first, we know that any inode that has
943 * been flushed delwri has had the flush completed by the time we check that
944 * the inode is clean.
946 * Note that because the inode is flushed delayed write by AIL pushing, the
947 * flush lock may already be held here and waiting on it can result in very
948 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
949 * the caller should push the AIL first before trying to reclaim inodes to
950 * minimise the amount of time spent waiting. For background relaim, we only
951 * bother to reclaim clean inodes anyway.
953 * Hence the order of actions after gaining the locks should be:
955 * shutdown => unpin and reclaim
956 * pinned, async => requeue
957 * pinned, sync => unpin
960 * dirty, async => requeue
961 * dirty, sync => flush, wait and reclaim
965 struct xfs_inode
*ip
,
966 struct xfs_perag
*pag
,
969 struct xfs_buf
*bp
= NULL
;
970 xfs_ino_t ino
= ip
->i_ino
; /* for radix_tree_delete */
975 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
976 if (!xfs_iflock_nowait(ip
)) {
977 if (!(sync_mode
& SYNC_WAIT
))
982 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
984 xfs_iflush_abort(ip
, false);
987 if (xfs_ipincount(ip
)) {
988 if (!(sync_mode
& SYNC_WAIT
))
992 if (xfs_iflags_test(ip
, XFS_ISTALE
))
994 if (xfs_inode_clean(ip
))
998 * Never flush out dirty data during non-blocking reclaim, as it would
999 * just contend with AIL pushing trying to do the same job.
1001 if (!(sync_mode
& SYNC_WAIT
))
1005 * Now we have an inode that needs flushing.
1007 * Note that xfs_iflush will never block on the inode buffer lock, as
1008 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1009 * ip->i_lock, and we are doing the exact opposite here. As a result,
1010 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1011 * result in an ABBA deadlock with xfs_ifree_cluster().
1013 * As xfs_ifree_cluser() must gather all inodes that are active in the
1014 * cache to mark them stale, if we hit this case we don't actually want
1015 * to do IO here - we want the inode marked stale so we can simply
1016 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1017 * inode, back off and try again. Hopefully the next pass through will
1018 * see the stale flag set on the inode.
1020 error
= xfs_iflush(ip
, &bp
);
1021 if (error
== -EAGAIN
) {
1022 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1023 /* backoff longer than in xfs_ifree_cluster */
1029 error
= xfs_bwrite(bp
);
1036 * Because we use RCU freeing we need to ensure the inode always appears
1037 * to be reclaimed with an invalid inode number when in the free state.
1038 * We do this as early as possible under the ILOCK and flush lock so
1039 * that xfs_iflush_cluster() can be guaranteed to detect races with us
1040 * here. By doing this, we guarantee that once xfs_iflush_cluster has
1041 * locked both the XFS_ILOCK and the flush lock that it will see either
1042 * a valid, flushable inode that will serialise correctly against the
1043 * locks below, or it will see a clean (and invalid) inode that it can
1046 spin_lock(&ip
->i_flags_lock
);
1047 ip
->i_flags
= XFS_IRECLAIM
;
1049 spin_unlock(&ip
->i_flags_lock
);
1052 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1054 XFS_STATS_INC(ip
->i_mount
, xs_ig_reclaims
);
1056 * Remove the inode from the per-AG radix tree.
1058 * Because radix_tree_delete won't complain even if the item was never
1059 * added to the tree assert that it's been there before to catch
1060 * problems with the inode life time early on.
1062 spin_lock(&pag
->pag_ici_lock
);
1063 if (!radix_tree_delete(&pag
->pag_ici_root
,
1064 XFS_INO_TO_AGINO(ip
->i_mount
, ino
)))
1066 xfs_perag_clear_reclaim_tag(pag
);
1067 spin_unlock(&pag
->pag_ici_lock
);
1070 * Here we do an (almost) spurious inode lock in order to coordinate
1071 * with inode cache radix tree lookups. This is because the lookup
1072 * can reference the inodes in the cache without taking references.
1074 * We make that OK here by ensuring that we wait until the inode is
1075 * unlocked after the lookup before we go ahead and free it.
1077 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1078 xfs_qm_dqdetach(ip
);
1079 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1081 __xfs_inode_free(ip
);
1087 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1088 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1090 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1091 * a short while. However, this just burns CPU time scanning the tree
1092 * waiting for IO to complete and the reclaim work never goes back to
1093 * the idle state. Instead, return 0 to let the next scheduled
1094 * background reclaim attempt to reclaim the inode again.
1100 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1101 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1102 * then a shut down during filesystem unmount reclaim walk leak all the
1103 * unreclaimed inodes.
1106 xfs_reclaim_inodes_ag(
1107 struct xfs_mount
*mp
,
1111 struct xfs_perag
*pag
;
1115 int trylock
= flags
& SYNC_TRYLOCK
;
1121 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1122 unsigned long first_index
= 0;
1126 ag
= pag
->pag_agno
+ 1;
1129 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1134 first_index
= pag
->pag_ici_reclaim_cursor
;
1136 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1139 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1143 nr_found
= radix_tree_gang_lookup_tag(
1145 (void **)batch
, first_index
,
1147 XFS_ICI_RECLAIM_TAG
);
1155 * Grab the inodes before we drop the lock. if we found
1156 * nothing, nr == 0 and the loop will be skipped.
1158 for (i
= 0; i
< nr_found
; i
++) {
1159 struct xfs_inode
*ip
= batch
[i
];
1161 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1165 * Update the index for the next lookup. Catch
1166 * overflows into the next AG range which can
1167 * occur if we have inodes in the last block of
1168 * the AG and we are currently pointing to the
1171 * Because we may see inodes that are from the
1172 * wrong AG due to RCU freeing and
1173 * reallocation, only update the index if it
1174 * lies in this AG. It was a race that lead us
1175 * to see this inode, so another lookup from
1176 * the same index will not find it again.
1178 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1181 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1182 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1186 /* unlock now we've grabbed the inodes. */
1189 for (i
= 0; i
< nr_found
; i
++) {
1192 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1193 if (error
&& last_error
!= -EFSCORRUPTED
)
1197 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1201 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1203 if (trylock
&& !done
)
1204 pag
->pag_ici_reclaim_cursor
= first_index
;
1206 pag
->pag_ici_reclaim_cursor
= 0;
1207 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1212 * if we skipped any AG, and we still have scan count remaining, do
1213 * another pass this time using blocking reclaim semantics (i.e
1214 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1215 * ensure that when we get more reclaimers than AGs we block rather
1216 * than spin trying to execute reclaim.
1218 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1230 int nr_to_scan
= INT_MAX
;
1232 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1236 * Scan a certain number of inodes for reclaim.
1238 * When called we make sure that there is a background (fast) inode reclaim in
1239 * progress, while we will throttle the speed of reclaim via doing synchronous
1240 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1241 * them to be cleaned, which we hope will not be very long due to the
1242 * background walker having already kicked the IO off on those dirty inodes.
1245 xfs_reclaim_inodes_nr(
1246 struct xfs_mount
*mp
,
1249 /* kick background reclaimer and push the AIL */
1250 xfs_reclaim_work_queue(mp
);
1251 xfs_ail_push_all(mp
->m_ail
);
1253 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1257 * Return the number of reclaimable inodes in the filesystem for
1258 * the shrinker to determine how much to reclaim.
1261 xfs_reclaim_inodes_count(
1262 struct xfs_mount
*mp
)
1264 struct xfs_perag
*pag
;
1265 xfs_agnumber_t ag
= 0;
1266 int reclaimable
= 0;
1268 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1269 ag
= pag
->pag_agno
+ 1;
1270 reclaimable
+= pag
->pag_ici_reclaimable
;
1278 struct xfs_inode
*ip
,
1279 struct xfs_eofblocks
*eofb
)
1281 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1282 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1285 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1286 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1289 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1290 xfs_get_projid(ip
) != eofb
->eof_prid
)
1297 * A union-based inode filtering algorithm. Process the inode if any of the
1298 * criteria match. This is for global/internal scans only.
1301 xfs_inode_match_id_union(
1302 struct xfs_inode
*ip
,
1303 struct xfs_eofblocks
*eofb
)
1305 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1306 uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1309 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1310 gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1313 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1314 xfs_get_projid(ip
) == eofb
->eof_prid
)
1321 xfs_inode_free_eofblocks(
1322 struct xfs_inode
*ip
,
1327 struct xfs_eofblocks
*eofb
= args
;
1328 bool need_iolock
= true;
1331 ASSERT(!eofb
|| (eofb
&& eofb
->eof_scan_owner
!= 0));
1333 if (!xfs_can_free_eofblocks(ip
, false)) {
1334 /* inode could be preallocated or append-only */
1335 trace_xfs_inode_free_eofblocks_invalid(ip
);
1336 xfs_inode_clear_eofblocks_tag(ip
);
1341 * If the mapping is dirty the operation can block and wait for some
1342 * time. Unless we are waiting, skip it.
1344 if (!(flags
& SYNC_WAIT
) &&
1345 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1349 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1350 match
= xfs_inode_match_id_union(ip
, eofb
);
1352 match
= xfs_inode_match_id(ip
, eofb
);
1356 /* skip the inode if the file size is too small */
1357 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1358 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1362 * A scan owner implies we already hold the iolock. Skip it in
1363 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1364 * the possibility of EAGAIN being returned.
1366 if (eofb
->eof_scan_owner
== ip
->i_ino
)
1367 need_iolock
= false;
1370 ret
= xfs_free_eofblocks(ip
->i_mount
, ip
, need_iolock
);
1372 /* don't revisit the inode if we're not waiting */
1373 if (ret
== -EAGAIN
&& !(flags
& SYNC_WAIT
))
1380 __xfs_icache_free_eofblocks(
1381 struct xfs_mount
*mp
,
1382 struct xfs_eofblocks
*eofb
,
1383 int (*execute
)(struct xfs_inode
*ip
, int flags
,
1387 int flags
= SYNC_TRYLOCK
;
1389 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1392 return xfs_inode_ag_iterator_tag(mp
, execute
, flags
,
1397 xfs_icache_free_eofblocks(
1398 struct xfs_mount
*mp
,
1399 struct xfs_eofblocks
*eofb
)
1401 return __xfs_icache_free_eofblocks(mp
, eofb
, xfs_inode_free_eofblocks
,
1402 XFS_ICI_EOFBLOCKS_TAG
);
1406 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1407 * multiple quotas, we don't know exactly which quota caused an allocation
1408 * failure. We make a best effort by including each quota under low free space
1409 * conditions (less than 1% free space) in the scan.
1412 __xfs_inode_free_quota_eofblocks(
1413 struct xfs_inode
*ip
,
1414 int (*execute
)(struct xfs_mount
*mp
,
1415 struct xfs_eofblocks
*eofb
))
1418 struct xfs_eofblocks eofb
= {0};
1419 struct xfs_dquot
*dq
;
1421 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1424 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1425 * can repeatedly trylock on the inode we're currently processing. We
1426 * run a sync scan to increase effectiveness and use the union filter to
1427 * cover all applicable quotas in a single scan.
1429 eofb
.eof_scan_owner
= ip
->i_ino
;
1430 eofb
.eof_flags
= XFS_EOF_FLAGS_UNION
|XFS_EOF_FLAGS_SYNC
;
1432 if (XFS_IS_UQUOTA_ENFORCED(ip
->i_mount
)) {
1433 dq
= xfs_inode_dquot(ip
, XFS_DQ_USER
);
1434 if (dq
&& xfs_dquot_lowsp(dq
)) {
1435 eofb
.eof_uid
= VFS_I(ip
)->i_uid
;
1436 eofb
.eof_flags
|= XFS_EOF_FLAGS_UID
;
1441 if (XFS_IS_GQUOTA_ENFORCED(ip
->i_mount
)) {
1442 dq
= xfs_inode_dquot(ip
, XFS_DQ_GROUP
);
1443 if (dq
&& xfs_dquot_lowsp(dq
)) {
1444 eofb
.eof_gid
= VFS_I(ip
)->i_gid
;
1445 eofb
.eof_flags
|= XFS_EOF_FLAGS_GID
;
1451 execute(ip
->i_mount
, &eofb
);
1457 xfs_inode_free_quota_eofblocks(
1458 struct xfs_inode
*ip
)
1460 return __xfs_inode_free_quota_eofblocks(ip
, xfs_icache_free_eofblocks
);
1464 __xfs_inode_set_eofblocks_tag(
1466 void (*execute
)(struct xfs_mount
*mp
),
1467 void (*set_tp
)(struct xfs_mount
*mp
, xfs_agnumber_t agno
,
1468 int error
, unsigned long caller_ip
),
1471 struct xfs_mount
*mp
= ip
->i_mount
;
1472 struct xfs_perag
*pag
;
1476 * Don't bother locking the AG and looking up in the radix trees
1477 * if we already know that we have the tag set.
1479 if (ip
->i_flags
& XFS_IEOFBLOCKS
)
1481 spin_lock(&ip
->i_flags_lock
);
1482 ip
->i_flags
|= XFS_IEOFBLOCKS
;
1483 spin_unlock(&ip
->i_flags_lock
);
1485 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1486 spin_lock(&pag
->pag_ici_lock
);
1488 tagged
= radix_tree_tagged(&pag
->pag_ici_root
, tag
);
1489 radix_tree_tag_set(&pag
->pag_ici_root
,
1490 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
), tag
);
1492 /* propagate the eofblocks tag up into the perag radix tree */
1493 spin_lock(&ip
->i_mount
->m_perag_lock
);
1494 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1495 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1497 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1499 /* kick off background trimming */
1500 execute(ip
->i_mount
);
1502 set_tp(ip
->i_mount
, pag
->pag_agno
, -1, _RET_IP_
);
1505 spin_unlock(&pag
->pag_ici_lock
);
1510 xfs_inode_set_eofblocks_tag(
1513 trace_xfs_inode_set_eofblocks_tag(ip
);
1514 return __xfs_inode_set_eofblocks_tag(ip
, xfs_queue_eofblocks
,
1515 trace_xfs_perag_set_eofblocks
,
1516 XFS_ICI_EOFBLOCKS_TAG
);
1520 __xfs_inode_clear_eofblocks_tag(
1522 void (*clear_tp
)(struct xfs_mount
*mp
, xfs_agnumber_t agno
,
1523 int error
, unsigned long caller_ip
),
1526 struct xfs_mount
*mp
= ip
->i_mount
;
1527 struct xfs_perag
*pag
;
1529 spin_lock(&ip
->i_flags_lock
);
1530 ip
->i_flags
&= ~XFS_IEOFBLOCKS
;
1531 spin_unlock(&ip
->i_flags_lock
);
1533 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1534 spin_lock(&pag
->pag_ici_lock
);
1536 radix_tree_tag_clear(&pag
->pag_ici_root
,
1537 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
), tag
);
1538 if (!radix_tree_tagged(&pag
->pag_ici_root
, tag
)) {
1539 /* clear the eofblocks tag from the perag radix tree */
1540 spin_lock(&ip
->i_mount
->m_perag_lock
);
1541 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1542 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1544 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1545 clear_tp(ip
->i_mount
, pag
->pag_agno
, -1, _RET_IP_
);
1548 spin_unlock(&pag
->pag_ici_lock
);
1553 xfs_inode_clear_eofblocks_tag(
1556 trace_xfs_inode_clear_eofblocks_tag(ip
);
1557 return __xfs_inode_clear_eofblocks_tag(ip
,
1558 trace_xfs_perag_clear_eofblocks
, XFS_ICI_EOFBLOCKS_TAG
);
1562 * Automatic CoW Reservation Freeing
1564 * These functions automatically garbage collect leftover CoW reservations
1565 * that were made on behalf of a cowextsize hint when we start to run out
1566 * of quota or when the reservations sit around for too long. If the file
1567 * has dirty pages or is undergoing writeback, its CoW reservations will
1570 * The actual garbage collection piggybacks off the same code that runs
1571 * the speculative EOF preallocation garbage collector.
1574 xfs_inode_free_cowblocks(
1575 struct xfs_inode
*ip
,
1580 struct xfs_eofblocks
*eofb
= args
;
1581 bool need_iolock
= true;
1584 ASSERT(!eofb
|| (eofb
&& eofb
->eof_scan_owner
!= 0));
1586 if (!xfs_reflink_has_real_cow_blocks(ip
)) {
1587 trace_xfs_inode_free_cowblocks_invalid(ip
);
1588 xfs_inode_clear_cowblocks_tag(ip
);
1593 * If the mapping is dirty or under writeback we cannot touch the
1594 * CoW fork. Leave it alone if we're in the midst of a directio.
1596 if (mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
) ||
1597 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_WRITEBACK
) ||
1598 atomic_read(&VFS_I(ip
)->i_dio_count
))
1602 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1603 match
= xfs_inode_match_id_union(ip
, eofb
);
1605 match
= xfs_inode_match_id(ip
, eofb
);
1609 /* skip the inode if the file size is too small */
1610 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1611 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1615 * A scan owner implies we already hold the iolock. Skip it in
1616 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1617 * the possibility of EAGAIN being returned.
1619 if (eofb
->eof_scan_owner
== ip
->i_ino
)
1620 need_iolock
= false;
1623 /* Free the CoW blocks */
1625 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
1626 xfs_ilock(ip
, XFS_MMAPLOCK_EXCL
);
1629 ret
= xfs_reflink_cancel_cow_range(ip
, 0, NULLFILEOFF
);
1632 xfs_iunlock(ip
, XFS_MMAPLOCK_EXCL
);
1633 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
1640 xfs_icache_free_cowblocks(
1641 struct xfs_mount
*mp
,
1642 struct xfs_eofblocks
*eofb
)
1644 return __xfs_icache_free_eofblocks(mp
, eofb
, xfs_inode_free_cowblocks
,
1645 XFS_ICI_COWBLOCKS_TAG
);
1649 xfs_inode_free_quota_cowblocks(
1650 struct xfs_inode
*ip
)
1652 return __xfs_inode_free_quota_eofblocks(ip
, xfs_icache_free_cowblocks
);
1656 xfs_inode_set_cowblocks_tag(
1659 trace_xfs_inode_set_eofblocks_tag(ip
);
1660 return __xfs_inode_set_eofblocks_tag(ip
, xfs_queue_cowblocks
,
1661 trace_xfs_perag_set_eofblocks
,
1662 XFS_ICI_COWBLOCKS_TAG
);
1666 xfs_inode_clear_cowblocks_tag(
1669 trace_xfs_inode_clear_eofblocks_tag(ip
);
1670 return __xfs_inode_clear_eofblocks_tag(ip
,
1671 trace_xfs_perag_clear_eofblocks
, XFS_ICI_COWBLOCKS_TAG
);