x86/entry/32, x86/boot/32: Use local labels
[linux/fpc-iii.git] / fs / xfs / xfs_icache.c
blob14796b744e0a1ebb9f8d428131d2522316262e82
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
42 * Allocate and initialise an xfs_inode.
44 struct xfs_inode *
45 xfs_inode_alloc(
46 struct xfs_mount *mp,
47 xfs_ino_t ino)
49 struct xfs_inode *ip;
52 * if this didn't occur in transactions, we could use
53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 * code up to do this anyway.
56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 if (!ip)
58 return NULL;
59 if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 kmem_zone_free(xfs_inode_zone, ip);
61 return NULL;
64 /* VFS doesn't initialise i_mode! */
65 VFS_I(ip)->i_mode = 0;
67 XFS_STATS_INC(mp, vn_active);
68 ASSERT(atomic_read(&ip->i_pincount) == 0);
69 ASSERT(!spin_is_locked(&ip->i_flags_lock));
70 ASSERT(!xfs_isiflocked(ip));
71 ASSERT(ip->i_ino == 0);
73 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
75 /* initialise the xfs inode */
76 ip->i_ino = ino;
77 ip->i_mount = mp;
78 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
79 ip->i_afp = NULL;
80 ip->i_cowfp = NULL;
81 ip->i_cnextents = 0;
82 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
83 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
84 ip->i_flags = 0;
85 ip->i_delayed_blks = 0;
86 memset(&ip->i_d, 0, sizeof(ip->i_d));
88 return ip;
91 STATIC void
92 xfs_inode_free_callback(
93 struct rcu_head *head)
95 struct inode *inode = container_of(head, struct inode, i_rcu);
96 struct xfs_inode *ip = XFS_I(inode);
98 switch (VFS_I(ip)->i_mode & S_IFMT) {
99 case S_IFREG:
100 case S_IFDIR:
101 case S_IFLNK:
102 xfs_idestroy_fork(ip, XFS_DATA_FORK);
103 break;
106 if (ip->i_afp)
107 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
108 if (ip->i_cowfp)
109 xfs_idestroy_fork(ip, XFS_COW_FORK);
111 if (ip->i_itemp) {
112 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
113 xfs_inode_item_destroy(ip);
114 ip->i_itemp = NULL;
117 kmem_zone_free(xfs_inode_zone, ip);
120 static void
121 __xfs_inode_free(
122 struct xfs_inode *ip)
124 /* asserts to verify all state is correct here */
125 ASSERT(atomic_read(&ip->i_pincount) == 0);
126 ASSERT(!xfs_isiflocked(ip));
127 XFS_STATS_DEC(ip->i_mount, vn_active);
129 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
132 void
133 xfs_inode_free(
134 struct xfs_inode *ip)
137 * Because we use RCU freeing we need to ensure the inode always
138 * appears to be reclaimed with an invalid inode number when in the
139 * free state. The ip->i_flags_lock provides the barrier against lookup
140 * races.
142 spin_lock(&ip->i_flags_lock);
143 ip->i_flags = XFS_IRECLAIM;
144 ip->i_ino = 0;
145 spin_unlock(&ip->i_flags_lock);
147 __xfs_inode_free(ip);
151 * Queue a new inode reclaim pass if there are reclaimable inodes and there
152 * isn't a reclaim pass already in progress. By default it runs every 5s based
153 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
154 * tunable, but that can be done if this method proves to be ineffective or too
155 * aggressive.
157 static void
158 xfs_reclaim_work_queue(
159 struct xfs_mount *mp)
162 rcu_read_lock();
163 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
164 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
165 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
167 rcu_read_unlock();
171 * This is a fast pass over the inode cache to try to get reclaim moving on as
172 * many inodes as possible in a short period of time. It kicks itself every few
173 * seconds, as well as being kicked by the inode cache shrinker when memory
174 * goes low. It scans as quickly as possible avoiding locked inodes or those
175 * already being flushed, and once done schedules a future pass.
177 void
178 xfs_reclaim_worker(
179 struct work_struct *work)
181 struct xfs_mount *mp = container_of(to_delayed_work(work),
182 struct xfs_mount, m_reclaim_work);
184 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
185 xfs_reclaim_work_queue(mp);
188 static void
189 xfs_perag_set_reclaim_tag(
190 struct xfs_perag *pag)
192 struct xfs_mount *mp = pag->pag_mount;
194 ASSERT(spin_is_locked(&pag->pag_ici_lock));
195 if (pag->pag_ici_reclaimable++)
196 return;
198 /* propagate the reclaim tag up into the perag radix tree */
199 spin_lock(&mp->m_perag_lock);
200 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
201 XFS_ICI_RECLAIM_TAG);
202 spin_unlock(&mp->m_perag_lock);
204 /* schedule periodic background inode reclaim */
205 xfs_reclaim_work_queue(mp);
207 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
210 static void
211 xfs_perag_clear_reclaim_tag(
212 struct xfs_perag *pag)
214 struct xfs_mount *mp = pag->pag_mount;
216 ASSERT(spin_is_locked(&pag->pag_ici_lock));
217 if (--pag->pag_ici_reclaimable)
218 return;
220 /* clear the reclaim tag from the perag radix tree */
221 spin_lock(&mp->m_perag_lock);
222 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
223 XFS_ICI_RECLAIM_TAG);
224 spin_unlock(&mp->m_perag_lock);
225 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
230 * We set the inode flag atomically with the radix tree tag.
231 * Once we get tag lookups on the radix tree, this inode flag
232 * can go away.
234 void
235 xfs_inode_set_reclaim_tag(
236 struct xfs_inode *ip)
238 struct xfs_mount *mp = ip->i_mount;
239 struct xfs_perag *pag;
241 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
242 spin_lock(&pag->pag_ici_lock);
243 spin_lock(&ip->i_flags_lock);
245 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
246 XFS_ICI_RECLAIM_TAG);
247 xfs_perag_set_reclaim_tag(pag);
248 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
250 spin_unlock(&ip->i_flags_lock);
251 spin_unlock(&pag->pag_ici_lock);
252 xfs_perag_put(pag);
255 STATIC void
256 xfs_inode_clear_reclaim_tag(
257 struct xfs_perag *pag,
258 xfs_ino_t ino)
260 radix_tree_tag_clear(&pag->pag_ici_root,
261 XFS_INO_TO_AGINO(pag->pag_mount, ino),
262 XFS_ICI_RECLAIM_TAG);
263 xfs_perag_clear_reclaim_tag(pag);
267 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
268 * part of the structure. This is made more complex by the fact we store
269 * information about the on-disk values in the VFS inode and so we can't just
270 * overwrite the values unconditionally. Hence we save the parameters we
271 * need to retain across reinitialisation, and rewrite them into the VFS inode
272 * after reinitialisation even if it fails.
274 static int
275 xfs_reinit_inode(
276 struct xfs_mount *mp,
277 struct inode *inode)
279 int error;
280 uint32_t nlink = inode->i_nlink;
281 uint32_t generation = inode->i_generation;
282 uint64_t version = inode->i_version;
283 umode_t mode = inode->i_mode;
285 error = inode_init_always(mp->m_super, inode);
287 set_nlink(inode, nlink);
288 inode->i_generation = generation;
289 inode->i_version = version;
290 inode->i_mode = mode;
291 return error;
295 * Check the validity of the inode we just found it the cache
297 static int
298 xfs_iget_cache_hit(
299 struct xfs_perag *pag,
300 struct xfs_inode *ip,
301 xfs_ino_t ino,
302 int flags,
303 int lock_flags) __releases(RCU)
305 struct inode *inode = VFS_I(ip);
306 struct xfs_mount *mp = ip->i_mount;
307 int error;
310 * check for re-use of an inode within an RCU grace period due to the
311 * radix tree nodes not being updated yet. We monitor for this by
312 * setting the inode number to zero before freeing the inode structure.
313 * If the inode has been reallocated and set up, then the inode number
314 * will not match, so check for that, too.
316 spin_lock(&ip->i_flags_lock);
317 if (ip->i_ino != ino) {
318 trace_xfs_iget_skip(ip);
319 XFS_STATS_INC(mp, xs_ig_frecycle);
320 error = -EAGAIN;
321 goto out_error;
326 * If we are racing with another cache hit that is currently
327 * instantiating this inode or currently recycling it out of
328 * reclaimabe state, wait for the initialisation to complete
329 * before continuing.
331 * XXX(hch): eventually we should do something equivalent to
332 * wait_on_inode to wait for these flags to be cleared
333 * instead of polling for it.
335 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
336 trace_xfs_iget_skip(ip);
337 XFS_STATS_INC(mp, xs_ig_frecycle);
338 error = -EAGAIN;
339 goto out_error;
343 * If lookup is racing with unlink return an error immediately.
345 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
346 error = -ENOENT;
347 goto out_error;
351 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
352 * Need to carefully get it back into useable state.
354 if (ip->i_flags & XFS_IRECLAIMABLE) {
355 trace_xfs_iget_reclaim(ip);
358 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
359 * from stomping over us while we recycle the inode. We can't
360 * clear the radix tree reclaimable tag yet as it requires
361 * pag_ici_lock to be held exclusive.
363 ip->i_flags |= XFS_IRECLAIM;
365 spin_unlock(&ip->i_flags_lock);
366 rcu_read_unlock();
368 error = xfs_reinit_inode(mp, inode);
369 if (error) {
371 * Re-initializing the inode failed, and we are in deep
372 * trouble. Try to re-add it to the reclaim list.
374 rcu_read_lock();
375 spin_lock(&ip->i_flags_lock);
377 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
378 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
379 trace_xfs_iget_reclaim_fail(ip);
380 goto out_error;
383 spin_lock(&pag->pag_ici_lock);
384 spin_lock(&ip->i_flags_lock);
387 * Clear the per-lifetime state in the inode as we are now
388 * effectively a new inode and need to return to the initial
389 * state before reuse occurs.
391 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
392 ip->i_flags |= XFS_INEW;
393 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
394 inode->i_state = I_NEW;
396 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
397 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
399 spin_unlock(&ip->i_flags_lock);
400 spin_unlock(&pag->pag_ici_lock);
401 } else {
402 /* If the VFS inode is being torn down, pause and try again. */
403 if (!igrab(inode)) {
404 trace_xfs_iget_skip(ip);
405 error = -EAGAIN;
406 goto out_error;
409 /* We've got a live one. */
410 spin_unlock(&ip->i_flags_lock);
411 rcu_read_unlock();
412 trace_xfs_iget_hit(ip);
415 if (lock_flags != 0)
416 xfs_ilock(ip, lock_flags);
418 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
419 XFS_STATS_INC(mp, xs_ig_found);
421 return 0;
423 out_error:
424 spin_unlock(&ip->i_flags_lock);
425 rcu_read_unlock();
426 return error;
430 static int
431 xfs_iget_cache_miss(
432 struct xfs_mount *mp,
433 struct xfs_perag *pag,
434 xfs_trans_t *tp,
435 xfs_ino_t ino,
436 struct xfs_inode **ipp,
437 int flags,
438 int lock_flags)
440 struct xfs_inode *ip;
441 int error;
442 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
443 int iflags;
445 ip = xfs_inode_alloc(mp, ino);
446 if (!ip)
447 return -ENOMEM;
449 error = xfs_iread(mp, tp, ip, flags);
450 if (error)
451 goto out_destroy;
453 trace_xfs_iget_miss(ip);
455 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
456 error = -ENOENT;
457 goto out_destroy;
461 * Preload the radix tree so we can insert safely under the
462 * write spinlock. Note that we cannot sleep inside the preload
463 * region. Since we can be called from transaction context, don't
464 * recurse into the file system.
466 if (radix_tree_preload(GFP_NOFS)) {
467 error = -EAGAIN;
468 goto out_destroy;
472 * Because the inode hasn't been added to the radix-tree yet it can't
473 * be found by another thread, so we can do the non-sleeping lock here.
475 if (lock_flags) {
476 if (!xfs_ilock_nowait(ip, lock_flags))
477 BUG();
481 * These values must be set before inserting the inode into the radix
482 * tree as the moment it is inserted a concurrent lookup (allowed by the
483 * RCU locking mechanism) can find it and that lookup must see that this
484 * is an inode currently under construction (i.e. that XFS_INEW is set).
485 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
486 * memory barrier that ensures this detection works correctly at lookup
487 * time.
489 iflags = XFS_INEW;
490 if (flags & XFS_IGET_DONTCACHE)
491 iflags |= XFS_IDONTCACHE;
492 ip->i_udquot = NULL;
493 ip->i_gdquot = NULL;
494 ip->i_pdquot = NULL;
495 xfs_iflags_set(ip, iflags);
497 /* insert the new inode */
498 spin_lock(&pag->pag_ici_lock);
499 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
500 if (unlikely(error)) {
501 WARN_ON(error != -EEXIST);
502 XFS_STATS_INC(mp, xs_ig_dup);
503 error = -EAGAIN;
504 goto out_preload_end;
506 spin_unlock(&pag->pag_ici_lock);
507 radix_tree_preload_end();
509 *ipp = ip;
510 return 0;
512 out_preload_end:
513 spin_unlock(&pag->pag_ici_lock);
514 radix_tree_preload_end();
515 if (lock_flags)
516 xfs_iunlock(ip, lock_flags);
517 out_destroy:
518 __destroy_inode(VFS_I(ip));
519 xfs_inode_free(ip);
520 return error;
524 * Look up an inode by number in the given file system.
525 * The inode is looked up in the cache held in each AG.
526 * If the inode is found in the cache, initialise the vfs inode
527 * if necessary.
529 * If it is not in core, read it in from the file system's device,
530 * add it to the cache and initialise the vfs inode.
532 * The inode is locked according to the value of the lock_flags parameter.
533 * This flag parameter indicates how and if the inode's IO lock and inode lock
534 * should be taken.
536 * mp -- the mount point structure for the current file system. It points
537 * to the inode hash table.
538 * tp -- a pointer to the current transaction if there is one. This is
539 * simply passed through to the xfs_iread() call.
540 * ino -- the number of the inode desired. This is the unique identifier
541 * within the file system for the inode being requested.
542 * lock_flags -- flags indicating how to lock the inode. See the comment
543 * for xfs_ilock() for a list of valid values.
546 xfs_iget(
547 xfs_mount_t *mp,
548 xfs_trans_t *tp,
549 xfs_ino_t ino,
550 uint flags,
551 uint lock_flags,
552 xfs_inode_t **ipp)
554 xfs_inode_t *ip;
555 int error;
556 xfs_perag_t *pag;
557 xfs_agino_t agino;
560 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
561 * doesn't get freed while it's being referenced during a
562 * radix tree traversal here. It assumes this function
563 * aqcuires only the ILOCK (and therefore it has no need to
564 * involve the IOLOCK in this synchronization).
566 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
568 /* reject inode numbers outside existing AGs */
569 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
570 return -EINVAL;
572 XFS_STATS_INC(mp, xs_ig_attempts);
574 /* get the perag structure and ensure that it's inode capable */
575 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
576 agino = XFS_INO_TO_AGINO(mp, ino);
578 again:
579 error = 0;
580 rcu_read_lock();
581 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
583 if (ip) {
584 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
585 if (error)
586 goto out_error_or_again;
587 } else {
588 rcu_read_unlock();
589 XFS_STATS_INC(mp, xs_ig_missed);
591 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
592 flags, lock_flags);
593 if (error)
594 goto out_error_or_again;
596 xfs_perag_put(pag);
598 *ipp = ip;
601 * If we have a real type for an on-disk inode, we can setup the inode
602 * now. If it's a new inode being created, xfs_ialloc will handle it.
604 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
605 xfs_setup_existing_inode(ip);
606 return 0;
608 out_error_or_again:
609 if (error == -EAGAIN) {
610 delay(1);
611 goto again;
613 xfs_perag_put(pag);
614 return error;
618 * The inode lookup is done in batches to keep the amount of lock traffic and
619 * radix tree lookups to a minimum. The batch size is a trade off between
620 * lookup reduction and stack usage. This is in the reclaim path, so we can't
621 * be too greedy.
623 #define XFS_LOOKUP_BATCH 32
625 STATIC int
626 xfs_inode_ag_walk_grab(
627 struct xfs_inode *ip)
629 struct inode *inode = VFS_I(ip);
631 ASSERT(rcu_read_lock_held());
634 * check for stale RCU freed inode
636 * If the inode has been reallocated, it doesn't matter if it's not in
637 * the AG we are walking - we are walking for writeback, so if it
638 * passes all the "valid inode" checks and is dirty, then we'll write
639 * it back anyway. If it has been reallocated and still being
640 * initialised, the XFS_INEW check below will catch it.
642 spin_lock(&ip->i_flags_lock);
643 if (!ip->i_ino)
644 goto out_unlock_noent;
646 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
647 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
648 goto out_unlock_noent;
649 spin_unlock(&ip->i_flags_lock);
651 /* nothing to sync during shutdown */
652 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
653 return -EFSCORRUPTED;
655 /* If we can't grab the inode, it must on it's way to reclaim. */
656 if (!igrab(inode))
657 return -ENOENT;
659 /* inode is valid */
660 return 0;
662 out_unlock_noent:
663 spin_unlock(&ip->i_flags_lock);
664 return -ENOENT;
667 STATIC int
668 xfs_inode_ag_walk(
669 struct xfs_mount *mp,
670 struct xfs_perag *pag,
671 int (*execute)(struct xfs_inode *ip, int flags,
672 void *args),
673 int flags,
674 void *args,
675 int tag)
677 uint32_t first_index;
678 int last_error = 0;
679 int skipped;
680 int done;
681 int nr_found;
683 restart:
684 done = 0;
685 skipped = 0;
686 first_index = 0;
687 nr_found = 0;
688 do {
689 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
690 int error = 0;
691 int i;
693 rcu_read_lock();
695 if (tag == -1)
696 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
697 (void **)batch, first_index,
698 XFS_LOOKUP_BATCH);
699 else
700 nr_found = radix_tree_gang_lookup_tag(
701 &pag->pag_ici_root,
702 (void **) batch, first_index,
703 XFS_LOOKUP_BATCH, tag);
705 if (!nr_found) {
706 rcu_read_unlock();
707 break;
711 * Grab the inodes before we drop the lock. if we found
712 * nothing, nr == 0 and the loop will be skipped.
714 for (i = 0; i < nr_found; i++) {
715 struct xfs_inode *ip = batch[i];
717 if (done || xfs_inode_ag_walk_grab(ip))
718 batch[i] = NULL;
721 * Update the index for the next lookup. Catch
722 * overflows into the next AG range which can occur if
723 * we have inodes in the last block of the AG and we
724 * are currently pointing to the last inode.
726 * Because we may see inodes that are from the wrong AG
727 * due to RCU freeing and reallocation, only update the
728 * index if it lies in this AG. It was a race that lead
729 * us to see this inode, so another lookup from the
730 * same index will not find it again.
732 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
733 continue;
734 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
735 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
736 done = 1;
739 /* unlock now we've grabbed the inodes. */
740 rcu_read_unlock();
742 for (i = 0; i < nr_found; i++) {
743 if (!batch[i])
744 continue;
745 error = execute(batch[i], flags, args);
746 IRELE(batch[i]);
747 if (error == -EAGAIN) {
748 skipped++;
749 continue;
751 if (error && last_error != -EFSCORRUPTED)
752 last_error = error;
755 /* bail out if the filesystem is corrupted. */
756 if (error == -EFSCORRUPTED)
757 break;
759 cond_resched();
761 } while (nr_found && !done);
763 if (skipped) {
764 delay(1);
765 goto restart;
767 return last_error;
771 * Background scanning to trim post-EOF preallocated space. This is queued
772 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
774 void
775 xfs_queue_eofblocks(
776 struct xfs_mount *mp)
778 rcu_read_lock();
779 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
780 queue_delayed_work(mp->m_eofblocks_workqueue,
781 &mp->m_eofblocks_work,
782 msecs_to_jiffies(xfs_eofb_secs * 1000));
783 rcu_read_unlock();
786 void
787 xfs_eofblocks_worker(
788 struct work_struct *work)
790 struct xfs_mount *mp = container_of(to_delayed_work(work),
791 struct xfs_mount, m_eofblocks_work);
792 xfs_icache_free_eofblocks(mp, NULL);
793 xfs_queue_eofblocks(mp);
797 * Background scanning to trim preallocated CoW space. This is queued
798 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
799 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
801 STATIC void
802 xfs_queue_cowblocks(
803 struct xfs_mount *mp)
805 rcu_read_lock();
806 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
807 queue_delayed_work(mp->m_eofblocks_workqueue,
808 &mp->m_cowblocks_work,
809 msecs_to_jiffies(xfs_cowb_secs * 1000));
810 rcu_read_unlock();
813 void
814 xfs_cowblocks_worker(
815 struct work_struct *work)
817 struct xfs_mount *mp = container_of(to_delayed_work(work),
818 struct xfs_mount, m_cowblocks_work);
819 xfs_icache_free_cowblocks(mp, NULL);
820 xfs_queue_cowblocks(mp);
824 xfs_inode_ag_iterator(
825 struct xfs_mount *mp,
826 int (*execute)(struct xfs_inode *ip, int flags,
827 void *args),
828 int flags,
829 void *args)
831 struct xfs_perag *pag;
832 int error = 0;
833 int last_error = 0;
834 xfs_agnumber_t ag;
836 ag = 0;
837 while ((pag = xfs_perag_get(mp, ag))) {
838 ag = pag->pag_agno + 1;
839 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
840 xfs_perag_put(pag);
841 if (error) {
842 last_error = error;
843 if (error == -EFSCORRUPTED)
844 break;
847 return last_error;
851 xfs_inode_ag_iterator_tag(
852 struct xfs_mount *mp,
853 int (*execute)(struct xfs_inode *ip, int flags,
854 void *args),
855 int flags,
856 void *args,
857 int tag)
859 struct xfs_perag *pag;
860 int error = 0;
861 int last_error = 0;
862 xfs_agnumber_t ag;
864 ag = 0;
865 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
866 ag = pag->pag_agno + 1;
867 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
868 xfs_perag_put(pag);
869 if (error) {
870 last_error = error;
871 if (error == -EFSCORRUPTED)
872 break;
875 return last_error;
879 * Grab the inode for reclaim exclusively.
880 * Return 0 if we grabbed it, non-zero otherwise.
882 STATIC int
883 xfs_reclaim_inode_grab(
884 struct xfs_inode *ip,
885 int flags)
887 ASSERT(rcu_read_lock_held());
889 /* quick check for stale RCU freed inode */
890 if (!ip->i_ino)
891 return 1;
894 * If we are asked for non-blocking operation, do unlocked checks to
895 * see if the inode already is being flushed or in reclaim to avoid
896 * lock traffic.
898 if ((flags & SYNC_TRYLOCK) &&
899 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
900 return 1;
903 * The radix tree lock here protects a thread in xfs_iget from racing
904 * with us starting reclaim on the inode. Once we have the
905 * XFS_IRECLAIM flag set it will not touch us.
907 * Due to RCU lookup, we may find inodes that have been freed and only
908 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
909 * aren't candidates for reclaim at all, so we must check the
910 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
912 spin_lock(&ip->i_flags_lock);
913 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
914 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
915 /* not a reclaim candidate. */
916 spin_unlock(&ip->i_flags_lock);
917 return 1;
919 __xfs_iflags_set(ip, XFS_IRECLAIM);
920 spin_unlock(&ip->i_flags_lock);
921 return 0;
925 * Inodes in different states need to be treated differently. The following
926 * table lists the inode states and the reclaim actions necessary:
928 * inode state iflush ret required action
929 * --------------- ---------- ---------------
930 * bad - reclaim
931 * shutdown EIO unpin and reclaim
932 * clean, unpinned 0 reclaim
933 * stale, unpinned 0 reclaim
934 * clean, pinned(*) 0 requeue
935 * stale, pinned EAGAIN requeue
936 * dirty, async - requeue
937 * dirty, sync 0 reclaim
939 * (*) dgc: I don't think the clean, pinned state is possible but it gets
940 * handled anyway given the order of checks implemented.
942 * Also, because we get the flush lock first, we know that any inode that has
943 * been flushed delwri has had the flush completed by the time we check that
944 * the inode is clean.
946 * Note that because the inode is flushed delayed write by AIL pushing, the
947 * flush lock may already be held here and waiting on it can result in very
948 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
949 * the caller should push the AIL first before trying to reclaim inodes to
950 * minimise the amount of time spent waiting. For background relaim, we only
951 * bother to reclaim clean inodes anyway.
953 * Hence the order of actions after gaining the locks should be:
954 * bad => reclaim
955 * shutdown => unpin and reclaim
956 * pinned, async => requeue
957 * pinned, sync => unpin
958 * stale => reclaim
959 * clean => reclaim
960 * dirty, async => requeue
961 * dirty, sync => flush, wait and reclaim
963 STATIC int
964 xfs_reclaim_inode(
965 struct xfs_inode *ip,
966 struct xfs_perag *pag,
967 int sync_mode)
969 struct xfs_buf *bp = NULL;
970 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
971 int error;
973 restart:
974 error = 0;
975 xfs_ilock(ip, XFS_ILOCK_EXCL);
976 if (!xfs_iflock_nowait(ip)) {
977 if (!(sync_mode & SYNC_WAIT))
978 goto out;
979 xfs_iflock(ip);
982 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
983 xfs_iunpin_wait(ip);
984 xfs_iflush_abort(ip, false);
985 goto reclaim;
987 if (xfs_ipincount(ip)) {
988 if (!(sync_mode & SYNC_WAIT))
989 goto out_ifunlock;
990 xfs_iunpin_wait(ip);
992 if (xfs_iflags_test(ip, XFS_ISTALE))
993 goto reclaim;
994 if (xfs_inode_clean(ip))
995 goto reclaim;
998 * Never flush out dirty data during non-blocking reclaim, as it would
999 * just contend with AIL pushing trying to do the same job.
1001 if (!(sync_mode & SYNC_WAIT))
1002 goto out_ifunlock;
1005 * Now we have an inode that needs flushing.
1007 * Note that xfs_iflush will never block on the inode buffer lock, as
1008 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1009 * ip->i_lock, and we are doing the exact opposite here. As a result,
1010 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1011 * result in an ABBA deadlock with xfs_ifree_cluster().
1013 * As xfs_ifree_cluser() must gather all inodes that are active in the
1014 * cache to mark them stale, if we hit this case we don't actually want
1015 * to do IO here - we want the inode marked stale so we can simply
1016 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1017 * inode, back off and try again. Hopefully the next pass through will
1018 * see the stale flag set on the inode.
1020 error = xfs_iflush(ip, &bp);
1021 if (error == -EAGAIN) {
1022 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1023 /* backoff longer than in xfs_ifree_cluster */
1024 delay(2);
1025 goto restart;
1028 if (!error) {
1029 error = xfs_bwrite(bp);
1030 xfs_buf_relse(bp);
1033 xfs_iflock(ip);
1034 reclaim:
1036 * Because we use RCU freeing we need to ensure the inode always appears
1037 * to be reclaimed with an invalid inode number when in the free state.
1038 * We do this as early as possible under the ILOCK and flush lock so
1039 * that xfs_iflush_cluster() can be guaranteed to detect races with us
1040 * here. By doing this, we guarantee that once xfs_iflush_cluster has
1041 * locked both the XFS_ILOCK and the flush lock that it will see either
1042 * a valid, flushable inode that will serialise correctly against the
1043 * locks below, or it will see a clean (and invalid) inode that it can
1044 * skip.
1046 spin_lock(&ip->i_flags_lock);
1047 ip->i_flags = XFS_IRECLAIM;
1048 ip->i_ino = 0;
1049 spin_unlock(&ip->i_flags_lock);
1051 xfs_ifunlock(ip);
1052 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1054 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1056 * Remove the inode from the per-AG radix tree.
1058 * Because radix_tree_delete won't complain even if the item was never
1059 * added to the tree assert that it's been there before to catch
1060 * problems with the inode life time early on.
1062 spin_lock(&pag->pag_ici_lock);
1063 if (!radix_tree_delete(&pag->pag_ici_root,
1064 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1065 ASSERT(0);
1066 xfs_perag_clear_reclaim_tag(pag);
1067 spin_unlock(&pag->pag_ici_lock);
1070 * Here we do an (almost) spurious inode lock in order to coordinate
1071 * with inode cache radix tree lookups. This is because the lookup
1072 * can reference the inodes in the cache without taking references.
1074 * We make that OK here by ensuring that we wait until the inode is
1075 * unlocked after the lookup before we go ahead and free it.
1077 xfs_ilock(ip, XFS_ILOCK_EXCL);
1078 xfs_qm_dqdetach(ip);
1079 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1081 __xfs_inode_free(ip);
1082 return error;
1084 out_ifunlock:
1085 xfs_ifunlock(ip);
1086 out:
1087 xfs_iflags_clear(ip, XFS_IRECLAIM);
1088 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1090 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1091 * a short while. However, this just burns CPU time scanning the tree
1092 * waiting for IO to complete and the reclaim work never goes back to
1093 * the idle state. Instead, return 0 to let the next scheduled
1094 * background reclaim attempt to reclaim the inode again.
1096 return 0;
1100 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1101 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1102 * then a shut down during filesystem unmount reclaim walk leak all the
1103 * unreclaimed inodes.
1105 STATIC int
1106 xfs_reclaim_inodes_ag(
1107 struct xfs_mount *mp,
1108 int flags,
1109 int *nr_to_scan)
1111 struct xfs_perag *pag;
1112 int error = 0;
1113 int last_error = 0;
1114 xfs_agnumber_t ag;
1115 int trylock = flags & SYNC_TRYLOCK;
1116 int skipped;
1118 restart:
1119 ag = 0;
1120 skipped = 0;
1121 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1122 unsigned long first_index = 0;
1123 int done = 0;
1124 int nr_found = 0;
1126 ag = pag->pag_agno + 1;
1128 if (trylock) {
1129 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1130 skipped++;
1131 xfs_perag_put(pag);
1132 continue;
1134 first_index = pag->pag_ici_reclaim_cursor;
1135 } else
1136 mutex_lock(&pag->pag_ici_reclaim_lock);
1138 do {
1139 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1140 int i;
1142 rcu_read_lock();
1143 nr_found = radix_tree_gang_lookup_tag(
1144 &pag->pag_ici_root,
1145 (void **)batch, first_index,
1146 XFS_LOOKUP_BATCH,
1147 XFS_ICI_RECLAIM_TAG);
1148 if (!nr_found) {
1149 done = 1;
1150 rcu_read_unlock();
1151 break;
1155 * Grab the inodes before we drop the lock. if we found
1156 * nothing, nr == 0 and the loop will be skipped.
1158 for (i = 0; i < nr_found; i++) {
1159 struct xfs_inode *ip = batch[i];
1161 if (done || xfs_reclaim_inode_grab(ip, flags))
1162 batch[i] = NULL;
1165 * Update the index for the next lookup. Catch
1166 * overflows into the next AG range which can
1167 * occur if we have inodes in the last block of
1168 * the AG and we are currently pointing to the
1169 * last inode.
1171 * Because we may see inodes that are from the
1172 * wrong AG due to RCU freeing and
1173 * reallocation, only update the index if it
1174 * lies in this AG. It was a race that lead us
1175 * to see this inode, so another lookup from
1176 * the same index will not find it again.
1178 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1179 pag->pag_agno)
1180 continue;
1181 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1182 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1183 done = 1;
1186 /* unlock now we've grabbed the inodes. */
1187 rcu_read_unlock();
1189 for (i = 0; i < nr_found; i++) {
1190 if (!batch[i])
1191 continue;
1192 error = xfs_reclaim_inode(batch[i], pag, flags);
1193 if (error && last_error != -EFSCORRUPTED)
1194 last_error = error;
1197 *nr_to_scan -= XFS_LOOKUP_BATCH;
1199 cond_resched();
1201 } while (nr_found && !done && *nr_to_scan > 0);
1203 if (trylock && !done)
1204 pag->pag_ici_reclaim_cursor = first_index;
1205 else
1206 pag->pag_ici_reclaim_cursor = 0;
1207 mutex_unlock(&pag->pag_ici_reclaim_lock);
1208 xfs_perag_put(pag);
1212 * if we skipped any AG, and we still have scan count remaining, do
1213 * another pass this time using blocking reclaim semantics (i.e
1214 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1215 * ensure that when we get more reclaimers than AGs we block rather
1216 * than spin trying to execute reclaim.
1218 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1219 trylock = 0;
1220 goto restart;
1222 return last_error;
1226 xfs_reclaim_inodes(
1227 xfs_mount_t *mp,
1228 int mode)
1230 int nr_to_scan = INT_MAX;
1232 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1236 * Scan a certain number of inodes for reclaim.
1238 * When called we make sure that there is a background (fast) inode reclaim in
1239 * progress, while we will throttle the speed of reclaim via doing synchronous
1240 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1241 * them to be cleaned, which we hope will not be very long due to the
1242 * background walker having already kicked the IO off on those dirty inodes.
1244 long
1245 xfs_reclaim_inodes_nr(
1246 struct xfs_mount *mp,
1247 int nr_to_scan)
1249 /* kick background reclaimer and push the AIL */
1250 xfs_reclaim_work_queue(mp);
1251 xfs_ail_push_all(mp->m_ail);
1253 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1257 * Return the number of reclaimable inodes in the filesystem for
1258 * the shrinker to determine how much to reclaim.
1261 xfs_reclaim_inodes_count(
1262 struct xfs_mount *mp)
1264 struct xfs_perag *pag;
1265 xfs_agnumber_t ag = 0;
1266 int reclaimable = 0;
1268 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1269 ag = pag->pag_agno + 1;
1270 reclaimable += pag->pag_ici_reclaimable;
1271 xfs_perag_put(pag);
1273 return reclaimable;
1276 STATIC int
1277 xfs_inode_match_id(
1278 struct xfs_inode *ip,
1279 struct xfs_eofblocks *eofb)
1281 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1282 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1283 return 0;
1285 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1286 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1287 return 0;
1289 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1290 xfs_get_projid(ip) != eofb->eof_prid)
1291 return 0;
1293 return 1;
1297 * A union-based inode filtering algorithm. Process the inode if any of the
1298 * criteria match. This is for global/internal scans only.
1300 STATIC int
1301 xfs_inode_match_id_union(
1302 struct xfs_inode *ip,
1303 struct xfs_eofblocks *eofb)
1305 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1306 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1307 return 1;
1309 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1310 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1311 return 1;
1313 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1314 xfs_get_projid(ip) == eofb->eof_prid)
1315 return 1;
1317 return 0;
1320 STATIC int
1321 xfs_inode_free_eofblocks(
1322 struct xfs_inode *ip,
1323 int flags,
1324 void *args)
1326 int ret;
1327 struct xfs_eofblocks *eofb = args;
1328 bool need_iolock = true;
1329 int match;
1331 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1333 if (!xfs_can_free_eofblocks(ip, false)) {
1334 /* inode could be preallocated or append-only */
1335 trace_xfs_inode_free_eofblocks_invalid(ip);
1336 xfs_inode_clear_eofblocks_tag(ip);
1337 return 0;
1341 * If the mapping is dirty the operation can block and wait for some
1342 * time. Unless we are waiting, skip it.
1344 if (!(flags & SYNC_WAIT) &&
1345 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1346 return 0;
1348 if (eofb) {
1349 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1350 match = xfs_inode_match_id_union(ip, eofb);
1351 else
1352 match = xfs_inode_match_id(ip, eofb);
1353 if (!match)
1354 return 0;
1356 /* skip the inode if the file size is too small */
1357 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1358 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1359 return 0;
1362 * A scan owner implies we already hold the iolock. Skip it in
1363 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1364 * the possibility of EAGAIN being returned.
1366 if (eofb->eof_scan_owner == ip->i_ino)
1367 need_iolock = false;
1370 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1372 /* don't revisit the inode if we're not waiting */
1373 if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1374 ret = 0;
1376 return ret;
1379 static int
1380 __xfs_icache_free_eofblocks(
1381 struct xfs_mount *mp,
1382 struct xfs_eofblocks *eofb,
1383 int (*execute)(struct xfs_inode *ip, int flags,
1384 void *args),
1385 int tag)
1387 int flags = SYNC_TRYLOCK;
1389 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1390 flags = SYNC_WAIT;
1392 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1393 eofb, tag);
1397 xfs_icache_free_eofblocks(
1398 struct xfs_mount *mp,
1399 struct xfs_eofblocks *eofb)
1401 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1402 XFS_ICI_EOFBLOCKS_TAG);
1406 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1407 * multiple quotas, we don't know exactly which quota caused an allocation
1408 * failure. We make a best effort by including each quota under low free space
1409 * conditions (less than 1% free space) in the scan.
1411 static int
1412 __xfs_inode_free_quota_eofblocks(
1413 struct xfs_inode *ip,
1414 int (*execute)(struct xfs_mount *mp,
1415 struct xfs_eofblocks *eofb))
1417 int scan = 0;
1418 struct xfs_eofblocks eofb = {0};
1419 struct xfs_dquot *dq;
1421 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1424 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1425 * can repeatedly trylock on the inode we're currently processing. We
1426 * run a sync scan to increase effectiveness and use the union filter to
1427 * cover all applicable quotas in a single scan.
1429 eofb.eof_scan_owner = ip->i_ino;
1430 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1432 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1433 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1434 if (dq && xfs_dquot_lowsp(dq)) {
1435 eofb.eof_uid = VFS_I(ip)->i_uid;
1436 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1437 scan = 1;
1441 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1442 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1443 if (dq && xfs_dquot_lowsp(dq)) {
1444 eofb.eof_gid = VFS_I(ip)->i_gid;
1445 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1446 scan = 1;
1450 if (scan)
1451 execute(ip->i_mount, &eofb);
1453 return scan;
1457 xfs_inode_free_quota_eofblocks(
1458 struct xfs_inode *ip)
1460 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1463 static void
1464 __xfs_inode_set_eofblocks_tag(
1465 xfs_inode_t *ip,
1466 void (*execute)(struct xfs_mount *mp),
1467 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1468 int error, unsigned long caller_ip),
1469 int tag)
1471 struct xfs_mount *mp = ip->i_mount;
1472 struct xfs_perag *pag;
1473 int tagged;
1476 * Don't bother locking the AG and looking up in the radix trees
1477 * if we already know that we have the tag set.
1479 if (ip->i_flags & XFS_IEOFBLOCKS)
1480 return;
1481 spin_lock(&ip->i_flags_lock);
1482 ip->i_flags |= XFS_IEOFBLOCKS;
1483 spin_unlock(&ip->i_flags_lock);
1485 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1486 spin_lock(&pag->pag_ici_lock);
1488 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1489 radix_tree_tag_set(&pag->pag_ici_root,
1490 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1491 if (!tagged) {
1492 /* propagate the eofblocks tag up into the perag radix tree */
1493 spin_lock(&ip->i_mount->m_perag_lock);
1494 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1495 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1496 tag);
1497 spin_unlock(&ip->i_mount->m_perag_lock);
1499 /* kick off background trimming */
1500 execute(ip->i_mount);
1502 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1505 spin_unlock(&pag->pag_ici_lock);
1506 xfs_perag_put(pag);
1509 void
1510 xfs_inode_set_eofblocks_tag(
1511 xfs_inode_t *ip)
1513 trace_xfs_inode_set_eofblocks_tag(ip);
1514 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1515 trace_xfs_perag_set_eofblocks,
1516 XFS_ICI_EOFBLOCKS_TAG);
1519 static void
1520 __xfs_inode_clear_eofblocks_tag(
1521 xfs_inode_t *ip,
1522 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1523 int error, unsigned long caller_ip),
1524 int tag)
1526 struct xfs_mount *mp = ip->i_mount;
1527 struct xfs_perag *pag;
1529 spin_lock(&ip->i_flags_lock);
1530 ip->i_flags &= ~XFS_IEOFBLOCKS;
1531 spin_unlock(&ip->i_flags_lock);
1533 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1534 spin_lock(&pag->pag_ici_lock);
1536 radix_tree_tag_clear(&pag->pag_ici_root,
1537 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1538 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1539 /* clear the eofblocks tag from the perag radix tree */
1540 spin_lock(&ip->i_mount->m_perag_lock);
1541 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1542 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1543 tag);
1544 spin_unlock(&ip->i_mount->m_perag_lock);
1545 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1548 spin_unlock(&pag->pag_ici_lock);
1549 xfs_perag_put(pag);
1552 void
1553 xfs_inode_clear_eofblocks_tag(
1554 xfs_inode_t *ip)
1556 trace_xfs_inode_clear_eofblocks_tag(ip);
1557 return __xfs_inode_clear_eofblocks_tag(ip,
1558 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1562 * Automatic CoW Reservation Freeing
1564 * These functions automatically garbage collect leftover CoW reservations
1565 * that were made on behalf of a cowextsize hint when we start to run out
1566 * of quota or when the reservations sit around for too long. If the file
1567 * has dirty pages or is undergoing writeback, its CoW reservations will
1568 * be retained.
1570 * The actual garbage collection piggybacks off the same code that runs
1571 * the speculative EOF preallocation garbage collector.
1573 STATIC int
1574 xfs_inode_free_cowblocks(
1575 struct xfs_inode *ip,
1576 int flags,
1577 void *args)
1579 int ret;
1580 struct xfs_eofblocks *eofb = args;
1581 bool need_iolock = true;
1582 int match;
1584 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1586 if (!xfs_reflink_has_real_cow_blocks(ip)) {
1587 trace_xfs_inode_free_cowblocks_invalid(ip);
1588 xfs_inode_clear_cowblocks_tag(ip);
1589 return 0;
1593 * If the mapping is dirty or under writeback we cannot touch the
1594 * CoW fork. Leave it alone if we're in the midst of a directio.
1596 if (mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1597 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1598 atomic_read(&VFS_I(ip)->i_dio_count))
1599 return 0;
1601 if (eofb) {
1602 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1603 match = xfs_inode_match_id_union(ip, eofb);
1604 else
1605 match = xfs_inode_match_id(ip, eofb);
1606 if (!match)
1607 return 0;
1609 /* skip the inode if the file size is too small */
1610 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1611 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1612 return 0;
1615 * A scan owner implies we already hold the iolock. Skip it in
1616 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1617 * the possibility of EAGAIN being returned.
1619 if (eofb->eof_scan_owner == ip->i_ino)
1620 need_iolock = false;
1623 /* Free the CoW blocks */
1624 if (need_iolock) {
1625 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1626 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1629 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF);
1631 if (need_iolock) {
1632 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1633 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1636 return ret;
1640 xfs_icache_free_cowblocks(
1641 struct xfs_mount *mp,
1642 struct xfs_eofblocks *eofb)
1644 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1645 XFS_ICI_COWBLOCKS_TAG);
1649 xfs_inode_free_quota_cowblocks(
1650 struct xfs_inode *ip)
1652 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1655 void
1656 xfs_inode_set_cowblocks_tag(
1657 xfs_inode_t *ip)
1659 trace_xfs_inode_set_eofblocks_tag(ip);
1660 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1661 trace_xfs_perag_set_eofblocks,
1662 XFS_ICI_COWBLOCKS_TAG);
1665 void
1666 xfs_inode_clear_cowblocks_tag(
1667 xfs_inode_t *ip)
1669 trace_xfs_inode_clear_eofblocks_tag(ip);
1670 return __xfs_inode_clear_eofblocks_tag(ip,
1671 trace_xfs_perag_clear_eofblocks, XFS_ICI_COWBLOCKS_TAG);