2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_error.h"
28 #include "xfs_trace.h"
29 #include "xfs_trans_priv.h"
33 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
35 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
37 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
41 xfs_inode_item_data_fork_size(
42 struct xfs_inode_log_item
*iip
,
46 struct xfs_inode
*ip
= iip
->ili_inode
;
48 switch (ip
->i_d
.di_format
) {
49 case XFS_DINODE_FMT_EXTENTS
:
50 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
51 ip
->i_d
.di_nextents
> 0 &&
52 ip
->i_df
.if_bytes
> 0) {
53 /* worst case, doesn't subtract delalloc extents */
54 *nbytes
+= XFS_IFORK_DSIZE(ip
);
58 case XFS_DINODE_FMT_BTREE
:
59 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
60 ip
->i_df
.if_broot_bytes
> 0) {
61 *nbytes
+= ip
->i_df
.if_broot_bytes
;
65 case XFS_DINODE_FMT_LOCAL
:
66 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
67 ip
->i_df
.if_bytes
> 0) {
68 *nbytes
+= roundup(ip
->i_df
.if_bytes
, 4);
73 case XFS_DINODE_FMT_DEV
:
74 case XFS_DINODE_FMT_UUID
:
83 xfs_inode_item_attr_fork_size(
84 struct xfs_inode_log_item
*iip
,
88 struct xfs_inode
*ip
= iip
->ili_inode
;
90 switch (ip
->i_d
.di_aformat
) {
91 case XFS_DINODE_FMT_EXTENTS
:
92 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
93 ip
->i_d
.di_anextents
> 0 &&
94 ip
->i_afp
->if_bytes
> 0) {
95 /* worst case, doesn't subtract unused space */
96 *nbytes
+= XFS_IFORK_ASIZE(ip
);
100 case XFS_DINODE_FMT_BTREE
:
101 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
102 ip
->i_afp
->if_broot_bytes
> 0) {
103 *nbytes
+= ip
->i_afp
->if_broot_bytes
;
107 case XFS_DINODE_FMT_LOCAL
:
108 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
109 ip
->i_afp
->if_bytes
> 0) {
110 *nbytes
+= roundup(ip
->i_afp
->if_bytes
, 4);
121 * This returns the number of iovecs needed to log the given inode item.
123 * We need one iovec for the inode log format structure, one for the
124 * inode core, and possibly one for the inode data/extents/b-tree root
125 * and one for the inode attribute data/extents/b-tree root.
129 struct xfs_log_item
*lip
,
133 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
134 struct xfs_inode
*ip
= iip
->ili_inode
;
137 *nbytes
+= sizeof(struct xfs_inode_log_format
) +
138 xfs_log_dinode_size(ip
->i_d
.di_version
);
140 xfs_inode_item_data_fork_size(iip
, nvecs
, nbytes
);
142 xfs_inode_item_attr_fork_size(iip
, nvecs
, nbytes
);
146 xfs_inode_item_format_data_fork(
147 struct xfs_inode_log_item
*iip
,
148 struct xfs_inode_log_format
*ilf
,
149 struct xfs_log_vec
*lv
,
150 struct xfs_log_iovec
**vecp
)
152 struct xfs_inode
*ip
= iip
->ili_inode
;
155 switch (ip
->i_d
.di_format
) {
156 case XFS_DINODE_FMT_EXTENTS
:
158 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
159 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
161 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
162 ip
->i_d
.di_nextents
> 0 &&
163 ip
->i_df
.if_bytes
> 0) {
164 struct xfs_bmbt_rec
*p
;
166 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
167 ASSERT(ip
->i_df
.if_bytes
/ sizeof(xfs_bmbt_rec_t
) > 0);
169 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IEXT
);
170 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_DATA_FORK
);
171 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
173 ASSERT(data_bytes
<= ip
->i_df
.if_bytes
);
175 ilf
->ilf_dsize
= data_bytes
;
178 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
181 case XFS_DINODE_FMT_BTREE
:
183 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
184 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
186 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
187 ip
->i_df
.if_broot_bytes
> 0) {
188 ASSERT(ip
->i_df
.if_broot
!= NULL
);
189 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IBROOT
,
191 ip
->i_df
.if_broot_bytes
);
192 ilf
->ilf_dsize
= ip
->i_df
.if_broot_bytes
;
195 ASSERT(!(iip
->ili_fields
&
197 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
200 case XFS_DINODE_FMT_LOCAL
:
202 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
203 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
204 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
205 ip
->i_df
.if_bytes
> 0) {
207 * Round i_bytes up to a word boundary.
208 * The underlying memory is guaranteed to
209 * to be there by xfs_idata_realloc().
211 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
212 ASSERT(ip
->i_df
.if_real_bytes
== 0 ||
213 ip
->i_df
.if_real_bytes
>= data_bytes
);
214 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
215 ASSERT(ip
->i_d
.di_size
> 0);
216 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_ILOCAL
,
217 ip
->i_df
.if_u1
.if_data
, data_bytes
);
218 ilf
->ilf_dsize
= (unsigned)data_bytes
;
221 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
224 case XFS_DINODE_FMT_DEV
:
226 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
227 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
228 if (iip
->ili_fields
& XFS_ILOG_DEV
)
229 ilf
->ilf_u
.ilfu_rdev
= ip
->i_df
.if_u2
.if_rdev
;
231 case XFS_DINODE_FMT_UUID
:
233 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
234 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
235 if (iip
->ili_fields
& XFS_ILOG_UUID
)
236 ilf
->ilf_u
.ilfu_uuid
= ip
->i_df
.if_u2
.if_uuid
;
245 xfs_inode_item_format_attr_fork(
246 struct xfs_inode_log_item
*iip
,
247 struct xfs_inode_log_format
*ilf
,
248 struct xfs_log_vec
*lv
,
249 struct xfs_log_iovec
**vecp
)
251 struct xfs_inode
*ip
= iip
->ili_inode
;
254 switch (ip
->i_d
.di_aformat
) {
255 case XFS_DINODE_FMT_EXTENTS
:
257 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
259 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
260 ip
->i_d
.di_anextents
> 0 &&
261 ip
->i_afp
->if_bytes
> 0) {
262 struct xfs_bmbt_rec
*p
;
264 ASSERT(ip
->i_afp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) ==
265 ip
->i_d
.di_anextents
);
266 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
268 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_EXT
);
269 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_ATTR_FORK
);
270 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
272 ilf
->ilf_asize
= data_bytes
;
275 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
278 case XFS_DINODE_FMT_BTREE
:
280 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
282 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
283 ip
->i_afp
->if_broot_bytes
> 0) {
284 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
286 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_BROOT
,
288 ip
->i_afp
->if_broot_bytes
);
289 ilf
->ilf_asize
= ip
->i_afp
->if_broot_bytes
;
292 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
295 case XFS_DINODE_FMT_LOCAL
:
297 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
299 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
300 ip
->i_afp
->if_bytes
> 0) {
302 * Round i_bytes up to a word boundary.
303 * The underlying memory is guaranteed to
304 * to be there by xfs_idata_realloc().
306 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
307 ASSERT(ip
->i_afp
->if_real_bytes
== 0 ||
308 ip
->i_afp
->if_real_bytes
>= data_bytes
);
309 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
310 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_LOCAL
,
311 ip
->i_afp
->if_u1
.if_data
,
313 ilf
->ilf_asize
= (unsigned)data_bytes
;
316 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
326 xfs_inode_to_log_dinode(
327 struct xfs_inode
*ip
,
328 struct xfs_log_dinode
*to
,
331 struct xfs_icdinode
*from
= &ip
->i_d
;
332 struct inode
*inode
= VFS_I(ip
);
334 to
->di_magic
= XFS_DINODE_MAGIC
;
336 to
->di_version
= from
->di_version
;
337 to
->di_format
= from
->di_format
;
338 to
->di_uid
= from
->di_uid
;
339 to
->di_gid
= from
->di_gid
;
340 to
->di_projid_lo
= from
->di_projid_lo
;
341 to
->di_projid_hi
= from
->di_projid_hi
;
343 memset(to
->di_pad
, 0, sizeof(to
->di_pad
));
344 memset(to
->di_pad3
, 0, sizeof(to
->di_pad3
));
345 to
->di_atime
.t_sec
= inode
->i_atime
.tv_sec
;
346 to
->di_atime
.t_nsec
= inode
->i_atime
.tv_nsec
;
347 to
->di_mtime
.t_sec
= inode
->i_mtime
.tv_sec
;
348 to
->di_mtime
.t_nsec
= inode
->i_mtime
.tv_nsec
;
349 to
->di_ctime
.t_sec
= inode
->i_ctime
.tv_sec
;
350 to
->di_ctime
.t_nsec
= inode
->i_ctime
.tv_nsec
;
351 to
->di_nlink
= inode
->i_nlink
;
352 to
->di_gen
= inode
->i_generation
;
353 to
->di_mode
= inode
->i_mode
;
355 to
->di_size
= from
->di_size
;
356 to
->di_nblocks
= from
->di_nblocks
;
357 to
->di_extsize
= from
->di_extsize
;
358 to
->di_nextents
= from
->di_nextents
;
359 to
->di_anextents
= from
->di_anextents
;
360 to
->di_forkoff
= from
->di_forkoff
;
361 to
->di_aformat
= from
->di_aformat
;
362 to
->di_dmevmask
= from
->di_dmevmask
;
363 to
->di_dmstate
= from
->di_dmstate
;
364 to
->di_flags
= from
->di_flags
;
366 if (from
->di_version
== 3) {
367 to
->di_changecount
= inode
->i_version
;
368 to
->di_crtime
.t_sec
= from
->di_crtime
.t_sec
;
369 to
->di_crtime
.t_nsec
= from
->di_crtime
.t_nsec
;
370 to
->di_flags2
= from
->di_flags2
;
371 to
->di_cowextsize
= from
->di_cowextsize
;
372 to
->di_ino
= ip
->i_ino
;
374 memset(to
->di_pad2
, 0, sizeof(to
->di_pad2
));
375 uuid_copy(&to
->di_uuid
, &ip
->i_mount
->m_sb
.sb_meta_uuid
);
376 to
->di_flushiter
= 0;
378 to
->di_flushiter
= from
->di_flushiter
;
383 * Format the inode core. Current timestamp data is only in the VFS inode
384 * fields, so we need to grab them from there. Hence rather than just copying
385 * the XFS inode core structure, format the fields directly into the iovec.
388 xfs_inode_item_format_core(
389 struct xfs_inode
*ip
,
390 struct xfs_log_vec
*lv
,
391 struct xfs_log_iovec
**vecp
)
393 struct xfs_log_dinode
*dic
;
395 dic
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_ICORE
);
396 xfs_inode_to_log_dinode(ip
, dic
, ip
->i_itemp
->ili_item
.li_lsn
);
397 xlog_finish_iovec(lv
, *vecp
, xfs_log_dinode_size(ip
->i_d
.di_version
));
401 * This is called to fill in the vector of log iovecs for the given inode
402 * log item. It fills the first item with an inode log format structure,
403 * the second with the on-disk inode structure, and a possible third and/or
404 * fourth with the inode data/extents/b-tree root and inode attributes
405 * data/extents/b-tree root.
408 xfs_inode_item_format(
409 struct xfs_log_item
*lip
,
410 struct xfs_log_vec
*lv
)
412 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
413 struct xfs_inode
*ip
= iip
->ili_inode
;
414 struct xfs_inode_log_format
*ilf
;
415 struct xfs_log_iovec
*vecp
= NULL
;
417 ASSERT(ip
->i_d
.di_version
> 1);
419 ilf
= xlog_prepare_iovec(lv
, &vecp
, XLOG_REG_TYPE_IFORMAT
);
420 ilf
->ilf_type
= XFS_LI_INODE
;
421 ilf
->ilf_ino
= ip
->i_ino
;
422 ilf
->ilf_blkno
= ip
->i_imap
.im_blkno
;
423 ilf
->ilf_len
= ip
->i_imap
.im_len
;
424 ilf
->ilf_boffset
= ip
->i_imap
.im_boffset
;
425 ilf
->ilf_fields
= XFS_ILOG_CORE
;
426 ilf
->ilf_size
= 2; /* format + core */
427 xlog_finish_iovec(lv
, vecp
, sizeof(struct xfs_inode_log_format
));
429 xfs_inode_item_format_core(ip
, lv
, &vecp
);
430 xfs_inode_item_format_data_fork(iip
, ilf
, lv
, &vecp
);
431 if (XFS_IFORK_Q(ip
)) {
432 xfs_inode_item_format_attr_fork(iip
, ilf
, lv
, &vecp
);
435 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
438 /* update the format with the exact fields we actually logged */
439 ilf
->ilf_fields
|= (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
443 * This is called to pin the inode associated with the inode log
444 * item in memory so it cannot be written out.
448 struct xfs_log_item
*lip
)
450 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
452 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
454 trace_xfs_inode_pin(ip
, _RET_IP_
);
455 atomic_inc(&ip
->i_pincount
);
460 * This is called to unpin the inode associated with the inode log
461 * item which was previously pinned with a call to xfs_inode_item_pin().
463 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
466 xfs_inode_item_unpin(
467 struct xfs_log_item
*lip
,
470 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
472 trace_xfs_inode_unpin(ip
, _RET_IP_
);
473 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
474 if (atomic_dec_and_test(&ip
->i_pincount
))
475 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
480 struct xfs_log_item
*lip
,
481 struct list_head
*buffer_list
)
482 __releases(&lip
->li_ailp
->xa_lock
)
483 __acquires(&lip
->li_ailp
->xa_lock
)
485 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
486 struct xfs_inode
*ip
= iip
->ili_inode
;
487 struct xfs_buf
*bp
= NULL
;
488 uint rval
= XFS_ITEM_SUCCESS
;
491 if (xfs_ipincount(ip
) > 0)
492 return XFS_ITEM_PINNED
;
494 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
495 return XFS_ITEM_LOCKED
;
498 * Re-check the pincount now that we stabilized the value by
501 if (xfs_ipincount(ip
) > 0) {
502 rval
= XFS_ITEM_PINNED
;
507 * Stale inode items should force out the iclog.
509 if (ip
->i_flags
& XFS_ISTALE
) {
510 rval
= XFS_ITEM_PINNED
;
515 * Someone else is already flushing the inode. Nothing we can do
516 * here but wait for the flush to finish and remove the item from
519 if (!xfs_iflock_nowait(ip
)) {
520 rval
= XFS_ITEM_FLUSHING
;
524 ASSERT(iip
->ili_fields
!= 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
525 ASSERT(iip
->ili_logged
== 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
527 spin_unlock(&lip
->li_ailp
->xa_lock
);
529 error
= xfs_iflush(ip
, &bp
);
531 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
532 rval
= XFS_ITEM_FLUSHING
;
536 spin_lock(&lip
->li_ailp
->xa_lock
);
538 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
543 * Unlock the inode associated with the inode log item.
544 * Clear the fields of the inode and inode log item that
545 * are specific to the current transaction. If the
546 * hold flags is set, do not unlock the inode.
549 xfs_inode_item_unlock(
550 struct xfs_log_item
*lip
)
552 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
553 struct xfs_inode
*ip
= iip
->ili_inode
;
554 unsigned short lock_flags
;
556 ASSERT(ip
->i_itemp
!= NULL
);
557 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
559 lock_flags
= iip
->ili_lock_flags
;
560 iip
->ili_lock_flags
= 0;
562 xfs_iunlock(ip
, lock_flags
);
566 * This is called to find out where the oldest active copy of the inode log
567 * item in the on disk log resides now that the last log write of it completed
568 * at the given lsn. Since we always re-log all dirty data in an inode, the
569 * latest copy in the on disk log is the only one that matters. Therefore,
570 * simply return the given lsn.
572 * If the inode has been marked stale because the cluster is being freed, we
573 * don't want to (re-)insert this inode into the AIL. There is a race condition
574 * where the cluster buffer may be unpinned before the inode is inserted into
575 * the AIL during transaction committed processing. If the buffer is unpinned
576 * before the inode item has been committed and inserted, then it is possible
577 * for the buffer to be written and IO completes before the inode is inserted
578 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
579 * AIL which will never get removed. It will, however, get reclaimed which
580 * triggers an assert in xfs_inode_free() complaining about freein an inode
583 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
584 * transaction committed code knows that it does not need to do any further
585 * processing on the item.
588 xfs_inode_item_committed(
589 struct xfs_log_item
*lip
,
592 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
593 struct xfs_inode
*ip
= iip
->ili_inode
;
595 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
596 xfs_inode_item_unpin(lip
, 0);
603 * XXX rcc - this one really has to do something. Probably needs
604 * to stamp in a new field in the incore inode.
607 xfs_inode_item_committing(
608 struct xfs_log_item
*lip
,
611 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
615 * This is the ops vector shared by all buf log items.
617 static const struct xfs_item_ops xfs_inode_item_ops
= {
618 .iop_size
= xfs_inode_item_size
,
619 .iop_format
= xfs_inode_item_format
,
620 .iop_pin
= xfs_inode_item_pin
,
621 .iop_unpin
= xfs_inode_item_unpin
,
622 .iop_unlock
= xfs_inode_item_unlock
,
623 .iop_committed
= xfs_inode_item_committed
,
624 .iop_push
= xfs_inode_item_push
,
625 .iop_committing
= xfs_inode_item_committing
630 * Initialize the inode log item for a newly allocated (in-core) inode.
634 struct xfs_inode
*ip
,
635 struct xfs_mount
*mp
)
637 struct xfs_inode_log_item
*iip
;
639 ASSERT(ip
->i_itemp
== NULL
);
640 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
643 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
644 &xfs_inode_item_ops
);
648 * Free the inode log item and any memory hanging off of it.
651 xfs_inode_item_destroy(
654 kmem_free(ip
->i_itemp
->ili_item
.li_lv_shadow
);
655 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
660 * This is the inode flushing I/O completion routine. It is called
661 * from interrupt level when the buffer containing the inode is
662 * flushed to disk. It is responsible for removing the inode item
663 * from the AIL if it has not been re-logged, and unlocking the inode's
666 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
667 * list for other inodes that will run this function. We remove them from the
668 * buffer list so we can process all the inode IO completions in one AIL lock
674 struct xfs_log_item
*lip
)
676 struct xfs_inode_log_item
*iip
;
677 struct xfs_log_item
*blip
;
678 struct xfs_log_item
*next
;
679 struct xfs_log_item
*prev
;
680 struct xfs_ail
*ailp
= lip
->li_ailp
;
684 * Scan the buffer IO completions for other inodes being completed and
685 * attach them to the current inode log item.
689 while (blip
!= NULL
) {
690 if (blip
->li_cb
!= xfs_iflush_done
) {
692 blip
= blip
->li_bio_list
;
696 /* remove from list */
697 next
= blip
->li_bio_list
;
701 prev
->li_bio_list
= next
;
704 /* add to current list */
705 blip
->li_bio_list
= lip
->li_bio_list
;
706 lip
->li_bio_list
= blip
;
709 * while we have the item, do the unlocked check for needing
712 iip
= INODE_ITEM(blip
);
713 if (iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
)
719 /* make sure we capture the state of the initial inode. */
720 iip
= INODE_ITEM(lip
);
721 if (iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
)
725 * We only want to pull the item from the AIL if it is
726 * actually there and its location in the log has not
727 * changed since we started the flush. Thus, we only bother
728 * if the ili_logged flag is set and the inode's lsn has not
729 * changed. First we check the lsn outside
730 * the lock since it's cheaper, and then we recheck while
731 * holding the lock before removing the inode from the AIL.
734 struct xfs_log_item
*log_items
[need_ail
];
736 spin_lock(&ailp
->xa_lock
);
737 for (blip
= lip
; blip
; blip
= blip
->li_bio_list
) {
738 iip
= INODE_ITEM(blip
);
739 if (iip
->ili_logged
&&
740 blip
->li_lsn
== iip
->ili_flush_lsn
) {
741 log_items
[i
++] = blip
;
743 ASSERT(i
<= need_ail
);
745 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
746 xfs_trans_ail_delete_bulk(ailp
, log_items
, i
,
747 SHUTDOWN_CORRUPT_INCORE
);
752 * clean up and unlock the flush lock now we are done. We can clear the
753 * ili_last_fields bits now that we know that the data corresponding to
754 * them is safely on disk.
756 for (blip
= lip
; blip
; blip
= next
) {
757 next
= blip
->li_bio_list
;
758 blip
->li_bio_list
= NULL
;
760 iip
= INODE_ITEM(blip
);
762 iip
->ili_last_fields
= 0;
763 xfs_ifunlock(iip
->ili_inode
);
768 * This is the inode flushing abort routine. It is called from xfs_iflush when
769 * the filesystem is shutting down to clean up the inode state. It is
770 * responsible for removing the inode item from the AIL if it has not been
771 * re-logged, and unlocking the inode's flush lock.
778 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
781 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
782 xfs_trans_ail_remove(&iip
->ili_item
,
783 stale
? SHUTDOWN_LOG_IO_ERROR
:
784 SHUTDOWN_CORRUPT_INCORE
);
788 * Clear the ili_last_fields bits now that we know that the
789 * data corresponding to them is safely on disk.
791 iip
->ili_last_fields
= 0;
793 * Clear the inode logging fields so no more flushes are
797 iip
->ili_fsync_fields
= 0;
800 * Release the inode's flush lock since we're done with it.
808 struct xfs_log_item
*lip
)
810 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
, true);
814 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
815 * (which can have different field alignments) to the native version
818 xfs_inode_item_format_convert(
819 xfs_log_iovec_t
*buf
,
820 xfs_inode_log_format_t
*in_f
)
822 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
823 xfs_inode_log_format_32_t
*in_f32
= buf
->i_addr
;
825 in_f
->ilf_type
= in_f32
->ilf_type
;
826 in_f
->ilf_size
= in_f32
->ilf_size
;
827 in_f
->ilf_fields
= in_f32
->ilf_fields
;
828 in_f
->ilf_asize
= in_f32
->ilf_asize
;
829 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
830 in_f
->ilf_ino
= in_f32
->ilf_ino
;
831 /* copy biggest field of ilf_u */
832 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
833 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
835 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
836 in_f
->ilf_len
= in_f32
->ilf_len
;
837 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
839 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
840 xfs_inode_log_format_64_t
*in_f64
= buf
->i_addr
;
842 in_f
->ilf_type
= in_f64
->ilf_type
;
843 in_f
->ilf_size
= in_f64
->ilf_size
;
844 in_f
->ilf_fields
= in_f64
->ilf_fields
;
845 in_f
->ilf_asize
= in_f64
->ilf_asize
;
846 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
847 in_f
->ilf_ino
= in_f64
->ilf_ino
;
848 /* copy biggest field of ilf_u */
849 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
850 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
852 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
853 in_f
->ilf_len
= in_f64
->ilf_len
;
854 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;
857 return -EFSCORRUPTED
;