2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
50 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
51 static int xfs_uuid_table_size
;
52 static uuid_t
*xfs_uuid_table
;
55 xfs_uuid_table_free(void)
57 if (xfs_uuid_table_size
== 0)
59 kmem_free(xfs_uuid_table
);
60 xfs_uuid_table
= NULL
;
61 xfs_uuid_table_size
= 0;
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
72 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
75 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
78 if (uuid_is_nil(uuid
)) {
79 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
83 mutex_lock(&xfs_uuid_table_mutex
);
84 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
85 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
89 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
94 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
95 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
97 hole
= xfs_uuid_table_size
++;
99 xfs_uuid_table
[hole
] = *uuid
;
100 mutex_unlock(&xfs_uuid_table_mutex
);
105 mutex_unlock(&xfs_uuid_table_mutex
);
106 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
112 struct xfs_mount
*mp
)
114 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
117 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
120 mutex_lock(&xfs_uuid_table_mutex
);
121 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
122 if (uuid_is_nil(&xfs_uuid_table
[i
]))
124 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
126 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
129 ASSERT(i
< xfs_uuid_table_size
);
130 mutex_unlock(&xfs_uuid_table_mutex
);
136 struct rcu_head
*head
)
138 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
140 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
145 * Free up the per-ag resources associated with the mount structure.
152 struct xfs_perag
*pag
;
154 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
155 spin_lock(&mp
->m_perag_lock
);
156 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
157 spin_unlock(&mp
->m_perag_lock
);
159 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
160 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
169 xfs_sb_validate_fsb_count(
173 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
174 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
176 /* Limited by ULONG_MAX of page cache index */
177 if (nblocks
>> (PAGE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
183 xfs_initialize_perag(
185 xfs_agnumber_t agcount
,
186 xfs_agnumber_t
*maxagi
)
188 xfs_agnumber_t index
;
189 xfs_agnumber_t first_initialised
= 0;
194 * Walk the current per-ag tree so we don't try to initialise AGs
195 * that already exist (growfs case). Allocate and insert all the
196 * AGs we don't find ready for initialisation.
198 for (index
= 0; index
< agcount
; index
++) {
199 pag
= xfs_perag_get(mp
, index
);
204 if (!first_initialised
)
205 first_initialised
= index
;
207 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
210 pag
->pag_agno
= index
;
212 spin_lock_init(&pag
->pag_ici_lock
);
213 mutex_init(&pag
->pag_ici_reclaim_lock
);
214 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
215 spin_lock_init(&pag
->pag_buf_lock
);
216 pag
->pag_buf_tree
= RB_ROOT
;
218 if (radix_tree_preload(GFP_NOFS
))
221 spin_lock(&mp
->m_perag_lock
);
222 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
224 spin_unlock(&mp
->m_perag_lock
);
225 radix_tree_preload_end();
229 spin_unlock(&mp
->m_perag_lock
);
230 radix_tree_preload_end();
233 index
= xfs_set_inode_alloc(mp
, agcount
);
238 mp
->m_ag_prealloc_blocks
= xfs_prealloc_blocks(mp
);
243 for (; index
> first_initialised
; index
--) {
244 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
253 * Does the initial read of the superblock.
257 struct xfs_mount
*mp
,
260 unsigned int sector_size
;
262 struct xfs_sb
*sbp
= &mp
->m_sb
;
264 int loud
= !(flags
& XFS_MFSI_QUIET
);
265 const struct xfs_buf_ops
*buf_ops
;
267 ASSERT(mp
->m_sb_bp
== NULL
);
268 ASSERT(mp
->m_ddev_targp
!= NULL
);
271 * For the initial read, we must guess at the sector
272 * size based on the block device. It's enough to
273 * get the sb_sectsize out of the superblock and
274 * then reread with the proper length.
275 * We don't verify it yet, because it may not be complete.
277 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
281 * Allocate a (locked) buffer to hold the superblock. This will be kept
282 * around at all times to optimize access to the superblock. Therefore,
283 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
287 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
288 BTOBB(sector_size
), XBF_NO_IOACCT
, &bp
,
292 xfs_warn(mp
, "SB validate failed with error %d.", error
);
293 /* bad CRC means corrupted metadata */
294 if (error
== -EFSBADCRC
)
295 error
= -EFSCORRUPTED
;
300 * Initialize the mount structure from the superblock.
302 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
305 * If we haven't validated the superblock, do so now before we try
306 * to check the sector size and reread the superblock appropriately.
308 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
310 xfs_warn(mp
, "Invalid superblock magic number");
316 * We must be able to do sector-sized and sector-aligned IO.
318 if (sector_size
> sbp
->sb_sectsize
) {
320 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
321 sector_size
, sbp
->sb_sectsize
);
326 if (buf_ops
== NULL
) {
328 * Re-read the superblock so the buffer is correctly sized,
329 * and properly verified.
332 sector_size
= sbp
->sb_sectsize
;
333 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
337 xfs_reinit_percpu_counters(mp
);
339 /* no need to be quiet anymore, so reset the buf ops */
340 bp
->b_ops
= &xfs_sb_buf_ops
;
352 * Update alignment values based on mount options and sb values
355 xfs_update_alignment(xfs_mount_t
*mp
)
357 xfs_sb_t
*sbp
= &(mp
->m_sb
);
361 * If stripe unit and stripe width are not multiples
362 * of the fs blocksize turn off alignment.
364 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
365 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
367 "alignment check failed: sunit/swidth vs. blocksize(%d)",
372 * Convert the stripe unit and width to FSBs.
374 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
375 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
377 "alignment check failed: sunit/swidth vs. agsize(%d)",
380 } else if (mp
->m_dalign
) {
381 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
384 "alignment check failed: sunit(%d) less than bsize(%d)",
385 mp
->m_dalign
, sbp
->sb_blocksize
);
391 * Update superblock with new values
394 if (xfs_sb_version_hasdalign(sbp
)) {
395 if (sbp
->sb_unit
!= mp
->m_dalign
) {
396 sbp
->sb_unit
= mp
->m_dalign
;
397 mp
->m_update_sb
= true;
399 if (sbp
->sb_width
!= mp
->m_swidth
) {
400 sbp
->sb_width
= mp
->m_swidth
;
401 mp
->m_update_sb
= true;
405 "cannot change alignment: superblock does not support data alignment");
408 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
409 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
410 mp
->m_dalign
= sbp
->sb_unit
;
411 mp
->m_swidth
= sbp
->sb_width
;
418 * Set the maximum inode count for this filesystem
421 xfs_set_maxicount(xfs_mount_t
*mp
)
423 xfs_sb_t
*sbp
= &(mp
->m_sb
);
426 if (sbp
->sb_imax_pct
) {
428 * Make sure the maximum inode count is a multiple
429 * of the units we allocate inodes in.
431 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
433 do_div(icount
, mp
->m_ialloc_blks
);
434 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
442 * Set the default minimum read and write sizes unless
443 * already specified in a mount option.
444 * We use smaller I/O sizes when the file system
445 * is being used for NFS service (wsync mount option).
448 xfs_set_rw_sizes(xfs_mount_t
*mp
)
450 xfs_sb_t
*sbp
= &(mp
->m_sb
);
451 int readio_log
, writeio_log
;
453 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
454 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
455 readio_log
= XFS_WSYNC_READIO_LOG
;
456 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
458 readio_log
= XFS_READIO_LOG_LARGE
;
459 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
462 readio_log
= mp
->m_readio_log
;
463 writeio_log
= mp
->m_writeio_log
;
466 if (sbp
->sb_blocklog
> readio_log
) {
467 mp
->m_readio_log
= sbp
->sb_blocklog
;
469 mp
->m_readio_log
= readio_log
;
471 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
472 if (sbp
->sb_blocklog
> writeio_log
) {
473 mp
->m_writeio_log
= sbp
->sb_blocklog
;
475 mp
->m_writeio_log
= writeio_log
;
477 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
481 * precalculate the low space thresholds for dynamic speculative preallocation.
484 xfs_set_low_space_thresholds(
485 struct xfs_mount
*mp
)
489 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
490 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
493 mp
->m_low_space
[i
] = space
* (i
+ 1);
499 * Set whether we're using inode alignment.
502 xfs_set_inoalignment(xfs_mount_t
*mp
)
504 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
505 mp
->m_sb
.sb_inoalignmt
>=
506 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
507 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
509 mp
->m_inoalign_mask
= 0;
511 * If we are using stripe alignment, check whether
512 * the stripe unit is a multiple of the inode alignment
514 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
515 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
516 mp
->m_sinoalign
= mp
->m_dalign
;
522 * Check that the data (and log if separate) is an ok size.
526 struct xfs_mount
*mp
)
532 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
533 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
534 xfs_warn(mp
, "filesystem size mismatch detected");
537 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
538 d
- XFS_FSS_TO_BB(mp
, 1),
539 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
541 xfs_warn(mp
, "last sector read failed");
546 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
549 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
550 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
551 xfs_warn(mp
, "log size mismatch detected");
554 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
555 d
- XFS_FSB_TO_BB(mp
, 1),
556 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
558 xfs_warn(mp
, "log device read failed");
566 * Clear the quotaflags in memory and in the superblock.
569 xfs_mount_reset_sbqflags(
570 struct xfs_mount
*mp
)
574 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
575 if (mp
->m_sb
.sb_qflags
== 0)
577 spin_lock(&mp
->m_sb_lock
);
578 mp
->m_sb
.sb_qflags
= 0;
579 spin_unlock(&mp
->m_sb_lock
);
581 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
584 return xfs_sync_sb(mp
, false);
588 xfs_default_resblks(xfs_mount_t
*mp
)
593 * We default to 5% or 8192 fsbs of space reserved, whichever is
594 * smaller. This is intended to cover concurrent allocation
595 * transactions when we initially hit enospc. These each require a 4
596 * block reservation. Hence by default we cover roughly 2000 concurrent
597 * allocation reservations.
599 resblks
= mp
->m_sb
.sb_dblocks
;
601 resblks
= min_t(__uint64_t
, resblks
, 8192);
606 * This function does the following on an initial mount of a file system:
607 * - reads the superblock from disk and init the mount struct
608 * - if we're a 32-bit kernel, do a size check on the superblock
609 * so we don't mount terabyte filesystems
610 * - init mount struct realtime fields
611 * - allocate inode hash table for fs
612 * - init directory manager
613 * - perform recovery and init the log manager
617 struct xfs_mount
*mp
)
619 struct xfs_sb
*sbp
= &(mp
->m_sb
);
620 struct xfs_inode
*rip
;
626 xfs_sb_mount_common(mp
, sbp
);
629 * Check for a mismatched features2 values. Older kernels read & wrote
630 * into the wrong sb offset for sb_features2 on some platforms due to
631 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
632 * which made older superblock reading/writing routines swap it as a
635 * For backwards compatibility, we make both slots equal.
637 * If we detect a mismatched field, we OR the set bits into the existing
638 * features2 field in case it has already been modified; we don't want
639 * to lose any features. We then update the bad location with the ORed
640 * value so that older kernels will see any features2 flags. The
641 * superblock writeback code ensures the new sb_features2 is copied to
642 * sb_bad_features2 before it is logged or written to disk.
644 if (xfs_sb_has_mismatched_features2(sbp
)) {
645 xfs_warn(mp
, "correcting sb_features alignment problem");
646 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
647 mp
->m_update_sb
= true;
650 * Re-check for ATTR2 in case it was found in bad_features2
653 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
654 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
655 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
658 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
659 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
660 xfs_sb_version_removeattr2(&mp
->m_sb
);
661 mp
->m_update_sb
= true;
663 /* update sb_versionnum for the clearing of the morebits */
664 if (!sbp
->sb_features2
)
665 mp
->m_update_sb
= true;
668 /* always use v2 inodes by default now */
669 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
670 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
671 mp
->m_update_sb
= true;
675 * Check if sb_agblocks is aligned at stripe boundary
676 * If sb_agblocks is NOT aligned turn off m_dalign since
677 * allocator alignment is within an ag, therefore ag has
678 * to be aligned at stripe boundary.
680 error
= xfs_update_alignment(mp
);
684 xfs_alloc_compute_maxlevels(mp
);
685 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
686 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
687 xfs_ialloc_compute_maxlevels(mp
);
688 xfs_rmapbt_compute_maxlevels(mp
);
689 xfs_refcountbt_compute_maxlevels(mp
);
691 xfs_set_maxicount(mp
);
693 /* enable fail_at_unmount as default */
694 mp
->m_fail_unmount
= 1;
696 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
, NULL
, mp
->m_fsname
);
700 error
= xfs_sysfs_init(&mp
->m_stats
.xs_kobj
, &xfs_stats_ktype
,
701 &mp
->m_kobj
, "stats");
703 goto out_remove_sysfs
;
705 error
= xfs_error_sysfs_init(mp
);
710 error
= xfs_uuid_mount(mp
);
712 goto out_remove_error_sysfs
;
715 * Set the minimum read and write sizes
717 xfs_set_rw_sizes(mp
);
719 /* set the low space thresholds for dynamic preallocation */
720 xfs_set_low_space_thresholds(mp
);
723 * Set the inode cluster size.
724 * This may still be overridden by the file system
725 * block size if it is larger than the chosen cluster size.
727 * For v5 filesystems, scale the cluster size with the inode size to
728 * keep a constant ratio of inode per cluster buffer, but only if mkfs
729 * has set the inode alignment value appropriately for larger cluster
732 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
733 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
734 int new_size
= mp
->m_inode_cluster_size
;
736 new_size
*= mp
->m_sb
.sb_inodesize
/ XFS_DINODE_MIN_SIZE
;
737 if (mp
->m_sb
.sb_inoalignmt
>= XFS_B_TO_FSBT(mp
, new_size
))
738 mp
->m_inode_cluster_size
= new_size
;
742 * If enabled, sparse inode chunk alignment is expected to match the
743 * cluster size. Full inode chunk alignment must match the chunk size,
744 * but that is checked on sb read verification...
746 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
) &&
747 mp
->m_sb
.sb_spino_align
!=
748 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
)) {
750 "Sparse inode block alignment (%u) must match cluster size (%llu).",
751 mp
->m_sb
.sb_spino_align
,
752 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
));
754 goto out_remove_uuid
;
758 * Set inode alignment fields
760 xfs_set_inoalignment(mp
);
763 * Check that the data (and log if separate) is an ok size.
765 error
= xfs_check_sizes(mp
);
767 goto out_remove_uuid
;
770 * Initialize realtime fields in the mount structure
772 error
= xfs_rtmount_init(mp
);
774 xfs_warn(mp
, "RT mount failed");
775 goto out_remove_uuid
;
779 * Copies the low order bits of the timestamp and the randomly
780 * set "sequence" number out of a UUID.
782 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
784 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
786 error
= xfs_da_mount(mp
);
788 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
789 goto out_remove_uuid
;
793 * Initialize the precomputed transaction reservations values.
798 * Allocate and initialize the per-ag data.
800 spin_lock_init(&mp
->m_perag_lock
);
801 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
802 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
804 xfs_warn(mp
, "Failed per-ag init: %d", error
);
808 if (!sbp
->sb_logblocks
) {
809 xfs_warn(mp
, "no log defined");
810 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
811 error
= -EFSCORRUPTED
;
816 * Log's mount-time initialization. The first part of recovery can place
817 * some items on the AIL, to be handled when recovery is finished or
820 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
821 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
822 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
824 xfs_warn(mp
, "log mount failed");
829 * Now the log is mounted, we know if it was an unclean shutdown or
830 * not. If it was, with the first phase of recovery has completed, we
831 * have consistent AG blocks on disk. We have not recovered EFIs yet,
832 * but they are recovered transactionally in the second recovery phase
835 * Hence we can safely re-initialise incore superblock counters from
836 * the per-ag data. These may not be correct if the filesystem was not
837 * cleanly unmounted, so we need to wait for recovery to finish before
840 * If the filesystem was cleanly unmounted, then we can trust the
841 * values in the superblock to be correct and we don't need to do
844 * If we are currently making the filesystem, the initialisation will
845 * fail as the perag data is in an undefined state.
847 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
848 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
849 !mp
->m_sb
.sb_inprogress
) {
850 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
852 goto out_log_dealloc
;
856 * Get and sanity-check the root inode.
857 * Save the pointer to it in the mount structure.
859 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
861 xfs_warn(mp
, "failed to read root inode");
862 goto out_log_dealloc
;
867 if (unlikely(!S_ISDIR(VFS_I(rip
)->i_mode
))) {
868 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
869 (unsigned long long)rip
->i_ino
);
870 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
871 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
873 error
= -EFSCORRUPTED
;
876 mp
->m_rootip
= rip
; /* save it */
878 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
881 * Initialize realtime inode pointers in the mount structure
883 error
= xfs_rtmount_inodes(mp
);
886 * Free up the root inode.
888 xfs_warn(mp
, "failed to read RT inodes");
893 * If this is a read-only mount defer the superblock updates until
894 * the next remount into writeable mode. Otherwise we would never
895 * perform the update e.g. for the root filesystem.
897 if (mp
->m_update_sb
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
898 error
= xfs_sync_sb(mp
, false);
900 xfs_warn(mp
, "failed to write sb changes");
906 * Initialise the XFS quota management subsystem for this mount
908 if (XFS_IS_QUOTA_RUNNING(mp
)) {
909 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
913 ASSERT(!XFS_IS_QUOTA_ON(mp
));
916 * If a file system had quotas running earlier, but decided to
917 * mount without -o uquota/pquota/gquota options, revoke the
918 * quotachecked license.
920 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
921 xfs_notice(mp
, "resetting quota flags");
922 error
= xfs_mount_reset_sbqflags(mp
);
929 * During the second phase of log recovery, we need iget and
930 * iput to behave like they do for an active filesystem.
931 * xfs_fs_drop_inode needs to be able to prevent the deletion
932 * of inodes before we're done replaying log items on those
935 mp
->m_super
->s_flags
|= MS_ACTIVE
;
938 * Finish recovering the file system. This part needed to be delayed
939 * until after the root and real-time bitmap inodes were consistently
942 error
= xfs_log_mount_finish(mp
);
944 xfs_warn(mp
, "log mount finish failed");
949 * Now the log is fully replayed, we can transition to full read-only
950 * mode for read-only mounts. This will sync all the metadata and clean
951 * the log so that the recovery we just performed does not have to be
952 * replayed again on the next mount.
954 * We use the same quiesce mechanism as the rw->ro remount, as they are
955 * semantically identical operations.
957 if ((mp
->m_flags
& (XFS_MOUNT_RDONLY
|XFS_MOUNT_NORECOVERY
)) ==
959 xfs_quiesce_attr(mp
);
963 * Complete the quota initialisation, post-log-replay component.
966 ASSERT(mp
->m_qflags
== 0);
967 mp
->m_qflags
= quotaflags
;
969 xfs_qm_mount_quotas(mp
);
973 * Now we are mounted, reserve a small amount of unused space for
974 * privileged transactions. This is needed so that transaction
975 * space required for critical operations can dip into this pool
976 * when at ENOSPC. This is needed for operations like create with
977 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
978 * are not allowed to use this reserved space.
980 * This may drive us straight to ENOSPC on mount, but that implies
981 * we were already there on the last unmount. Warn if this occurs.
983 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
984 resblks
= xfs_default_resblks(mp
);
985 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
988 "Unable to allocate reserve blocks. Continuing without reserve pool.");
990 /* Recover any CoW blocks that never got remapped. */
991 error
= xfs_reflink_recover_cow(mp
);
994 "Error %d recovering leftover CoW allocations.", error
);
995 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
999 /* Reserve AG blocks for future btree expansion. */
1000 error
= xfs_fs_reserve_ag_blocks(mp
);
1001 if (error
&& error
!= -ENOSPC
)
1008 xfs_fs_unreserve_ag_blocks(mp
);
1010 xfs_qm_unmount_quotas(mp
);
1012 xfs_rtunmount_inodes(mp
);
1015 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1016 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1018 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1019 xfs_log_mount_cancel(mp
);
1021 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1022 xfs_wait_buftarg(mp
->m_logdev_targp
);
1023 xfs_wait_buftarg(mp
->m_ddev_targp
);
1029 xfs_uuid_unmount(mp
);
1030 out_remove_error_sysfs
:
1031 xfs_error_sysfs_del(mp
);
1033 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1035 xfs_sysfs_del(&mp
->m_kobj
);
1041 * This flushes out the inodes,dquots and the superblock, unmounts the
1042 * log and makes sure that incore structures are freed.
1046 struct xfs_mount
*mp
)
1051 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
1052 cancel_delayed_work_sync(&mp
->m_cowblocks_work
);
1054 xfs_fs_unreserve_ag_blocks(mp
);
1055 xfs_qm_unmount_quotas(mp
);
1056 xfs_rtunmount_inodes(mp
);
1057 IRELE(mp
->m_rootip
);
1060 * We can potentially deadlock here if we have an inode cluster
1061 * that has been freed has its buffer still pinned in memory because
1062 * the transaction is still sitting in a iclog. The stale inodes
1063 * on that buffer will have their flush locks held until the
1064 * transaction hits the disk and the callbacks run. the inode
1065 * flush takes the flush lock unconditionally and with nothing to
1066 * push out the iclog we will never get that unlocked. hence we
1067 * need to force the log first.
1069 xfs_log_force(mp
, XFS_LOG_SYNC
);
1072 * We now need to tell the world we are unmounting. This will allow
1073 * us to detect that the filesystem is going away and we should error
1074 * out anything that we have been retrying in the background. This will
1075 * prevent neverending retries in AIL pushing from hanging the unmount.
1077 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1080 * Flush all pending changes from the AIL.
1082 xfs_ail_push_all_sync(mp
->m_ail
);
1085 * And reclaim all inodes. At this point there should be no dirty
1086 * inodes and none should be pinned or locked, but use synchronous
1087 * reclaim just to be sure. We can stop background inode reclaim
1088 * here as well if it is still running.
1090 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1091 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1096 * Unreserve any blocks we have so that when we unmount we don't account
1097 * the reserved free space as used. This is really only necessary for
1098 * lazy superblock counting because it trusts the incore superblock
1099 * counters to be absolutely correct on clean unmount.
1101 * We don't bother correcting this elsewhere for lazy superblock
1102 * counting because on mount of an unclean filesystem we reconstruct the
1103 * correct counter value and this is irrelevant.
1105 * For non-lazy counter filesystems, this doesn't matter at all because
1106 * we only every apply deltas to the superblock and hence the incore
1107 * value does not matter....
1110 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1112 xfs_warn(mp
, "Unable to free reserved block pool. "
1113 "Freespace may not be correct on next mount.");
1115 error
= xfs_log_sbcount(mp
);
1117 xfs_warn(mp
, "Unable to update superblock counters. "
1118 "Freespace may not be correct on next mount.");
1121 xfs_log_unmount(mp
);
1123 xfs_uuid_unmount(mp
);
1126 xfs_errortag_clearall(mp
, 0);
1130 xfs_error_sysfs_del(mp
);
1131 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1132 xfs_sysfs_del(&mp
->m_kobj
);
1136 * Determine whether modifications can proceed. The caller specifies the minimum
1137 * freeze level for which modifications should not be allowed. This allows
1138 * certain operations to proceed while the freeze sequence is in progress, if
1143 struct xfs_mount
*mp
,
1146 ASSERT(level
> SB_UNFROZEN
);
1147 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1148 XFS_FORCED_SHUTDOWN(mp
) || (mp
->m_flags
& XFS_MOUNT_RDONLY
))
1157 * Sync the superblock counters to disk.
1159 * Note this code can be called during the process of freezing, so we use the
1160 * transaction allocator that does not block when the transaction subsystem is
1161 * in its frozen state.
1164 xfs_log_sbcount(xfs_mount_t
*mp
)
1166 /* allow this to proceed during the freeze sequence... */
1167 if (!xfs_fs_writable(mp
, SB_FREEZE_COMPLETE
))
1171 * we don't need to do this if we are updating the superblock
1172 * counters on every modification.
1174 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1177 return xfs_sync_sb(mp
, true);
1181 * Deltas for the inode count are +/-64, hence we use a large batch size
1182 * of 128 so we don't need to take the counter lock on every update.
1184 #define XFS_ICOUNT_BATCH 128
1187 struct xfs_mount
*mp
,
1190 __percpu_counter_add(&mp
->m_icount
, delta
, XFS_ICOUNT_BATCH
);
1191 if (__percpu_counter_compare(&mp
->m_icount
, 0, XFS_ICOUNT_BATCH
) < 0) {
1193 percpu_counter_add(&mp
->m_icount
, -delta
);
1201 struct xfs_mount
*mp
,
1204 percpu_counter_add(&mp
->m_ifree
, delta
);
1205 if (percpu_counter_compare(&mp
->m_ifree
, 0) < 0) {
1207 percpu_counter_add(&mp
->m_ifree
, -delta
);
1214 * Deltas for the block count can vary from 1 to very large, but lock contention
1215 * only occurs on frequent small block count updates such as in the delayed
1216 * allocation path for buffered writes (page a time updates). Hence we set
1217 * a large batch count (1024) to minimise global counter updates except when
1218 * we get near to ENOSPC and we have to be very accurate with our updates.
1220 #define XFS_FDBLOCKS_BATCH 1024
1223 struct xfs_mount
*mp
,
1233 * If the reserve pool is depleted, put blocks back into it
1234 * first. Most of the time the pool is full.
1236 if (likely(mp
->m_resblks
== mp
->m_resblks_avail
)) {
1237 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1241 spin_lock(&mp
->m_sb_lock
);
1242 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1244 if (res_used
> delta
) {
1245 mp
->m_resblks_avail
+= delta
;
1248 mp
->m_resblks_avail
= mp
->m_resblks
;
1249 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1251 spin_unlock(&mp
->m_sb_lock
);
1256 * Taking blocks away, need to be more accurate the closer we
1259 * If the counter has a value of less than 2 * max batch size,
1260 * then make everything serialise as we are real close to
1263 if (__percpu_counter_compare(&mp
->m_fdblocks
, 2 * XFS_FDBLOCKS_BATCH
,
1264 XFS_FDBLOCKS_BATCH
) < 0)
1267 batch
= XFS_FDBLOCKS_BATCH
;
1269 __percpu_counter_add(&mp
->m_fdblocks
, delta
, batch
);
1270 if (__percpu_counter_compare(&mp
->m_fdblocks
, mp
->m_alloc_set_aside
,
1271 XFS_FDBLOCKS_BATCH
) >= 0) {
1277 * lock up the sb for dipping into reserves before releasing the space
1278 * that took us to ENOSPC.
1280 spin_lock(&mp
->m_sb_lock
);
1281 percpu_counter_add(&mp
->m_fdblocks
, -delta
);
1283 goto fdblocks_enospc
;
1285 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1286 if (lcounter
>= 0) {
1287 mp
->m_resblks_avail
= lcounter
;
1288 spin_unlock(&mp
->m_sb_lock
);
1291 printk_once(KERN_WARNING
1292 "Filesystem \"%s\": reserve blocks depleted! "
1293 "Consider increasing reserve pool size.",
1296 spin_unlock(&mp
->m_sb_lock
);
1302 struct xfs_mount
*mp
,
1308 spin_lock(&mp
->m_sb_lock
);
1309 lcounter
= mp
->m_sb
.sb_frextents
+ delta
;
1313 mp
->m_sb
.sb_frextents
= lcounter
;
1314 spin_unlock(&mp
->m_sb_lock
);
1319 * xfs_getsb() is called to obtain the buffer for the superblock.
1320 * The buffer is returned locked and read in from disk.
1321 * The buffer should be released with a call to xfs_brelse().
1323 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1324 * the superblock buffer if it can be locked without sleeping.
1325 * If it can't then we'll return NULL.
1329 struct xfs_mount
*mp
,
1332 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1334 if (!xfs_buf_trylock(bp
)) {
1335 if (flags
& XBF_TRYLOCK
)
1341 ASSERT(bp
->b_flags
& XBF_DONE
);
1346 * Used to free the superblock along various error paths.
1350 struct xfs_mount
*mp
)
1352 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1360 * If the underlying (data/log/rt) device is readonly, there are some
1361 * operations that cannot proceed.
1364 xfs_dev_is_read_only(
1365 struct xfs_mount
*mp
,
1368 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1369 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1370 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1371 xfs_notice(mp
, "%s required on read-only device.", message
);
1372 xfs_notice(mp
, "write access unavailable, cannot proceed.");