x86/entry/32, x86/boot/32: Use local labels
[linux/fpc-iii.git] / fs / xfs / xfs_mount.c
blobfc7873942bea51866611aee5a7437f3d4a036a67
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
50 static DEFINE_MUTEX(xfs_uuid_table_mutex);
51 static int xfs_uuid_table_size;
52 static uuid_t *xfs_uuid_table;
54 void
55 xfs_uuid_table_free(void)
57 if (xfs_uuid_table_size == 0)
58 return;
59 kmem_free(xfs_uuid_table);
60 xfs_uuid_table = NULL;
61 xfs_uuid_table_size = 0;
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68 STATIC int
69 xfs_uuid_mount(
70 struct xfs_mount *mp)
72 uuid_t *uuid = &mp->m_sb.sb_uuid;
73 int hole, i;
75 if (mp->m_flags & XFS_MOUNT_NOUUID)
76 return 0;
78 if (uuid_is_nil(uuid)) {
79 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
80 return -EINVAL;
83 mutex_lock(&xfs_uuid_table_mutex);
84 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85 if (uuid_is_nil(&xfs_uuid_table[i])) {
86 hole = i;
87 continue;
89 if (uuid_equal(uuid, &xfs_uuid_table[i]))
90 goto out_duplicate;
93 if (hole < 0) {
94 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
102 return 0;
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 return -EINVAL;
110 STATIC void
111 xfs_uuid_unmount(
112 struct xfs_mount *mp)
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
134 STATIC void
135 __xfs_free_perag(
136 struct rcu_head *head)
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
145 * Free up the per-ag resources associated with the mount structure.
147 STATIC void
148 xfs_free_perag(
149 xfs_mount_t *mp)
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
158 ASSERT(pag);
159 ASSERT(atomic_read(&pag->pag_ref) == 0);
160 call_rcu(&pag->rcu_head, __xfs_free_perag);
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
169 xfs_sb_validate_fsb_count(
170 xfs_sb_t *sbp,
171 __uint64_t nblocks)
173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 ASSERT(sbp->sb_blocklog >= BBSHIFT);
176 /* Limited by ULONG_MAX of page cache index */
177 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 return -EFBIG;
179 return 0;
183 xfs_initialize_perag(
184 xfs_mount_t *mp,
185 xfs_agnumber_t agcount,
186 xfs_agnumber_t *maxagi)
188 xfs_agnumber_t index;
189 xfs_agnumber_t first_initialised = 0;
190 xfs_perag_t *pag;
191 int error = -ENOMEM;
194 * Walk the current per-ag tree so we don't try to initialise AGs
195 * that already exist (growfs case). Allocate and insert all the
196 * AGs we don't find ready for initialisation.
198 for (index = 0; index < agcount; index++) {
199 pag = xfs_perag_get(mp, index);
200 if (pag) {
201 xfs_perag_put(pag);
202 continue;
204 if (!first_initialised)
205 first_initialised = index;
207 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 if (!pag)
209 goto out_unwind;
210 pag->pag_agno = index;
211 pag->pag_mount = mp;
212 spin_lock_init(&pag->pag_ici_lock);
213 mutex_init(&pag->pag_ici_reclaim_lock);
214 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
215 spin_lock_init(&pag->pag_buf_lock);
216 pag->pag_buf_tree = RB_ROOT;
218 if (radix_tree_preload(GFP_NOFS))
219 goto out_unwind;
221 spin_lock(&mp->m_perag_lock);
222 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
223 BUG();
224 spin_unlock(&mp->m_perag_lock);
225 radix_tree_preload_end();
226 error = -EEXIST;
227 goto out_unwind;
229 spin_unlock(&mp->m_perag_lock);
230 radix_tree_preload_end();
233 index = xfs_set_inode_alloc(mp, agcount);
235 if (maxagi)
236 *maxagi = index;
238 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
239 return 0;
241 out_unwind:
242 kmem_free(pag);
243 for (; index > first_initialised; index--) {
244 pag = radix_tree_delete(&mp->m_perag_tree, index);
245 kmem_free(pag);
247 return error;
251 * xfs_readsb
253 * Does the initial read of the superblock.
256 xfs_readsb(
257 struct xfs_mount *mp,
258 int flags)
260 unsigned int sector_size;
261 struct xfs_buf *bp;
262 struct xfs_sb *sbp = &mp->m_sb;
263 int error;
264 int loud = !(flags & XFS_MFSI_QUIET);
265 const struct xfs_buf_ops *buf_ops;
267 ASSERT(mp->m_sb_bp == NULL);
268 ASSERT(mp->m_ddev_targp != NULL);
271 * For the initial read, we must guess at the sector
272 * size based on the block device. It's enough to
273 * get the sb_sectsize out of the superblock and
274 * then reread with the proper length.
275 * We don't verify it yet, because it may not be complete.
277 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
278 buf_ops = NULL;
281 * Allocate a (locked) buffer to hold the superblock. This will be kept
282 * around at all times to optimize access to the superblock. Therefore,
283 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
284 * elevated.
286 reread:
287 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
288 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
289 buf_ops);
290 if (error) {
291 if (loud)
292 xfs_warn(mp, "SB validate failed with error %d.", error);
293 /* bad CRC means corrupted metadata */
294 if (error == -EFSBADCRC)
295 error = -EFSCORRUPTED;
296 return error;
300 * Initialize the mount structure from the superblock.
302 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
305 * If we haven't validated the superblock, do so now before we try
306 * to check the sector size and reread the superblock appropriately.
308 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
309 if (loud)
310 xfs_warn(mp, "Invalid superblock magic number");
311 error = -EINVAL;
312 goto release_buf;
316 * We must be able to do sector-sized and sector-aligned IO.
318 if (sector_size > sbp->sb_sectsize) {
319 if (loud)
320 xfs_warn(mp, "device supports %u byte sectors (not %u)",
321 sector_size, sbp->sb_sectsize);
322 error = -ENOSYS;
323 goto release_buf;
326 if (buf_ops == NULL) {
328 * Re-read the superblock so the buffer is correctly sized,
329 * and properly verified.
331 xfs_buf_relse(bp);
332 sector_size = sbp->sb_sectsize;
333 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
334 goto reread;
337 xfs_reinit_percpu_counters(mp);
339 /* no need to be quiet anymore, so reset the buf ops */
340 bp->b_ops = &xfs_sb_buf_ops;
342 mp->m_sb_bp = bp;
343 xfs_buf_unlock(bp);
344 return 0;
346 release_buf:
347 xfs_buf_relse(bp);
348 return error;
352 * Update alignment values based on mount options and sb values
354 STATIC int
355 xfs_update_alignment(xfs_mount_t *mp)
357 xfs_sb_t *sbp = &(mp->m_sb);
359 if (mp->m_dalign) {
361 * If stripe unit and stripe width are not multiples
362 * of the fs blocksize turn off alignment.
364 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
365 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
366 xfs_warn(mp,
367 "alignment check failed: sunit/swidth vs. blocksize(%d)",
368 sbp->sb_blocksize);
369 return -EINVAL;
370 } else {
372 * Convert the stripe unit and width to FSBs.
374 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
375 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
376 xfs_warn(mp,
377 "alignment check failed: sunit/swidth vs. agsize(%d)",
378 sbp->sb_agblocks);
379 return -EINVAL;
380 } else if (mp->m_dalign) {
381 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
382 } else {
383 xfs_warn(mp,
384 "alignment check failed: sunit(%d) less than bsize(%d)",
385 mp->m_dalign, sbp->sb_blocksize);
386 return -EINVAL;
391 * Update superblock with new values
392 * and log changes
394 if (xfs_sb_version_hasdalign(sbp)) {
395 if (sbp->sb_unit != mp->m_dalign) {
396 sbp->sb_unit = mp->m_dalign;
397 mp->m_update_sb = true;
399 if (sbp->sb_width != mp->m_swidth) {
400 sbp->sb_width = mp->m_swidth;
401 mp->m_update_sb = true;
403 } else {
404 xfs_warn(mp,
405 "cannot change alignment: superblock does not support data alignment");
406 return -EINVAL;
408 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
409 xfs_sb_version_hasdalign(&mp->m_sb)) {
410 mp->m_dalign = sbp->sb_unit;
411 mp->m_swidth = sbp->sb_width;
414 return 0;
418 * Set the maximum inode count for this filesystem
420 STATIC void
421 xfs_set_maxicount(xfs_mount_t *mp)
423 xfs_sb_t *sbp = &(mp->m_sb);
424 __uint64_t icount;
426 if (sbp->sb_imax_pct) {
428 * Make sure the maximum inode count is a multiple
429 * of the units we allocate inodes in.
431 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
432 do_div(icount, 100);
433 do_div(icount, mp->m_ialloc_blks);
434 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
435 sbp->sb_inopblog;
436 } else {
437 mp->m_maxicount = 0;
442 * Set the default minimum read and write sizes unless
443 * already specified in a mount option.
444 * We use smaller I/O sizes when the file system
445 * is being used for NFS service (wsync mount option).
447 STATIC void
448 xfs_set_rw_sizes(xfs_mount_t *mp)
450 xfs_sb_t *sbp = &(mp->m_sb);
451 int readio_log, writeio_log;
453 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
454 if (mp->m_flags & XFS_MOUNT_WSYNC) {
455 readio_log = XFS_WSYNC_READIO_LOG;
456 writeio_log = XFS_WSYNC_WRITEIO_LOG;
457 } else {
458 readio_log = XFS_READIO_LOG_LARGE;
459 writeio_log = XFS_WRITEIO_LOG_LARGE;
461 } else {
462 readio_log = mp->m_readio_log;
463 writeio_log = mp->m_writeio_log;
466 if (sbp->sb_blocklog > readio_log) {
467 mp->m_readio_log = sbp->sb_blocklog;
468 } else {
469 mp->m_readio_log = readio_log;
471 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
472 if (sbp->sb_blocklog > writeio_log) {
473 mp->m_writeio_log = sbp->sb_blocklog;
474 } else {
475 mp->m_writeio_log = writeio_log;
477 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
481 * precalculate the low space thresholds for dynamic speculative preallocation.
483 void
484 xfs_set_low_space_thresholds(
485 struct xfs_mount *mp)
487 int i;
489 for (i = 0; i < XFS_LOWSP_MAX; i++) {
490 __uint64_t space = mp->m_sb.sb_dblocks;
492 do_div(space, 100);
493 mp->m_low_space[i] = space * (i + 1);
499 * Set whether we're using inode alignment.
501 STATIC void
502 xfs_set_inoalignment(xfs_mount_t *mp)
504 if (xfs_sb_version_hasalign(&mp->m_sb) &&
505 mp->m_sb.sb_inoalignmt >=
506 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
507 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
508 else
509 mp->m_inoalign_mask = 0;
511 * If we are using stripe alignment, check whether
512 * the stripe unit is a multiple of the inode alignment
514 if (mp->m_dalign && mp->m_inoalign_mask &&
515 !(mp->m_dalign & mp->m_inoalign_mask))
516 mp->m_sinoalign = mp->m_dalign;
517 else
518 mp->m_sinoalign = 0;
522 * Check that the data (and log if separate) is an ok size.
524 STATIC int
525 xfs_check_sizes(
526 struct xfs_mount *mp)
528 struct xfs_buf *bp;
529 xfs_daddr_t d;
530 int error;
532 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
533 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
534 xfs_warn(mp, "filesystem size mismatch detected");
535 return -EFBIG;
537 error = xfs_buf_read_uncached(mp->m_ddev_targp,
538 d - XFS_FSS_TO_BB(mp, 1),
539 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
540 if (error) {
541 xfs_warn(mp, "last sector read failed");
542 return error;
544 xfs_buf_relse(bp);
546 if (mp->m_logdev_targp == mp->m_ddev_targp)
547 return 0;
549 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
550 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
551 xfs_warn(mp, "log size mismatch detected");
552 return -EFBIG;
554 error = xfs_buf_read_uncached(mp->m_logdev_targp,
555 d - XFS_FSB_TO_BB(mp, 1),
556 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
557 if (error) {
558 xfs_warn(mp, "log device read failed");
559 return error;
561 xfs_buf_relse(bp);
562 return 0;
566 * Clear the quotaflags in memory and in the superblock.
569 xfs_mount_reset_sbqflags(
570 struct xfs_mount *mp)
572 mp->m_qflags = 0;
574 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
575 if (mp->m_sb.sb_qflags == 0)
576 return 0;
577 spin_lock(&mp->m_sb_lock);
578 mp->m_sb.sb_qflags = 0;
579 spin_unlock(&mp->m_sb_lock);
581 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
582 return 0;
584 return xfs_sync_sb(mp, false);
587 __uint64_t
588 xfs_default_resblks(xfs_mount_t *mp)
590 __uint64_t resblks;
593 * We default to 5% or 8192 fsbs of space reserved, whichever is
594 * smaller. This is intended to cover concurrent allocation
595 * transactions when we initially hit enospc. These each require a 4
596 * block reservation. Hence by default we cover roughly 2000 concurrent
597 * allocation reservations.
599 resblks = mp->m_sb.sb_dblocks;
600 do_div(resblks, 20);
601 resblks = min_t(__uint64_t, resblks, 8192);
602 return resblks;
606 * This function does the following on an initial mount of a file system:
607 * - reads the superblock from disk and init the mount struct
608 * - if we're a 32-bit kernel, do a size check on the superblock
609 * so we don't mount terabyte filesystems
610 * - init mount struct realtime fields
611 * - allocate inode hash table for fs
612 * - init directory manager
613 * - perform recovery and init the log manager
616 xfs_mountfs(
617 struct xfs_mount *mp)
619 struct xfs_sb *sbp = &(mp->m_sb);
620 struct xfs_inode *rip;
621 __uint64_t resblks;
622 uint quotamount = 0;
623 uint quotaflags = 0;
624 int error = 0;
626 xfs_sb_mount_common(mp, sbp);
629 * Check for a mismatched features2 values. Older kernels read & wrote
630 * into the wrong sb offset for sb_features2 on some platforms due to
631 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
632 * which made older superblock reading/writing routines swap it as a
633 * 64-bit value.
635 * For backwards compatibility, we make both slots equal.
637 * If we detect a mismatched field, we OR the set bits into the existing
638 * features2 field in case it has already been modified; we don't want
639 * to lose any features. We then update the bad location with the ORed
640 * value so that older kernels will see any features2 flags. The
641 * superblock writeback code ensures the new sb_features2 is copied to
642 * sb_bad_features2 before it is logged or written to disk.
644 if (xfs_sb_has_mismatched_features2(sbp)) {
645 xfs_warn(mp, "correcting sb_features alignment problem");
646 sbp->sb_features2 |= sbp->sb_bad_features2;
647 mp->m_update_sb = true;
650 * Re-check for ATTR2 in case it was found in bad_features2
651 * slot.
653 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
654 !(mp->m_flags & XFS_MOUNT_NOATTR2))
655 mp->m_flags |= XFS_MOUNT_ATTR2;
658 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
659 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
660 xfs_sb_version_removeattr2(&mp->m_sb);
661 mp->m_update_sb = true;
663 /* update sb_versionnum for the clearing of the morebits */
664 if (!sbp->sb_features2)
665 mp->m_update_sb = true;
668 /* always use v2 inodes by default now */
669 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
670 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
671 mp->m_update_sb = true;
675 * Check if sb_agblocks is aligned at stripe boundary
676 * If sb_agblocks is NOT aligned turn off m_dalign since
677 * allocator alignment is within an ag, therefore ag has
678 * to be aligned at stripe boundary.
680 error = xfs_update_alignment(mp);
681 if (error)
682 goto out;
684 xfs_alloc_compute_maxlevels(mp);
685 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
686 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
687 xfs_ialloc_compute_maxlevels(mp);
688 xfs_rmapbt_compute_maxlevels(mp);
689 xfs_refcountbt_compute_maxlevels(mp);
691 xfs_set_maxicount(mp);
693 /* enable fail_at_unmount as default */
694 mp->m_fail_unmount = 1;
696 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
697 if (error)
698 goto out;
700 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
701 &mp->m_kobj, "stats");
702 if (error)
703 goto out_remove_sysfs;
705 error = xfs_error_sysfs_init(mp);
706 if (error)
707 goto out_del_stats;
710 error = xfs_uuid_mount(mp);
711 if (error)
712 goto out_remove_error_sysfs;
715 * Set the minimum read and write sizes
717 xfs_set_rw_sizes(mp);
719 /* set the low space thresholds for dynamic preallocation */
720 xfs_set_low_space_thresholds(mp);
723 * Set the inode cluster size.
724 * This may still be overridden by the file system
725 * block size if it is larger than the chosen cluster size.
727 * For v5 filesystems, scale the cluster size with the inode size to
728 * keep a constant ratio of inode per cluster buffer, but only if mkfs
729 * has set the inode alignment value appropriately for larger cluster
730 * sizes.
732 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
733 if (xfs_sb_version_hascrc(&mp->m_sb)) {
734 int new_size = mp->m_inode_cluster_size;
736 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
737 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
738 mp->m_inode_cluster_size = new_size;
742 * If enabled, sparse inode chunk alignment is expected to match the
743 * cluster size. Full inode chunk alignment must match the chunk size,
744 * but that is checked on sb read verification...
746 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
747 mp->m_sb.sb_spino_align !=
748 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
749 xfs_warn(mp,
750 "Sparse inode block alignment (%u) must match cluster size (%llu).",
751 mp->m_sb.sb_spino_align,
752 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
753 error = -EINVAL;
754 goto out_remove_uuid;
758 * Set inode alignment fields
760 xfs_set_inoalignment(mp);
763 * Check that the data (and log if separate) is an ok size.
765 error = xfs_check_sizes(mp);
766 if (error)
767 goto out_remove_uuid;
770 * Initialize realtime fields in the mount structure
772 error = xfs_rtmount_init(mp);
773 if (error) {
774 xfs_warn(mp, "RT mount failed");
775 goto out_remove_uuid;
779 * Copies the low order bits of the timestamp and the randomly
780 * set "sequence" number out of a UUID.
782 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
784 mp->m_dmevmask = 0; /* not persistent; set after each mount */
786 error = xfs_da_mount(mp);
787 if (error) {
788 xfs_warn(mp, "Failed dir/attr init: %d", error);
789 goto out_remove_uuid;
793 * Initialize the precomputed transaction reservations values.
795 xfs_trans_init(mp);
798 * Allocate and initialize the per-ag data.
800 spin_lock_init(&mp->m_perag_lock);
801 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
802 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
803 if (error) {
804 xfs_warn(mp, "Failed per-ag init: %d", error);
805 goto out_free_dir;
808 if (!sbp->sb_logblocks) {
809 xfs_warn(mp, "no log defined");
810 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
811 error = -EFSCORRUPTED;
812 goto out_free_perag;
816 * Log's mount-time initialization. The first part of recovery can place
817 * some items on the AIL, to be handled when recovery is finished or
818 * cancelled.
820 error = xfs_log_mount(mp, mp->m_logdev_targp,
821 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
822 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
823 if (error) {
824 xfs_warn(mp, "log mount failed");
825 goto out_fail_wait;
829 * Now the log is mounted, we know if it was an unclean shutdown or
830 * not. If it was, with the first phase of recovery has completed, we
831 * have consistent AG blocks on disk. We have not recovered EFIs yet,
832 * but they are recovered transactionally in the second recovery phase
833 * later.
835 * Hence we can safely re-initialise incore superblock counters from
836 * the per-ag data. These may not be correct if the filesystem was not
837 * cleanly unmounted, so we need to wait for recovery to finish before
838 * doing this.
840 * If the filesystem was cleanly unmounted, then we can trust the
841 * values in the superblock to be correct and we don't need to do
842 * anything here.
844 * If we are currently making the filesystem, the initialisation will
845 * fail as the perag data is in an undefined state.
847 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
848 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
849 !mp->m_sb.sb_inprogress) {
850 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
851 if (error)
852 goto out_log_dealloc;
856 * Get and sanity-check the root inode.
857 * Save the pointer to it in the mount structure.
859 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
860 if (error) {
861 xfs_warn(mp, "failed to read root inode");
862 goto out_log_dealloc;
865 ASSERT(rip != NULL);
867 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
868 xfs_warn(mp, "corrupted root inode %llu: not a directory",
869 (unsigned long long)rip->i_ino);
870 xfs_iunlock(rip, XFS_ILOCK_EXCL);
871 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
872 mp);
873 error = -EFSCORRUPTED;
874 goto out_rele_rip;
876 mp->m_rootip = rip; /* save it */
878 xfs_iunlock(rip, XFS_ILOCK_EXCL);
881 * Initialize realtime inode pointers in the mount structure
883 error = xfs_rtmount_inodes(mp);
884 if (error) {
886 * Free up the root inode.
888 xfs_warn(mp, "failed to read RT inodes");
889 goto out_rele_rip;
893 * If this is a read-only mount defer the superblock updates until
894 * the next remount into writeable mode. Otherwise we would never
895 * perform the update e.g. for the root filesystem.
897 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
898 error = xfs_sync_sb(mp, false);
899 if (error) {
900 xfs_warn(mp, "failed to write sb changes");
901 goto out_rtunmount;
906 * Initialise the XFS quota management subsystem for this mount
908 if (XFS_IS_QUOTA_RUNNING(mp)) {
909 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
910 if (error)
911 goto out_rtunmount;
912 } else {
913 ASSERT(!XFS_IS_QUOTA_ON(mp));
916 * If a file system had quotas running earlier, but decided to
917 * mount without -o uquota/pquota/gquota options, revoke the
918 * quotachecked license.
920 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
921 xfs_notice(mp, "resetting quota flags");
922 error = xfs_mount_reset_sbqflags(mp);
923 if (error)
924 goto out_rtunmount;
929 * During the second phase of log recovery, we need iget and
930 * iput to behave like they do for an active filesystem.
931 * xfs_fs_drop_inode needs to be able to prevent the deletion
932 * of inodes before we're done replaying log items on those
933 * inodes.
935 mp->m_super->s_flags |= MS_ACTIVE;
938 * Finish recovering the file system. This part needed to be delayed
939 * until after the root and real-time bitmap inodes were consistently
940 * read in.
942 error = xfs_log_mount_finish(mp);
943 if (error) {
944 xfs_warn(mp, "log mount finish failed");
945 goto out_rtunmount;
949 * Now the log is fully replayed, we can transition to full read-only
950 * mode for read-only mounts. This will sync all the metadata and clean
951 * the log so that the recovery we just performed does not have to be
952 * replayed again on the next mount.
954 * We use the same quiesce mechanism as the rw->ro remount, as they are
955 * semantically identical operations.
957 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
958 XFS_MOUNT_RDONLY) {
959 xfs_quiesce_attr(mp);
963 * Complete the quota initialisation, post-log-replay component.
965 if (quotamount) {
966 ASSERT(mp->m_qflags == 0);
967 mp->m_qflags = quotaflags;
969 xfs_qm_mount_quotas(mp);
973 * Now we are mounted, reserve a small amount of unused space for
974 * privileged transactions. This is needed so that transaction
975 * space required for critical operations can dip into this pool
976 * when at ENOSPC. This is needed for operations like create with
977 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
978 * are not allowed to use this reserved space.
980 * This may drive us straight to ENOSPC on mount, but that implies
981 * we were already there on the last unmount. Warn if this occurs.
983 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
984 resblks = xfs_default_resblks(mp);
985 error = xfs_reserve_blocks(mp, &resblks, NULL);
986 if (error)
987 xfs_warn(mp,
988 "Unable to allocate reserve blocks. Continuing without reserve pool.");
990 /* Recover any CoW blocks that never got remapped. */
991 error = xfs_reflink_recover_cow(mp);
992 if (error) {
993 xfs_err(mp,
994 "Error %d recovering leftover CoW allocations.", error);
995 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
996 goto out_quota;
999 /* Reserve AG blocks for future btree expansion. */
1000 error = xfs_fs_reserve_ag_blocks(mp);
1001 if (error && error != -ENOSPC)
1002 goto out_agresv;
1005 return 0;
1007 out_agresv:
1008 xfs_fs_unreserve_ag_blocks(mp);
1009 out_quota:
1010 xfs_qm_unmount_quotas(mp);
1011 out_rtunmount:
1012 xfs_rtunmount_inodes(mp);
1013 out_rele_rip:
1014 IRELE(rip);
1015 cancel_delayed_work_sync(&mp->m_reclaim_work);
1016 xfs_reclaim_inodes(mp, SYNC_WAIT);
1017 out_log_dealloc:
1018 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1019 xfs_log_mount_cancel(mp);
1020 out_fail_wait:
1021 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1022 xfs_wait_buftarg(mp->m_logdev_targp);
1023 xfs_wait_buftarg(mp->m_ddev_targp);
1024 out_free_perag:
1025 xfs_free_perag(mp);
1026 out_free_dir:
1027 xfs_da_unmount(mp);
1028 out_remove_uuid:
1029 xfs_uuid_unmount(mp);
1030 out_remove_error_sysfs:
1031 xfs_error_sysfs_del(mp);
1032 out_del_stats:
1033 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1034 out_remove_sysfs:
1035 xfs_sysfs_del(&mp->m_kobj);
1036 out:
1037 return error;
1041 * This flushes out the inodes,dquots and the superblock, unmounts the
1042 * log and makes sure that incore structures are freed.
1044 void
1045 xfs_unmountfs(
1046 struct xfs_mount *mp)
1048 __uint64_t resblks;
1049 int error;
1051 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1052 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1054 xfs_fs_unreserve_ag_blocks(mp);
1055 xfs_qm_unmount_quotas(mp);
1056 xfs_rtunmount_inodes(mp);
1057 IRELE(mp->m_rootip);
1060 * We can potentially deadlock here if we have an inode cluster
1061 * that has been freed has its buffer still pinned in memory because
1062 * the transaction is still sitting in a iclog. The stale inodes
1063 * on that buffer will have their flush locks held until the
1064 * transaction hits the disk and the callbacks run. the inode
1065 * flush takes the flush lock unconditionally and with nothing to
1066 * push out the iclog we will never get that unlocked. hence we
1067 * need to force the log first.
1069 xfs_log_force(mp, XFS_LOG_SYNC);
1072 * We now need to tell the world we are unmounting. This will allow
1073 * us to detect that the filesystem is going away and we should error
1074 * out anything that we have been retrying in the background. This will
1075 * prevent neverending retries in AIL pushing from hanging the unmount.
1077 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1080 * Flush all pending changes from the AIL.
1082 xfs_ail_push_all_sync(mp->m_ail);
1085 * And reclaim all inodes. At this point there should be no dirty
1086 * inodes and none should be pinned or locked, but use synchronous
1087 * reclaim just to be sure. We can stop background inode reclaim
1088 * here as well if it is still running.
1090 cancel_delayed_work_sync(&mp->m_reclaim_work);
1091 xfs_reclaim_inodes(mp, SYNC_WAIT);
1093 xfs_qm_unmount(mp);
1096 * Unreserve any blocks we have so that when we unmount we don't account
1097 * the reserved free space as used. This is really only necessary for
1098 * lazy superblock counting because it trusts the incore superblock
1099 * counters to be absolutely correct on clean unmount.
1101 * We don't bother correcting this elsewhere for lazy superblock
1102 * counting because on mount of an unclean filesystem we reconstruct the
1103 * correct counter value and this is irrelevant.
1105 * For non-lazy counter filesystems, this doesn't matter at all because
1106 * we only every apply deltas to the superblock and hence the incore
1107 * value does not matter....
1109 resblks = 0;
1110 error = xfs_reserve_blocks(mp, &resblks, NULL);
1111 if (error)
1112 xfs_warn(mp, "Unable to free reserved block pool. "
1113 "Freespace may not be correct on next mount.");
1115 error = xfs_log_sbcount(mp);
1116 if (error)
1117 xfs_warn(mp, "Unable to update superblock counters. "
1118 "Freespace may not be correct on next mount.");
1121 xfs_log_unmount(mp);
1122 xfs_da_unmount(mp);
1123 xfs_uuid_unmount(mp);
1125 #if defined(DEBUG)
1126 xfs_errortag_clearall(mp, 0);
1127 #endif
1128 xfs_free_perag(mp);
1130 xfs_error_sysfs_del(mp);
1131 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1132 xfs_sysfs_del(&mp->m_kobj);
1136 * Determine whether modifications can proceed. The caller specifies the minimum
1137 * freeze level for which modifications should not be allowed. This allows
1138 * certain operations to proceed while the freeze sequence is in progress, if
1139 * necessary.
1141 bool
1142 xfs_fs_writable(
1143 struct xfs_mount *mp,
1144 int level)
1146 ASSERT(level > SB_UNFROZEN);
1147 if ((mp->m_super->s_writers.frozen >= level) ||
1148 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1149 return false;
1151 return true;
1155 * xfs_log_sbcount
1157 * Sync the superblock counters to disk.
1159 * Note this code can be called during the process of freezing, so we use the
1160 * transaction allocator that does not block when the transaction subsystem is
1161 * in its frozen state.
1164 xfs_log_sbcount(xfs_mount_t *mp)
1166 /* allow this to proceed during the freeze sequence... */
1167 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1168 return 0;
1171 * we don't need to do this if we are updating the superblock
1172 * counters on every modification.
1174 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1175 return 0;
1177 return xfs_sync_sb(mp, true);
1181 * Deltas for the inode count are +/-64, hence we use a large batch size
1182 * of 128 so we don't need to take the counter lock on every update.
1184 #define XFS_ICOUNT_BATCH 128
1186 xfs_mod_icount(
1187 struct xfs_mount *mp,
1188 int64_t delta)
1190 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1191 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1192 ASSERT(0);
1193 percpu_counter_add(&mp->m_icount, -delta);
1194 return -EINVAL;
1196 return 0;
1200 xfs_mod_ifree(
1201 struct xfs_mount *mp,
1202 int64_t delta)
1204 percpu_counter_add(&mp->m_ifree, delta);
1205 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1206 ASSERT(0);
1207 percpu_counter_add(&mp->m_ifree, -delta);
1208 return -EINVAL;
1210 return 0;
1214 * Deltas for the block count can vary from 1 to very large, but lock contention
1215 * only occurs on frequent small block count updates such as in the delayed
1216 * allocation path for buffered writes (page a time updates). Hence we set
1217 * a large batch count (1024) to minimise global counter updates except when
1218 * we get near to ENOSPC and we have to be very accurate with our updates.
1220 #define XFS_FDBLOCKS_BATCH 1024
1222 xfs_mod_fdblocks(
1223 struct xfs_mount *mp,
1224 int64_t delta,
1225 bool rsvd)
1227 int64_t lcounter;
1228 long long res_used;
1229 s32 batch;
1231 if (delta > 0) {
1233 * If the reserve pool is depleted, put blocks back into it
1234 * first. Most of the time the pool is full.
1236 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1237 percpu_counter_add(&mp->m_fdblocks, delta);
1238 return 0;
1241 spin_lock(&mp->m_sb_lock);
1242 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1244 if (res_used > delta) {
1245 mp->m_resblks_avail += delta;
1246 } else {
1247 delta -= res_used;
1248 mp->m_resblks_avail = mp->m_resblks;
1249 percpu_counter_add(&mp->m_fdblocks, delta);
1251 spin_unlock(&mp->m_sb_lock);
1252 return 0;
1256 * Taking blocks away, need to be more accurate the closer we
1257 * are to zero.
1259 * If the counter has a value of less than 2 * max batch size,
1260 * then make everything serialise as we are real close to
1261 * ENOSPC.
1263 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1264 XFS_FDBLOCKS_BATCH) < 0)
1265 batch = 1;
1266 else
1267 batch = XFS_FDBLOCKS_BATCH;
1269 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1270 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1271 XFS_FDBLOCKS_BATCH) >= 0) {
1272 /* we had space! */
1273 return 0;
1277 * lock up the sb for dipping into reserves before releasing the space
1278 * that took us to ENOSPC.
1280 spin_lock(&mp->m_sb_lock);
1281 percpu_counter_add(&mp->m_fdblocks, -delta);
1282 if (!rsvd)
1283 goto fdblocks_enospc;
1285 lcounter = (long long)mp->m_resblks_avail + delta;
1286 if (lcounter >= 0) {
1287 mp->m_resblks_avail = lcounter;
1288 spin_unlock(&mp->m_sb_lock);
1289 return 0;
1291 printk_once(KERN_WARNING
1292 "Filesystem \"%s\": reserve blocks depleted! "
1293 "Consider increasing reserve pool size.",
1294 mp->m_fsname);
1295 fdblocks_enospc:
1296 spin_unlock(&mp->m_sb_lock);
1297 return -ENOSPC;
1301 xfs_mod_frextents(
1302 struct xfs_mount *mp,
1303 int64_t delta)
1305 int64_t lcounter;
1306 int ret = 0;
1308 spin_lock(&mp->m_sb_lock);
1309 lcounter = mp->m_sb.sb_frextents + delta;
1310 if (lcounter < 0)
1311 ret = -ENOSPC;
1312 else
1313 mp->m_sb.sb_frextents = lcounter;
1314 spin_unlock(&mp->m_sb_lock);
1315 return ret;
1319 * xfs_getsb() is called to obtain the buffer for the superblock.
1320 * The buffer is returned locked and read in from disk.
1321 * The buffer should be released with a call to xfs_brelse().
1323 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1324 * the superblock buffer if it can be locked without sleeping.
1325 * If it can't then we'll return NULL.
1327 struct xfs_buf *
1328 xfs_getsb(
1329 struct xfs_mount *mp,
1330 int flags)
1332 struct xfs_buf *bp = mp->m_sb_bp;
1334 if (!xfs_buf_trylock(bp)) {
1335 if (flags & XBF_TRYLOCK)
1336 return NULL;
1337 xfs_buf_lock(bp);
1340 xfs_buf_hold(bp);
1341 ASSERT(bp->b_flags & XBF_DONE);
1342 return bp;
1346 * Used to free the superblock along various error paths.
1348 void
1349 xfs_freesb(
1350 struct xfs_mount *mp)
1352 struct xfs_buf *bp = mp->m_sb_bp;
1354 xfs_buf_lock(bp);
1355 mp->m_sb_bp = NULL;
1356 xfs_buf_relse(bp);
1360 * If the underlying (data/log/rt) device is readonly, there are some
1361 * operations that cannot proceed.
1364 xfs_dev_is_read_only(
1365 struct xfs_mount *mp,
1366 char *message)
1368 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1369 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1370 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1371 xfs_notice(mp, "%s required on read-only device.", message);
1372 xfs_notice(mp, "write access unavailable, cannot proceed.");
1373 return -EROFS;
1375 return 0;