2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 * Eric Anholt <eric@anholt.net>
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
25 #include "framebuffer.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
31 #include "cdv_device.h"
34 struct cdv_intel_range_t
{
38 struct cdv_intel_p2_t
{
43 struct cdv_intel_clock_t
{
55 #define INTEL_P2_NUM 2
57 struct cdv_intel_limit_t
{
58 struct cdv_intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
59 struct cdv_intel_p2_t p2
;
62 #define CDV_LIMIT_SINGLE_LVDS_96 0
63 #define CDV_LIMIT_SINGLE_LVDS_100 1
64 #define CDV_LIMIT_DAC_HDMI_27 2
65 #define CDV_LIMIT_DAC_HDMI_96 3
67 static const struct cdv_intel_limit_t cdv_intel_limits
[] = {
68 { /* CDV_SIGNLE_LVDS_96MHz */
69 .dot
= {.min
= 20000, .max
= 115500},
70 .vco
= {.min
= 1800000, .max
= 3600000},
71 .n
= {.min
= 2, .max
= 6},
72 .m
= {.min
= 60, .max
= 160},
73 .m1
= {.min
= 0, .max
= 0},
74 .m2
= {.min
= 58, .max
= 158},
75 .p
= {.min
= 28, .max
= 140},
76 .p1
= {.min
= 2, .max
= 10},
77 .p2
= {.dot_limit
= 200000,
78 .p2_slow
= 14, .p2_fast
= 14},
80 { /* CDV_SINGLE_LVDS_100MHz */
81 .dot
= {.min
= 20000, .max
= 115500},
82 .vco
= {.min
= 1800000, .max
= 3600000},
83 .n
= {.min
= 2, .max
= 6},
84 .m
= {.min
= 60, .max
= 160},
85 .m1
= {.min
= 0, .max
= 0},
86 .m2
= {.min
= 58, .max
= 158},
87 .p
= {.min
= 28, .max
= 140},
88 .p1
= {.min
= 2, .max
= 10},
89 /* The single-channel range is 25-112Mhz, and dual-channel
90 * is 80-224Mhz. Prefer single channel as much as possible.
92 .p2
= {.dot_limit
= 200000, .p2_slow
= 14, .p2_fast
= 14},
94 { /* CDV_DAC_HDMI_27MHz */
95 .dot
= {.min
= 20000, .max
= 400000},
96 .vco
= {.min
= 1809000, .max
= 3564000},
97 .n
= {.min
= 1, .max
= 1},
98 .m
= {.min
= 67, .max
= 132},
99 .m1
= {.min
= 0, .max
= 0},
100 .m2
= {.min
= 65, .max
= 130},
101 .p
= {.min
= 5, .max
= 90},
102 .p1
= {.min
= 1, .max
= 9},
103 .p2
= {.dot_limit
= 225000, .p2_slow
= 10, .p2_fast
= 5},
105 { /* CDV_DAC_HDMI_96MHz */
106 .dot
= {.min
= 20000, .max
= 400000},
107 .vco
= {.min
= 1800000, .max
= 3600000},
108 .n
= {.min
= 2, .max
= 6},
109 .m
= {.min
= 60, .max
= 160},
110 .m1
= {.min
= 0, .max
= 0},
111 .m2
= {.min
= 58, .max
= 158},
112 .p
= {.min
= 5, .max
= 100},
113 .p1
= {.min
= 1, .max
= 10},
114 .p2
= {.dot_limit
= 225000, .p2_slow
= 10, .p2_fast
= 5},
118 #define _wait_for(COND, MS, W) ({ \
119 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
122 if (time_after(jiffies, timeout__)) { \
123 ret__ = -ETIMEDOUT; \
126 if (W && !in_dbg_master()) \
132 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
135 static int cdv_sb_read(struct drm_device
*dev
, u32 reg
, u32
*val
)
139 ret
= wait_for((REG_READ(SB_PCKT
) & SB_BUSY
) == 0, 1000);
141 DRM_ERROR("timeout waiting for SB to idle before read\n");
145 REG_WRITE(SB_ADDR
, reg
);
147 SET_FIELD(SB_OPCODE_READ
, SB_OPCODE
) |
148 SET_FIELD(SB_DEST_DPLL
, SB_DEST
) |
149 SET_FIELD(0xf, SB_BYTE_ENABLE
));
151 ret
= wait_for((REG_READ(SB_PCKT
) & SB_BUSY
) == 0, 1000);
153 DRM_ERROR("timeout waiting for SB to idle after read\n");
157 *val
= REG_READ(SB_DATA
);
162 static int cdv_sb_write(struct drm_device
*dev
, u32 reg
, u32 val
)
165 static bool dpio_debug
= true;
169 if (cdv_sb_read(dev
, reg
, &temp
) == 0)
170 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg
, temp
);
171 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg
, val
);
174 ret
= wait_for((REG_READ(SB_PCKT
) & SB_BUSY
) == 0, 1000);
176 DRM_ERROR("timeout waiting for SB to idle before write\n");
180 REG_WRITE(SB_ADDR
, reg
);
181 REG_WRITE(SB_DATA
, val
);
183 SET_FIELD(SB_OPCODE_WRITE
, SB_OPCODE
) |
184 SET_FIELD(SB_DEST_DPLL
, SB_DEST
) |
185 SET_FIELD(0xf, SB_BYTE_ENABLE
));
187 ret
= wait_for((REG_READ(SB_PCKT
) & SB_BUSY
) == 0, 1000);
189 DRM_ERROR("timeout waiting for SB to idle after write\n");
194 if (cdv_sb_read(dev
, reg
, &temp
) == 0)
195 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg
, temp
);
201 /* Reset the DPIO configuration register. The BIOS does this at every
204 static void cdv_sb_reset(struct drm_device
*dev
)
207 REG_WRITE(DPIO_CFG
, 0);
209 REG_WRITE(DPIO_CFG
, DPIO_MODE_SELECT_0
| DPIO_CMN_RESET_N
);
212 /* Unlike most Intel display engines, on Cedarview the DPLL registers
213 * are behind this sideband bus. They must be programmed while the
214 * DPLL reference clock is on in the DPLL control register, but before
215 * the DPLL is enabled in the DPLL control register.
218 cdv_dpll_set_clock_cdv(struct drm_device
*dev
, struct drm_crtc
*crtc
,
219 struct cdv_intel_clock_t
*clock
, bool is_lvds
)
221 struct psb_intel_crtc
*psb_crtc
= to_psb_intel_crtc(crtc
);
222 int pipe
= psb_crtc
->pipe
;
225 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
226 int ref_sfr
= (pipe
== 0) ? SB_REF_DPLLA
: SB_REF_DPLLB
;
228 u32 lane_reg
, lane_value
;
232 REG_WRITE(dpll_reg
, DPLL_SYNCLOCK_ENABLE
| DPLL_VGA_MODE_DIS
);
236 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
237 ref_value
= 0x68A701;
239 cdv_sb_write(dev
, SB_REF_SFR(pipe
), ref_value
);
241 /* We don't know what the other fields of these regs are, so
242 * leave them in place.
245 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
246 * for the pipe A/B. Display spec 1.06 has wrong definition.
247 * Correct definition is like below:
249 * refclka mean use clock from same PLL
251 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
253 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
256 ret
= cdv_sb_read(dev
, ref_sfr
, &ref_value
);
259 ref_value
&= ~(REF_CLK_MASK
);
261 /* use DPLL_A for pipeB on CRT/HDMI */
262 if (pipe
== 1 && !is_lvds
) {
263 DRM_DEBUG_KMS("use DPLLA for pipe B\n");
264 ref_value
|= REF_CLK_DPLLA
;
266 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
267 ref_value
|= REF_CLK_DPLL
;
269 ret
= cdv_sb_write(dev
, ref_sfr
, ref_value
);
273 ret
= cdv_sb_read(dev
, SB_M(pipe
), &m
);
276 m
&= ~SB_M_DIVIDER_MASK
;
277 m
|= ((clock
->m2
) << SB_M_DIVIDER_SHIFT
);
278 ret
= cdv_sb_write(dev
, SB_M(pipe
), m
);
282 ret
= cdv_sb_read(dev
, SB_N_VCO(pipe
), &n_vco
);
286 /* Follow the BIOS to program the N_DIVIDER REG */
289 n_vco
&= ~(SB_N_VCO_SEL_MASK
|
293 n_vco
|= ((clock
->n
) << SB_N_DIVIDER_SHIFT
);
295 if (clock
->vco
< 2250000) {
296 n_vco
|= (2 << SB_N_CB_TUNE_SHIFT
);
297 n_vco
|= (0 << SB_N_VCO_SEL_SHIFT
);
298 } else if (clock
->vco
< 2750000) {
299 n_vco
|= (1 << SB_N_CB_TUNE_SHIFT
);
300 n_vco
|= (1 << SB_N_VCO_SEL_SHIFT
);
301 } else if (clock
->vco
< 3300000) {
302 n_vco
|= (0 << SB_N_CB_TUNE_SHIFT
);
303 n_vco
|= (2 << SB_N_VCO_SEL_SHIFT
);
305 n_vco
|= (0 << SB_N_CB_TUNE_SHIFT
);
306 n_vco
|= (3 << SB_N_VCO_SEL_SHIFT
);
309 ret
= cdv_sb_write(dev
, SB_N_VCO(pipe
), n_vco
);
313 ret
= cdv_sb_read(dev
, SB_P(pipe
), &p
);
316 p
&= ~(SB_P2_DIVIDER_MASK
| SB_P1_DIVIDER_MASK
);
317 p
|= SET_FIELD(clock
->p1
, SB_P1_DIVIDER
);
320 p
|= SET_FIELD(SB_P2_5
, SB_P2_DIVIDER
);
323 p
|= SET_FIELD(SB_P2_10
, SB_P2_DIVIDER
);
326 p
|= SET_FIELD(SB_P2_14
, SB_P2_DIVIDER
);
329 p
|= SET_FIELD(SB_P2_7
, SB_P2_DIVIDER
);
332 DRM_ERROR("Bad P2 clock: %d\n", clock
->p2
);
335 ret
= cdv_sb_write(dev
, SB_P(pipe
), p
);
339 lane_reg
= PSB_LANE0
;
340 cdv_sb_read(dev
, lane_reg
, &lane_value
);
341 lane_value
&= ~(LANE_PLL_MASK
);
342 lane_value
|= LANE_PLL_ENABLE
| LANE_PLL_PIPE(pipe
);
343 cdv_sb_write(dev
, lane_reg
, lane_value
);
345 lane_reg
= PSB_LANE1
;
346 cdv_sb_read(dev
, lane_reg
, &lane_value
);
347 lane_value
&= ~(LANE_PLL_MASK
);
348 lane_value
|= LANE_PLL_ENABLE
| LANE_PLL_PIPE(pipe
);
349 cdv_sb_write(dev
, lane_reg
, lane_value
);
351 lane_reg
= PSB_LANE2
;
352 cdv_sb_read(dev
, lane_reg
, &lane_value
);
353 lane_value
&= ~(LANE_PLL_MASK
);
354 lane_value
|= LANE_PLL_ENABLE
| LANE_PLL_PIPE(pipe
);
355 cdv_sb_write(dev
, lane_reg
, lane_value
);
357 lane_reg
= PSB_LANE3
;
358 cdv_sb_read(dev
, lane_reg
, &lane_value
);
359 lane_value
&= ~(LANE_PLL_MASK
);
360 lane_value
|= LANE_PLL_ENABLE
| LANE_PLL_PIPE(pipe
);
361 cdv_sb_write(dev
, lane_reg
, lane_value
);
367 * Returns whether any encoder on the specified pipe is of the specified type
369 static bool cdv_intel_pipe_has_type(struct drm_crtc
*crtc
, int type
)
371 struct drm_device
*dev
= crtc
->dev
;
372 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
373 struct drm_connector
*l_entry
;
375 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
376 if (l_entry
->encoder
&& l_entry
->encoder
->crtc
== crtc
) {
377 struct psb_intel_encoder
*psb_intel_encoder
=
378 psb_intel_attached_encoder(l_entry
);
379 if (psb_intel_encoder
->type
== type
)
386 static const struct cdv_intel_limit_t
*cdv_intel_limit(struct drm_crtc
*crtc
,
389 const struct cdv_intel_limit_t
*limit
;
390 if (cdv_intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
392 * Now only single-channel LVDS is supported on CDV. If it is
393 * incorrect, please add the dual-channel LVDS.
396 limit
= &cdv_intel_limits
[CDV_LIMIT_SINGLE_LVDS_96
];
398 limit
= &cdv_intel_limits
[CDV_LIMIT_SINGLE_LVDS_100
];
401 limit
= &cdv_intel_limits
[CDV_LIMIT_DAC_HDMI_27
];
403 limit
= &cdv_intel_limits
[CDV_LIMIT_DAC_HDMI_96
];
408 /* m1 is reserved as 0 in CDV, n is a ring counter */
409 static void cdv_intel_clock(struct drm_device
*dev
,
410 int refclk
, struct cdv_intel_clock_t
*clock
)
412 clock
->m
= clock
->m2
+ 2;
413 clock
->p
= clock
->p1
* clock
->p2
;
414 clock
->vco
= (refclk
* clock
->m
) / clock
->n
;
415 clock
->dot
= clock
->vco
/ clock
->p
;
419 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
420 static bool cdv_intel_PLL_is_valid(struct drm_crtc
*crtc
,
421 const struct cdv_intel_limit_t
*limit
,
422 struct cdv_intel_clock_t
*clock
)
424 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
425 INTELPllInvalid("p1 out of range\n");
426 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
427 INTELPllInvalid("p out of range\n");
428 /* unnecessary to check the range of m(m1/M2)/n again */
429 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
430 INTELPllInvalid("vco out of range\n");
431 /* XXX: We may need to be checking "Dot clock"
432 * depending on the multiplier, connector, etc.,
433 * rather than just a single range.
435 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
436 INTELPllInvalid("dot out of range\n");
441 static bool cdv_intel_find_best_PLL(struct drm_crtc
*crtc
, int target
,
443 struct cdv_intel_clock_t
*best_clock
)
445 struct drm_device
*dev
= crtc
->dev
;
446 struct cdv_intel_clock_t clock
;
447 const struct cdv_intel_limit_t
*limit
= cdv_intel_limit(crtc
, refclk
);
451 if (cdv_intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
452 (REG_READ(LVDS
) & LVDS_PORT_EN
) != 0) {
454 * For LVDS, if the panel is on, just rely on its current
455 * settings for dual-channel. We haven't figured out how to
456 * reliably set up different single/dual channel state, if we
459 if ((REG_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
461 clock
.p2
= limit
->p2
.p2_fast
;
463 clock
.p2
= limit
->p2
.p2_slow
;
465 if (target
< limit
->p2
.dot_limit
)
466 clock
.p2
= limit
->p2
.p2_slow
;
468 clock
.p2
= limit
->p2
.p2_fast
;
471 memset(best_clock
, 0, sizeof(*best_clock
));
473 /* m1 is reserved as 0 in CDV, n is a ring counter.
474 So skip the m1 loop */
475 for (clock
.n
= limit
->n
.min
; clock
.n
<= limit
->n
.max
; clock
.n
++) {
476 for (clock
.m2
= limit
->m2
.min
; clock
.m2
<= limit
->m2
.max
;
478 for (clock
.p1
= limit
->p1
.min
;
479 clock
.p1
<= limit
->p1
.max
;
483 cdv_intel_clock(dev
, refclk
, &clock
);
485 if (!cdv_intel_PLL_is_valid(crtc
,
489 this_err
= abs(clock
.dot
- target
);
490 if (this_err
< err
) {
498 return err
!= target
;
501 static int cdv_intel_pipe_set_base(struct drm_crtc
*crtc
,
502 int x
, int y
, struct drm_framebuffer
*old_fb
)
504 struct drm_device
*dev
= crtc
->dev
;
505 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
506 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
507 struct psb_framebuffer
*psbfb
= to_psb_fb(crtc
->fb
);
508 int pipe
= psb_intel_crtc
->pipe
;
509 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
510 unsigned long start
, offset
;
514 if (!gma_power_begin(dev
, true))
519 dev_err(dev
->dev
, "No FB bound\n");
520 goto psb_intel_pipe_cleaner
;
524 /* We are displaying this buffer, make sure it is actually loaded
526 ret
= psb_gtt_pin(psbfb
->gtt
);
528 goto psb_intel_pipe_set_base_exit
;
529 start
= psbfb
->gtt
->offset
;
530 offset
= y
* crtc
->fb
->pitches
[0] + x
* (crtc
->fb
->bits_per_pixel
/ 8);
532 REG_WRITE(map
->stride
, crtc
->fb
->pitches
[0]);
534 dspcntr
= REG_READ(map
->cntr
);
535 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
537 switch (crtc
->fb
->bits_per_pixel
) {
539 dspcntr
|= DISPPLANE_8BPP
;
542 if (crtc
->fb
->depth
== 15)
543 dspcntr
|= DISPPLANE_15_16BPP
;
545 dspcntr
|= DISPPLANE_16BPP
;
549 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
552 dev_err(dev
->dev
, "Unknown color depth\n");
554 goto psb_intel_pipe_set_base_exit
;
556 REG_WRITE(map
->cntr
, dspcntr
);
559 "Writing base %08lX %08lX %d %d\n", start
, offset
, x
, y
);
561 REG_WRITE(map
->base
, offset
);
563 REG_WRITE(map
->surf
, start
);
566 psb_intel_pipe_cleaner
:
567 /* If there was a previous display we can now unpin it */
569 psb_gtt_unpin(to_psb_fb(old_fb
)->gtt
);
571 psb_intel_pipe_set_base_exit
:
576 #define FIFO_PIPEA (1 << 0)
577 #define FIFO_PIPEB (1 << 1)
579 static bool cdv_intel_pipe_enabled(struct drm_device
*dev
, int pipe
)
581 struct drm_crtc
*crtc
;
582 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
583 struct psb_intel_crtc
*psb_intel_crtc
= NULL
;
585 crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
586 psb_intel_crtc
= to_psb_intel_crtc(crtc
);
588 if (crtc
->fb
== NULL
|| !psb_intel_crtc
->active
)
593 static bool cdv_intel_single_pipe_active (struct drm_device
*dev
)
595 uint32_t pipe_enabled
= 0;
597 if (cdv_intel_pipe_enabled(dev
, 0))
598 pipe_enabled
|= FIFO_PIPEA
;
600 if (cdv_intel_pipe_enabled(dev
, 1))
601 pipe_enabled
|= FIFO_PIPEB
;
604 DRM_DEBUG_KMS("pipe enabled %x\n", pipe_enabled
);
606 if (pipe_enabled
== FIFO_PIPEA
|| pipe_enabled
== FIFO_PIPEB
)
612 static bool is_pipeb_lvds(struct drm_device
*dev
, struct drm_crtc
*crtc
)
614 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
615 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
616 struct drm_connector
*connector
;
618 if (psb_intel_crtc
->pipe
!= 1)
621 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
622 struct psb_intel_encoder
*psb_intel_encoder
=
623 psb_intel_attached_encoder(connector
);
625 if (!connector
->encoder
626 || connector
->encoder
->crtc
!= crtc
)
629 if (psb_intel_encoder
->type
== INTEL_OUTPUT_LVDS
)
636 static void cdv_intel_disable_self_refresh (struct drm_device
*dev
)
638 if (REG_READ(FW_BLC_SELF
) & FW_BLC_SELF_EN
) {
640 /* Disable self-refresh before adjust WM */
641 REG_WRITE(FW_BLC_SELF
, (REG_READ(FW_BLC_SELF
) & ~FW_BLC_SELF_EN
));
642 REG_READ(FW_BLC_SELF
);
644 cdv_intel_wait_for_vblank(dev
);
646 /* Cedarview workaround to write ovelay plane, which force to leave
649 REG_WRITE(OV_OVADD
, 0/*dev_priv->ovl_offset*/);
652 cdv_intel_wait_for_vblank(dev
);
657 static void cdv_intel_update_watermark (struct drm_device
*dev
, struct drm_crtc
*crtc
)
660 if (cdv_intel_single_pipe_active(dev
)) {
663 fw
= REG_READ(DSPFW1
);
664 fw
&= ~DSP_FIFO_SR_WM_MASK
;
665 fw
|= (0x7e << DSP_FIFO_SR_WM_SHIFT
);
666 fw
&= ~CURSOR_B_FIFO_WM_MASK
;
667 fw
|= (0x4 << CURSOR_B_FIFO_WM_SHIFT
);
668 REG_WRITE(DSPFW1
, fw
);
670 fw
= REG_READ(DSPFW2
);
671 fw
&= ~CURSOR_A_FIFO_WM_MASK
;
672 fw
|= (0x6 << CURSOR_A_FIFO_WM_SHIFT
);
673 fw
&= ~DSP_PLANE_C_FIFO_WM_MASK
;
674 fw
|= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT
);
675 REG_WRITE(DSPFW2
, fw
);
677 REG_WRITE(DSPFW3
, 0x36000000);
681 if (is_pipeb_lvds(dev
, crtc
)) {
682 REG_WRITE(DSPFW5
, 0x00040330);
684 fw
= (3 << DSP_PLANE_B_FIFO_WM1_SHIFT
) |
685 (4 << DSP_PLANE_A_FIFO_WM1_SHIFT
) |
686 (3 << CURSOR_B_FIFO_WM1_SHIFT
) |
687 (4 << CURSOR_FIFO_SR_WM1_SHIFT
);
688 REG_WRITE(DSPFW5
, fw
);
691 REG_WRITE(DSPFW6
, 0x10);
693 cdv_intel_wait_for_vblank(dev
);
695 /* enable self-refresh for single pipe active */
696 REG_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
697 REG_READ(FW_BLC_SELF
);
698 cdv_intel_wait_for_vblank(dev
);
702 /* HW team suggested values... */
703 REG_WRITE(DSPFW1
, 0x3f880808);
704 REG_WRITE(DSPFW2
, 0x0b020202);
705 REG_WRITE(DSPFW3
, 0x24000000);
706 REG_WRITE(DSPFW4
, 0x08030202);
707 REG_WRITE(DSPFW5
, 0x01010101);
708 REG_WRITE(DSPFW6
, 0x1d0);
710 cdv_intel_wait_for_vblank(dev
);
712 cdv_intel_disable_self_refresh(dev
);
717 /** Loads the palette/gamma unit for the CRTC with the prepared values */
718 static void cdv_intel_crtc_load_lut(struct drm_crtc
*crtc
)
720 struct drm_device
*dev
= crtc
->dev
;
721 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
722 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
723 int palreg
= PALETTE_A
;
726 /* The clocks have to be on to load the palette. */
730 switch (psb_intel_crtc
->pipe
) {
740 dev_err(dev
->dev
, "Illegal Pipe Number.\n");
744 if (gma_power_begin(dev
, false)) {
745 for (i
= 0; i
< 256; i
++) {
746 REG_WRITE(palreg
+ 4 * i
,
747 ((psb_intel_crtc
->lut_r
[i
] +
748 psb_intel_crtc
->lut_adj
[i
]) << 16) |
749 ((psb_intel_crtc
->lut_g
[i
] +
750 psb_intel_crtc
->lut_adj
[i
]) << 8) |
751 (psb_intel_crtc
->lut_b
[i
] +
752 psb_intel_crtc
->lut_adj
[i
]));
756 for (i
= 0; i
< 256; i
++) {
757 dev_priv
->regs
.pipe
[0].palette
[i
] =
758 ((psb_intel_crtc
->lut_r
[i
] +
759 psb_intel_crtc
->lut_adj
[i
]) << 16) |
760 ((psb_intel_crtc
->lut_g
[i
] +
761 psb_intel_crtc
->lut_adj
[i
]) << 8) |
762 (psb_intel_crtc
->lut_b
[i
] +
763 psb_intel_crtc
->lut_adj
[i
]);
770 * Sets the power management mode of the pipe and plane.
772 * This code should probably grow support for turning the cursor off and back
773 * on appropriately at the same time as we're turning the pipe off/on.
775 static void cdv_intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
777 struct drm_device
*dev
= crtc
->dev
;
778 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
779 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
780 int pipe
= psb_intel_crtc
->pipe
;
781 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
784 /* XXX: When our outputs are all unaware of DPMS modes other than off
785 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
787 cdv_intel_disable_self_refresh(dev
);
790 case DRM_MODE_DPMS_ON
:
791 case DRM_MODE_DPMS_STANDBY
:
792 case DRM_MODE_DPMS_SUSPEND
:
793 if (psb_intel_crtc
->active
)
796 psb_intel_crtc
->active
= true;
798 /* Enable the DPLL */
799 temp
= REG_READ(map
->dpll
);
800 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
801 REG_WRITE(map
->dpll
, temp
);
803 /* Wait for the clocks to stabilize. */
805 REG_WRITE(map
->dpll
, temp
| DPLL_VCO_ENABLE
);
807 /* Wait for the clocks to stabilize. */
809 REG_WRITE(map
->dpll
, temp
| DPLL_VCO_ENABLE
);
811 /* Wait for the clocks to stabilize. */
815 /* Jim Bish - switch plan and pipe per scott */
816 /* Enable the plane */
817 temp
= REG_READ(map
->cntr
);
818 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
820 temp
| DISPLAY_PLANE_ENABLE
);
821 /* Flush the plane changes */
822 REG_WRITE(map
->base
, REG_READ(map
->base
));
827 /* Enable the pipe */
828 temp
= REG_READ(map
->conf
);
829 if ((temp
& PIPEACONF_ENABLE
) == 0)
830 REG_WRITE(map
->conf
, temp
| PIPEACONF_ENABLE
);
832 temp
= REG_READ(map
->status
);
834 temp
|= PIPE_FIFO_UNDERRUN
;
835 REG_WRITE(map
->status
, temp
);
836 REG_READ(map
->status
);
838 cdv_intel_update_watermark(dev
, crtc
);
839 cdv_intel_crtc_load_lut(crtc
);
841 /* Give the overlay scaler a chance to enable
842 * if it's on this pipe */
843 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
844 psb_intel_crtc
->crtc_enable
= true;
846 case DRM_MODE_DPMS_OFF
:
847 if (!psb_intel_crtc
->active
)
850 psb_intel_crtc
->active
= false;
852 /* Give the overlay scaler a chance to disable
853 * if it's on this pipe */
854 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
856 /* Disable the VGA plane that we never use */
857 REG_WRITE(VGACNTRL
, VGA_DISP_DISABLE
);
859 /* Jim Bish - changed pipe/plane here as well. */
861 drm_vblank_off(dev
, pipe
);
862 /* Wait for vblank for the disable to take effect */
863 cdv_intel_wait_for_vblank(dev
);
865 /* Next, disable display pipes */
866 temp
= REG_READ(map
->conf
);
867 if ((temp
& PIPEACONF_ENABLE
) != 0) {
868 REG_WRITE(map
->conf
, temp
& ~PIPEACONF_ENABLE
);
872 /* Wait for vblank for the disable to take effect. */
873 cdv_intel_wait_for_vblank(dev
);
877 /* Disable display plane */
878 temp
= REG_READ(map
->cntr
);
879 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
881 temp
& ~DISPLAY_PLANE_ENABLE
);
882 /* Flush the plane changes */
883 REG_WRITE(map
->base
, REG_READ(map
->base
));
887 temp
= REG_READ(map
->dpll
);
888 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
889 REG_WRITE(map
->dpll
, temp
& ~DPLL_VCO_ENABLE
);
893 /* Wait for the clocks to turn off. */
895 cdv_intel_update_watermark(dev
, crtc
);
896 psb_intel_crtc
->crtc_enable
= false;
899 /*Set FIFO Watermarks*/
900 REG_WRITE(DSPARB
, 0x3F3E);
903 static void cdv_intel_crtc_prepare(struct drm_crtc
*crtc
)
905 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
906 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
909 static void cdv_intel_crtc_commit(struct drm_crtc
*crtc
)
911 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
912 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
915 static bool cdv_intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
916 struct drm_display_mode
*mode
,
917 struct drm_display_mode
*adjusted_mode
)
924 * Return the pipe currently connected to the panel fitter,
925 * or -1 if the panel fitter is not present or not in use
927 static int cdv_intel_panel_fitter_pipe(struct drm_device
*dev
)
931 pfit_control
= REG_READ(PFIT_CONTROL
);
933 /* See if the panel fitter is in use */
934 if ((pfit_control
& PFIT_ENABLE
) == 0)
936 return (pfit_control
>> 29) & 0x3;
939 static int cdv_intel_crtc_mode_set(struct drm_crtc
*crtc
,
940 struct drm_display_mode
*mode
,
941 struct drm_display_mode
*adjusted_mode
,
943 struct drm_framebuffer
*old_fb
)
945 struct drm_device
*dev
= crtc
->dev
;
946 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
947 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
948 int pipe
= psb_intel_crtc
->pipe
;
949 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
951 struct cdv_intel_clock_t clock
;
952 u32 dpll
= 0, dspcntr
, pipeconf
;
954 bool is_crt
= false, is_lvds
= false, is_tv
= false;
955 bool is_hdmi
= false;
956 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
957 struct drm_connector
*connector
;
959 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
960 struct psb_intel_encoder
*psb_intel_encoder
=
961 psb_intel_attached_encoder(connector
);
963 if (!connector
->encoder
964 || connector
->encoder
->crtc
!= crtc
)
967 switch (psb_intel_encoder
->type
) {
968 case INTEL_OUTPUT_LVDS
:
971 case INTEL_OUTPUT_TVOUT
:
974 case INTEL_OUTPUT_ANALOG
:
977 case INTEL_OUTPUT_HDMI
:
983 if (dev_priv
->dplla_96mhz
)
984 /* low-end sku, 96/100 mhz */
987 /* high-end sku, 27/100 mhz */
990 if (is_lvds
&& dev_priv
->lvds_use_ssc
) {
991 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
992 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv
->lvds_ssc_freq
);
995 drm_mode_debug_printmodeline(adjusted_mode
);
997 ok
= cdv_intel_find_best_PLL(crtc
, adjusted_mode
->clock
, refclk
,
1000 dev_err(dev
->dev
, "Couldn't find PLL settings for mode!\n");
1004 dpll
= DPLL_VGA_MODE_DIS
;
1006 /* XXX: just matching BIOS for now */
1007 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
1010 /* dpll |= PLL_REF_INPUT_DREFCLK; */
1012 dpll
|= DPLL_SYNCLOCK_ENABLE
;
1014 dpll |= DPLLB_MODE_LVDS;
1016 dpll |= DPLLB_MODE_DAC_SERIAL; */
1017 /* dpll |= (2 << 11); */
1019 /* setup pipeconf */
1020 pipeconf
= REG_READ(map
->conf
);
1022 /* Set up the display plane register */
1023 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
1026 dspcntr
|= DISPPLANE_SEL_PIPE_A
;
1028 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
1030 dspcntr
|= DISPLAY_PLANE_ENABLE
;
1031 pipeconf
|= PIPEACONF_ENABLE
;
1033 REG_WRITE(map
->dpll
, dpll
| DPLL_VGA_MODE_DIS
| DPLL_SYNCLOCK_ENABLE
);
1034 REG_READ(map
->dpll
);
1036 cdv_dpll_set_clock_cdv(dev
, crtc
, &clock
, is_lvds
);
1041 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1042 * This is an exception to the general rule that mode_set doesn't turn
1046 u32 lvds
= REG_READ(LVDS
);
1049 LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
|
1051 /* Set the B0-B3 data pairs corresponding to
1052 * whether we're going to
1053 * set the DPLLs for dual-channel mode or not.
1056 lvds
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
1058 lvds
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
1060 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1061 * appropriately here, but we need to look more
1062 * thoroughly into how panels behave in the two modes.
1065 REG_WRITE(LVDS
, lvds
);
1069 dpll
|= DPLL_VCO_ENABLE
;
1071 /* Disable the panel fitter if it was on our pipe */
1072 if (cdv_intel_panel_fitter_pipe(dev
) == pipe
)
1073 REG_WRITE(PFIT_CONTROL
, 0);
1075 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
1076 drm_mode_debug_printmodeline(mode
);
1078 REG_WRITE(map
->dpll
,
1079 (REG_READ(map
->dpll
) & ~DPLL_LOCK
) | DPLL_VCO_ENABLE
);
1080 REG_READ(map
->dpll
);
1081 /* Wait for the clocks to stabilize. */
1082 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */
1084 if (!(REG_READ(map
->dpll
) & DPLL_LOCK
)) {
1085 dev_err(dev
->dev
, "Failed to get DPLL lock\n");
1090 int sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
1091 REG_WRITE(map
->dpll_md
, (0 << DPLL_MD_UDI_DIVIDER_SHIFT
) | ((sdvo_pixel_multiply
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
));
1094 REG_WRITE(map
->htotal
, (adjusted_mode
->crtc_hdisplay
- 1) |
1095 ((adjusted_mode
->crtc_htotal
- 1) << 16));
1096 REG_WRITE(map
->hblank
, (adjusted_mode
->crtc_hblank_start
- 1) |
1097 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
1098 REG_WRITE(map
->hsync
, (adjusted_mode
->crtc_hsync_start
- 1) |
1099 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
1100 REG_WRITE(map
->vtotal
, (adjusted_mode
->crtc_vdisplay
- 1) |
1101 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
1102 REG_WRITE(map
->vblank
, (adjusted_mode
->crtc_vblank_start
- 1) |
1103 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
1104 REG_WRITE(map
->vsync
, (adjusted_mode
->crtc_vsync_start
- 1) |
1105 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
1106 /* pipesrc and dspsize control the size that is scaled from,
1107 * which should always be the user's requested size.
1109 REG_WRITE(map
->size
,
1110 ((mode
->vdisplay
- 1) << 16) | (mode
->hdisplay
- 1));
1111 REG_WRITE(map
->pos
, 0);
1113 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
1114 REG_WRITE(map
->conf
, pipeconf
);
1115 REG_READ(map
->conf
);
1117 cdv_intel_wait_for_vblank(dev
);
1119 REG_WRITE(map
->cntr
, dspcntr
);
1121 /* Flush the plane changes */
1123 struct drm_crtc_helper_funcs
*crtc_funcs
=
1124 crtc
->helper_private
;
1125 crtc_funcs
->mode_set_base(crtc
, x
, y
, old_fb
);
1128 cdv_intel_wait_for_vblank(dev
);
1135 * Save HW states of giving crtc
1137 static void cdv_intel_crtc_save(struct drm_crtc
*crtc
)
1139 struct drm_device
*dev
= crtc
->dev
;
1140 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1141 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1142 struct psb_intel_crtc_state
*crtc_state
= psb_intel_crtc
->crtc_state
;
1143 const struct psb_offset
*map
= &dev_priv
->regmap
[psb_intel_crtc
->pipe
];
1144 uint32_t paletteReg
;
1148 dev_dbg(dev
->dev
, "No CRTC state found\n");
1152 crtc_state
->saveDSPCNTR
= REG_READ(map
->cntr
);
1153 crtc_state
->savePIPECONF
= REG_READ(map
->conf
);
1154 crtc_state
->savePIPESRC
= REG_READ(map
->src
);
1155 crtc_state
->saveFP0
= REG_READ(map
->fp0
);
1156 crtc_state
->saveFP1
= REG_READ(map
->fp1
);
1157 crtc_state
->saveDPLL
= REG_READ(map
->dpll
);
1158 crtc_state
->saveHTOTAL
= REG_READ(map
->htotal
);
1159 crtc_state
->saveHBLANK
= REG_READ(map
->hblank
);
1160 crtc_state
->saveHSYNC
= REG_READ(map
->hsync
);
1161 crtc_state
->saveVTOTAL
= REG_READ(map
->vtotal
);
1162 crtc_state
->saveVBLANK
= REG_READ(map
->vblank
);
1163 crtc_state
->saveVSYNC
= REG_READ(map
->vsync
);
1164 crtc_state
->saveDSPSTRIDE
= REG_READ(map
->stride
);
1166 /*NOTE: DSPSIZE DSPPOS only for psb*/
1167 crtc_state
->saveDSPSIZE
= REG_READ(map
->size
);
1168 crtc_state
->saveDSPPOS
= REG_READ(map
->pos
);
1170 crtc_state
->saveDSPBASE
= REG_READ(map
->base
);
1172 DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1173 crtc_state
->saveDSPCNTR
,
1174 crtc_state
->savePIPECONF
,
1175 crtc_state
->savePIPESRC
,
1176 crtc_state
->saveFP0
,
1177 crtc_state
->saveFP1
,
1178 crtc_state
->saveDPLL
,
1179 crtc_state
->saveHTOTAL
,
1180 crtc_state
->saveHBLANK
,
1181 crtc_state
->saveHSYNC
,
1182 crtc_state
->saveVTOTAL
,
1183 crtc_state
->saveVBLANK
,
1184 crtc_state
->saveVSYNC
,
1185 crtc_state
->saveDSPSTRIDE
,
1186 crtc_state
->saveDSPSIZE
,
1187 crtc_state
->saveDSPPOS
,
1188 crtc_state
->saveDSPBASE
1191 paletteReg
= map
->palette
;
1192 for (i
= 0; i
< 256; ++i
)
1193 crtc_state
->savePalette
[i
] = REG_READ(paletteReg
+ (i
<< 2));
1197 * Restore HW states of giving crtc
1199 static void cdv_intel_crtc_restore(struct drm_crtc
*crtc
)
1201 struct drm_device
*dev
= crtc
->dev
;
1202 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1203 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1204 struct psb_intel_crtc_state
*crtc_state
= psb_intel_crtc
->crtc_state
;
1205 const struct psb_offset
*map
= &dev_priv
->regmap
[psb_intel_crtc
->pipe
];
1206 uint32_t paletteReg
;
1210 dev_dbg(dev
->dev
, "No crtc state\n");
1215 "current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1216 REG_READ(map
->cntr
),
1217 REG_READ(map
->conf
),
1221 REG_READ(map
->dpll
),
1222 REG_READ(map
->htotal
),
1223 REG_READ(map
->hblank
),
1224 REG_READ(map
->hsync
),
1225 REG_READ(map
->vtotal
),
1226 REG_READ(map
->vblank
),
1227 REG_READ(map
->vsync
),
1228 REG_READ(map
->stride
),
1229 REG_READ(map
->size
),
1235 "saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1236 crtc_state
->saveDSPCNTR
,
1237 crtc_state
->savePIPECONF
,
1238 crtc_state
->savePIPESRC
,
1239 crtc_state
->saveFP0
,
1240 crtc_state
->saveFP1
,
1241 crtc_state
->saveDPLL
,
1242 crtc_state
->saveHTOTAL
,
1243 crtc_state
->saveHBLANK
,
1244 crtc_state
->saveHSYNC
,
1245 crtc_state
->saveVTOTAL
,
1246 crtc_state
->saveVBLANK
,
1247 crtc_state
->saveVSYNC
,
1248 crtc_state
->saveDSPSTRIDE
,
1249 crtc_state
->saveDSPSIZE
,
1250 crtc_state
->saveDSPPOS
,
1251 crtc_state
->saveDSPBASE
1255 if (crtc_state
->saveDPLL
& DPLL_VCO_ENABLE
) {
1256 REG_WRITE(map
->dpll
,
1257 crtc_state
->saveDPLL
& ~DPLL_VCO_ENABLE
);
1258 REG_READ(map
->dpll
);
1259 DRM_DEBUG("write dpll: %x\n",
1260 REG_READ(map
->dpll
));
1264 REG_WRITE(map
->fp0
, crtc_state
->saveFP0
);
1267 REG_WRITE(map
->fp1
, crtc_state
->saveFP1
);
1270 REG_WRITE(map
->dpll
, crtc_state
->saveDPLL
);
1271 REG_READ(map
->dpll
);
1274 REG_WRITE(map
->htotal
, crtc_state
->saveHTOTAL
);
1275 REG_WRITE(map
->hblank
, crtc_state
->saveHBLANK
);
1276 REG_WRITE(map
->hsync
, crtc_state
->saveHSYNC
);
1277 REG_WRITE(map
->vtotal
, crtc_state
->saveVTOTAL
);
1278 REG_WRITE(map
->vblank
, crtc_state
->saveVBLANK
);
1279 REG_WRITE(map
->vsync
, crtc_state
->saveVSYNC
);
1280 REG_WRITE(map
->stride
, crtc_state
->saveDSPSTRIDE
);
1282 REG_WRITE(map
->size
, crtc_state
->saveDSPSIZE
);
1283 REG_WRITE(map
->pos
, crtc_state
->saveDSPPOS
);
1285 REG_WRITE(map
->src
, crtc_state
->savePIPESRC
);
1286 REG_WRITE(map
->base
, crtc_state
->saveDSPBASE
);
1287 REG_WRITE(map
->conf
, crtc_state
->savePIPECONF
);
1289 cdv_intel_wait_for_vblank(dev
);
1291 REG_WRITE(map
->cntr
, crtc_state
->saveDSPCNTR
);
1292 REG_WRITE(map
->base
, crtc_state
->saveDSPBASE
);
1294 cdv_intel_wait_for_vblank(dev
);
1296 paletteReg
= map
->palette
;
1297 for (i
= 0; i
< 256; ++i
)
1298 REG_WRITE(paletteReg
+ (i
<< 2), crtc_state
->savePalette
[i
]);
1301 static int cdv_intel_crtc_cursor_set(struct drm_crtc
*crtc
,
1302 struct drm_file
*file_priv
,
1304 uint32_t width
, uint32_t height
)
1306 struct drm_device
*dev
= crtc
->dev
;
1307 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1308 int pipe
= psb_intel_crtc
->pipe
;
1309 uint32_t control
= (pipe
== 0) ? CURACNTR
: CURBCNTR
;
1310 uint32_t base
= (pipe
== 0) ? CURABASE
: CURBBASE
;
1313 struct gtt_range
*gt
;
1314 struct drm_gem_object
*obj
;
1317 /* if we want to turn of the cursor ignore width and height */
1319 /* turn off the cursor */
1320 temp
= CURSOR_MODE_DISABLE
;
1322 if (gma_power_begin(dev
, false)) {
1323 REG_WRITE(control
, temp
);
1328 /* unpin the old GEM object */
1329 if (psb_intel_crtc
->cursor_obj
) {
1330 gt
= container_of(psb_intel_crtc
->cursor_obj
,
1331 struct gtt_range
, gem
);
1333 drm_gem_object_unreference(psb_intel_crtc
->cursor_obj
);
1334 psb_intel_crtc
->cursor_obj
= NULL
;
1340 /* Currently we only support 64x64 cursors */
1341 if (width
!= 64 || height
!= 64) {
1342 dev_dbg(dev
->dev
, "we currently only support 64x64 cursors\n");
1346 obj
= drm_gem_object_lookup(dev
, file_priv
, handle
);
1350 if (obj
->size
< width
* height
* 4) {
1351 dev_dbg(dev
->dev
, "buffer is to small\n");
1355 gt
= container_of(obj
, struct gtt_range
, gem
);
1357 /* Pin the memory into the GTT */
1358 ret
= psb_gtt_pin(gt
);
1360 dev_err(dev
->dev
, "Can not pin down handle 0x%x\n", handle
);
1364 addr
= gt
->offset
; /* Or resource.start ??? */
1366 psb_intel_crtc
->cursor_addr
= addr
;
1369 /* set the pipe for the cursor */
1370 temp
|= (pipe
<< 28);
1371 temp
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
1373 if (gma_power_begin(dev
, false)) {
1374 REG_WRITE(control
, temp
);
1375 REG_WRITE(base
, addr
);
1379 /* unpin the old GEM object */
1380 if (psb_intel_crtc
->cursor_obj
) {
1381 gt
= container_of(psb_intel_crtc
->cursor_obj
,
1382 struct gtt_range
, gem
);
1384 drm_gem_object_unreference(psb_intel_crtc
->cursor_obj
);
1385 psb_intel_crtc
->cursor_obj
= obj
;
1390 static int cdv_intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
1392 struct drm_device
*dev
= crtc
->dev
;
1393 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1394 int pipe
= psb_intel_crtc
->pipe
;
1400 temp
|= (CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
);
1404 temp
|= (CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
);
1408 temp
|= ((x
& CURSOR_POS_MASK
) << CURSOR_X_SHIFT
);
1409 temp
|= ((y
& CURSOR_POS_MASK
) << CURSOR_Y_SHIFT
);
1411 adder
= psb_intel_crtc
->cursor_addr
;
1413 if (gma_power_begin(dev
, false)) {
1414 REG_WRITE((pipe
== 0) ? CURAPOS
: CURBPOS
, temp
);
1415 REG_WRITE((pipe
== 0) ? CURABASE
: CURBBASE
, adder
);
1421 static void cdv_intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
,
1422 u16
*green
, u16
*blue
, uint32_t start
, uint32_t size
)
1424 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1426 int end
= (start
+ size
> 256) ? 256 : start
+ size
;
1428 for (i
= start
; i
< end
; i
++) {
1429 psb_intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
1430 psb_intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
1431 psb_intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
1434 cdv_intel_crtc_load_lut(crtc
);
1437 static int cdv_crtc_set_config(struct drm_mode_set
*set
)
1440 struct drm_device
*dev
= set
->crtc
->dev
;
1441 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1443 if (!dev_priv
->rpm_enabled
)
1444 return drm_crtc_helper_set_config(set
);
1446 pm_runtime_forbid(&dev
->pdev
->dev
);
1448 ret
= drm_crtc_helper_set_config(set
);
1450 pm_runtime_allow(&dev
->pdev
->dev
);
1455 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
1457 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
1459 static void i8xx_clock(int refclk
, struct cdv_intel_clock_t
*clock
)
1461 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
1462 clock
->p
= clock
->p1
* clock
->p2
;
1463 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
1464 clock
->dot
= clock
->vco
/ clock
->p
;
1467 /* Returns the clock of the currently programmed mode of the given pipe. */
1468 static int cdv_intel_crtc_clock_get(struct drm_device
*dev
,
1469 struct drm_crtc
*crtc
)
1471 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1472 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1473 int pipe
= psb_intel_crtc
->pipe
;
1474 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
1477 struct cdv_intel_clock_t clock
;
1479 struct psb_pipe
*p
= &dev_priv
->regs
.pipe
[pipe
];
1481 if (gma_power_begin(dev
, false)) {
1482 dpll
= REG_READ(map
->dpll
);
1483 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
1484 fp
= REG_READ(map
->fp0
);
1486 fp
= REG_READ(map
->fp1
);
1487 is_lvds
= (pipe
== 1) && (REG_READ(LVDS
) & LVDS_PORT_EN
);
1491 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
1496 is_lvds
= (pipe
== 1) &&
1497 (dev_priv
->regs
.psb
.saveLVDS
& LVDS_PORT_EN
);
1500 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
1501 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
1502 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
1507 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
1508 DPLL_FPA01_P1_POST_DIV_SHIFT
);
1509 if (clock
.p1
== 0) {
1511 dev_err(dev
->dev
, "PLL %d\n", dpll
);
1515 if ((dpll
& PLL_REF_INPUT_MASK
) ==
1516 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
1517 /* XXX: might not be 66MHz */
1518 i8xx_clock(66000, &clock
);
1520 i8xx_clock(48000, &clock
);
1522 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
1527 DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
1528 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
1530 if (dpll
& PLL_P2_DIVIDE_BY_4
)
1535 i8xx_clock(48000, &clock
);
1538 /* XXX: It would be nice to validate the clocks, but we can't reuse
1539 * i830PllIsValid() because it relies on the xf86_config connector
1540 * configuration being accurate, which it isn't necessarily.
1546 /** Returns the currently programmed mode of the given pipe. */
1547 struct drm_display_mode
*cdv_intel_crtc_mode_get(struct drm_device
*dev
,
1548 struct drm_crtc
*crtc
)
1550 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1551 int pipe
= psb_intel_crtc
->pipe
;
1552 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1553 struct psb_pipe
*p
= &dev_priv
->regs
.pipe
[pipe
];
1554 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
1555 struct drm_display_mode
*mode
;
1561 if (gma_power_begin(dev
, false)) {
1562 htot
= REG_READ(map
->htotal
);
1563 hsync
= REG_READ(map
->hsync
);
1564 vtot
= REG_READ(map
->vtotal
);
1565 vsync
= REG_READ(map
->vsync
);
1574 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
1578 mode
->clock
= cdv_intel_crtc_clock_get(dev
, crtc
);
1579 mode
->hdisplay
= (htot
& 0xffff) + 1;
1580 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
1581 mode
->hsync_start
= (hsync
& 0xffff) + 1;
1582 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
1583 mode
->vdisplay
= (vtot
& 0xffff) + 1;
1584 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
1585 mode
->vsync_start
= (vsync
& 0xffff) + 1;
1586 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
1588 drm_mode_set_name(mode
);
1589 drm_mode_set_crtcinfo(mode
, 0);
1594 static void cdv_intel_crtc_destroy(struct drm_crtc
*crtc
)
1596 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1598 kfree(psb_intel_crtc
->crtc_state
);
1599 drm_crtc_cleanup(crtc
);
1600 kfree(psb_intel_crtc
);
1603 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs
= {
1604 .dpms
= cdv_intel_crtc_dpms
,
1605 .mode_fixup
= cdv_intel_crtc_mode_fixup
,
1606 .mode_set
= cdv_intel_crtc_mode_set
,
1607 .mode_set_base
= cdv_intel_pipe_set_base
,
1608 .prepare
= cdv_intel_crtc_prepare
,
1609 .commit
= cdv_intel_crtc_commit
,
1612 const struct drm_crtc_funcs cdv_intel_crtc_funcs
= {
1613 .save
= cdv_intel_crtc_save
,
1614 .restore
= cdv_intel_crtc_restore
,
1615 .cursor_set
= cdv_intel_crtc_cursor_set
,
1616 .cursor_move
= cdv_intel_crtc_cursor_move
,
1617 .gamma_set
= cdv_intel_crtc_gamma_set
,
1618 .set_config
= cdv_crtc_set_config
,
1619 .destroy
= cdv_intel_crtc_destroy
,