2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 * Eric Anholt <eric@anholt.net>
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
25 #include "framebuffer.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
32 struct psb_intel_clock_t
{
44 struct psb_intel_range_t
{
48 struct psb_intel_p2_t
{
53 #define INTEL_P2_NUM 2
55 struct psb_intel_limit_t
{
56 struct psb_intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
57 struct psb_intel_p2_t p2
;
60 #define I8XX_DOT_MIN 25000
61 #define I8XX_DOT_MAX 350000
62 #define I8XX_VCO_MIN 930000
63 #define I8XX_VCO_MAX 1400000
67 #define I8XX_M_MAX 140
68 #define I8XX_M1_MIN 18
69 #define I8XX_M1_MAX 26
71 #define I8XX_M2_MAX 16
73 #define I8XX_P_MAX 128
75 #define I8XX_P1_MAX 33
76 #define I8XX_P1_LVDS_MIN 1
77 #define I8XX_P1_LVDS_MAX 6
78 #define I8XX_P2_SLOW 4
79 #define I8XX_P2_FAST 2
80 #define I8XX_P2_LVDS_SLOW 14
81 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
82 #define I8XX_P2_SLOW_LIMIT 165000
84 #define I9XX_DOT_MIN 20000
85 #define I9XX_DOT_MAX 400000
86 #define I9XX_VCO_MIN 1400000
87 #define I9XX_VCO_MAX 2800000
91 #define I9XX_M_MAX 120
92 #define I9XX_M1_MIN 10
93 #define I9XX_M1_MAX 20
96 #define I9XX_P_SDVO_DAC_MIN 5
97 #define I9XX_P_SDVO_DAC_MAX 80
98 #define I9XX_P_LVDS_MIN 7
99 #define I9XX_P_LVDS_MAX 98
100 #define I9XX_P1_MIN 1
101 #define I9XX_P1_MAX 8
102 #define I9XX_P2_SDVO_DAC_SLOW 10
103 #define I9XX_P2_SDVO_DAC_FAST 5
104 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
105 #define I9XX_P2_LVDS_SLOW 14
106 #define I9XX_P2_LVDS_FAST 7
107 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
109 #define INTEL_LIMIT_I8XX_DVO_DAC 0
110 #define INTEL_LIMIT_I8XX_LVDS 1
111 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
112 #define INTEL_LIMIT_I9XX_LVDS 3
114 static const struct psb_intel_limit_t psb_intel_limits
[] = {
115 { /* INTEL_LIMIT_I8XX_DVO_DAC */
116 .dot
= {.min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
117 .vco
= {.min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
118 .n
= {.min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
119 .m
= {.min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
120 .m1
= {.min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
121 .m2
= {.min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
122 .p
= {.min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
123 .p1
= {.min
= I8XX_P1_MIN
, .max
= I8XX_P1_MAX
},
124 .p2
= {.dot_limit
= I8XX_P2_SLOW_LIMIT
,
125 .p2_slow
= I8XX_P2_SLOW
, .p2_fast
= I8XX_P2_FAST
},
127 { /* INTEL_LIMIT_I8XX_LVDS */
128 .dot
= {.min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
129 .vco
= {.min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
130 .n
= {.min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
131 .m
= {.min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
132 .m1
= {.min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
133 .m2
= {.min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
134 .p
= {.min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
135 .p1
= {.min
= I8XX_P1_LVDS_MIN
, .max
= I8XX_P1_LVDS_MAX
},
136 .p2
= {.dot_limit
= I8XX_P2_SLOW_LIMIT
,
137 .p2_slow
= I8XX_P2_LVDS_SLOW
, .p2_fast
= I8XX_P2_LVDS_FAST
},
139 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
140 .dot
= {.min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
141 .vco
= {.min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
142 .n
= {.min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
143 .m
= {.min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
144 .m1
= {.min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
145 .m2
= {.min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
146 .p
= {.min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
147 .p1
= {.min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
148 .p2
= {.dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
149 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
=
150 I9XX_P2_SDVO_DAC_FAST
},
152 { /* INTEL_LIMIT_I9XX_LVDS */
153 .dot
= {.min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
154 .vco
= {.min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
155 .n
= {.min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
156 .m
= {.min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
157 .m1
= {.min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
158 .m2
= {.min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
159 .p
= {.min
= I9XX_P_LVDS_MIN
, .max
= I9XX_P_LVDS_MAX
},
160 .p1
= {.min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
161 /* The single-channel range is 25-112Mhz, and dual-channel
162 * is 80-224Mhz. Prefer single channel as much as possible.
164 .p2
= {.dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
165 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_FAST
},
169 static const struct psb_intel_limit_t
*psb_intel_limit(struct drm_crtc
*crtc
)
171 const struct psb_intel_limit_t
*limit
;
173 if (psb_intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
174 limit
= &psb_intel_limits
[INTEL_LIMIT_I9XX_LVDS
];
176 limit
= &psb_intel_limits
[INTEL_LIMIT_I9XX_SDVO_DAC
];
180 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
182 static void i8xx_clock(int refclk
, struct psb_intel_clock_t
*clock
)
184 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
185 clock
->p
= clock
->p1
* clock
->p2
;
186 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
187 clock
->dot
= clock
->vco
/ clock
->p
;
190 /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
192 static void i9xx_clock(int refclk
, struct psb_intel_clock_t
*clock
)
194 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
195 clock
->p
= clock
->p1
* clock
->p2
;
196 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
197 clock
->dot
= clock
->vco
/ clock
->p
;
200 static void psb_intel_clock(struct drm_device
*dev
, int refclk
,
201 struct psb_intel_clock_t
*clock
)
203 return i9xx_clock(refclk
, clock
);
207 * Returns whether any output on the specified pipe is of the specified type
209 bool psb_intel_pipe_has_type(struct drm_crtc
*crtc
, int type
)
211 struct drm_device
*dev
= crtc
->dev
;
212 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
213 struct drm_connector
*l_entry
;
215 list_for_each_entry(l_entry
, &mode_config
->connector_list
, head
) {
216 if (l_entry
->encoder
&& l_entry
->encoder
->crtc
== crtc
) {
217 struct psb_intel_encoder
*psb_intel_encoder
=
218 psb_intel_attached_encoder(l_entry
);
219 if (psb_intel_encoder
->type
== type
)
226 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
228 * Returns whether the given set of divisors are valid for a given refclk with
229 * the given connectors.
232 static bool psb_intel_PLL_is_valid(struct drm_crtc
*crtc
,
233 struct psb_intel_clock_t
*clock
)
235 const struct psb_intel_limit_t
*limit
= psb_intel_limit(crtc
);
237 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
238 INTELPllInvalid("p1 out of range\n");
239 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
240 INTELPllInvalid("p out of range\n");
241 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
242 INTELPllInvalid("m2 out of range\n");
243 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
244 INTELPllInvalid("m1 out of range\n");
245 if (clock
->m1
<= clock
->m2
)
246 INTELPllInvalid("m1 <= m2\n");
247 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
248 INTELPllInvalid("m out of range\n");
249 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
250 INTELPllInvalid("n out of range\n");
251 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
252 INTELPllInvalid("vco out of range\n");
253 /* XXX: We may need to be checking "Dot clock"
254 * depending on the multiplier, connector, etc.,
255 * rather than just a single range.
257 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
258 INTELPllInvalid("dot out of range\n");
264 * Returns a set of divisors for the desired target clock with the given
265 * refclk, or FALSE. The returned values represent the clock equation:
266 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
268 static bool psb_intel_find_best_PLL(struct drm_crtc
*crtc
, int target
,
270 struct psb_intel_clock_t
*best_clock
)
272 struct drm_device
*dev
= crtc
->dev
;
273 struct psb_intel_clock_t clock
;
274 const struct psb_intel_limit_t
*limit
= psb_intel_limit(crtc
);
277 if (psb_intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
278 (REG_READ(LVDS
) & LVDS_PORT_EN
) != 0) {
280 * For LVDS, if the panel is on, just rely on its current
281 * settings for dual-channel. We haven't figured out how to
282 * reliably set up different single/dual channel state, if we
285 if ((REG_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
287 clock
.p2
= limit
->p2
.p2_fast
;
289 clock
.p2
= limit
->p2
.p2_slow
;
291 if (target
< limit
->p2
.dot_limit
)
292 clock
.p2
= limit
->p2
.p2_slow
;
294 clock
.p2
= limit
->p2
.p2_fast
;
297 memset(best_clock
, 0, sizeof(*best_clock
));
299 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
301 for (clock
.m2
= limit
->m2
.min
;
302 clock
.m2
< clock
.m1
&& clock
.m2
<= limit
->m2
.max
;
304 for (clock
.n
= limit
->n
.min
;
305 clock
.n
<= limit
->n
.max
; clock
.n
++) {
306 for (clock
.p1
= limit
->p1
.min
;
307 clock
.p1
<= limit
->p1
.max
;
311 psb_intel_clock(dev
, refclk
, &clock
);
313 if (!psb_intel_PLL_is_valid
317 this_err
= abs(clock
.dot
- target
);
318 if (this_err
< err
) {
327 return err
!= target
;
330 void psb_intel_wait_for_vblank(struct drm_device
*dev
)
332 /* Wait for 20ms, i.e. one cycle at 50hz. */
336 static int psb_intel_pipe_set_base(struct drm_crtc
*crtc
,
337 int x
, int y
, struct drm_framebuffer
*old_fb
)
339 struct drm_device
*dev
= crtc
->dev
;
340 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
341 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
342 struct psb_framebuffer
*psbfb
= to_psb_fb(crtc
->fb
);
343 int pipe
= psb_intel_crtc
->pipe
;
344 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
345 unsigned long start
, offset
;
349 if (!gma_power_begin(dev
, true))
354 dev_dbg(dev
->dev
, "No FB bound\n");
355 goto psb_intel_pipe_cleaner
;
358 /* We are displaying this buffer, make sure it is actually loaded
360 ret
= psb_gtt_pin(psbfb
->gtt
);
362 goto psb_intel_pipe_set_base_exit
;
363 start
= psbfb
->gtt
->offset
;
365 offset
= y
* crtc
->fb
->pitches
[0] + x
* (crtc
->fb
->bits_per_pixel
/ 8);
367 REG_WRITE(map
->stride
, crtc
->fb
->pitches
[0]);
369 dspcntr
= REG_READ(map
->cntr
);
370 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
372 switch (crtc
->fb
->bits_per_pixel
) {
374 dspcntr
|= DISPPLANE_8BPP
;
377 if (crtc
->fb
->depth
== 15)
378 dspcntr
|= DISPPLANE_15_16BPP
;
380 dspcntr
|= DISPPLANE_16BPP
;
384 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
387 dev_err(dev
->dev
, "Unknown color depth\n");
389 psb_gtt_unpin(psbfb
->gtt
);
390 goto psb_intel_pipe_set_base_exit
;
392 REG_WRITE(map
->cntr
, dspcntr
);
394 REG_WRITE(map
->base
, start
+ offset
);
397 psb_intel_pipe_cleaner
:
398 /* If there was a previous display we can now unpin it */
400 psb_gtt_unpin(to_psb_fb(old_fb
)->gtt
);
402 psb_intel_pipe_set_base_exit
:
408 * Sets the power management mode of the pipe and plane.
410 * This code should probably grow support for turning the cursor off and back
411 * on appropriately at the same time as we're turning the pipe off/on.
413 static void psb_intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
415 struct drm_device
*dev
= crtc
->dev
;
416 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
417 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
418 int pipe
= psb_intel_crtc
->pipe
;
419 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
422 /* XXX: When our outputs are all unaware of DPMS modes other than off
423 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
426 case DRM_MODE_DPMS_ON
:
427 case DRM_MODE_DPMS_STANDBY
:
428 case DRM_MODE_DPMS_SUSPEND
:
429 /* Enable the DPLL */
430 temp
= REG_READ(map
->dpll
);
431 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
432 REG_WRITE(map
->dpll
, temp
);
434 /* Wait for the clocks to stabilize. */
436 REG_WRITE(map
->dpll
, temp
| DPLL_VCO_ENABLE
);
438 /* Wait for the clocks to stabilize. */
440 REG_WRITE(map
->dpll
, temp
| DPLL_VCO_ENABLE
);
442 /* Wait for the clocks to stabilize. */
446 /* Enable the pipe */
447 temp
= REG_READ(map
->conf
);
448 if ((temp
& PIPEACONF_ENABLE
) == 0)
449 REG_WRITE(map
->conf
, temp
| PIPEACONF_ENABLE
);
451 /* Enable the plane */
452 temp
= REG_READ(map
->cntr
);
453 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
455 temp
| DISPLAY_PLANE_ENABLE
);
456 /* Flush the plane changes */
457 REG_WRITE(map
->base
, REG_READ(map
->base
));
460 psb_intel_crtc_load_lut(crtc
);
462 /* Give the overlay scaler a chance to enable
463 * if it's on this pipe */
464 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
466 case DRM_MODE_DPMS_OFF
:
467 /* Give the overlay scaler a chance to disable
468 * if it's on this pipe */
469 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
471 /* Disable the VGA plane that we never use */
472 REG_WRITE(VGACNTRL
, VGA_DISP_DISABLE
);
474 /* Disable display plane */
475 temp
= REG_READ(map
->cntr
);
476 if ((temp
& DISPLAY_PLANE_ENABLE
) != 0) {
478 temp
& ~DISPLAY_PLANE_ENABLE
);
479 /* Flush the plane changes */
480 REG_WRITE(map
->base
, REG_READ(map
->base
));
484 /* Next, disable display pipes */
485 temp
= REG_READ(map
->conf
);
486 if ((temp
& PIPEACONF_ENABLE
) != 0) {
487 REG_WRITE(map
->conf
, temp
& ~PIPEACONF_ENABLE
);
491 /* Wait for vblank for the disable to take effect. */
492 psb_intel_wait_for_vblank(dev
);
494 temp
= REG_READ(map
->dpll
);
495 if ((temp
& DPLL_VCO_ENABLE
) != 0) {
496 REG_WRITE(map
->dpll
, temp
& ~DPLL_VCO_ENABLE
);
500 /* Wait for the clocks to turn off. */
505 /*Set FIFO Watermarks*/
506 REG_WRITE(DSPARB
, 0x3F3E);
509 static void psb_intel_crtc_prepare(struct drm_crtc
*crtc
)
511 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
512 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
515 static void psb_intel_crtc_commit(struct drm_crtc
*crtc
)
517 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
518 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
521 void psb_intel_encoder_prepare(struct drm_encoder
*encoder
)
523 struct drm_encoder_helper_funcs
*encoder_funcs
=
524 encoder
->helper_private
;
525 /* lvds has its own version of prepare see psb_intel_lvds_prepare */
526 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
529 void psb_intel_encoder_commit(struct drm_encoder
*encoder
)
531 struct drm_encoder_helper_funcs
*encoder_funcs
=
532 encoder
->helper_private
;
533 /* lvds has its own version of commit see psb_intel_lvds_commit */
534 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
537 void psb_intel_encoder_destroy(struct drm_encoder
*encoder
)
539 struct psb_intel_encoder
*intel_encoder
= to_psb_intel_encoder(encoder
);
541 drm_encoder_cleanup(encoder
);
542 kfree(intel_encoder
);
545 static bool psb_intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
546 struct drm_display_mode
*mode
,
547 struct drm_display_mode
*adjusted_mode
)
554 * Return the pipe currently connected to the panel fitter,
555 * or -1 if the panel fitter is not present or not in use
557 static int psb_intel_panel_fitter_pipe(struct drm_device
*dev
)
561 pfit_control
= REG_READ(PFIT_CONTROL
);
563 /* See if the panel fitter is in use */
564 if ((pfit_control
& PFIT_ENABLE
) == 0)
566 /* Must be on PIPE 1 for PSB */
570 static int psb_intel_crtc_mode_set(struct drm_crtc
*crtc
,
571 struct drm_display_mode
*mode
,
572 struct drm_display_mode
*adjusted_mode
,
574 struct drm_framebuffer
*old_fb
)
576 struct drm_device
*dev
= crtc
->dev
;
577 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
578 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
579 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
580 int pipe
= psb_intel_crtc
->pipe
;
581 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
583 struct psb_intel_clock_t clock
;
584 u32 dpll
= 0, fp
= 0, dspcntr
, pipeconf
;
585 bool ok
, is_sdvo
= false;
586 bool is_lvds
= false, is_tv
= false;
587 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
588 struct drm_connector
*connector
;
590 /* No scan out no play */
591 if (crtc
->fb
== NULL
) {
592 crtc_funcs
->mode_set_base(crtc
, x
, y
, old_fb
);
596 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
597 struct psb_intel_encoder
*psb_intel_encoder
=
598 psb_intel_attached_encoder(connector
);
600 if (!connector
->encoder
601 || connector
->encoder
->crtc
!= crtc
)
604 switch (psb_intel_encoder
->type
) {
605 case INTEL_OUTPUT_LVDS
:
608 case INTEL_OUTPUT_SDVO
:
611 case INTEL_OUTPUT_TVOUT
:
619 ok
= psb_intel_find_best_PLL(crtc
, adjusted_mode
->clock
, refclk
,
622 dev_err(dev
->dev
, "Couldn't find PLL settings for mode!\n");
626 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
628 dpll
= DPLL_VGA_MODE_DIS
;
630 dpll
|= DPLLB_MODE_LVDS
;
631 dpll
|= DPLL_DVO_HIGH_SPEED
;
633 dpll
|= DPLLB_MODE_DAC_SERIAL
;
635 int sdvo_pixel_multiply
=
636 adjusted_mode
->clock
/ mode
->clock
;
637 dpll
|= DPLL_DVO_HIGH_SPEED
;
639 (sdvo_pixel_multiply
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
642 /* compute bitmask from p1 value */
643 dpll
|= (1 << (clock
.p1
- 1)) << 16;
646 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
649 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
652 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
655 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
660 /* XXX: just matching BIOS for now */
661 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
664 dpll
|= PLL_REF_INPUT_DREFCLK
;
667 pipeconf
= REG_READ(map
->conf
);
669 /* Set up the display plane register */
670 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
673 dspcntr
|= DISPPLANE_SEL_PIPE_A
;
675 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
677 dspcntr
|= DISPLAY_PLANE_ENABLE
;
678 pipeconf
|= PIPEACONF_ENABLE
;
679 dpll
|= DPLL_VCO_ENABLE
;
682 /* Disable the panel fitter if it was on our pipe */
683 if (psb_intel_panel_fitter_pipe(dev
) == pipe
)
684 REG_WRITE(PFIT_CONTROL
, 0);
686 drm_mode_debug_printmodeline(mode
);
688 if (dpll
& DPLL_VCO_ENABLE
) {
689 REG_WRITE(map
->fp0
, fp
);
690 REG_WRITE(map
->dpll
, dpll
& ~DPLL_VCO_ENABLE
);
695 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
696 * This is an exception to the general rule that mode_set doesn't turn
700 u32 lvds
= REG_READ(LVDS
);
702 lvds
&= ~LVDS_PIPEB_SELECT
;
704 lvds
|= LVDS_PIPEB_SELECT
;
706 lvds
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
707 /* Set the B0-B3 data pairs corresponding to
708 * whether we're going to
709 * set the DPLLs for dual-channel mode or not.
711 lvds
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
713 lvds
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
715 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
716 * appropriately here, but we need to look more
717 * thoroughly into how panels behave in the two modes.
720 REG_WRITE(LVDS
, lvds
);
724 REG_WRITE(map
->fp0
, fp
);
725 REG_WRITE(map
->dpll
, dpll
);
727 /* Wait for the clocks to stabilize. */
730 /* write it again -- the BIOS does, after all */
731 REG_WRITE(map
->dpll
, dpll
);
734 /* Wait for the clocks to stabilize. */
737 REG_WRITE(map
->htotal
, (adjusted_mode
->crtc_hdisplay
- 1) |
738 ((adjusted_mode
->crtc_htotal
- 1) << 16));
739 REG_WRITE(map
->hblank
, (adjusted_mode
->crtc_hblank_start
- 1) |
740 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
741 REG_WRITE(map
->hsync
, (adjusted_mode
->crtc_hsync_start
- 1) |
742 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
743 REG_WRITE(map
->vtotal
, (adjusted_mode
->crtc_vdisplay
- 1) |
744 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
745 REG_WRITE(map
->vblank
, (adjusted_mode
->crtc_vblank_start
- 1) |
746 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
747 REG_WRITE(map
->vsync
, (adjusted_mode
->crtc_vsync_start
- 1) |
748 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
749 /* pipesrc and dspsize control the size that is scaled from,
750 * which should always be the user's requested size.
753 ((mode
->vdisplay
- 1) << 16) | (mode
->hdisplay
- 1));
754 REG_WRITE(map
->pos
, 0);
756 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
757 REG_WRITE(map
->conf
, pipeconf
);
760 psb_intel_wait_for_vblank(dev
);
762 REG_WRITE(map
->cntr
, dspcntr
);
764 /* Flush the plane changes */
765 crtc_funcs
->mode_set_base(crtc
, x
, y
, old_fb
);
767 psb_intel_wait_for_vblank(dev
);
772 /** Loads the palette/gamma unit for the CRTC with the prepared values */
773 void psb_intel_crtc_load_lut(struct drm_crtc
*crtc
)
775 struct drm_device
*dev
= crtc
->dev
;
776 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
777 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
778 const struct psb_offset
*map
= &dev_priv
->regmap
[psb_intel_crtc
->pipe
];
779 int palreg
= map
->palette
;
782 /* The clocks have to be on to load the palette. */
786 switch (psb_intel_crtc
->pipe
) {
791 dev_err(dev
->dev
, "Illegal Pipe Number.\n");
795 if (gma_power_begin(dev
, false)) {
796 for (i
= 0; i
< 256; i
++) {
797 REG_WRITE(palreg
+ 4 * i
,
798 ((psb_intel_crtc
->lut_r
[i
] +
799 psb_intel_crtc
->lut_adj
[i
]) << 16) |
800 ((psb_intel_crtc
->lut_g
[i
] +
801 psb_intel_crtc
->lut_adj
[i
]) << 8) |
802 (psb_intel_crtc
->lut_b
[i
] +
803 psb_intel_crtc
->lut_adj
[i
]));
807 for (i
= 0; i
< 256; i
++) {
808 dev_priv
->regs
.pipe
[0].palette
[i
] =
809 ((psb_intel_crtc
->lut_r
[i
] +
810 psb_intel_crtc
->lut_adj
[i
]) << 16) |
811 ((psb_intel_crtc
->lut_g
[i
] +
812 psb_intel_crtc
->lut_adj
[i
]) << 8) |
813 (psb_intel_crtc
->lut_b
[i
] +
814 psb_intel_crtc
->lut_adj
[i
]);
821 * Save HW states of giving crtc
823 static void psb_intel_crtc_save(struct drm_crtc
*crtc
)
825 struct drm_device
*dev
= crtc
->dev
;
826 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
827 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
828 struct psb_intel_crtc_state
*crtc_state
= psb_intel_crtc
->crtc_state
;
829 const struct psb_offset
*map
= &dev_priv
->regmap
[psb_intel_crtc
->pipe
];
834 dev_err(dev
->dev
, "No CRTC state found\n");
838 crtc_state
->saveDSPCNTR
= REG_READ(map
->cntr
);
839 crtc_state
->savePIPECONF
= REG_READ(map
->conf
);
840 crtc_state
->savePIPESRC
= REG_READ(map
->src
);
841 crtc_state
->saveFP0
= REG_READ(map
->fp0
);
842 crtc_state
->saveFP1
= REG_READ(map
->fp1
);
843 crtc_state
->saveDPLL
= REG_READ(map
->dpll
);
844 crtc_state
->saveHTOTAL
= REG_READ(map
->htotal
);
845 crtc_state
->saveHBLANK
= REG_READ(map
->hblank
);
846 crtc_state
->saveHSYNC
= REG_READ(map
->hsync
);
847 crtc_state
->saveVTOTAL
= REG_READ(map
->vtotal
);
848 crtc_state
->saveVBLANK
= REG_READ(map
->vblank
);
849 crtc_state
->saveVSYNC
= REG_READ(map
->vsync
);
850 crtc_state
->saveDSPSTRIDE
= REG_READ(map
->stride
);
852 /*NOTE: DSPSIZE DSPPOS only for psb*/
853 crtc_state
->saveDSPSIZE
= REG_READ(map
->size
);
854 crtc_state
->saveDSPPOS
= REG_READ(map
->pos
);
856 crtc_state
->saveDSPBASE
= REG_READ(map
->base
);
858 paletteReg
= map
->palette
;
859 for (i
= 0; i
< 256; ++i
)
860 crtc_state
->savePalette
[i
] = REG_READ(paletteReg
+ (i
<< 2));
864 * Restore HW states of giving crtc
866 static void psb_intel_crtc_restore(struct drm_crtc
*crtc
)
868 struct drm_device
*dev
= crtc
->dev
;
869 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
870 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
871 struct psb_intel_crtc_state
*crtc_state
= psb_intel_crtc
->crtc_state
;
872 const struct psb_offset
*map
= &dev_priv
->regmap
[psb_intel_crtc
->pipe
];
877 dev_err(dev
->dev
, "No crtc state\n");
881 if (crtc_state
->saveDPLL
& DPLL_VCO_ENABLE
) {
883 crtc_state
->saveDPLL
& ~DPLL_VCO_ENABLE
);
888 REG_WRITE(map
->fp0
, crtc_state
->saveFP0
);
891 REG_WRITE(map
->fp1
, crtc_state
->saveFP1
);
894 REG_WRITE(map
->dpll
, crtc_state
->saveDPLL
);
898 REG_WRITE(map
->htotal
, crtc_state
->saveHTOTAL
);
899 REG_WRITE(map
->hblank
, crtc_state
->saveHBLANK
);
900 REG_WRITE(map
->hsync
, crtc_state
->saveHSYNC
);
901 REG_WRITE(map
->vtotal
, crtc_state
->saveVTOTAL
);
902 REG_WRITE(map
->vblank
, crtc_state
->saveVBLANK
);
903 REG_WRITE(map
->vsync
, crtc_state
->saveVSYNC
);
904 REG_WRITE(map
->stride
, crtc_state
->saveDSPSTRIDE
);
906 REG_WRITE(map
->size
, crtc_state
->saveDSPSIZE
);
907 REG_WRITE(map
->pos
, crtc_state
->saveDSPPOS
);
909 REG_WRITE(map
->src
, crtc_state
->savePIPESRC
);
910 REG_WRITE(map
->base
, crtc_state
->saveDSPBASE
);
911 REG_WRITE(map
->conf
, crtc_state
->savePIPECONF
);
913 psb_intel_wait_for_vblank(dev
);
915 REG_WRITE(map
->cntr
, crtc_state
->saveDSPCNTR
);
916 REG_WRITE(map
->base
, crtc_state
->saveDSPBASE
);
918 psb_intel_wait_for_vblank(dev
);
920 paletteReg
= map
->palette
;
921 for (i
= 0; i
< 256; ++i
)
922 REG_WRITE(paletteReg
+ (i
<< 2), crtc_state
->savePalette
[i
]);
925 static int psb_intel_crtc_cursor_set(struct drm_crtc
*crtc
,
926 struct drm_file
*file_priv
,
928 uint32_t width
, uint32_t height
)
930 struct drm_device
*dev
= crtc
->dev
;
931 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
932 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
933 int pipe
= psb_intel_crtc
->pipe
;
934 uint32_t control
= (pipe
== 0) ? CURACNTR
: CURBCNTR
;
935 uint32_t base
= (pipe
== 0) ? CURABASE
: CURBBASE
;
938 struct gtt_range
*gt
;
939 struct gtt_range
*cursor_gt
= psb_intel_crtc
->cursor_gt
;
940 struct drm_gem_object
*obj
;
941 void *tmp_dst
, *tmp_src
;
942 int ret
, i
, cursor_pages
;
944 /* if we want to turn of the cursor ignore width and height */
946 /* turn off the cursor */
947 temp
= CURSOR_MODE_DISABLE
;
949 if (gma_power_begin(dev
, false)) {
950 REG_WRITE(control
, temp
);
955 /* Unpin the old GEM object */
956 if (psb_intel_crtc
->cursor_obj
) {
957 gt
= container_of(psb_intel_crtc
->cursor_obj
,
958 struct gtt_range
, gem
);
960 drm_gem_object_unreference(psb_intel_crtc
->cursor_obj
);
961 psb_intel_crtc
->cursor_obj
= NULL
;
967 /* Currently we only support 64x64 cursors */
968 if (width
!= 64 || height
!= 64) {
969 dev_dbg(dev
->dev
, "we currently only support 64x64 cursors\n");
973 obj
= drm_gem_object_lookup(dev
, file_priv
, handle
);
977 if (obj
->size
< width
* height
* 4) {
978 dev_dbg(dev
->dev
, "buffer is to small\n");
982 gt
= container_of(obj
, struct gtt_range
, gem
);
984 /* Pin the memory into the GTT */
985 ret
= psb_gtt_pin(gt
);
987 dev_err(dev
->dev
, "Can not pin down handle 0x%x\n", handle
);
991 if (dev_priv
->ops
->cursor_needs_phys
) {
992 if (cursor_gt
== NULL
) {
993 dev_err(dev
->dev
, "No hardware cursor mem available");
997 /* Prevent overflow */
1001 cursor_pages
= gt
->npage
;
1003 /* Copy the cursor to cursor mem */
1004 tmp_dst
= dev_priv
->vram_addr
+ cursor_gt
->offset
;
1005 for (i
= 0; i
< cursor_pages
; i
++) {
1006 tmp_src
= kmap(gt
->pages
[i
]);
1007 memcpy(tmp_dst
, tmp_src
, PAGE_SIZE
);
1008 kunmap(gt
->pages
[i
]);
1009 tmp_dst
+= PAGE_SIZE
;
1012 addr
= psb_intel_crtc
->cursor_addr
;
1014 addr
= gt
->offset
; /* Or resource.start ??? */
1015 psb_intel_crtc
->cursor_addr
= addr
;
1019 /* set the pipe for the cursor */
1020 temp
|= (pipe
<< 28);
1021 temp
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
1023 if (gma_power_begin(dev
, false)) {
1024 REG_WRITE(control
, temp
);
1025 REG_WRITE(base
, addr
);
1029 /* unpin the old bo */
1030 if (psb_intel_crtc
->cursor_obj
) {
1031 gt
= container_of(psb_intel_crtc
->cursor_obj
,
1032 struct gtt_range
, gem
);
1034 drm_gem_object_unreference(psb_intel_crtc
->cursor_obj
);
1035 psb_intel_crtc
->cursor_obj
= obj
;
1040 static int psb_intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
1042 struct drm_device
*dev
= crtc
->dev
;
1043 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1044 int pipe
= psb_intel_crtc
->pipe
;
1050 temp
|= (CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
);
1054 temp
|= (CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
);
1058 temp
|= ((x
& CURSOR_POS_MASK
) << CURSOR_X_SHIFT
);
1059 temp
|= ((y
& CURSOR_POS_MASK
) << CURSOR_Y_SHIFT
);
1061 addr
= psb_intel_crtc
->cursor_addr
;
1063 if (gma_power_begin(dev
, false)) {
1064 REG_WRITE((pipe
== 0) ? CURAPOS
: CURBPOS
, temp
);
1065 REG_WRITE((pipe
== 0) ? CURABASE
: CURBBASE
, addr
);
1071 void psb_intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
,
1072 u16
*green
, u16
*blue
, uint32_t type
, uint32_t size
)
1074 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1080 for (i
= 0; i
< 256; i
++) {
1081 psb_intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
1082 psb_intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
1083 psb_intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
1086 psb_intel_crtc_load_lut(crtc
);
1089 static int psb_crtc_set_config(struct drm_mode_set
*set
)
1092 struct drm_device
*dev
= set
->crtc
->dev
;
1093 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1095 if (!dev_priv
->rpm_enabled
)
1096 return drm_crtc_helper_set_config(set
);
1098 pm_runtime_forbid(&dev
->pdev
->dev
);
1099 ret
= drm_crtc_helper_set_config(set
);
1100 pm_runtime_allow(&dev
->pdev
->dev
);
1104 /* Returns the clock of the currently programmed mode of the given pipe. */
1105 static int psb_intel_crtc_clock_get(struct drm_device
*dev
,
1106 struct drm_crtc
*crtc
)
1108 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1109 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1110 int pipe
= psb_intel_crtc
->pipe
;
1111 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
1114 struct psb_intel_clock_t clock
;
1116 struct psb_pipe
*p
= &dev_priv
->regs
.pipe
[pipe
];
1118 if (gma_power_begin(dev
, false)) {
1119 dpll
= REG_READ(map
->dpll
);
1120 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
1121 fp
= REG_READ(map
->fp0
);
1123 fp
= REG_READ(map
->fp1
);
1124 is_lvds
= (pipe
== 1) && (REG_READ(LVDS
) & LVDS_PORT_EN
);
1129 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
1134 is_lvds
= (pipe
== 1) && (dev_priv
->regs
.psb
.saveLVDS
&
1138 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
1139 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
1140 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
1145 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
1146 DPLL_FPA01_P1_POST_DIV_SHIFT
);
1149 if ((dpll
& PLL_REF_INPUT_MASK
) ==
1150 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
1151 /* XXX: might not be 66MHz */
1152 i8xx_clock(66000, &clock
);
1154 i8xx_clock(48000, &clock
);
1156 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
1161 DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
1162 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
1164 if (dpll
& PLL_P2_DIVIDE_BY_4
)
1169 i8xx_clock(48000, &clock
);
1172 /* XXX: It would be nice to validate the clocks, but we can't reuse
1173 * i830PllIsValid() because it relies on the xf86_config connector
1174 * configuration being accurate, which it isn't necessarily.
1180 /** Returns the currently programmed mode of the given pipe. */
1181 struct drm_display_mode
*psb_intel_crtc_mode_get(struct drm_device
*dev
,
1182 struct drm_crtc
*crtc
)
1184 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1185 int pipe
= psb_intel_crtc
->pipe
;
1186 struct drm_display_mode
*mode
;
1191 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1192 struct psb_pipe
*p
= &dev_priv
->regs
.pipe
[pipe
];
1193 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
1195 if (gma_power_begin(dev
, false)) {
1196 htot
= REG_READ(map
->htotal
);
1197 hsync
= REG_READ(map
->hsync
);
1198 vtot
= REG_READ(map
->vtotal
);
1199 vsync
= REG_READ(map
->vsync
);
1208 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
1212 mode
->clock
= psb_intel_crtc_clock_get(dev
, crtc
);
1213 mode
->hdisplay
= (htot
& 0xffff) + 1;
1214 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
1215 mode
->hsync_start
= (hsync
& 0xffff) + 1;
1216 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
1217 mode
->vdisplay
= (vtot
& 0xffff) + 1;
1218 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
1219 mode
->vsync_start
= (vsync
& 0xffff) + 1;
1220 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
1222 drm_mode_set_name(mode
);
1223 drm_mode_set_crtcinfo(mode
, 0);
1228 void psb_intel_crtc_destroy(struct drm_crtc
*crtc
)
1230 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1231 struct gtt_range
*gt
;
1233 /* Unpin the old GEM object */
1234 if (psb_intel_crtc
->cursor_obj
) {
1235 gt
= container_of(psb_intel_crtc
->cursor_obj
,
1236 struct gtt_range
, gem
);
1238 drm_gem_object_unreference(psb_intel_crtc
->cursor_obj
);
1239 psb_intel_crtc
->cursor_obj
= NULL
;
1242 if (psb_intel_crtc
->cursor_gt
!= NULL
)
1243 psb_gtt_free_range(crtc
->dev
, psb_intel_crtc
->cursor_gt
);
1244 kfree(psb_intel_crtc
->crtc_state
);
1245 drm_crtc_cleanup(crtc
);
1246 kfree(psb_intel_crtc
);
1249 const struct drm_crtc_helper_funcs psb_intel_helper_funcs
= {
1250 .dpms
= psb_intel_crtc_dpms
,
1251 .mode_fixup
= psb_intel_crtc_mode_fixup
,
1252 .mode_set
= psb_intel_crtc_mode_set
,
1253 .mode_set_base
= psb_intel_pipe_set_base
,
1254 .prepare
= psb_intel_crtc_prepare
,
1255 .commit
= psb_intel_crtc_commit
,
1258 const struct drm_crtc_funcs psb_intel_crtc_funcs
= {
1259 .save
= psb_intel_crtc_save
,
1260 .restore
= psb_intel_crtc_restore
,
1261 .cursor_set
= psb_intel_crtc_cursor_set
,
1262 .cursor_move
= psb_intel_crtc_cursor_move
,
1263 .gamma_set
= psb_intel_crtc_gamma_set
,
1264 .set_config
= psb_crtc_set_config
,
1265 .destroy
= psb_intel_crtc_destroy
,
1269 * Set the default value of cursor control and base register
1270 * to zero. This is a workaround for h/w defect on Oaktrail
1272 static void psb_intel_cursor_init(struct drm_device
*dev
,
1273 struct psb_intel_crtc
*psb_intel_crtc
)
1275 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1276 u32 control
[3] = { CURACNTR
, CURBCNTR
, CURCCNTR
};
1277 u32 base
[3] = { CURABASE
, CURBBASE
, CURCBASE
};
1278 struct gtt_range
*cursor_gt
;
1280 if (dev_priv
->ops
->cursor_needs_phys
) {
1281 /* Allocate 4 pages of stolen mem for a hardware cursor. That
1282 * is enough for the 64 x 64 ARGB cursors we support.
1284 cursor_gt
= psb_gtt_alloc_range(dev
, 4 * PAGE_SIZE
, "cursor", 1);
1286 psb_intel_crtc
->cursor_gt
= NULL
;
1289 psb_intel_crtc
->cursor_gt
= cursor_gt
;
1290 psb_intel_crtc
->cursor_addr
= dev_priv
->stolen_base
+
1293 psb_intel_crtc
->cursor_gt
= NULL
;
1297 REG_WRITE(control
[psb_intel_crtc
->pipe
], 0);
1298 REG_WRITE(base
[psb_intel_crtc
->pipe
], 0);
1301 void psb_intel_crtc_init(struct drm_device
*dev
, int pipe
,
1302 struct psb_intel_mode_device
*mode_dev
)
1304 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1305 struct psb_intel_crtc
*psb_intel_crtc
;
1307 uint16_t *r_base
, *g_base
, *b_base
;
1309 /* We allocate a extra array of drm_connector pointers
1310 * for fbdev after the crtc */
1312 kzalloc(sizeof(struct psb_intel_crtc
) +
1313 (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)),
1315 if (psb_intel_crtc
== NULL
)
1318 psb_intel_crtc
->crtc_state
=
1319 kzalloc(sizeof(struct psb_intel_crtc_state
), GFP_KERNEL
);
1320 if (!psb_intel_crtc
->crtc_state
) {
1321 dev_err(dev
->dev
, "Crtc state error: No memory\n");
1322 kfree(psb_intel_crtc
);
1326 /* Set the CRTC operations from the chip specific data */
1327 drm_crtc_init(dev
, &psb_intel_crtc
->base
, dev_priv
->ops
->crtc_funcs
);
1329 drm_mode_crtc_set_gamma_size(&psb_intel_crtc
->base
, 256);
1330 psb_intel_crtc
->pipe
= pipe
;
1331 psb_intel_crtc
->plane
= pipe
;
1333 r_base
= psb_intel_crtc
->base
.gamma_store
;
1334 g_base
= r_base
+ 256;
1335 b_base
= g_base
+ 256;
1336 for (i
= 0; i
< 256; i
++) {
1337 psb_intel_crtc
->lut_r
[i
] = i
;
1338 psb_intel_crtc
->lut_g
[i
] = i
;
1339 psb_intel_crtc
->lut_b
[i
] = i
;
1344 psb_intel_crtc
->lut_adj
[i
] = 0;
1347 psb_intel_crtc
->mode_dev
= mode_dev
;
1348 psb_intel_crtc
->cursor_addr
= 0;
1350 drm_crtc_helper_add(&psb_intel_crtc
->base
,
1351 dev_priv
->ops
->crtc_helper
);
1353 /* Setup the array of drm_connector pointer array */
1354 psb_intel_crtc
->mode_set
.crtc
= &psb_intel_crtc
->base
;
1355 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
1356 dev_priv
->plane_to_crtc_mapping
[psb_intel_crtc
->plane
] != NULL
);
1357 dev_priv
->plane_to_crtc_mapping
[psb_intel_crtc
->plane
] =
1358 &psb_intel_crtc
->base
;
1359 dev_priv
->pipe_to_crtc_mapping
[psb_intel_crtc
->pipe
] =
1360 &psb_intel_crtc
->base
;
1361 psb_intel_crtc
->mode_set
.connectors
=
1362 (struct drm_connector
**) (psb_intel_crtc
+ 1);
1363 psb_intel_crtc
->mode_set
.num_connectors
= 0;
1364 psb_intel_cursor_init(dev
, psb_intel_crtc
);
1367 int psb_intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
1368 struct drm_file
*file_priv
)
1370 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
1371 struct drm_psb_get_pipe_from_crtc_id_arg
*pipe_from_crtc_id
= data
;
1372 struct drm_mode_object
*drmmode_obj
;
1373 struct psb_intel_crtc
*crtc
;
1376 dev_err(dev
->dev
, "called with no initialization\n");
1380 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
1381 DRM_MODE_OBJECT_CRTC
);
1384 dev_err(dev
->dev
, "no such CRTC id\n");
1388 crtc
= to_psb_intel_crtc(obj_to_crtc(drmmode_obj
));
1389 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
1394 struct drm_crtc
*psb_intel_get_crtc_from_pipe(struct drm_device
*dev
, int pipe
)
1396 struct drm_crtc
*crtc
= NULL
;
1398 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
1399 struct psb_intel_crtc
*psb_intel_crtc
= to_psb_intel_crtc(crtc
);
1400 if (psb_intel_crtc
->pipe
== pipe
)
1406 int psb_intel_connector_clones(struct drm_device
*dev
, int type_mask
)
1409 struct drm_connector
*connector
;
1412 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
,
1414 struct psb_intel_encoder
*psb_intel_encoder
=
1415 psb_intel_attached_encoder(connector
);
1416 if (type_mask
& (1 << psb_intel_encoder
->type
))
1417 index_mask
|= (1 << entry
);
1423 /* current intel driver doesn't take advantage of encoders
1424 always give back the encoder for the connector
1426 struct drm_encoder
*psb_intel_best_encoder(struct drm_connector
*connector
)
1428 struct psb_intel_encoder
*psb_intel_encoder
=
1429 psb_intel_attached_encoder(connector
);
1431 return &psb_intel_encoder
->base
;
1434 void psb_intel_connector_attach_encoder(struct psb_intel_connector
*connector
,
1435 struct psb_intel_encoder
*encoder
)
1437 connector
->encoder
= encoder
;
1438 drm_mode_connector_attach_encoder(&connector
->base
,