Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / arch / arc / mm / cache.c
blob9e5eddbb856f1f32dd25f4b13132dd527725249c
1 /*
2 * ARC Cache Management
4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
24 static int l2_line_sz;
25 int ioc_exists;
26 volatile int slc_enable = 1, ioc_enable = 1;
27 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
29 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
30 unsigned long sz, const int cacheop);
32 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
33 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
34 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
36 char *arc_cache_mumbojumbo(int c, char *buf, int len)
38 int n = 0;
39 struct cpuinfo_arc_cache *p;
41 #define PR_CACHE(p, cfg, str) \
42 if (!(p)->ver) \
43 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \
44 else \
45 n += scnprintf(buf + n, len - n, \
46 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \
47 (p)->sz_k, (p)->assoc, (p)->line_len, \
48 (p)->vipt ? "VIPT" : "PIPT", \
49 (p)->alias ? " aliasing" : "", \
50 IS_USED_CFG(cfg));
52 PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
53 PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
55 if (!is_isa_arcv2())
56 return buf;
58 p = &cpuinfo_arc700[c].slc;
59 if (p->ver)
60 n += scnprintf(buf + n, len - n,
61 "SLC\t\t: %uK, %uB Line%s\n",
62 p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
64 if (ioc_exists)
65 n += scnprintf(buf + n, len - n, "IOC\t\t:%s\n",
66 IS_DISABLED_RUN(ioc_enable));
68 return buf;
72 * Read the Cache Build Confuration Registers, Decode them and save into
73 * the cpuinfo structure for later use.
74 * No Validation done here, simply read/convert the BCRs
76 static void read_decode_cache_bcr_arcv2(int cpu)
78 struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
79 struct bcr_generic uncached_space;
80 struct bcr_generic sbcr;
82 struct bcr_slc_cfg {
83 #ifdef CONFIG_CPU_BIG_ENDIAN
84 unsigned int pad:24, way:2, lsz:2, sz:4;
85 #else
86 unsigned int sz:4, lsz:2, way:2, pad:24;
87 #endif
88 } slc_cfg;
90 struct bcr_clust_cfg {
91 #ifdef CONFIG_CPU_BIG_ENDIAN
92 unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
93 #else
94 unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
95 #endif
96 } cbcr;
98 READ_BCR(ARC_REG_SLC_BCR, sbcr);
99 if (sbcr.ver) {
100 READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
101 p_slc->ver = sbcr.ver;
102 p_slc->sz_k = 128 << slc_cfg.sz;
103 l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
106 READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
107 if (cbcr.c && ioc_enable)
108 ioc_exists = 1;
110 /* Legacy Data Uncached BCR is deprecated from v3 onwards */
111 READ_BCR(ARC_REG_D_UNCACH_BCR, uncached_space);
112 if (uncached_space.ver > 2)
113 perip_base = read_aux_reg(AUX_NON_VOL) & 0xF0000000;
116 void read_decode_cache_bcr(void)
118 struct cpuinfo_arc_cache *p_ic, *p_dc;
119 unsigned int cpu = smp_processor_id();
120 struct bcr_cache {
121 #ifdef CONFIG_CPU_BIG_ENDIAN
122 unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
123 #else
124 unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
125 #endif
126 } ibcr, dbcr;
128 p_ic = &cpuinfo_arc700[cpu].icache;
129 READ_BCR(ARC_REG_IC_BCR, ibcr);
131 if (!ibcr.ver)
132 goto dc_chk;
134 if (ibcr.ver <= 3) {
135 BUG_ON(ibcr.config != 3);
136 p_ic->assoc = 2; /* Fixed to 2w set assoc */
137 } else if (ibcr.ver >= 4) {
138 p_ic->assoc = 1 << ibcr.config; /* 1,2,4,8 */
141 p_ic->line_len = 8 << ibcr.line_len;
142 p_ic->sz_k = 1 << (ibcr.sz - 1);
143 p_ic->ver = ibcr.ver;
144 p_ic->vipt = 1;
145 p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
147 dc_chk:
148 p_dc = &cpuinfo_arc700[cpu].dcache;
149 READ_BCR(ARC_REG_DC_BCR, dbcr);
151 if (!dbcr.ver)
152 goto slc_chk;
154 if (dbcr.ver <= 3) {
155 BUG_ON(dbcr.config != 2);
156 p_dc->assoc = 4; /* Fixed to 4w set assoc */
157 p_dc->vipt = 1;
158 p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
159 } else if (dbcr.ver >= 4) {
160 p_dc->assoc = 1 << dbcr.config; /* 1,2,4,8 */
161 p_dc->vipt = 0;
162 p_dc->alias = 0; /* PIPT so can't VIPT alias */
165 p_dc->line_len = 16 << dbcr.line_len;
166 p_dc->sz_k = 1 << (dbcr.sz - 1);
167 p_dc->ver = dbcr.ver;
169 slc_chk:
170 if (is_isa_arcv2())
171 read_decode_cache_bcr_arcv2(cpu);
175 * Line Operation on {I,D}-Cache
178 #define OP_INV 0x1
179 #define OP_FLUSH 0x2
180 #define OP_FLUSH_N_INV 0x3
181 #define OP_INV_IC 0x4
184 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
186 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
187 * The orig Cache Management Module "CDU" only required paddr to invalidate a
188 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
189 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
190 * the exact same line.
192 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
193 * paddr alone could not be used to correctly index the cache.
195 * ------------------
196 * MMU v1/v2 (Fixed Page Size 8k)
197 * ------------------
198 * The solution was to provide CDU with these additonal vaddr bits. These
199 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
200 * standard page size of 8k.
201 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
202 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
203 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
204 * represent the offset within cache-line. The adv of using this "clumsy"
205 * interface for additional info was no new reg was needed in CDU programming
206 * model.
208 * 17:13 represented the max num of bits passable, actual bits needed were
209 * fewer, based on the num-of-aliases possible.
210 * -for 2 alias possibility, only bit 13 needed (32K cache)
211 * -for 4 alias possibility, bits 14:13 needed (64K cache)
213 * ------------------
214 * MMU v3
215 * ------------------
216 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
217 * only support 8k (default), 16k and 4k.
218 * However from hardware perspective, smaller page sizes aggrevate aliasing
219 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
220 * the existing scheme of piggybacking won't work for certain configurations.
221 * Two new registers IC_PTAG and DC_PTAG inttoduced.
222 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
225 static inline
226 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
227 unsigned long sz, const int op)
229 unsigned int aux_cmd;
230 int num_lines;
231 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
233 if (op == OP_INV_IC) {
234 aux_cmd = ARC_REG_IC_IVIL;
235 } else {
236 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
237 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
240 /* Ensure we properly floor/ceil the non-line aligned/sized requests
241 * and have @paddr - aligned to cache line and integral @num_lines.
242 * This however can be avoided for page sized since:
243 * -@paddr will be cache-line aligned already (being page aligned)
244 * -@sz will be integral multiple of line size (being page sized).
246 if (!full_page) {
247 sz += paddr & ~CACHE_LINE_MASK;
248 paddr &= CACHE_LINE_MASK;
249 vaddr &= CACHE_LINE_MASK;
252 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
254 /* MMUv2 and before: paddr contains stuffed vaddrs bits */
255 paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
257 while (num_lines-- > 0) {
258 write_aux_reg(aux_cmd, paddr);
259 paddr += L1_CACHE_BYTES;
264 * For ARC700 MMUv3 I-cache and D-cache flushes
265 * Also reused for HS38 aliasing I-cache configuration
267 static inline
268 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
269 unsigned long sz, const int op)
271 unsigned int aux_cmd, aux_tag;
272 int num_lines;
273 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
275 if (op == OP_INV_IC) {
276 aux_cmd = ARC_REG_IC_IVIL;
277 aux_tag = ARC_REG_IC_PTAG;
278 } else {
279 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
280 aux_tag = ARC_REG_DC_PTAG;
283 /* Ensure we properly floor/ceil the non-line aligned/sized requests
284 * and have @paddr - aligned to cache line and integral @num_lines.
285 * This however can be avoided for page sized since:
286 * -@paddr will be cache-line aligned already (being page aligned)
287 * -@sz will be integral multiple of line size (being page sized).
289 if (!full_page) {
290 sz += paddr & ~CACHE_LINE_MASK;
291 paddr &= CACHE_LINE_MASK;
292 vaddr &= CACHE_LINE_MASK;
294 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
297 * MMUv3, cache ops require paddr in PTAG reg
298 * if V-P const for loop, PTAG can be written once outside loop
300 if (full_page)
301 write_aux_reg(aux_tag, paddr);
304 * This is technically for MMU v4, using the MMU v3 programming model
305 * Special work for HS38 aliasing I-cache configuratino with PAE40
306 * - upper 8 bits of paddr need to be written into PTAG_HI
307 * - (and needs to be written before the lower 32 bits)
308 * Note that PTAG_HI is hoisted outside the line loop
310 if (is_pae40_enabled() && op == OP_INV_IC)
311 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
313 while (num_lines-- > 0) {
314 if (!full_page) {
315 write_aux_reg(aux_tag, paddr);
316 paddr += L1_CACHE_BYTES;
319 write_aux_reg(aux_cmd, vaddr);
320 vaddr += L1_CACHE_BYTES;
325 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
326 * Here's how cache ops are implemented
328 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
329 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
330 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
331 * respectively, similar to MMU v3 programming model, hence
332 * __cache_line_loop_v3() is used)
334 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
335 * needs to be written into PTAG_HI
337 static inline
338 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
339 unsigned long sz, const int cacheop)
341 unsigned int aux_cmd;
342 int num_lines;
343 const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
345 if (cacheop == OP_INV_IC) {
346 aux_cmd = ARC_REG_IC_IVIL;
347 } else {
348 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
349 aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
352 /* Ensure we properly floor/ceil the non-line aligned/sized requests
353 * and have @paddr - aligned to cache line and integral @num_lines.
354 * This however can be avoided for page sized since:
355 * -@paddr will be cache-line aligned already (being page aligned)
356 * -@sz will be integral multiple of line size (being page sized).
358 if (!full_page_op) {
359 sz += paddr & ~CACHE_LINE_MASK;
360 paddr &= CACHE_LINE_MASK;
363 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
366 * For HS38 PAE40 configuration
367 * - upper 8 bits of paddr need to be written into PTAG_HI
368 * - (and needs to be written before the lower 32 bits)
370 if (is_pae40_enabled()) {
371 if (cacheop == OP_INV_IC)
373 * Non aliasing I-cache in HS38,
374 * aliasing I-cache handled in __cache_line_loop_v3()
376 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
377 else
378 write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
381 while (num_lines-- > 0) {
382 write_aux_reg(aux_cmd, paddr);
383 paddr += L1_CACHE_BYTES;
387 #if (CONFIG_ARC_MMU_VER < 3)
388 #define __cache_line_loop __cache_line_loop_v2
389 #elif (CONFIG_ARC_MMU_VER == 3)
390 #define __cache_line_loop __cache_line_loop_v3
391 #elif (CONFIG_ARC_MMU_VER > 3)
392 #define __cache_line_loop __cache_line_loop_v4
393 #endif
395 #ifdef CONFIG_ARC_HAS_DCACHE
397 /***************************************************************
398 * Machine specific helpers for Entire D-Cache or Per Line ops
401 static inline void __before_dc_op(const int op)
403 if (op == OP_FLUSH_N_INV) {
404 /* Dcache provides 2 cmd: FLUSH or INV
405 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
406 * flush-n-inv is achieved by INV cmd but with IM=1
407 * So toggle INV sub-mode depending on op request and default
409 const unsigned int ctl = ARC_REG_DC_CTRL;
410 write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
414 static inline void __after_dc_op(const int op)
416 if (op & OP_FLUSH) {
417 const unsigned int ctl = ARC_REG_DC_CTRL;
418 unsigned int reg;
420 /* flush / flush-n-inv both wait */
421 while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
424 /* Switch back to default Invalidate mode */
425 if (op == OP_FLUSH_N_INV)
426 write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
431 * Operation on Entire D-Cache
432 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
433 * Note that constant propagation ensures all the checks are gone
434 * in generated code
436 static inline void __dc_entire_op(const int op)
438 int aux;
440 __before_dc_op(op);
442 if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */
443 aux = ARC_REG_DC_IVDC;
444 else
445 aux = ARC_REG_DC_FLSH;
447 write_aux_reg(aux, 0x1);
449 __after_dc_op(op);
452 /* For kernel mappings cache operation: index is same as paddr */
453 #define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op)
456 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
458 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
459 unsigned long sz, const int op)
461 unsigned long flags;
463 local_irq_save(flags);
465 __before_dc_op(op);
467 __cache_line_loop(paddr, vaddr, sz, op);
469 __after_dc_op(op);
471 local_irq_restore(flags);
474 #else
476 #define __dc_entire_op(op)
477 #define __dc_line_op(paddr, vaddr, sz, op)
478 #define __dc_line_op_k(paddr, sz, op)
480 #endif /* CONFIG_ARC_HAS_DCACHE */
482 #ifdef CONFIG_ARC_HAS_ICACHE
484 static inline void __ic_entire_inv(void)
486 write_aux_reg(ARC_REG_IC_IVIC, 1);
487 read_aux_reg(ARC_REG_IC_CTRL); /* blocks */
490 static inline void
491 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
492 unsigned long sz)
494 unsigned long flags;
496 local_irq_save(flags);
497 (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
498 local_irq_restore(flags);
501 #ifndef CONFIG_SMP
503 #define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s)
505 #else
507 struct ic_inv_args {
508 phys_addr_t paddr, vaddr;
509 int sz;
512 static void __ic_line_inv_vaddr_helper(void *info)
514 struct ic_inv_args *ic_inv = info;
516 __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
519 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
520 unsigned long sz)
522 struct ic_inv_args ic_inv = {
523 .paddr = paddr,
524 .vaddr = vaddr,
525 .sz = sz
528 on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
531 #endif /* CONFIG_SMP */
533 #else /* !CONFIG_ARC_HAS_ICACHE */
535 #define __ic_entire_inv()
536 #define __ic_line_inv_vaddr(pstart, vstart, sz)
538 #endif /* CONFIG_ARC_HAS_ICACHE */
540 noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
542 #ifdef CONFIG_ISA_ARCV2
544 * SLC is shared between all cores and concurrent aux operations from
545 * multiple cores need to be serialized using a spinlock
546 * A concurrent operation can be silently ignored and/or the old/new
547 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
548 * below)
550 static DEFINE_SPINLOCK(lock);
551 unsigned long flags;
552 unsigned int ctrl;
554 spin_lock_irqsave(&lock, flags);
557 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
558 * - b'000 (default) is Flush,
559 * - b'001 is Invalidate if CTRL.IM == 0
560 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1
562 ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
564 /* Don't rely on default value of IM bit */
565 if (!(op & OP_FLUSH)) /* i.e. OP_INV */
566 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */
567 else
568 ctrl |= SLC_CTRL_IM;
570 if (op & OP_INV)
571 ctrl |= SLC_CTRL_RGN_OP_INV; /* Inv or flush-n-inv */
572 else
573 ctrl &= ~SLC_CTRL_RGN_OP_INV;
575 write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
578 * Lower bits are ignored, no need to clip
579 * END needs to be setup before START (latter triggers the operation)
580 * END can't be same as START, so add (l2_line_sz - 1) to sz
582 write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
583 write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
585 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
587 spin_unlock_irqrestore(&lock, flags);
588 #endif
591 /***********************************************************
592 * Exported APIs
596 * Handle cache congruency of kernel and userspace mappings of page when kernel
597 * writes-to/reads-from
599 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
600 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
601 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
602 * -In SMP, if hardware caches are coherent
604 * There's a corollary case, where kernel READs from a userspace mapped page.
605 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
607 void flush_dcache_page(struct page *page)
609 struct address_space *mapping;
611 if (!cache_is_vipt_aliasing()) {
612 clear_bit(PG_dc_clean, &page->flags);
613 return;
616 /* don't handle anon pages here */
617 mapping = page_mapping(page);
618 if (!mapping)
619 return;
622 * pagecache page, file not yet mapped to userspace
623 * Make a note that K-mapping is dirty
625 if (!mapping_mapped(mapping)) {
626 clear_bit(PG_dc_clean, &page->flags);
627 } else if (page_mapcount(page)) {
629 /* kernel reading from page with U-mapping */
630 phys_addr_t paddr = (unsigned long)page_address(page);
631 unsigned long vaddr = page->index << PAGE_SHIFT;
633 if (addr_not_cache_congruent(paddr, vaddr))
634 __flush_dcache_page(paddr, vaddr);
637 EXPORT_SYMBOL(flush_dcache_page);
640 * DMA ops for systems with L1 cache only
641 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
643 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
645 __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
648 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
650 __dc_line_op_k(start, sz, OP_INV);
653 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
655 __dc_line_op_k(start, sz, OP_FLUSH);
659 * DMA ops for systems with both L1 and L2 caches, but without IOC
660 * Both L1 and L2 lines need to be explicitly flushed/invalidated
662 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
664 __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
665 slc_op(start, sz, OP_FLUSH_N_INV);
668 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
670 __dc_line_op_k(start, sz, OP_INV);
671 slc_op(start, sz, OP_INV);
674 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
676 __dc_line_op_k(start, sz, OP_FLUSH);
677 slc_op(start, sz, OP_FLUSH);
681 * DMA ops for systems with IOC
682 * IOC hardware snoops all DMA traffic keeping the caches consistent with
683 * memory - eliding need for any explicit cache maintenance of DMA buffers
685 static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
686 static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
687 static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
690 * Exported DMA API
692 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
694 __dma_cache_wback_inv(start, sz);
696 EXPORT_SYMBOL(dma_cache_wback_inv);
698 void dma_cache_inv(phys_addr_t start, unsigned long sz)
700 __dma_cache_inv(start, sz);
702 EXPORT_SYMBOL(dma_cache_inv);
704 void dma_cache_wback(phys_addr_t start, unsigned long sz)
706 __dma_cache_wback(start, sz);
708 EXPORT_SYMBOL(dma_cache_wback);
711 * This is API for making I/D Caches consistent when modifying
712 * kernel code (loadable modules, kprobes, kgdb...)
713 * This is called on insmod, with kernel virtual address for CODE of
714 * the module. ARC cache maintenance ops require PHY address thus we
715 * need to convert vmalloc addr to PHY addr
717 void flush_icache_range(unsigned long kstart, unsigned long kend)
719 unsigned int tot_sz;
721 WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
723 /* Shortcut for bigger flush ranges.
724 * Here we don't care if this was kernel virtual or phy addr
726 tot_sz = kend - kstart;
727 if (tot_sz > PAGE_SIZE) {
728 flush_cache_all();
729 return;
732 /* Case: Kernel Phy addr (0x8000_0000 onwards) */
733 if (likely(kstart > PAGE_OFFSET)) {
735 * The 2nd arg despite being paddr will be used to index icache
736 * This is OK since no alternate virtual mappings will exist
737 * given the callers for this case: kprobe/kgdb in built-in
738 * kernel code only.
740 __sync_icache_dcache(kstart, kstart, kend - kstart);
741 return;
745 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
746 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
747 * handling of kernel vaddr.
749 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
750 * it still needs to handle a 2 page scenario, where the range
751 * straddles across 2 virtual pages and hence need for loop
753 while (tot_sz > 0) {
754 unsigned int off, sz;
755 unsigned long phy, pfn;
757 off = kstart % PAGE_SIZE;
758 pfn = vmalloc_to_pfn((void *)kstart);
759 phy = (pfn << PAGE_SHIFT) + off;
760 sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
761 __sync_icache_dcache(phy, kstart, sz);
762 kstart += sz;
763 tot_sz -= sz;
766 EXPORT_SYMBOL(flush_icache_range);
769 * General purpose helper to make I and D cache lines consistent.
770 * @paddr is phy addr of region
771 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
772 * However in one instance, when called by kprobe (for a breakpt in
773 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
774 * use a paddr to index the cache (despite VIPT). This is fine since since a
775 * builtin kernel page will not have any virtual mappings.
776 * kprobe on loadable module will be kernel vaddr.
778 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
780 __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
781 __ic_line_inv_vaddr(paddr, vaddr, len);
784 /* wrapper to compile time eliminate alignment checks in flush loop */
785 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
787 __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
791 * wrapper to clearout kernel or userspace mappings of a page
792 * For kernel mappings @vaddr == @paddr
794 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
796 __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
799 noinline void flush_cache_all(void)
801 unsigned long flags;
803 local_irq_save(flags);
805 __ic_entire_inv();
806 __dc_entire_op(OP_FLUSH_N_INV);
808 local_irq_restore(flags);
812 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
814 void flush_cache_mm(struct mm_struct *mm)
816 flush_cache_all();
819 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
820 unsigned long pfn)
822 unsigned int paddr = pfn << PAGE_SHIFT;
824 u_vaddr &= PAGE_MASK;
826 __flush_dcache_page(paddr, u_vaddr);
828 if (vma->vm_flags & VM_EXEC)
829 __inv_icache_page(paddr, u_vaddr);
832 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
833 unsigned long end)
835 flush_cache_all();
838 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
839 unsigned long u_vaddr)
841 /* TBD: do we really need to clear the kernel mapping */
842 __flush_dcache_page(page_address(page), u_vaddr);
843 __flush_dcache_page(page_address(page), page_address(page));
847 #endif
849 void copy_user_highpage(struct page *to, struct page *from,
850 unsigned long u_vaddr, struct vm_area_struct *vma)
852 void *kfrom = kmap_atomic(from);
853 void *kto = kmap_atomic(to);
854 int clean_src_k_mappings = 0;
857 * If SRC page was already mapped in userspace AND it's U-mapping is
858 * not congruent with K-mapping, sync former to physical page so that
859 * K-mapping in memcpy below, sees the right data
861 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
862 * equally valid for SRC page as well
864 * For !VIPT cache, all of this gets compiled out as
865 * addr_not_cache_congruent() is 0
867 if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
868 __flush_dcache_page((unsigned long)kfrom, u_vaddr);
869 clean_src_k_mappings = 1;
872 copy_page(kto, kfrom);
875 * Mark DST page K-mapping as dirty for a later finalization by
876 * update_mmu_cache(). Although the finalization could have been done
877 * here as well (given that both vaddr/paddr are available).
878 * But update_mmu_cache() already has code to do that for other
879 * non copied user pages (e.g. read faults which wire in pagecache page
880 * directly).
882 clear_bit(PG_dc_clean, &to->flags);
885 * if SRC was already usermapped and non-congruent to kernel mapping
886 * sync the kernel mapping back to physical page
888 if (clean_src_k_mappings) {
889 __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
890 set_bit(PG_dc_clean, &from->flags);
891 } else {
892 clear_bit(PG_dc_clean, &from->flags);
895 kunmap_atomic(kto);
896 kunmap_atomic(kfrom);
899 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
901 clear_page(to);
902 clear_bit(PG_dc_clean, &page->flags);
906 /**********************************************************************
907 * Explicit Cache flush request from user space via syscall
908 * Needed for JITs which generate code on the fly
910 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
912 /* TBD: optimize this */
913 flush_cache_all();
914 return 0;
917 void arc_cache_init(void)
919 unsigned int __maybe_unused cpu = smp_processor_id();
920 char str[256];
922 printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
924 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
925 struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
927 if (!ic->ver)
928 panic("cache support enabled but non-existent cache\n");
930 if (ic->line_len != L1_CACHE_BYTES)
931 panic("ICache line [%d] != kernel Config [%d]",
932 ic->line_len, L1_CACHE_BYTES);
934 if (ic->ver != CONFIG_ARC_MMU_VER)
935 panic("Cache ver [%d] doesn't match MMU ver [%d]\n",
936 ic->ver, CONFIG_ARC_MMU_VER);
939 * In MMU v4 (HS38x) the alising icache config uses IVIL/PTAG
940 * pair to provide vaddr/paddr respectively, just as in MMU v3
942 if (is_isa_arcv2() && ic->alias)
943 _cache_line_loop_ic_fn = __cache_line_loop_v3;
944 else
945 _cache_line_loop_ic_fn = __cache_line_loop;
948 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
949 struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
951 if (!dc->ver)
952 panic("cache support enabled but non-existent cache\n");
954 if (dc->line_len != L1_CACHE_BYTES)
955 panic("DCache line [%d] != kernel Config [%d]",
956 dc->line_len, L1_CACHE_BYTES);
958 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
959 if (is_isa_arcompact()) {
960 int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
962 if (dc->alias && !handled)
963 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
964 else if (!dc->alias && handled)
965 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
969 if (is_isa_arcv2() && l2_line_sz && !slc_enable) {
971 /* IM set : flush before invalidate */
972 write_aux_reg(ARC_REG_SLC_CTRL,
973 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM);
975 write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
977 /* Important to wait for flush to complete */
978 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
979 write_aux_reg(ARC_REG_SLC_CTRL,
980 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE);
983 if (is_isa_arcv2() && ioc_exists) {
984 /* IO coherency base - 0x8z */
985 write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
986 /* IO coherency aperture size - 512Mb: 0x8z-0xAz */
987 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11);
988 /* Enable partial writes */
989 write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
990 /* Enable IO coherency */
991 write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
993 __dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
994 __dma_cache_inv = __dma_cache_inv_ioc;
995 __dma_cache_wback = __dma_cache_wback_ioc;
996 } else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
997 __dma_cache_wback_inv = __dma_cache_wback_inv_slc;
998 __dma_cache_inv = __dma_cache_inv_slc;
999 __dma_cache_wback = __dma_cache_wback_slc;
1000 } else {
1001 __dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1002 __dma_cache_inv = __dma_cache_inv_l1;
1003 __dma_cache_wback = __dma_cache_wback_l1;