2 * PCI address cache; allows the lookup of PCI devices based on I/O address
4 * Copyright IBM Corporation 2004
5 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/rbtree.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/atomic.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/ppc-pci.h>
33 * The pci address cache subsystem. This subsystem places
34 * PCI device address resources into a red-black tree, sorted
35 * according to the address range, so that given only an i/o
36 * address, the corresponding PCI device can be **quickly**
37 * found. It is safe to perform an address lookup in an interrupt
38 * context; this ability is an important feature.
40 * Currently, the only customer of this code is the EEH subsystem;
41 * thus, this code has been somewhat tailored to suit EEH better.
42 * In particular, the cache does *not* hold the addresses of devices
43 * for which EEH is not enabled.
45 * (Implementation Note: The RB tree seems to be better/faster
46 * than any hash algo I could think of for this problem, even
47 * with the penalty of slow pointer chases for d-cache misses).
49 struct pci_io_addr_range
{
50 struct rb_node rb_node
;
51 resource_size_t addr_lo
;
52 resource_size_t addr_hi
;
54 struct pci_dev
*pcidev
;
58 static struct pci_io_addr_cache
{
59 struct rb_root rb_root
;
61 } pci_io_addr_cache_root
;
63 static inline struct eeh_dev
*__eeh_addr_cache_get_device(unsigned long addr
)
65 struct rb_node
*n
= pci_io_addr_cache_root
.rb_root
.rb_node
;
68 struct pci_io_addr_range
*piar
;
69 piar
= rb_entry(n
, struct pci_io_addr_range
, rb_node
);
71 if (addr
< piar
->addr_lo
)
73 else if (addr
> piar
->addr_hi
)
83 * eeh_addr_cache_get_dev - Get device, given only address
84 * @addr: mmio (PIO) phys address or i/o port number
86 * Given an mmio phys address, or a port number, find a pci device
87 * that implements this address. Be sure to pci_dev_put the device
88 * when finished. I/O port numbers are assumed to be offset
89 * from zero (that is, they do *not* have pci_io_addr added in).
90 * It is safe to call this function within an interrupt.
92 struct eeh_dev
*eeh_addr_cache_get_dev(unsigned long addr
)
97 spin_lock_irqsave(&pci_io_addr_cache_root
.piar_lock
, flags
);
98 edev
= __eeh_addr_cache_get_device(addr
);
99 spin_unlock_irqrestore(&pci_io_addr_cache_root
.piar_lock
, flags
);
105 * Handy-dandy debug print routine, does nothing more
106 * than print out the contents of our addr cache.
108 static void eeh_addr_cache_print(struct pci_io_addr_cache
*cache
)
113 n
= rb_first(&cache
->rb_root
);
115 struct pci_io_addr_range
*piar
;
116 piar
= rb_entry(n
, struct pci_io_addr_range
, rb_node
);
117 pr_debug("PCI: %s addr range %d [%lx-%lx]: %s\n",
118 (piar
->flags
& IORESOURCE_IO
) ? "i/o" : "mem", cnt
,
119 piar
->addr_lo
, piar
->addr_hi
, pci_name(piar
->pcidev
));
126 /* Insert address range into the rb tree. */
127 static struct pci_io_addr_range
*
128 eeh_addr_cache_insert(struct pci_dev
*dev
, resource_size_t alo
,
129 resource_size_t ahi
, unsigned long flags
)
131 struct rb_node
**p
= &pci_io_addr_cache_root
.rb_root
.rb_node
;
132 struct rb_node
*parent
= NULL
;
133 struct pci_io_addr_range
*piar
;
135 /* Walk tree, find a place to insert into tree */
138 piar
= rb_entry(parent
, struct pci_io_addr_range
, rb_node
);
139 if (ahi
< piar
->addr_lo
) {
140 p
= &parent
->rb_left
;
141 } else if (alo
> piar
->addr_hi
) {
142 p
= &parent
->rb_right
;
144 if (dev
!= piar
->pcidev
||
145 alo
!= piar
->addr_lo
|| ahi
!= piar
->addr_hi
) {
146 pr_warn("PIAR: overlapping address range\n");
151 piar
= kzalloc(sizeof(struct pci_io_addr_range
), GFP_ATOMIC
);
157 piar
->edev
= pci_dev_to_eeh_dev(dev
);
162 pr_debug("PIAR: insert range=[%lx:%lx] dev=%s\n",
163 alo
, ahi
, pci_name(dev
));
166 rb_link_node(&piar
->rb_node
, parent
, p
);
167 rb_insert_color(&piar
->rb_node
, &pci_io_addr_cache_root
.rb_root
);
172 static void __eeh_addr_cache_insert_dev(struct pci_dev
*dev
)
175 struct eeh_dev
*edev
;
178 pdn
= pci_get_pdn_by_devfn(dev
->bus
, dev
->devfn
);
180 pr_warn("PCI: no pci dn found for dev=%s\n",
185 edev
= pdn_to_eeh_dev(pdn
);
187 pr_warn("PCI: no EEH dev found for %s\n",
192 /* Skip any devices for which EEH is not enabled. */
194 dev_dbg(&dev
->dev
, "EEH: Skip building address cache\n");
199 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
200 * ROM BAR) into the tree.
202 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++) {
203 resource_size_t start
= pci_resource_start(dev
,i
);
204 resource_size_t end
= pci_resource_end(dev
,i
);
205 unsigned long flags
= pci_resource_flags(dev
,i
);
207 /* We are interested only bus addresses, not dma or other stuff */
208 if (0 == (flags
& (IORESOURCE_IO
| IORESOURCE_MEM
)))
210 if (start
== 0 || ~start
== 0 || end
== 0 || ~end
== 0)
212 eeh_addr_cache_insert(dev
, start
, end
, flags
);
217 * eeh_addr_cache_insert_dev - Add a device to the address cache
218 * @dev: PCI device whose I/O addresses we are interested in.
220 * In order to support the fast lookup of devices based on addresses,
221 * we maintain a cache of devices that can be quickly searched.
222 * This routine adds a device to that cache.
224 void eeh_addr_cache_insert_dev(struct pci_dev
*dev
)
228 spin_lock_irqsave(&pci_io_addr_cache_root
.piar_lock
, flags
);
229 __eeh_addr_cache_insert_dev(dev
);
230 spin_unlock_irqrestore(&pci_io_addr_cache_root
.piar_lock
, flags
);
233 static inline void __eeh_addr_cache_rmv_dev(struct pci_dev
*dev
)
238 n
= rb_first(&pci_io_addr_cache_root
.rb_root
);
240 struct pci_io_addr_range
*piar
;
241 piar
= rb_entry(n
, struct pci_io_addr_range
, rb_node
);
243 if (piar
->pcidev
== dev
) {
244 rb_erase(n
, &pci_io_addr_cache_root
.rb_root
);
253 * eeh_addr_cache_rmv_dev - remove pci device from addr cache
254 * @dev: device to remove
256 * Remove a device from the addr-cache tree.
257 * This is potentially expensive, since it will walk
258 * the tree multiple times (once per resource).
259 * But so what; device removal doesn't need to be that fast.
261 void eeh_addr_cache_rmv_dev(struct pci_dev
*dev
)
265 spin_lock_irqsave(&pci_io_addr_cache_root
.piar_lock
, flags
);
266 __eeh_addr_cache_rmv_dev(dev
);
267 spin_unlock_irqrestore(&pci_io_addr_cache_root
.piar_lock
, flags
);
271 * eeh_addr_cache_build - Build a cache of I/O addresses
273 * Build a cache of pci i/o addresses. This cache will be used to
274 * find the pci device that corresponds to a given address.
275 * This routine scans all pci busses to build the cache.
276 * Must be run late in boot process, after the pci controllers
277 * have been scanned for devices (after all device resources are known).
279 void eeh_addr_cache_build(void)
282 struct eeh_dev
*edev
;
283 struct pci_dev
*dev
= NULL
;
285 spin_lock_init(&pci_io_addr_cache_root
.piar_lock
);
287 for_each_pci_dev(dev
) {
288 pdn
= pci_get_pdn_by_devfn(dev
->bus
, dev
->devfn
);
292 edev
= pdn_to_eeh_dev(pdn
);
296 dev
->dev
.archdata
.edev
= edev
;
299 eeh_addr_cache_insert_dev(dev
);
300 eeh_sysfs_add_device(dev
);
304 /* Verify tree built up above, echo back the list of addrs. */
305 eeh_addr_cache_print(&pci_io_addr_cache_root
);