Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / arch / powerpc / kernel / kprobes.c
blob7c053f28140663a4bb092c872a6c88e557fdff9d
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/code-patching.h>
36 #include <asm/cacheflush.h>
37 #include <asm/sstep.h>
38 #include <asm/uaccess.h>
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
45 int __kprobes arch_prepare_kprobe(struct kprobe *p)
47 int ret = 0;
48 kprobe_opcode_t insn = *p->addr;
50 if ((unsigned long)p->addr & 0x03) {
51 printk("Attempt to register kprobe at an unaligned address\n");
52 ret = -EINVAL;
53 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
54 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
55 ret = -EINVAL;
58 /* insn must be on a special executable page on ppc64. This is
59 * not explicitly required on ppc32 (right now), but it doesn't hurt */
60 if (!ret) {
61 p->ainsn.insn = get_insn_slot();
62 if (!p->ainsn.insn)
63 ret = -ENOMEM;
66 if (!ret) {
67 memcpy(p->ainsn.insn, p->addr,
68 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
69 p->opcode = *p->addr;
70 flush_icache_range((unsigned long)p->ainsn.insn,
71 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
74 p->ainsn.boostable = 0;
75 return ret;
78 void __kprobes arch_arm_kprobe(struct kprobe *p)
80 *p->addr = BREAKPOINT_INSTRUCTION;
81 flush_icache_range((unsigned long) p->addr,
82 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
85 void __kprobes arch_disarm_kprobe(struct kprobe *p)
87 *p->addr = p->opcode;
88 flush_icache_range((unsigned long) p->addr,
89 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
92 void __kprobes arch_remove_kprobe(struct kprobe *p)
94 if (p->ainsn.insn) {
95 free_insn_slot(p->ainsn.insn, 0);
96 p->ainsn.insn = NULL;
100 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
102 enable_single_step(regs);
105 * On powerpc we should single step on the original
106 * instruction even if the probed insn is a trap
107 * variant as values in regs could play a part in
108 * if the trap is taken or not
110 regs->nip = (unsigned long)p->ainsn.insn;
113 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
115 kcb->prev_kprobe.kp = kprobe_running();
116 kcb->prev_kprobe.status = kcb->kprobe_status;
117 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
120 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
122 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
123 kcb->kprobe_status = kcb->prev_kprobe.status;
124 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
127 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
128 struct kprobe_ctlblk *kcb)
130 __this_cpu_write(current_kprobe, p);
131 kcb->kprobe_saved_msr = regs->msr;
134 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
135 struct pt_regs *regs)
137 ri->ret_addr = (kprobe_opcode_t *)regs->link;
139 /* Replace the return addr with trampoline addr */
140 regs->link = (unsigned long)kretprobe_trampoline;
143 static int __kprobes kprobe_handler(struct pt_regs *regs)
145 struct kprobe *p;
146 int ret = 0;
147 unsigned int *addr = (unsigned int *)regs->nip;
148 struct kprobe_ctlblk *kcb;
151 * We don't want to be preempted for the entire
152 * duration of kprobe processing
154 preempt_disable();
155 kcb = get_kprobe_ctlblk();
157 /* Check we're not actually recursing */
158 if (kprobe_running()) {
159 p = get_kprobe(addr);
160 if (p) {
161 kprobe_opcode_t insn = *p->ainsn.insn;
162 if (kcb->kprobe_status == KPROBE_HIT_SS &&
163 is_trap(insn)) {
164 /* Turn off 'trace' bits */
165 regs->msr &= ~MSR_SINGLESTEP;
166 regs->msr |= kcb->kprobe_saved_msr;
167 goto no_kprobe;
169 /* We have reentered the kprobe_handler(), since
170 * another probe was hit while within the handler.
171 * We here save the original kprobes variables and
172 * just single step on the instruction of the new probe
173 * without calling any user handlers.
175 save_previous_kprobe(kcb);
176 set_current_kprobe(p, regs, kcb);
177 kcb->kprobe_saved_msr = regs->msr;
178 kprobes_inc_nmissed_count(p);
179 prepare_singlestep(p, regs);
180 kcb->kprobe_status = KPROBE_REENTER;
181 return 1;
182 } else {
183 if (*addr != BREAKPOINT_INSTRUCTION) {
184 /* If trap variant, then it belongs not to us */
185 kprobe_opcode_t cur_insn = *addr;
186 if (is_trap(cur_insn))
187 goto no_kprobe;
188 /* The breakpoint instruction was removed by
189 * another cpu right after we hit, no further
190 * handling of this interrupt is appropriate
192 ret = 1;
193 goto no_kprobe;
195 p = __this_cpu_read(current_kprobe);
196 if (p->break_handler && p->break_handler(p, regs)) {
197 goto ss_probe;
200 goto no_kprobe;
203 p = get_kprobe(addr);
204 if (!p) {
205 if (*addr != BREAKPOINT_INSTRUCTION) {
207 * PowerPC has multiple variants of the "trap"
208 * instruction. If the current instruction is a
209 * trap variant, it could belong to someone else
211 kprobe_opcode_t cur_insn = *addr;
212 if (is_trap(cur_insn))
213 goto no_kprobe;
215 * The breakpoint instruction was removed right
216 * after we hit it. Another cpu has removed
217 * either a probepoint or a debugger breakpoint
218 * at this address. In either case, no further
219 * handling of this interrupt is appropriate.
221 ret = 1;
223 /* Not one of ours: let kernel handle it */
224 goto no_kprobe;
227 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
228 set_current_kprobe(p, regs, kcb);
229 if (p->pre_handler && p->pre_handler(p, regs))
230 /* handler has already set things up, so skip ss setup */
231 return 1;
233 ss_probe:
234 if (p->ainsn.boostable >= 0) {
235 unsigned int insn = *p->ainsn.insn;
237 /* regs->nip is also adjusted if emulate_step returns 1 */
238 ret = emulate_step(regs, insn);
239 if (ret > 0) {
241 * Once this instruction has been boosted
242 * successfully, set the boostable flag
244 if (unlikely(p->ainsn.boostable == 0))
245 p->ainsn.boostable = 1;
247 if (p->post_handler)
248 p->post_handler(p, regs, 0);
250 kcb->kprobe_status = KPROBE_HIT_SSDONE;
251 reset_current_kprobe();
252 preempt_enable_no_resched();
253 return 1;
254 } else if (ret < 0) {
256 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
257 * So, we should never get here... but, its still
258 * good to catch them, just in case...
260 printk("Can't step on instruction %x\n", insn);
261 BUG();
262 } else if (ret == 0)
263 /* This instruction can't be boosted */
264 p->ainsn.boostable = -1;
266 prepare_singlestep(p, regs);
267 kcb->kprobe_status = KPROBE_HIT_SS;
268 return 1;
270 no_kprobe:
271 preempt_enable_no_resched();
272 return ret;
276 * Function return probe trampoline:
277 * - init_kprobes() establishes a probepoint here
278 * - When the probed function returns, this probe
279 * causes the handlers to fire
281 static void __used kretprobe_trampoline_holder(void)
283 asm volatile(".global kretprobe_trampoline\n"
284 "kretprobe_trampoline:\n"
285 "nop\n");
289 * Called when the probe at kretprobe trampoline is hit
291 static int __kprobes trampoline_probe_handler(struct kprobe *p,
292 struct pt_regs *regs)
294 struct kretprobe_instance *ri = NULL;
295 struct hlist_head *head, empty_rp;
296 struct hlist_node *tmp;
297 unsigned long flags, orig_ret_address = 0;
298 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
300 INIT_HLIST_HEAD(&empty_rp);
301 kretprobe_hash_lock(current, &head, &flags);
304 * It is possible to have multiple instances associated with a given
305 * task either because an multiple functions in the call path
306 * have a return probe installed on them, and/or more than one return
307 * return probe was registered for a target function.
309 * We can handle this because:
310 * - instances are always inserted at the head of the list
311 * - when multiple return probes are registered for the same
312 * function, the first instance's ret_addr will point to the
313 * real return address, and all the rest will point to
314 * kretprobe_trampoline
316 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
317 if (ri->task != current)
318 /* another task is sharing our hash bucket */
319 continue;
321 if (ri->rp && ri->rp->handler)
322 ri->rp->handler(ri, regs);
324 orig_ret_address = (unsigned long)ri->ret_addr;
325 recycle_rp_inst(ri, &empty_rp);
327 if (orig_ret_address != trampoline_address)
329 * This is the real return address. Any other
330 * instances associated with this task are for
331 * other calls deeper on the call stack
333 break;
336 kretprobe_assert(ri, orig_ret_address, trampoline_address);
337 regs->nip = orig_ret_address;
339 reset_current_kprobe();
340 kretprobe_hash_unlock(current, &flags);
341 preempt_enable_no_resched();
343 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
344 hlist_del(&ri->hlist);
345 kfree(ri);
348 * By returning a non-zero value, we are telling
349 * kprobe_handler() that we don't want the post_handler
350 * to run (and have re-enabled preemption)
352 return 1;
356 * Called after single-stepping. p->addr is the address of the
357 * instruction whose first byte has been replaced by the "breakpoint"
358 * instruction. To avoid the SMP problems that can occur when we
359 * temporarily put back the original opcode to single-step, we
360 * single-stepped a copy of the instruction. The address of this
361 * copy is p->ainsn.insn.
363 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
365 struct kprobe *cur = kprobe_running();
366 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
368 if (!cur)
369 return 0;
371 /* make sure we got here for instruction we have a kprobe on */
372 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
373 return 0;
375 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
376 kcb->kprobe_status = KPROBE_HIT_SSDONE;
377 cur->post_handler(cur, regs, 0);
380 /* Adjust nip to after the single-stepped instruction */
381 regs->nip = (unsigned long)cur->addr + 4;
382 regs->msr |= kcb->kprobe_saved_msr;
384 /*Restore back the original saved kprobes variables and continue. */
385 if (kcb->kprobe_status == KPROBE_REENTER) {
386 restore_previous_kprobe(kcb);
387 goto out;
389 reset_current_kprobe();
390 out:
391 preempt_enable_no_resched();
394 * if somebody else is singlestepping across a probe point, msr
395 * will have DE/SE set, in which case, continue the remaining processing
396 * of do_debug, as if this is not a probe hit.
398 if (regs->msr & MSR_SINGLESTEP)
399 return 0;
401 return 1;
404 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
406 struct kprobe *cur = kprobe_running();
407 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
408 const struct exception_table_entry *entry;
410 switch(kcb->kprobe_status) {
411 case KPROBE_HIT_SS:
412 case KPROBE_REENTER:
414 * We are here because the instruction being single
415 * stepped caused a page fault. We reset the current
416 * kprobe and the nip points back to the probe address
417 * and allow the page fault handler to continue as a
418 * normal page fault.
420 regs->nip = (unsigned long)cur->addr;
421 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
422 regs->msr |= kcb->kprobe_saved_msr;
423 if (kcb->kprobe_status == KPROBE_REENTER)
424 restore_previous_kprobe(kcb);
425 else
426 reset_current_kprobe();
427 preempt_enable_no_resched();
428 break;
429 case KPROBE_HIT_ACTIVE:
430 case KPROBE_HIT_SSDONE:
432 * We increment the nmissed count for accounting,
433 * we can also use npre/npostfault count for accounting
434 * these specific fault cases.
436 kprobes_inc_nmissed_count(cur);
439 * We come here because instructions in the pre/post
440 * handler caused the page_fault, this could happen
441 * if handler tries to access user space by
442 * copy_from_user(), get_user() etc. Let the
443 * user-specified handler try to fix it first.
445 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
446 return 1;
449 * In case the user-specified fault handler returned
450 * zero, try to fix up.
452 if ((entry = search_exception_tables(regs->nip)) != NULL) {
453 regs->nip = entry->fixup;
454 return 1;
458 * fixup_exception() could not handle it,
459 * Let do_page_fault() fix it.
461 break;
462 default:
463 break;
465 return 0;
469 * Wrapper routine to for handling exceptions.
471 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
472 unsigned long val, void *data)
474 struct die_args *args = (struct die_args *)data;
475 int ret = NOTIFY_DONE;
477 if (args->regs && user_mode(args->regs))
478 return ret;
480 switch (val) {
481 case DIE_BPT:
482 if (kprobe_handler(args->regs))
483 ret = NOTIFY_STOP;
484 break;
485 case DIE_SSTEP:
486 if (post_kprobe_handler(args->regs))
487 ret = NOTIFY_STOP;
488 break;
489 default:
490 break;
492 return ret;
495 unsigned long arch_deref_entry_point(void *entry)
497 return ppc_global_function_entry(entry);
500 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
502 struct jprobe *jp = container_of(p, struct jprobe, kp);
503 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
505 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
507 /* setup return addr to the jprobe handler routine */
508 regs->nip = arch_deref_entry_point(jp->entry);
509 #ifdef CONFIG_PPC64
510 #if defined(_CALL_ELF) && _CALL_ELF == 2
511 regs->gpr[12] = (unsigned long)jp->entry;
512 #else
513 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
514 #endif
515 #endif
517 return 1;
520 void __used __kprobes jprobe_return(void)
522 asm volatile("trap" ::: "memory");
525 static void __used __kprobes jprobe_return_end(void)
529 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
531 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
534 * FIXME - we should ideally be validating that we got here 'cos
535 * of the "trap" in jprobe_return() above, before restoring the
536 * saved regs...
538 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
539 preempt_enable_no_resched();
540 return 1;
543 static struct kprobe trampoline_p = {
544 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
545 .pre_handler = trampoline_probe_handler
548 int __init arch_init_kprobes(void)
550 return register_kprobe(&trampoline_p);
553 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
555 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
556 return 1;
558 return 0;