Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / arch / powerpc / mm / init_64.c
blobba655666186d9caab2cd2c68c2570e8e9f8f1d45
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
22 #undef DEBUG
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
46 #include <asm/pgalloc.h>
47 #include <asm/page.h>
48 #include <asm/prom.h>
49 #include <asm/rtas.h>
50 #include <asm/io.h>
51 #include <asm/mmu_context.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu.h>
54 #include <asm/uaccess.h>
55 #include <asm/smp.h>
56 #include <asm/machdep.h>
57 #include <asm/tlb.h>
58 #include <asm/eeh.h>
59 #include <asm/processor.h>
60 #include <asm/mmzone.h>
61 #include <asm/cputable.h>
62 #include <asm/sections.h>
63 #include <asm/iommu.h>
64 #include <asm/vdso.h>
66 #include "mmu_decl.h"
68 #ifdef CONFIG_PPC_STD_MMU_64
69 #if PGTABLE_RANGE > USER_VSID_RANGE
70 #warning Limited user VSID range means pagetable space is wasted
71 #endif
73 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
74 #warning TASK_SIZE is smaller than it needs to be.
75 #endif
76 #endif /* CONFIG_PPC_STD_MMU_64 */
78 phys_addr_t memstart_addr = ~0;
79 EXPORT_SYMBOL_GPL(memstart_addr);
80 phys_addr_t kernstart_addr;
81 EXPORT_SYMBOL_GPL(kernstart_addr);
83 static void pgd_ctor(void *addr)
85 memset(addr, 0, PGD_TABLE_SIZE);
88 static void pud_ctor(void *addr)
90 memset(addr, 0, PUD_TABLE_SIZE);
93 static void pmd_ctor(void *addr)
95 memset(addr, 0, PMD_TABLE_SIZE);
98 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
101 * Create a kmem_cache() for pagetables. This is not used for PTE
102 * pages - they're linked to struct page, come from the normal free
103 * pages pool and have a different entry size (see real_pte_t) to
104 * everything else. Caches created by this function are used for all
105 * the higher level pagetables, and for hugepage pagetables.
107 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
109 char *name;
110 unsigned long table_size = sizeof(void *) << shift;
111 unsigned long align = table_size;
113 /* When batching pgtable pointers for RCU freeing, we store
114 * the index size in the low bits. Table alignment must be
115 * big enough to fit it.
117 * Likewise, hugeapge pagetable pointers contain a (different)
118 * shift value in the low bits. All tables must be aligned so
119 * as to leave enough 0 bits in the address to contain it. */
120 unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
121 HUGEPD_SHIFT_MASK + 1);
122 struct kmem_cache *new;
124 /* It would be nice if this was a BUILD_BUG_ON(), but at the
125 * moment, gcc doesn't seem to recognize is_power_of_2 as a
126 * constant expression, so so much for that. */
127 BUG_ON(!is_power_of_2(minalign));
128 BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
130 if (PGT_CACHE(shift))
131 return; /* Already have a cache of this size */
133 align = max_t(unsigned long, align, minalign);
134 name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
135 new = kmem_cache_create(name, table_size, align, 0, ctor);
136 kfree(name);
137 pgtable_cache[shift - 1] = new;
138 pr_debug("Allocated pgtable cache for order %d\n", shift);
142 void pgtable_cache_init(void)
144 pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
145 pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
147 * In all current configs, when the PUD index exists it's the
148 * same size as either the pgd or pmd index except with THP enabled
149 * on book3s 64
151 if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
152 pgtable_cache_add(PUD_INDEX_SIZE, pud_ctor);
154 if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
155 panic("Couldn't allocate pgtable caches");
156 if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
157 panic("Couldn't allocate pud pgtable caches");
160 #ifdef CONFIG_SPARSEMEM_VMEMMAP
162 * Given an address within the vmemmap, determine the pfn of the page that
163 * represents the start of the section it is within. Note that we have to
164 * do this by hand as the proffered address may not be correctly aligned.
165 * Subtraction of non-aligned pointers produces undefined results.
167 static unsigned long __meminit vmemmap_section_start(unsigned long page)
169 unsigned long offset = page - ((unsigned long)(vmemmap));
171 /* Return the pfn of the start of the section. */
172 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
176 * Check if this vmemmap page is already initialised. If any section
177 * which overlaps this vmemmap page is initialised then this page is
178 * initialised already.
180 static int __meminit vmemmap_populated(unsigned long start, int page_size)
182 unsigned long end = start + page_size;
183 start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
185 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
186 if (pfn_valid(page_to_pfn((struct page *)start)))
187 return 1;
189 return 0;
192 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
194 * On Book3E CPUs, the vmemmap is currently mapped in the top half of
195 * the vmalloc space using normal page tables, though the size of
196 * pages encoded in the PTEs can be different
199 #ifdef CONFIG_PPC_BOOK3E
200 static int __meminit vmemmap_create_mapping(unsigned long start,
201 unsigned long page_size,
202 unsigned long phys)
204 /* Create a PTE encoding without page size */
205 unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
206 _PAGE_KERNEL_RW;
208 /* PTEs only contain page size encodings up to 32M */
209 BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
211 /* Encode the size in the PTE */
212 flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
214 /* For each PTE for that area, map things. Note that we don't
215 * increment phys because all PTEs are of the large size and
216 * thus must have the low bits clear
218 for (i = 0; i < page_size; i += PAGE_SIZE)
219 BUG_ON(map_kernel_page(start + i, phys, flags));
221 return 0;
224 #ifdef CONFIG_MEMORY_HOTPLUG
225 static void vmemmap_remove_mapping(unsigned long start,
226 unsigned long page_size)
229 #endif
230 #else /* CONFIG_PPC_BOOK3E */
231 static int __meminit vmemmap_create_mapping(unsigned long start,
232 unsigned long page_size,
233 unsigned long phys)
235 int rc = htab_bolt_mapping(start, start + page_size, phys,
236 pgprot_val(PAGE_KERNEL),
237 mmu_vmemmap_psize, mmu_kernel_ssize);
238 if (rc < 0) {
239 int rc2 = htab_remove_mapping(start, start + page_size,
240 mmu_vmemmap_psize,
241 mmu_kernel_ssize);
242 BUG_ON(rc2 && (rc2 != -ENOENT));
244 return rc;
247 #ifdef CONFIG_MEMORY_HOTPLUG
248 static void vmemmap_remove_mapping(unsigned long start,
249 unsigned long page_size)
251 int rc = htab_remove_mapping(start, start + page_size,
252 mmu_vmemmap_psize,
253 mmu_kernel_ssize);
254 BUG_ON((rc < 0) && (rc != -ENOENT));
255 WARN_ON(rc == -ENOENT);
257 #endif
259 #endif /* CONFIG_PPC_BOOK3E */
261 struct vmemmap_backing *vmemmap_list;
262 static struct vmemmap_backing *next;
263 static int num_left;
264 static int num_freed;
266 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
268 struct vmemmap_backing *vmem_back;
269 /* get from freed entries first */
270 if (num_freed) {
271 num_freed--;
272 vmem_back = next;
273 next = next->list;
275 return vmem_back;
278 /* allocate a page when required and hand out chunks */
279 if (!num_left) {
280 next = vmemmap_alloc_block(PAGE_SIZE, node);
281 if (unlikely(!next)) {
282 WARN_ON(1);
283 return NULL;
285 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
288 num_left--;
290 return next++;
293 static __meminit void vmemmap_list_populate(unsigned long phys,
294 unsigned long start,
295 int node)
297 struct vmemmap_backing *vmem_back;
299 vmem_back = vmemmap_list_alloc(node);
300 if (unlikely(!vmem_back)) {
301 WARN_ON(1);
302 return;
305 vmem_back->phys = phys;
306 vmem_back->virt_addr = start;
307 vmem_back->list = vmemmap_list;
309 vmemmap_list = vmem_back;
312 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
314 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
316 /* Align to the page size of the linear mapping. */
317 start = _ALIGN_DOWN(start, page_size);
319 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
321 for (; start < end; start += page_size) {
322 void *p;
323 int rc;
325 if (vmemmap_populated(start, page_size))
326 continue;
328 p = vmemmap_alloc_block(page_size, node);
329 if (!p)
330 return -ENOMEM;
332 vmemmap_list_populate(__pa(p), start, node);
334 pr_debug(" * %016lx..%016lx allocated at %p\n",
335 start, start + page_size, p);
337 rc = vmemmap_create_mapping(start, page_size, __pa(p));
338 if (rc < 0) {
339 pr_warning(
340 "vmemmap_populate: Unable to create vmemmap mapping: %d\n",
341 rc);
342 return -EFAULT;
346 return 0;
349 #ifdef CONFIG_MEMORY_HOTPLUG
350 static unsigned long vmemmap_list_free(unsigned long start)
352 struct vmemmap_backing *vmem_back, *vmem_back_prev;
354 vmem_back_prev = vmem_back = vmemmap_list;
356 /* look for it with prev pointer recorded */
357 for (; vmem_back; vmem_back = vmem_back->list) {
358 if (vmem_back->virt_addr == start)
359 break;
360 vmem_back_prev = vmem_back;
363 if (unlikely(!vmem_back)) {
364 WARN_ON(1);
365 return 0;
368 /* remove it from vmemmap_list */
369 if (vmem_back == vmemmap_list) /* remove head */
370 vmemmap_list = vmem_back->list;
371 else
372 vmem_back_prev->list = vmem_back->list;
374 /* next point to this freed entry */
375 vmem_back->list = next;
376 next = vmem_back;
377 num_freed++;
379 return vmem_back->phys;
382 void __ref vmemmap_free(unsigned long start, unsigned long end)
384 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
386 start = _ALIGN_DOWN(start, page_size);
388 pr_debug("vmemmap_free %lx...%lx\n", start, end);
390 for (; start < end; start += page_size) {
391 unsigned long addr;
394 * the section has already be marked as invalid, so
395 * vmemmap_populated() true means some other sections still
396 * in this page, so skip it.
398 if (vmemmap_populated(start, page_size))
399 continue;
401 addr = vmemmap_list_free(start);
402 if (addr) {
403 struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
405 if (PageReserved(page)) {
406 /* allocated from bootmem */
407 if (page_size < PAGE_SIZE) {
409 * this shouldn't happen, but if it is
410 * the case, leave the memory there
412 WARN_ON_ONCE(1);
413 } else {
414 unsigned int nr_pages =
415 1 << get_order(page_size);
416 while (nr_pages--)
417 free_reserved_page(page++);
419 } else
420 free_pages((unsigned long)(__va(addr)),
421 get_order(page_size));
423 vmemmap_remove_mapping(start, page_size);
427 #endif
428 void register_page_bootmem_memmap(unsigned long section_nr,
429 struct page *start_page, unsigned long size)
434 * We do not have access to the sparsemem vmemmap, so we fallback to
435 * walking the list of sparsemem blocks which we already maintain for
436 * the sake of crashdump. In the long run, we might want to maintain
437 * a tree if performance of that linear walk becomes a problem.
439 * realmode_pfn_to_page functions can fail due to:
440 * 1) As real sparsemem blocks do not lay in RAM continously (they
441 * are in virtual address space which is not available in the real mode),
442 * the requested page struct can be split between blocks so get_page/put_page
443 * may fail.
444 * 2) When huge pages are used, the get_page/put_page API will fail
445 * in real mode as the linked addresses in the page struct are virtual
446 * too.
448 struct page *realmode_pfn_to_page(unsigned long pfn)
450 struct vmemmap_backing *vmem_back;
451 struct page *page;
452 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
453 unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
455 for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
456 if (pg_va < vmem_back->virt_addr)
457 continue;
459 /* After vmemmap_list entry free is possible, need check all */
460 if ((pg_va + sizeof(struct page)) <=
461 (vmem_back->virt_addr + page_size)) {
462 page = (struct page *) (vmem_back->phys + pg_va -
463 vmem_back->virt_addr);
464 return page;
468 /* Probably that page struct is split between real pages */
469 return NULL;
471 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
473 #elif defined(CONFIG_FLATMEM)
475 struct page *realmode_pfn_to_page(unsigned long pfn)
477 struct page *page = pfn_to_page(pfn);
478 return page;
480 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
482 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */