Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / arch / powerpc / mm / slice.c
blob42954f0b47aced31454d44103180df9202527fb6
1 /*
2 * address space "slices" (meta-segments) support
4 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
6 * Based on hugetlb implementation
8 * Copyright (C) 2003 David Gibson, IBM Corporation.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #undef DEBUG
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/pagemap.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/export.h>
33 #include <linux/hugetlb.h>
34 #include <asm/mman.h>
35 #include <asm/mmu.h>
36 #include <asm/copro.h>
37 #include <asm/hugetlb.h>
39 /* some sanity checks */
40 #if (PGTABLE_RANGE >> 43) > SLICE_MASK_SIZE
41 #error PGTABLE_RANGE exceeds slice_mask high_slices size
42 #endif
44 static DEFINE_SPINLOCK(slice_convert_lock);
47 #ifdef DEBUG
48 int _slice_debug = 1;
50 static void slice_print_mask(const char *label, struct slice_mask mask)
52 char *p, buf[16 + 3 + 64 + 1];
53 int i;
55 if (!_slice_debug)
56 return;
57 p = buf;
58 for (i = 0; i < SLICE_NUM_LOW; i++)
59 *(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
60 *(p++) = ' ';
61 *(p++) = '-';
62 *(p++) = ' ';
63 for (i = 0; i < SLICE_NUM_HIGH; i++)
64 *(p++) = (mask.high_slices & (1ul << i)) ? '1' : '0';
65 *(p++) = 0;
67 printk(KERN_DEBUG "%s:%s\n", label, buf);
70 #define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
72 #else
74 static void slice_print_mask(const char *label, struct slice_mask mask) {}
75 #define slice_dbg(fmt...)
77 #endif
79 static struct slice_mask slice_range_to_mask(unsigned long start,
80 unsigned long len)
82 unsigned long end = start + len - 1;
83 struct slice_mask ret = { 0, 0 };
85 if (start < SLICE_LOW_TOP) {
86 unsigned long mend = min(end, SLICE_LOW_TOP);
87 unsigned long mstart = min(start, SLICE_LOW_TOP);
89 ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
90 - (1u << GET_LOW_SLICE_INDEX(mstart));
93 if ((start + len) > SLICE_LOW_TOP)
94 ret.high_slices = (1ul << (GET_HIGH_SLICE_INDEX(end) + 1))
95 - (1ul << GET_HIGH_SLICE_INDEX(start));
97 return ret;
100 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
101 unsigned long len)
103 struct vm_area_struct *vma;
105 if ((mm->task_size - len) < addr)
106 return 0;
107 vma = find_vma(mm, addr);
108 return (!vma || (addr + len) <= vma->vm_start);
111 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
113 return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
114 1ul << SLICE_LOW_SHIFT);
117 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
119 unsigned long start = slice << SLICE_HIGH_SHIFT;
120 unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
122 /* Hack, so that each addresses is controlled by exactly one
123 * of the high or low area bitmaps, the first high area starts
124 * at 4GB, not 0 */
125 if (start == 0)
126 start = SLICE_LOW_TOP;
128 return !slice_area_is_free(mm, start, end - start);
131 static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
133 struct slice_mask ret = { 0, 0 };
134 unsigned long i;
136 for (i = 0; i < SLICE_NUM_LOW; i++)
137 if (!slice_low_has_vma(mm, i))
138 ret.low_slices |= 1u << i;
140 if (mm->task_size <= SLICE_LOW_TOP)
141 return ret;
143 for (i = 0; i < SLICE_NUM_HIGH; i++)
144 if (!slice_high_has_vma(mm, i))
145 ret.high_slices |= 1ul << i;
147 return ret;
150 static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
152 unsigned char *hpsizes;
153 int index, mask_index;
154 struct slice_mask ret = { 0, 0 };
155 unsigned long i;
156 u64 lpsizes;
158 lpsizes = mm->context.low_slices_psize;
159 for (i = 0; i < SLICE_NUM_LOW; i++)
160 if (((lpsizes >> (i * 4)) & 0xf) == psize)
161 ret.low_slices |= 1u << i;
163 hpsizes = mm->context.high_slices_psize;
164 for (i = 0; i < SLICE_NUM_HIGH; i++) {
165 mask_index = i & 0x1;
166 index = i >> 1;
167 if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == psize)
168 ret.high_slices |= 1ul << i;
171 return ret;
174 static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
176 return (mask.low_slices & available.low_slices) == mask.low_slices &&
177 (mask.high_slices & available.high_slices) == mask.high_slices;
180 static void slice_flush_segments(void *parm)
182 struct mm_struct *mm = parm;
183 unsigned long flags;
185 if (mm != current->active_mm)
186 return;
188 copy_mm_to_paca(&current->active_mm->context);
190 local_irq_save(flags);
191 slb_flush_and_rebolt();
192 local_irq_restore(flags);
195 static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
197 int index, mask_index;
198 /* Write the new slice psize bits */
199 unsigned char *hpsizes;
200 u64 lpsizes;
201 unsigned long i, flags;
203 slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
204 slice_print_mask(" mask", mask);
206 /* We need to use a spinlock here to protect against
207 * concurrent 64k -> 4k demotion ...
209 spin_lock_irqsave(&slice_convert_lock, flags);
211 lpsizes = mm->context.low_slices_psize;
212 for (i = 0; i < SLICE_NUM_LOW; i++)
213 if (mask.low_slices & (1u << i))
214 lpsizes = (lpsizes & ~(0xful << (i * 4))) |
215 (((unsigned long)psize) << (i * 4));
217 /* Assign the value back */
218 mm->context.low_slices_psize = lpsizes;
220 hpsizes = mm->context.high_slices_psize;
221 for (i = 0; i < SLICE_NUM_HIGH; i++) {
222 mask_index = i & 0x1;
223 index = i >> 1;
224 if (mask.high_slices & (1ul << i))
225 hpsizes[index] = (hpsizes[index] &
226 ~(0xf << (mask_index * 4))) |
227 (((unsigned long)psize) << (mask_index * 4));
230 slice_dbg(" lsps=%lx, hsps=%lx\n",
231 mm->context.low_slices_psize,
232 mm->context.high_slices_psize);
234 spin_unlock_irqrestore(&slice_convert_lock, flags);
236 copro_flush_all_slbs(mm);
240 * Compute which slice addr is part of;
241 * set *boundary_addr to the start or end boundary of that slice
242 * (depending on 'end' parameter);
243 * return boolean indicating if the slice is marked as available in the
244 * 'available' slice_mark.
246 static bool slice_scan_available(unsigned long addr,
247 struct slice_mask available,
248 int end,
249 unsigned long *boundary_addr)
251 unsigned long slice;
252 if (addr < SLICE_LOW_TOP) {
253 slice = GET_LOW_SLICE_INDEX(addr);
254 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
255 return !!(available.low_slices & (1u << slice));
256 } else {
257 slice = GET_HIGH_SLICE_INDEX(addr);
258 *boundary_addr = (slice + end) ?
259 ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
260 return !!(available.high_slices & (1ul << slice));
264 static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
265 unsigned long len,
266 struct slice_mask available,
267 int psize)
269 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
270 unsigned long addr, found, next_end;
271 struct vm_unmapped_area_info info;
273 info.flags = 0;
274 info.length = len;
275 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
276 info.align_offset = 0;
278 addr = TASK_UNMAPPED_BASE;
279 while (addr < TASK_SIZE) {
280 info.low_limit = addr;
281 if (!slice_scan_available(addr, available, 1, &addr))
282 continue;
284 next_slice:
286 * At this point [info.low_limit; addr) covers
287 * available slices only and ends at a slice boundary.
288 * Check if we need to reduce the range, or if we can
289 * extend it to cover the next available slice.
291 if (addr >= TASK_SIZE)
292 addr = TASK_SIZE;
293 else if (slice_scan_available(addr, available, 1, &next_end)) {
294 addr = next_end;
295 goto next_slice;
297 info.high_limit = addr;
299 found = vm_unmapped_area(&info);
300 if (!(found & ~PAGE_MASK))
301 return found;
304 return -ENOMEM;
307 static unsigned long slice_find_area_topdown(struct mm_struct *mm,
308 unsigned long len,
309 struct slice_mask available,
310 int psize)
312 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
313 unsigned long addr, found, prev;
314 struct vm_unmapped_area_info info;
316 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
317 info.length = len;
318 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
319 info.align_offset = 0;
321 addr = mm->mmap_base;
322 while (addr > PAGE_SIZE) {
323 info.high_limit = addr;
324 if (!slice_scan_available(addr - 1, available, 0, &addr))
325 continue;
327 prev_slice:
329 * At this point [addr; info.high_limit) covers
330 * available slices only and starts at a slice boundary.
331 * Check if we need to reduce the range, or if we can
332 * extend it to cover the previous available slice.
334 if (addr < PAGE_SIZE)
335 addr = PAGE_SIZE;
336 else if (slice_scan_available(addr - 1, available, 0, &prev)) {
337 addr = prev;
338 goto prev_slice;
340 info.low_limit = addr;
342 found = vm_unmapped_area(&info);
343 if (!(found & ~PAGE_MASK))
344 return found;
348 * A failed mmap() very likely causes application failure,
349 * so fall back to the bottom-up function here. This scenario
350 * can happen with large stack limits and large mmap()
351 * allocations.
353 return slice_find_area_bottomup(mm, len, available, psize);
357 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
358 struct slice_mask mask, int psize,
359 int topdown)
361 if (topdown)
362 return slice_find_area_topdown(mm, len, mask, psize);
363 else
364 return slice_find_area_bottomup(mm, len, mask, psize);
367 #define or_mask(dst, src) do { \
368 (dst).low_slices |= (src).low_slices; \
369 (dst).high_slices |= (src).high_slices; \
370 } while (0)
372 #define andnot_mask(dst, src) do { \
373 (dst).low_slices &= ~(src).low_slices; \
374 (dst).high_slices &= ~(src).high_slices; \
375 } while (0)
377 #ifdef CONFIG_PPC_64K_PAGES
378 #define MMU_PAGE_BASE MMU_PAGE_64K
379 #else
380 #define MMU_PAGE_BASE MMU_PAGE_4K
381 #endif
383 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
384 unsigned long flags, unsigned int psize,
385 int topdown)
387 struct slice_mask mask = {0, 0};
388 struct slice_mask good_mask;
389 struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
390 struct slice_mask compat_mask = {0, 0};
391 int fixed = (flags & MAP_FIXED);
392 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
393 struct mm_struct *mm = current->mm;
394 unsigned long newaddr;
396 /* Sanity checks */
397 BUG_ON(mm->task_size == 0);
399 slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
400 slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
401 addr, len, flags, topdown);
403 if (len > mm->task_size)
404 return -ENOMEM;
405 if (len & ((1ul << pshift) - 1))
406 return -EINVAL;
407 if (fixed && (addr & ((1ul << pshift) - 1)))
408 return -EINVAL;
409 if (fixed && addr > (mm->task_size - len))
410 return -ENOMEM;
412 /* If hint, make sure it matches our alignment restrictions */
413 if (!fixed && addr) {
414 addr = _ALIGN_UP(addr, 1ul << pshift);
415 slice_dbg(" aligned addr=%lx\n", addr);
416 /* Ignore hint if it's too large or overlaps a VMA */
417 if (addr > mm->task_size - len ||
418 !slice_area_is_free(mm, addr, len))
419 addr = 0;
422 /* First make up a "good" mask of slices that have the right size
423 * already
425 good_mask = slice_mask_for_size(mm, psize);
426 slice_print_mask(" good_mask", good_mask);
429 * Here "good" means slices that are already the right page size,
430 * "compat" means slices that have a compatible page size (i.e.
431 * 4k in a 64k pagesize kernel), and "free" means slices without
432 * any VMAs.
434 * If MAP_FIXED:
435 * check if fits in good | compat => OK
436 * check if fits in good | compat | free => convert free
437 * else bad
438 * If have hint:
439 * check if hint fits in good => OK
440 * check if hint fits in good | free => convert free
441 * Otherwise:
442 * search in good, found => OK
443 * search in good | free, found => convert free
444 * search in good | compat | free, found => convert free.
447 #ifdef CONFIG_PPC_64K_PAGES
448 /* If we support combo pages, we can allow 64k pages in 4k slices */
449 if (psize == MMU_PAGE_64K) {
450 compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
451 if (fixed)
452 or_mask(good_mask, compat_mask);
454 #endif
456 /* First check hint if it's valid or if we have MAP_FIXED */
457 if (addr != 0 || fixed) {
458 /* Build a mask for the requested range */
459 mask = slice_range_to_mask(addr, len);
460 slice_print_mask(" mask", mask);
462 /* Check if we fit in the good mask. If we do, we just return,
463 * nothing else to do
465 if (slice_check_fit(mask, good_mask)) {
466 slice_dbg(" fits good !\n");
467 return addr;
469 } else {
470 /* Now let's see if we can find something in the existing
471 * slices for that size
473 newaddr = slice_find_area(mm, len, good_mask, psize, topdown);
474 if (newaddr != -ENOMEM) {
475 /* Found within the good mask, we don't have to setup,
476 * we thus return directly
478 slice_dbg(" found area at 0x%lx\n", newaddr);
479 return newaddr;
483 /* We don't fit in the good mask, check what other slices are
484 * empty and thus can be converted
486 potential_mask = slice_mask_for_free(mm);
487 or_mask(potential_mask, good_mask);
488 slice_print_mask(" potential", potential_mask);
490 if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
491 slice_dbg(" fits potential !\n");
492 goto convert;
495 /* If we have MAP_FIXED and failed the above steps, then error out */
496 if (fixed)
497 return -EBUSY;
499 slice_dbg(" search...\n");
501 /* If we had a hint that didn't work out, see if we can fit
502 * anywhere in the good area.
504 if (addr) {
505 addr = slice_find_area(mm, len, good_mask, psize, topdown);
506 if (addr != -ENOMEM) {
507 slice_dbg(" found area at 0x%lx\n", addr);
508 return addr;
512 /* Now let's see if we can find something in the existing slices
513 * for that size plus free slices
515 addr = slice_find_area(mm, len, potential_mask, psize, topdown);
517 #ifdef CONFIG_PPC_64K_PAGES
518 if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
519 /* retry the search with 4k-page slices included */
520 or_mask(potential_mask, compat_mask);
521 addr = slice_find_area(mm, len, potential_mask, psize,
522 topdown);
524 #endif
526 if (addr == -ENOMEM)
527 return -ENOMEM;
529 mask = slice_range_to_mask(addr, len);
530 slice_dbg(" found potential area at 0x%lx\n", addr);
531 slice_print_mask(" mask", mask);
533 convert:
534 andnot_mask(mask, good_mask);
535 andnot_mask(mask, compat_mask);
536 if (mask.low_slices || mask.high_slices) {
537 slice_convert(mm, mask, psize);
538 if (psize > MMU_PAGE_BASE)
539 on_each_cpu(slice_flush_segments, mm, 1);
541 return addr;
544 EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
546 unsigned long arch_get_unmapped_area(struct file *filp,
547 unsigned long addr,
548 unsigned long len,
549 unsigned long pgoff,
550 unsigned long flags)
552 return slice_get_unmapped_area(addr, len, flags,
553 current->mm->context.user_psize, 0);
556 unsigned long arch_get_unmapped_area_topdown(struct file *filp,
557 const unsigned long addr0,
558 const unsigned long len,
559 const unsigned long pgoff,
560 const unsigned long flags)
562 return slice_get_unmapped_area(addr0, len, flags,
563 current->mm->context.user_psize, 1);
566 unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
568 unsigned char *hpsizes;
569 int index, mask_index;
571 if (addr < SLICE_LOW_TOP) {
572 u64 lpsizes;
573 lpsizes = mm->context.low_slices_psize;
574 index = GET_LOW_SLICE_INDEX(addr);
575 return (lpsizes >> (index * 4)) & 0xf;
577 hpsizes = mm->context.high_slices_psize;
578 index = GET_HIGH_SLICE_INDEX(addr);
579 mask_index = index & 0x1;
580 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xf;
582 EXPORT_SYMBOL_GPL(get_slice_psize);
585 * This is called by hash_page when it needs to do a lazy conversion of
586 * an address space from real 64K pages to combo 4K pages (typically
587 * when hitting a non cacheable mapping on a processor or hypervisor
588 * that won't allow them for 64K pages).
590 * This is also called in init_new_context() to change back the user
591 * psize from whatever the parent context had it set to
592 * N.B. This may be called before mm->context.id has been set.
594 * This function will only change the content of the {low,high)_slice_psize
595 * masks, it will not flush SLBs as this shall be handled lazily by the
596 * caller.
598 void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
600 int index, mask_index;
601 unsigned char *hpsizes;
602 unsigned long flags, lpsizes;
603 unsigned int old_psize;
604 int i;
606 slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
608 spin_lock_irqsave(&slice_convert_lock, flags);
610 old_psize = mm->context.user_psize;
611 slice_dbg(" old_psize=%d\n", old_psize);
612 if (old_psize == psize)
613 goto bail;
615 mm->context.user_psize = psize;
616 wmb();
618 lpsizes = mm->context.low_slices_psize;
619 for (i = 0; i < SLICE_NUM_LOW; i++)
620 if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
621 lpsizes = (lpsizes & ~(0xful << (i * 4))) |
622 (((unsigned long)psize) << (i * 4));
623 /* Assign the value back */
624 mm->context.low_slices_psize = lpsizes;
626 hpsizes = mm->context.high_slices_psize;
627 for (i = 0; i < SLICE_NUM_HIGH; i++) {
628 mask_index = i & 0x1;
629 index = i >> 1;
630 if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == old_psize)
631 hpsizes[index] = (hpsizes[index] &
632 ~(0xf << (mask_index * 4))) |
633 (((unsigned long)psize) << (mask_index * 4));
639 slice_dbg(" lsps=%lx, hsps=%lx\n",
640 mm->context.low_slices_psize,
641 mm->context.high_slices_psize);
643 bail:
644 spin_unlock_irqrestore(&slice_convert_lock, flags);
647 void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
648 unsigned long len, unsigned int psize)
650 struct slice_mask mask = slice_range_to_mask(start, len);
652 slice_convert(mm, mask, psize);
655 #ifdef CONFIG_HUGETLB_PAGE
657 * is_hugepage_only_range() is used by generic code to verify whether
658 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
660 * until the generic code provides a more generic hook and/or starts
661 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
662 * here knows how to deal with), we hijack it to keep standard mappings
663 * away from us.
665 * because of that generic code limitation, MAP_FIXED mapping cannot
666 * "convert" back a slice with no VMAs to the standard page size, only
667 * get_unmapped_area() can. It would be possible to fix it here but I
668 * prefer working on fixing the generic code instead.
670 * WARNING: This will not work if hugetlbfs isn't enabled since the
671 * generic code will redefine that function as 0 in that. This is ok
672 * for now as we only use slices with hugetlbfs enabled. This should
673 * be fixed as the generic code gets fixed.
675 int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
676 unsigned long len)
678 struct slice_mask mask, available;
679 unsigned int psize = mm->context.user_psize;
681 mask = slice_range_to_mask(addr, len);
682 available = slice_mask_for_size(mm, psize);
683 #ifdef CONFIG_PPC_64K_PAGES
684 /* We need to account for 4k slices too */
685 if (psize == MMU_PAGE_64K) {
686 struct slice_mask compat_mask;
687 compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
688 or_mask(available, compat_mask);
690 #endif
692 #if 0 /* too verbose */
693 slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
694 mm, addr, len);
695 slice_print_mask(" mask", mask);
696 slice_print_mask(" available", available);
697 #endif
698 return !slice_check_fit(mask, available);
700 #endif