Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / arch / x86 / kernel / process_32.c
blob9f950917528b332b139afb6fa854c87c8d92c4d0
1 /*
2 * Copyright (C) 1995 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/fs.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/elfcore.h>
19 #include <linux/smp.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/mc146818rtc.h>
28 #include <linux/module.h>
29 #include <linux/kallsyms.h>
30 #include <linux/ptrace.h>
31 #include <linux/personality.h>
32 #include <linux/percpu.h>
33 #include <linux/prctl.h>
34 #include <linux/ftrace.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/kdebug.h>
39 #include <asm/pgtable.h>
40 #include <asm/ldt.h>
41 #include <asm/processor.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/desc.h>
44 #ifdef CONFIG_MATH_EMULATION
45 #include <asm/math_emu.h>
46 #endif
48 #include <linux/err.h>
50 #include <asm/tlbflush.h>
51 #include <asm/cpu.h>
52 #include <asm/idle.h>
53 #include <asm/syscalls.h>
54 #include <asm/debugreg.h>
55 #include <asm/switch_to.h>
56 #include <asm/vm86.h>
58 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
59 asmlinkage void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread");
62 * Return saved PC of a blocked thread.
64 unsigned long thread_saved_pc(struct task_struct *tsk)
66 return ((unsigned long *)tsk->thread.sp)[3];
69 void __show_regs(struct pt_regs *regs, int all)
71 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
72 unsigned long d0, d1, d2, d3, d6, d7;
73 unsigned long sp;
74 unsigned short ss, gs;
76 if (user_mode(regs)) {
77 sp = regs->sp;
78 ss = regs->ss & 0xffff;
79 gs = get_user_gs(regs);
80 } else {
81 sp = kernel_stack_pointer(regs);
82 savesegment(ss, ss);
83 savesegment(gs, gs);
86 printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
87 (u16)regs->cs, regs->ip, regs->flags,
88 smp_processor_id());
89 print_symbol("EIP is at %s\n", regs->ip);
91 printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
92 regs->ax, regs->bx, regs->cx, regs->dx);
93 printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
94 regs->si, regs->di, regs->bp, sp);
95 printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
96 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
98 if (!all)
99 return;
101 cr0 = read_cr0();
102 cr2 = read_cr2();
103 cr3 = read_cr3();
104 cr4 = __read_cr4_safe();
105 printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
106 cr0, cr2, cr3, cr4);
108 get_debugreg(d0, 0);
109 get_debugreg(d1, 1);
110 get_debugreg(d2, 2);
111 get_debugreg(d3, 3);
112 get_debugreg(d6, 6);
113 get_debugreg(d7, 7);
115 /* Only print out debug registers if they are in their non-default state. */
116 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
117 (d6 == DR6_RESERVED) && (d7 == 0x400))
118 return;
120 printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
121 d0, d1, d2, d3);
122 printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
123 d6, d7);
126 void release_thread(struct task_struct *dead_task)
128 BUG_ON(dead_task->mm);
129 release_vm86_irqs(dead_task);
132 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
133 unsigned long arg, struct task_struct *p, unsigned long tls)
135 struct pt_regs *childregs = task_pt_regs(p);
136 struct task_struct *tsk;
137 int err;
139 p->thread.sp = (unsigned long) childregs;
140 p->thread.sp0 = (unsigned long) (childregs+1);
141 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
143 if (unlikely(p->flags & PF_KTHREAD)) {
144 /* kernel thread */
145 memset(childregs, 0, sizeof(struct pt_regs));
146 p->thread.ip = (unsigned long) ret_from_kernel_thread;
147 task_user_gs(p) = __KERNEL_STACK_CANARY;
148 childregs->ds = __USER_DS;
149 childregs->es = __USER_DS;
150 childregs->fs = __KERNEL_PERCPU;
151 childregs->bx = sp; /* function */
152 childregs->bp = arg;
153 childregs->orig_ax = -1;
154 childregs->cs = __KERNEL_CS | get_kernel_rpl();
155 childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
156 p->thread.io_bitmap_ptr = NULL;
157 return 0;
159 *childregs = *current_pt_regs();
160 childregs->ax = 0;
161 if (sp)
162 childregs->sp = sp;
164 p->thread.ip = (unsigned long) ret_from_fork;
165 task_user_gs(p) = get_user_gs(current_pt_regs());
167 p->thread.io_bitmap_ptr = NULL;
168 tsk = current;
169 err = -ENOMEM;
171 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
172 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
173 IO_BITMAP_BYTES, GFP_KERNEL);
174 if (!p->thread.io_bitmap_ptr) {
175 p->thread.io_bitmap_max = 0;
176 return -ENOMEM;
178 set_tsk_thread_flag(p, TIF_IO_BITMAP);
181 err = 0;
184 * Set a new TLS for the child thread?
186 if (clone_flags & CLONE_SETTLS)
187 err = do_set_thread_area(p, -1,
188 (struct user_desc __user *)tls, 0);
190 if (err && p->thread.io_bitmap_ptr) {
191 kfree(p->thread.io_bitmap_ptr);
192 p->thread.io_bitmap_max = 0;
194 return err;
197 void
198 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
200 set_user_gs(regs, 0);
201 regs->fs = 0;
202 regs->ds = __USER_DS;
203 regs->es = __USER_DS;
204 regs->ss = __USER_DS;
205 regs->cs = __USER_CS;
206 regs->ip = new_ip;
207 regs->sp = new_sp;
208 regs->flags = X86_EFLAGS_IF;
209 force_iret();
211 EXPORT_SYMBOL_GPL(start_thread);
215 * switch_to(x,y) should switch tasks from x to y.
217 * We fsave/fwait so that an exception goes off at the right time
218 * (as a call from the fsave or fwait in effect) rather than to
219 * the wrong process. Lazy FP saving no longer makes any sense
220 * with modern CPU's, and this simplifies a lot of things (SMP
221 * and UP become the same).
223 * NOTE! We used to use the x86 hardware context switching. The
224 * reason for not using it any more becomes apparent when you
225 * try to recover gracefully from saved state that is no longer
226 * valid (stale segment register values in particular). With the
227 * hardware task-switch, there is no way to fix up bad state in
228 * a reasonable manner.
230 * The fact that Intel documents the hardware task-switching to
231 * be slow is a fairly red herring - this code is not noticeably
232 * faster. However, there _is_ some room for improvement here,
233 * so the performance issues may eventually be a valid point.
234 * More important, however, is the fact that this allows us much
235 * more flexibility.
237 * The return value (in %ax) will be the "prev" task after
238 * the task-switch, and shows up in ret_from_fork in entry.S,
239 * for example.
241 __visible __notrace_funcgraph struct task_struct *
242 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
244 struct thread_struct *prev = &prev_p->thread,
245 *next = &next_p->thread;
246 struct fpu *prev_fpu = &prev->fpu;
247 struct fpu *next_fpu = &next->fpu;
248 int cpu = smp_processor_id();
249 struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
250 fpu_switch_t fpu_switch;
252 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
254 fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
257 * Save away %gs. No need to save %fs, as it was saved on the
258 * stack on entry. No need to save %es and %ds, as those are
259 * always kernel segments while inside the kernel. Doing this
260 * before setting the new TLS descriptors avoids the situation
261 * where we temporarily have non-reloadable segments in %fs
262 * and %gs. This could be an issue if the NMI handler ever
263 * used %fs or %gs (it does not today), or if the kernel is
264 * running inside of a hypervisor layer.
266 lazy_save_gs(prev->gs);
269 * Load the per-thread Thread-Local Storage descriptor.
271 load_TLS(next, cpu);
274 * Restore IOPL if needed. In normal use, the flags restore
275 * in the switch assembly will handle this. But if the kernel
276 * is running virtualized at a non-zero CPL, the popf will
277 * not restore flags, so it must be done in a separate step.
279 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
280 set_iopl_mask(next->iopl);
283 * Now maybe handle debug registers and/or IO bitmaps
285 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
286 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
287 __switch_to_xtra(prev_p, next_p, tss);
290 * Leave lazy mode, flushing any hypercalls made here.
291 * This must be done before restoring TLS segments so
292 * the GDT and LDT are properly updated, and must be
293 * done before fpu__restore(), so the TS bit is up
294 * to date.
296 arch_end_context_switch(next_p);
299 * Reload esp0 and cpu_current_top_of_stack. This changes
300 * current_thread_info().
302 load_sp0(tss, next);
303 this_cpu_write(cpu_current_top_of_stack,
304 (unsigned long)task_stack_page(next_p) +
305 THREAD_SIZE);
308 * Restore %gs if needed (which is common)
310 if (prev->gs | next->gs)
311 lazy_load_gs(next->gs);
313 switch_fpu_finish(next_fpu, fpu_switch);
315 this_cpu_write(current_task, next_p);
317 return prev_p;