Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / arch / x86 / kernel / vm86_32.c
blob3dce1ca0a653091967f7089ce9e89c9d54399408
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 * stack - Manfred Spraul <manfred@colorfullife.com>
7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 * them correctly. Now the emulation will be in a
9 * consistent state after stackfaults - Kasper Dupont
10 * <kasperd@daimi.au.dk>
12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 * <kasperd@daimi.au.dk>
15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 * caused by Kasper Dupont's changes - Stas Sergeev
18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 * Kasper Dupont <kasperd@daimi.au.dk>
21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 * Kasper Dupont <kasperd@daimi.au.dk>
24 * 9 apr 2002 - Changed stack access macros to jump to a label
25 * instead of returning to userspace. This simplifies
26 * do_int, and is needed by handle_vm6_fault. Kasper
27 * Dupont <kasperd@daimi.au.dk>
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/syscalls.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/signal.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/smp.h>
43 #include <linux/highmem.h>
44 #include <linux/ptrace.h>
45 #include <linux/audit.h>
46 #include <linux/stddef.h>
47 #include <linux/slab.h>
48 #include <linux/security.h>
50 #include <asm/uaccess.h>
51 #include <asm/io.h>
52 #include <asm/tlbflush.h>
53 #include <asm/irq.h>
54 #include <asm/traps.h>
55 #include <asm/vm86.h>
58 * Known problems:
60 * Interrupt handling is not guaranteed:
61 * - a real x86 will disable all interrupts for one instruction
62 * after a "mov ss,xx" to make stack handling atomic even without
63 * the 'lss' instruction. We can't guarantee this in v86 mode,
64 * as the next instruction might result in a page fault or similar.
65 * - a real x86 will have interrupts disabled for one instruction
66 * past the 'sti' that enables them. We don't bother with all the
67 * details yet.
69 * Let's hope these problems do not actually matter for anything.
74 * 8- and 16-bit register defines..
76 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
77 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
78 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
79 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
82 * virtual flags (16 and 32-bit versions)
84 #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
85 #define VEFLAGS (current->thread.vm86->veflags)
87 #define set_flags(X, new, mask) \
88 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
90 #define SAFE_MASK (0xDD5)
91 #define RETURN_MASK (0xDFF)
93 void save_v86_state(struct kernel_vm86_regs *regs, int retval)
95 struct tss_struct *tss;
96 struct task_struct *tsk = current;
97 struct vm86plus_struct __user *user;
98 struct vm86 *vm86 = current->thread.vm86;
99 long err = 0;
102 * This gets called from entry.S with interrupts disabled, but
103 * from process context. Enable interrupts here, before trying
104 * to access user space.
106 local_irq_enable();
108 if (!vm86 || !vm86->user_vm86) {
109 pr_alert("no user_vm86: BAD\n");
110 do_exit(SIGSEGV);
112 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
113 user = vm86->user_vm86;
115 if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
116 sizeof(struct vm86plus_struct) :
117 sizeof(struct vm86_struct))) {
118 pr_alert("could not access userspace vm86 info\n");
119 do_exit(SIGSEGV);
122 put_user_try {
123 put_user_ex(regs->pt.bx, &user->regs.ebx);
124 put_user_ex(regs->pt.cx, &user->regs.ecx);
125 put_user_ex(regs->pt.dx, &user->regs.edx);
126 put_user_ex(regs->pt.si, &user->regs.esi);
127 put_user_ex(regs->pt.di, &user->regs.edi);
128 put_user_ex(regs->pt.bp, &user->regs.ebp);
129 put_user_ex(regs->pt.ax, &user->regs.eax);
130 put_user_ex(regs->pt.ip, &user->regs.eip);
131 put_user_ex(regs->pt.cs, &user->regs.cs);
132 put_user_ex(regs->pt.flags, &user->regs.eflags);
133 put_user_ex(regs->pt.sp, &user->regs.esp);
134 put_user_ex(regs->pt.ss, &user->regs.ss);
135 put_user_ex(regs->es, &user->regs.es);
136 put_user_ex(regs->ds, &user->regs.ds);
137 put_user_ex(regs->fs, &user->regs.fs);
138 put_user_ex(regs->gs, &user->regs.gs);
140 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
141 } put_user_catch(err);
142 if (err) {
143 pr_alert("could not access userspace vm86 info\n");
144 do_exit(SIGSEGV);
147 tss = &per_cpu(cpu_tss, get_cpu());
148 tsk->thread.sp0 = vm86->saved_sp0;
149 tsk->thread.sysenter_cs = __KERNEL_CS;
150 load_sp0(tss, &tsk->thread);
151 vm86->saved_sp0 = 0;
152 put_cpu();
154 memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
156 lazy_load_gs(vm86->regs32.gs);
158 regs->pt.ax = retval;
161 static void mark_screen_rdonly(struct mm_struct *mm)
163 pgd_t *pgd;
164 pud_t *pud;
165 pmd_t *pmd;
166 pte_t *pte;
167 spinlock_t *ptl;
168 int i;
170 down_write(&mm->mmap_sem);
171 pgd = pgd_offset(mm, 0xA0000);
172 if (pgd_none_or_clear_bad(pgd))
173 goto out;
174 pud = pud_offset(pgd, 0xA0000);
175 if (pud_none_or_clear_bad(pud))
176 goto out;
177 pmd = pmd_offset(pud, 0xA0000);
179 if (pmd_trans_huge(*pmd)) {
180 struct vm_area_struct *vma = find_vma(mm, 0xA0000);
181 split_huge_pmd(vma, pmd, 0xA0000);
183 if (pmd_none_or_clear_bad(pmd))
184 goto out;
185 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
186 for (i = 0; i < 32; i++) {
187 if (pte_present(*pte))
188 set_pte(pte, pte_wrprotect(*pte));
189 pte++;
191 pte_unmap_unlock(pte, ptl);
192 out:
193 up_write(&mm->mmap_sem);
194 flush_tlb();
199 static int do_vm86_irq_handling(int subfunction, int irqnumber);
200 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
202 SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
204 return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
208 SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
210 switch (cmd) {
211 case VM86_REQUEST_IRQ:
212 case VM86_FREE_IRQ:
213 case VM86_GET_IRQ_BITS:
214 case VM86_GET_AND_RESET_IRQ:
215 return do_vm86_irq_handling(cmd, (int)arg);
216 case VM86_PLUS_INSTALL_CHECK:
218 * NOTE: on old vm86 stuff this will return the error
219 * from access_ok(), because the subfunction is
220 * interpreted as (invalid) address to vm86_struct.
221 * So the installation check works.
223 return 0;
226 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
227 return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
231 static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
233 struct tss_struct *tss;
234 struct task_struct *tsk = current;
235 struct vm86 *vm86 = tsk->thread.vm86;
236 struct kernel_vm86_regs vm86regs;
237 struct pt_regs *regs = current_pt_regs();
238 unsigned long err = 0;
240 err = security_mmap_addr(0);
241 if (err) {
243 * vm86 cannot virtualize the address space, so vm86 users
244 * need to manage the low 1MB themselves using mmap. Given
245 * that BIOS places important data in the first page, vm86
246 * is essentially useless if mmap_min_addr != 0. DOSEMU,
247 * for example, won't even bother trying to use vm86 if it
248 * can't map a page at virtual address 0.
250 * To reduce the available kernel attack surface, simply
251 * disallow vm86(old) for users who cannot mmap at va 0.
253 * The implementation of security_mmap_addr will allow
254 * suitably privileged users to map va 0 even if
255 * vm.mmap_min_addr is set above 0, and we want this
256 * behavior for vm86 as well, as it ensures that legacy
257 * tools like vbetool will not fail just because of
258 * vm.mmap_min_addr.
260 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
261 current->comm, task_pid_nr(current),
262 from_kuid_munged(&init_user_ns, current_uid()));
263 return -EPERM;
266 if (!vm86) {
267 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
268 return -ENOMEM;
269 tsk->thread.vm86 = vm86;
271 if (vm86->saved_sp0)
272 return -EPERM;
274 if (!access_ok(VERIFY_READ, user_vm86, plus ?
275 sizeof(struct vm86_struct) :
276 sizeof(struct vm86plus_struct)))
277 return -EFAULT;
279 memset(&vm86regs, 0, sizeof(vm86regs));
280 get_user_try {
281 unsigned short seg;
282 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
283 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
284 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
285 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
286 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
287 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
288 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
289 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
290 get_user_ex(seg, &user_vm86->regs.cs);
291 vm86regs.pt.cs = seg;
292 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
293 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
294 get_user_ex(seg, &user_vm86->regs.ss);
295 vm86regs.pt.ss = seg;
296 get_user_ex(vm86regs.es, &user_vm86->regs.es);
297 get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
298 get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
299 get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
301 get_user_ex(vm86->flags, &user_vm86->flags);
302 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
303 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
304 } get_user_catch(err);
305 if (err)
306 return err;
308 if (copy_from_user(&vm86->int_revectored,
309 &user_vm86->int_revectored,
310 sizeof(struct revectored_struct)))
311 return -EFAULT;
312 if (copy_from_user(&vm86->int21_revectored,
313 &user_vm86->int21_revectored,
314 sizeof(struct revectored_struct)))
315 return -EFAULT;
316 if (plus) {
317 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
318 sizeof(struct vm86plus_info_struct)))
319 return -EFAULT;
320 vm86->vm86plus.is_vm86pus = 1;
321 } else
322 memset(&vm86->vm86plus, 0,
323 sizeof(struct vm86plus_info_struct));
325 memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
326 vm86->user_vm86 = user_vm86;
329 * The flags register is also special: we cannot trust that the user
330 * has set it up safely, so this makes sure interrupt etc flags are
331 * inherited from protected mode.
333 VEFLAGS = vm86regs.pt.flags;
334 vm86regs.pt.flags &= SAFE_MASK;
335 vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
336 vm86regs.pt.flags |= X86_VM_MASK;
338 vm86regs.pt.orig_ax = regs->orig_ax;
340 switch (vm86->cpu_type) {
341 case CPU_286:
342 vm86->veflags_mask = 0;
343 break;
344 case CPU_386:
345 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
346 break;
347 case CPU_486:
348 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
349 break;
350 default:
351 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
352 break;
356 * Save old state
358 vm86->saved_sp0 = tsk->thread.sp0;
359 lazy_save_gs(vm86->regs32.gs);
361 tss = &per_cpu(cpu_tss, get_cpu());
362 /* make room for real-mode segments */
363 tsk->thread.sp0 += 16;
365 if (static_cpu_has(X86_FEATURE_SEP))
366 tsk->thread.sysenter_cs = 0;
368 load_sp0(tss, &tsk->thread);
369 put_cpu();
371 if (vm86->flags & VM86_SCREEN_BITMAP)
372 mark_screen_rdonly(tsk->mm);
374 memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
375 force_iret();
376 return regs->ax;
379 static inline void set_IF(struct kernel_vm86_regs *regs)
381 VEFLAGS |= X86_EFLAGS_VIF;
384 static inline void clear_IF(struct kernel_vm86_regs *regs)
386 VEFLAGS &= ~X86_EFLAGS_VIF;
389 static inline void clear_TF(struct kernel_vm86_regs *regs)
391 regs->pt.flags &= ~X86_EFLAGS_TF;
394 static inline void clear_AC(struct kernel_vm86_regs *regs)
396 regs->pt.flags &= ~X86_EFLAGS_AC;
400 * It is correct to call set_IF(regs) from the set_vflags_*
401 * functions. However someone forgot to call clear_IF(regs)
402 * in the opposite case.
403 * After the command sequence CLI PUSHF STI POPF you should
404 * end up with interrupts disabled, but you ended up with
405 * interrupts enabled.
406 * ( I was testing my own changes, but the only bug I
407 * could find was in a function I had not changed. )
408 * [KD]
411 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
413 set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
414 set_flags(regs->pt.flags, flags, SAFE_MASK);
415 if (flags & X86_EFLAGS_IF)
416 set_IF(regs);
417 else
418 clear_IF(regs);
421 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
423 set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
424 set_flags(regs->pt.flags, flags, SAFE_MASK);
425 if (flags & X86_EFLAGS_IF)
426 set_IF(regs);
427 else
428 clear_IF(regs);
431 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
433 unsigned long flags = regs->pt.flags & RETURN_MASK;
435 if (VEFLAGS & X86_EFLAGS_VIF)
436 flags |= X86_EFLAGS_IF;
437 flags |= X86_EFLAGS_IOPL;
438 return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
441 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
443 __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
444 :"=r" (nr)
445 :"m" (*bitmap), "r" (nr));
446 return nr;
449 #define val_byte(val, n) (((__u8 *)&val)[n])
451 #define pushb(base, ptr, val, err_label) \
452 do { \
453 __u8 __val = val; \
454 ptr--; \
455 if (put_user(__val, base + ptr) < 0) \
456 goto err_label; \
457 } while (0)
459 #define pushw(base, ptr, val, err_label) \
460 do { \
461 __u16 __val = val; \
462 ptr--; \
463 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
464 goto err_label; \
465 ptr--; \
466 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
467 goto err_label; \
468 } while (0)
470 #define pushl(base, ptr, val, err_label) \
471 do { \
472 __u32 __val = val; \
473 ptr--; \
474 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
475 goto err_label; \
476 ptr--; \
477 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
478 goto err_label; \
479 ptr--; \
480 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
481 goto err_label; \
482 ptr--; \
483 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
484 goto err_label; \
485 } while (0)
487 #define popb(base, ptr, err_label) \
488 ({ \
489 __u8 __res; \
490 if (get_user(__res, base + ptr) < 0) \
491 goto err_label; \
492 ptr++; \
493 __res; \
496 #define popw(base, ptr, err_label) \
497 ({ \
498 __u16 __res; \
499 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
500 goto err_label; \
501 ptr++; \
502 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
503 goto err_label; \
504 ptr++; \
505 __res; \
508 #define popl(base, ptr, err_label) \
509 ({ \
510 __u32 __res; \
511 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
512 goto err_label; \
513 ptr++; \
514 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
515 goto err_label; \
516 ptr++; \
517 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
518 goto err_label; \
519 ptr++; \
520 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
521 goto err_label; \
522 ptr++; \
523 __res; \
526 /* There are so many possible reasons for this function to return
527 * VM86_INTx, so adding another doesn't bother me. We can expect
528 * userspace programs to be able to handle it. (Getting a problem
529 * in userspace is always better than an Oops anyway.) [KD]
531 static void do_int(struct kernel_vm86_regs *regs, int i,
532 unsigned char __user *ssp, unsigned short sp)
534 unsigned long __user *intr_ptr;
535 unsigned long segoffs;
536 struct vm86 *vm86 = current->thread.vm86;
538 if (regs->pt.cs == BIOSSEG)
539 goto cannot_handle;
540 if (is_revectored(i, &vm86->int_revectored))
541 goto cannot_handle;
542 if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
543 goto cannot_handle;
544 intr_ptr = (unsigned long __user *) (i << 2);
545 if (get_user(segoffs, intr_ptr))
546 goto cannot_handle;
547 if ((segoffs >> 16) == BIOSSEG)
548 goto cannot_handle;
549 pushw(ssp, sp, get_vflags(regs), cannot_handle);
550 pushw(ssp, sp, regs->pt.cs, cannot_handle);
551 pushw(ssp, sp, IP(regs), cannot_handle);
552 regs->pt.cs = segoffs >> 16;
553 SP(regs) -= 6;
554 IP(regs) = segoffs & 0xffff;
555 clear_TF(regs);
556 clear_IF(regs);
557 clear_AC(regs);
558 return;
560 cannot_handle:
561 save_v86_state(regs, VM86_INTx + (i << 8));
564 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
566 struct vm86 *vm86 = current->thread.vm86;
568 if (vm86->vm86plus.is_vm86pus) {
569 if ((trapno == 3) || (trapno == 1)) {
570 save_v86_state(regs, VM86_TRAP + (trapno << 8));
571 return 0;
573 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
574 return 0;
576 if (trapno != 1)
577 return 1; /* we let this handle by the calling routine */
578 current->thread.trap_nr = trapno;
579 current->thread.error_code = error_code;
580 force_sig(SIGTRAP, current);
581 return 0;
584 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
586 unsigned char opcode;
587 unsigned char __user *csp;
588 unsigned char __user *ssp;
589 unsigned short ip, sp, orig_flags;
590 int data32, pref_done;
591 struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
593 #define CHECK_IF_IN_TRAP \
594 if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
595 newflags |= X86_EFLAGS_TF
597 orig_flags = *(unsigned short *)&regs->pt.flags;
599 csp = (unsigned char __user *) (regs->pt.cs << 4);
600 ssp = (unsigned char __user *) (regs->pt.ss << 4);
601 sp = SP(regs);
602 ip = IP(regs);
604 data32 = 0;
605 pref_done = 0;
606 do {
607 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
608 case 0x66: /* 32-bit data */ data32 = 1; break;
609 case 0x67: /* 32-bit address */ break;
610 case 0x2e: /* CS */ break;
611 case 0x3e: /* DS */ break;
612 case 0x26: /* ES */ break;
613 case 0x36: /* SS */ break;
614 case 0x65: /* GS */ break;
615 case 0x64: /* FS */ break;
616 case 0xf2: /* repnz */ break;
617 case 0xf3: /* rep */ break;
618 default: pref_done = 1;
620 } while (!pref_done);
622 switch (opcode) {
624 /* pushf */
625 case 0x9c:
626 if (data32) {
627 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
628 SP(regs) -= 4;
629 } else {
630 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
631 SP(regs) -= 2;
633 IP(regs) = ip;
634 goto vm86_fault_return;
636 /* popf */
637 case 0x9d:
639 unsigned long newflags;
640 if (data32) {
641 newflags = popl(ssp, sp, simulate_sigsegv);
642 SP(regs) += 4;
643 } else {
644 newflags = popw(ssp, sp, simulate_sigsegv);
645 SP(regs) += 2;
647 IP(regs) = ip;
648 CHECK_IF_IN_TRAP;
649 if (data32)
650 set_vflags_long(newflags, regs);
651 else
652 set_vflags_short(newflags, regs);
654 goto check_vip;
657 /* int xx */
658 case 0xcd: {
659 int intno = popb(csp, ip, simulate_sigsegv);
660 IP(regs) = ip;
661 if (vmpi->vm86dbg_active) {
662 if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
663 save_v86_state(regs, VM86_INTx + (intno << 8));
664 return;
667 do_int(regs, intno, ssp, sp);
668 return;
671 /* iret */
672 case 0xcf:
674 unsigned long newip;
675 unsigned long newcs;
676 unsigned long newflags;
677 if (data32) {
678 newip = popl(ssp, sp, simulate_sigsegv);
679 newcs = popl(ssp, sp, simulate_sigsegv);
680 newflags = popl(ssp, sp, simulate_sigsegv);
681 SP(regs) += 12;
682 } else {
683 newip = popw(ssp, sp, simulate_sigsegv);
684 newcs = popw(ssp, sp, simulate_sigsegv);
685 newflags = popw(ssp, sp, simulate_sigsegv);
686 SP(regs) += 6;
688 IP(regs) = newip;
689 regs->pt.cs = newcs;
690 CHECK_IF_IN_TRAP;
691 if (data32) {
692 set_vflags_long(newflags, regs);
693 } else {
694 set_vflags_short(newflags, regs);
696 goto check_vip;
699 /* cli */
700 case 0xfa:
701 IP(regs) = ip;
702 clear_IF(regs);
703 goto vm86_fault_return;
705 /* sti */
707 * Damn. This is incorrect: the 'sti' instruction should actually
708 * enable interrupts after the /next/ instruction. Not good.
710 * Probably needs some horsing around with the TF flag. Aiee..
712 case 0xfb:
713 IP(regs) = ip;
714 set_IF(regs);
715 goto check_vip;
717 default:
718 save_v86_state(regs, VM86_UNKNOWN);
721 return;
723 check_vip:
724 if (VEFLAGS & X86_EFLAGS_VIP) {
725 save_v86_state(regs, VM86_STI);
726 return;
729 vm86_fault_return:
730 if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
731 save_v86_state(regs, VM86_PICRETURN);
732 return;
734 if (orig_flags & X86_EFLAGS_TF)
735 handle_vm86_trap(regs, 0, X86_TRAP_DB);
736 return;
738 simulate_sigsegv:
739 /* FIXME: After a long discussion with Stas we finally
740 * agreed, that this is wrong. Here we should
741 * really send a SIGSEGV to the user program.
742 * But how do we create the correct context? We
743 * are inside a general protection fault handler
744 * and has just returned from a page fault handler.
745 * The correct context for the signal handler
746 * should be a mixture of the two, but how do we
747 * get the information? [KD]
749 save_v86_state(regs, VM86_UNKNOWN);
752 /* ---------------- vm86 special IRQ passing stuff ----------------- */
754 #define VM86_IRQNAME "vm86irq"
756 static struct vm86_irqs {
757 struct task_struct *tsk;
758 int sig;
759 } vm86_irqs[16];
761 static DEFINE_SPINLOCK(irqbits_lock);
762 static int irqbits;
764 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
765 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
766 | (1 << SIGUNUSED))
768 static irqreturn_t irq_handler(int intno, void *dev_id)
770 int irq_bit;
771 unsigned long flags;
773 spin_lock_irqsave(&irqbits_lock, flags);
774 irq_bit = 1 << intno;
775 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
776 goto out;
777 irqbits |= irq_bit;
778 if (vm86_irqs[intno].sig)
779 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
781 * IRQ will be re-enabled when user asks for the irq (whether
782 * polling or as a result of the signal)
784 disable_irq_nosync(intno);
785 spin_unlock_irqrestore(&irqbits_lock, flags);
786 return IRQ_HANDLED;
788 out:
789 spin_unlock_irqrestore(&irqbits_lock, flags);
790 return IRQ_NONE;
793 static inline void free_vm86_irq(int irqnumber)
795 unsigned long flags;
797 free_irq(irqnumber, NULL);
798 vm86_irqs[irqnumber].tsk = NULL;
800 spin_lock_irqsave(&irqbits_lock, flags);
801 irqbits &= ~(1 << irqnumber);
802 spin_unlock_irqrestore(&irqbits_lock, flags);
805 void release_vm86_irqs(struct task_struct *task)
807 int i;
808 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
809 if (vm86_irqs[i].tsk == task)
810 free_vm86_irq(i);
813 static inline int get_and_reset_irq(int irqnumber)
815 int bit;
816 unsigned long flags;
817 int ret = 0;
819 if (invalid_vm86_irq(irqnumber)) return 0;
820 if (vm86_irqs[irqnumber].tsk != current) return 0;
821 spin_lock_irqsave(&irqbits_lock, flags);
822 bit = irqbits & (1 << irqnumber);
823 irqbits &= ~bit;
824 if (bit) {
825 enable_irq(irqnumber);
826 ret = 1;
829 spin_unlock_irqrestore(&irqbits_lock, flags);
830 return ret;
834 static int do_vm86_irq_handling(int subfunction, int irqnumber)
836 int ret;
837 switch (subfunction) {
838 case VM86_GET_AND_RESET_IRQ: {
839 return get_and_reset_irq(irqnumber);
841 case VM86_GET_IRQ_BITS: {
842 return irqbits;
844 case VM86_REQUEST_IRQ: {
845 int sig = irqnumber >> 8;
846 int irq = irqnumber & 255;
847 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
848 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
849 if (invalid_vm86_irq(irq)) return -EPERM;
850 if (vm86_irqs[irq].tsk) return -EPERM;
851 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
852 if (ret) return ret;
853 vm86_irqs[irq].sig = sig;
854 vm86_irqs[irq].tsk = current;
855 return irq;
857 case VM86_FREE_IRQ: {
858 if (invalid_vm86_irq(irqnumber)) return -EPERM;
859 if (!vm86_irqs[irqnumber].tsk) return 0;
860 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
861 free_vm86_irq(irqnumber);
862 return 0;
865 return -EINVAL;