Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / crypto / mcryptd.c
blobc4eb9da49d4f55e856ea4199fd0442af77d9fd92
1 /*
2 * Software multibuffer async crypto daemon.
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
6 * Adapted from crypto daemon.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/hardirq.h>
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34 unsigned int tail);
36 struct mcryptd_flush_list {
37 struct list_head list;
38 struct mutex lock;
41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
43 struct hashd_instance_ctx {
44 struct crypto_shash_spawn spawn;
45 struct mcryptd_queue *queue;
48 static void mcryptd_queue_worker(struct work_struct *work);
50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
52 struct mcryptd_flush_list *flist;
54 if (!cstate->flusher_engaged) {
55 /* put the flusher on the flush list */
56 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57 mutex_lock(&flist->lock);
58 list_add_tail(&cstate->flush_list, &flist->list);
59 cstate->flusher_engaged = true;
60 cstate->next_flush = jiffies + delay;
61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62 &cstate->flush, delay);
63 mutex_unlock(&flist->lock);
66 EXPORT_SYMBOL(mcryptd_arm_flusher);
68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
69 unsigned int max_cpu_qlen)
71 int cpu;
72 struct mcryptd_cpu_queue *cpu_queue;
74 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76 if (!queue->cpu_queue)
77 return -ENOMEM;
78 for_each_possible_cpu(cpu) {
79 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
84 return 0;
87 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
89 int cpu;
90 struct mcryptd_cpu_queue *cpu_queue;
92 for_each_possible_cpu(cpu) {
93 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
94 BUG_ON(cpu_queue->queue.qlen);
96 free_percpu(queue->cpu_queue);
99 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
100 struct crypto_async_request *request,
101 struct mcryptd_hash_request_ctx *rctx)
103 int cpu, err;
104 struct mcryptd_cpu_queue *cpu_queue;
106 cpu = get_cpu();
107 cpu_queue = this_cpu_ptr(queue->cpu_queue);
108 rctx->tag.cpu = cpu;
110 err = crypto_enqueue_request(&cpu_queue->queue, request);
111 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
112 cpu, cpu_queue, request);
113 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
114 put_cpu();
116 return err;
120 * Try to opportunisticlly flush the partially completed jobs if
121 * crypto daemon is the only task running.
123 static void mcryptd_opportunistic_flush(void)
125 struct mcryptd_flush_list *flist;
126 struct mcryptd_alg_cstate *cstate;
128 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
129 while (single_task_running()) {
130 mutex_lock(&flist->lock);
131 cstate = list_first_entry_or_null(&flist->list,
132 struct mcryptd_alg_cstate, flush_list);
133 if (!cstate || !cstate->flusher_engaged) {
134 mutex_unlock(&flist->lock);
135 return;
137 list_del(&cstate->flush_list);
138 cstate->flusher_engaged = false;
139 mutex_unlock(&flist->lock);
140 cstate->alg_state->flusher(cstate);
145 * Called in workqueue context, do one real cryption work (via
146 * req->complete) and reschedule itself if there are more work to
147 * do.
149 static void mcryptd_queue_worker(struct work_struct *work)
151 struct mcryptd_cpu_queue *cpu_queue;
152 struct crypto_async_request *req, *backlog;
153 int i;
156 * Need to loop through more than once for multi-buffer to
157 * be effective.
160 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
161 i = 0;
162 while (i < MCRYPTD_BATCH || single_task_running()) {
164 * preempt_disable/enable is used to prevent
165 * being preempted by mcryptd_enqueue_request()
167 local_bh_disable();
168 preempt_disable();
169 backlog = crypto_get_backlog(&cpu_queue->queue);
170 req = crypto_dequeue_request(&cpu_queue->queue);
171 preempt_enable();
172 local_bh_enable();
174 if (!req) {
175 mcryptd_opportunistic_flush();
176 return;
179 if (backlog)
180 backlog->complete(backlog, -EINPROGRESS);
181 req->complete(req, 0);
182 if (!cpu_queue->queue.qlen)
183 return;
184 ++i;
186 if (cpu_queue->queue.qlen)
187 queue_work(kcrypto_wq, &cpu_queue->work);
190 void mcryptd_flusher(struct work_struct *__work)
192 struct mcryptd_alg_cstate *alg_cpu_state;
193 struct mcryptd_alg_state *alg_state;
194 struct mcryptd_flush_list *flist;
195 int cpu;
197 cpu = smp_processor_id();
198 alg_cpu_state = container_of(to_delayed_work(__work),
199 struct mcryptd_alg_cstate, flush);
200 alg_state = alg_cpu_state->alg_state;
201 if (alg_cpu_state->cpu != cpu)
202 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
203 cpu, alg_cpu_state->cpu);
205 if (alg_cpu_state->flusher_engaged) {
206 flist = per_cpu_ptr(mcryptd_flist, cpu);
207 mutex_lock(&flist->lock);
208 list_del(&alg_cpu_state->flush_list);
209 alg_cpu_state->flusher_engaged = false;
210 mutex_unlock(&flist->lock);
211 alg_state->flusher(alg_cpu_state);
214 EXPORT_SYMBOL_GPL(mcryptd_flusher);
216 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
218 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
219 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
221 return ictx->queue;
224 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
225 unsigned int tail)
227 char *p;
228 struct crypto_instance *inst;
229 int err;
231 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
232 if (!p)
233 return ERR_PTR(-ENOMEM);
235 inst = (void *)(p + head);
237 err = -ENAMETOOLONG;
238 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
239 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
240 goto out_free_inst;
242 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
244 inst->alg.cra_priority = alg->cra_priority + 50;
245 inst->alg.cra_blocksize = alg->cra_blocksize;
246 inst->alg.cra_alignmask = alg->cra_alignmask;
248 out:
249 return p;
251 out_free_inst:
252 kfree(p);
253 p = ERR_PTR(err);
254 goto out;
257 static inline void mcryptd_check_internal(struct rtattr **tb, u32 *type,
258 u32 *mask)
260 struct crypto_attr_type *algt;
262 algt = crypto_get_attr_type(tb);
263 if (IS_ERR(algt))
264 return;
265 if ((algt->type & CRYPTO_ALG_INTERNAL))
266 *type |= CRYPTO_ALG_INTERNAL;
267 if ((algt->mask & CRYPTO_ALG_INTERNAL))
268 *mask |= CRYPTO_ALG_INTERNAL;
271 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
273 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
274 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
275 struct crypto_shash_spawn *spawn = &ictx->spawn;
276 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
277 struct crypto_shash *hash;
279 hash = crypto_spawn_shash(spawn);
280 if (IS_ERR(hash))
281 return PTR_ERR(hash);
283 ctx->child = hash;
284 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
285 sizeof(struct mcryptd_hash_request_ctx) +
286 crypto_shash_descsize(hash));
287 return 0;
290 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
292 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
294 crypto_free_shash(ctx->child);
297 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
298 const u8 *key, unsigned int keylen)
300 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
301 struct crypto_shash *child = ctx->child;
302 int err;
304 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
305 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
306 CRYPTO_TFM_REQ_MASK);
307 err = crypto_shash_setkey(child, key, keylen);
308 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
309 CRYPTO_TFM_RES_MASK);
310 return err;
313 static int mcryptd_hash_enqueue(struct ahash_request *req,
314 crypto_completion_t complete)
316 int ret;
318 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
319 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
320 struct mcryptd_queue *queue =
321 mcryptd_get_queue(crypto_ahash_tfm(tfm));
323 rctx->complete = req->base.complete;
324 req->base.complete = complete;
326 ret = mcryptd_enqueue_request(queue, &req->base, rctx);
328 return ret;
331 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
333 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
334 struct crypto_shash *child = ctx->child;
335 struct ahash_request *req = ahash_request_cast(req_async);
336 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
337 struct shash_desc *desc = &rctx->desc;
339 if (unlikely(err == -EINPROGRESS))
340 goto out;
342 desc->tfm = child;
343 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
345 err = crypto_shash_init(desc);
347 req->base.complete = rctx->complete;
349 out:
350 local_bh_disable();
351 rctx->complete(&req->base, err);
352 local_bh_enable();
355 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
357 return mcryptd_hash_enqueue(req, mcryptd_hash_init);
360 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
362 struct ahash_request *req = ahash_request_cast(req_async);
363 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
365 if (unlikely(err == -EINPROGRESS))
366 goto out;
368 err = shash_ahash_mcryptd_update(req, &rctx->desc);
369 if (err) {
370 req->base.complete = rctx->complete;
371 goto out;
374 return;
375 out:
376 local_bh_disable();
377 rctx->complete(&req->base, err);
378 local_bh_enable();
381 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
383 return mcryptd_hash_enqueue(req, mcryptd_hash_update);
386 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
388 struct ahash_request *req = ahash_request_cast(req_async);
389 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
391 if (unlikely(err == -EINPROGRESS))
392 goto out;
394 err = shash_ahash_mcryptd_final(req, &rctx->desc);
395 if (err) {
396 req->base.complete = rctx->complete;
397 goto out;
400 return;
401 out:
402 local_bh_disable();
403 rctx->complete(&req->base, err);
404 local_bh_enable();
407 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
409 return mcryptd_hash_enqueue(req, mcryptd_hash_final);
412 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
414 struct ahash_request *req = ahash_request_cast(req_async);
415 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
417 if (unlikely(err == -EINPROGRESS))
418 goto out;
420 err = shash_ahash_mcryptd_finup(req, &rctx->desc);
422 if (err) {
423 req->base.complete = rctx->complete;
424 goto out;
427 return;
428 out:
429 local_bh_disable();
430 rctx->complete(&req->base, err);
431 local_bh_enable();
434 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
436 return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
439 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
441 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
442 struct crypto_shash *child = ctx->child;
443 struct ahash_request *req = ahash_request_cast(req_async);
444 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
445 struct shash_desc *desc = &rctx->desc;
447 if (unlikely(err == -EINPROGRESS))
448 goto out;
450 desc->tfm = child;
451 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; /* check this again */
453 err = shash_ahash_mcryptd_digest(req, desc);
455 if (err) {
456 req->base.complete = rctx->complete;
457 goto out;
460 return;
461 out:
462 local_bh_disable();
463 rctx->complete(&req->base, err);
464 local_bh_enable();
467 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
469 return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
472 static int mcryptd_hash_export(struct ahash_request *req, void *out)
474 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
476 return crypto_shash_export(&rctx->desc, out);
479 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
481 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
483 return crypto_shash_import(&rctx->desc, in);
486 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
487 struct mcryptd_queue *queue)
489 struct hashd_instance_ctx *ctx;
490 struct ahash_instance *inst;
491 struct shash_alg *salg;
492 struct crypto_alg *alg;
493 u32 type = 0;
494 u32 mask = 0;
495 int err;
497 mcryptd_check_internal(tb, &type, &mask);
499 salg = shash_attr_alg(tb[1], type, mask);
500 if (IS_ERR(salg))
501 return PTR_ERR(salg);
503 alg = &salg->base;
504 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
505 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
506 sizeof(*ctx));
507 err = PTR_ERR(inst);
508 if (IS_ERR(inst))
509 goto out_put_alg;
511 ctx = ahash_instance_ctx(inst);
512 ctx->queue = queue;
514 err = crypto_init_shash_spawn(&ctx->spawn, salg,
515 ahash_crypto_instance(inst));
516 if (err)
517 goto out_free_inst;
519 type = CRYPTO_ALG_ASYNC;
520 if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
521 type |= CRYPTO_ALG_INTERNAL;
522 inst->alg.halg.base.cra_flags = type;
524 inst->alg.halg.digestsize = salg->digestsize;
525 inst->alg.halg.statesize = salg->statesize;
526 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
528 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
529 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
531 inst->alg.init = mcryptd_hash_init_enqueue;
532 inst->alg.update = mcryptd_hash_update_enqueue;
533 inst->alg.final = mcryptd_hash_final_enqueue;
534 inst->alg.finup = mcryptd_hash_finup_enqueue;
535 inst->alg.export = mcryptd_hash_export;
536 inst->alg.import = mcryptd_hash_import;
537 inst->alg.setkey = mcryptd_hash_setkey;
538 inst->alg.digest = mcryptd_hash_digest_enqueue;
540 err = ahash_register_instance(tmpl, inst);
541 if (err) {
542 crypto_drop_shash(&ctx->spawn);
543 out_free_inst:
544 kfree(inst);
547 out_put_alg:
548 crypto_mod_put(alg);
549 return err;
552 static struct mcryptd_queue mqueue;
554 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
556 struct crypto_attr_type *algt;
558 algt = crypto_get_attr_type(tb);
559 if (IS_ERR(algt))
560 return PTR_ERR(algt);
562 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
563 case CRYPTO_ALG_TYPE_DIGEST:
564 return mcryptd_create_hash(tmpl, tb, &mqueue);
565 break;
568 return -EINVAL;
571 static void mcryptd_free(struct crypto_instance *inst)
573 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
574 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
576 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
577 case CRYPTO_ALG_TYPE_AHASH:
578 crypto_drop_shash(&hctx->spawn);
579 kfree(ahash_instance(inst));
580 return;
581 default:
582 crypto_drop_spawn(&ctx->spawn);
583 kfree(inst);
587 static struct crypto_template mcryptd_tmpl = {
588 .name = "mcryptd",
589 .create = mcryptd_create,
590 .free = mcryptd_free,
591 .module = THIS_MODULE,
594 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
595 u32 type, u32 mask)
597 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
598 struct crypto_ahash *tfm;
600 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
601 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
602 return ERR_PTR(-EINVAL);
603 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
604 if (IS_ERR(tfm))
605 return ERR_CAST(tfm);
606 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
607 crypto_free_ahash(tfm);
608 return ERR_PTR(-EINVAL);
611 return __mcryptd_ahash_cast(tfm);
613 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
615 int shash_ahash_mcryptd_digest(struct ahash_request *req,
616 struct shash_desc *desc)
618 int err;
620 err = crypto_shash_init(desc) ?:
621 shash_ahash_mcryptd_finup(req, desc);
623 return err;
625 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest);
627 int shash_ahash_mcryptd_update(struct ahash_request *req,
628 struct shash_desc *desc)
630 struct crypto_shash *tfm = desc->tfm;
631 struct shash_alg *shash = crypto_shash_alg(tfm);
633 /* alignment is to be done by multi-buffer crypto algorithm if needed */
635 return shash->update(desc, NULL, 0);
637 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update);
639 int shash_ahash_mcryptd_finup(struct ahash_request *req,
640 struct shash_desc *desc)
642 struct crypto_shash *tfm = desc->tfm;
643 struct shash_alg *shash = crypto_shash_alg(tfm);
645 /* alignment is to be done by multi-buffer crypto algorithm if needed */
647 return shash->finup(desc, NULL, 0, req->result);
649 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup);
651 int shash_ahash_mcryptd_final(struct ahash_request *req,
652 struct shash_desc *desc)
654 struct crypto_shash *tfm = desc->tfm;
655 struct shash_alg *shash = crypto_shash_alg(tfm);
657 /* alignment is to be done by multi-buffer crypto algorithm if needed */
659 return shash->final(desc, req->result);
661 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final);
663 struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
665 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
667 return ctx->child;
669 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
671 struct shash_desc *mcryptd_shash_desc(struct ahash_request *req)
673 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
674 return &rctx->desc;
676 EXPORT_SYMBOL_GPL(mcryptd_shash_desc);
678 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
680 crypto_free_ahash(&tfm->base);
682 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
685 static int __init mcryptd_init(void)
687 int err, cpu;
688 struct mcryptd_flush_list *flist;
690 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
691 for_each_possible_cpu(cpu) {
692 flist = per_cpu_ptr(mcryptd_flist, cpu);
693 INIT_LIST_HEAD(&flist->list);
694 mutex_init(&flist->lock);
697 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
698 if (err) {
699 free_percpu(mcryptd_flist);
700 return err;
703 err = crypto_register_template(&mcryptd_tmpl);
704 if (err) {
705 mcryptd_fini_queue(&mqueue);
706 free_percpu(mcryptd_flist);
709 return err;
712 static void __exit mcryptd_exit(void)
714 mcryptd_fini_queue(&mqueue);
715 crypto_unregister_template(&mcryptd_tmpl);
716 free_percpu(mcryptd_flist);
719 subsys_initcall(mcryptd_init);
720 module_exit(mcryptd_exit);
722 MODULE_LICENSE("GPL");
723 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
724 MODULE_ALIAS_CRYPTO("mcryptd");