Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / fs / pstore / ram_core.c
blob76c3f80efdfa8c89cafac242e3fc3eec2f37601d
1 /*
2 * Copyright (C) 2012 Google, Inc.
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
15 #define pr_fmt(fmt) "persistent_ram: " fmt
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/list.h>
24 #include <linux/memblock.h>
25 #include <linux/rslib.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pstore_ram.h>
29 #include <asm/page.h>
31 struct persistent_ram_buffer {
32 uint32_t sig;
33 atomic_t start;
34 atomic_t size;
35 uint8_t data[0];
38 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
40 static inline size_t buffer_size(struct persistent_ram_zone *prz)
42 return atomic_read(&prz->buffer->size);
45 static inline size_t buffer_start(struct persistent_ram_zone *prz)
47 return atomic_read(&prz->buffer->start);
50 /* increase and wrap the start pointer, returning the old value */
51 static size_t buffer_start_add_atomic(struct persistent_ram_zone *prz, size_t a)
53 int old;
54 int new;
56 do {
57 old = atomic_read(&prz->buffer->start);
58 new = old + a;
59 while (unlikely(new >= prz->buffer_size))
60 new -= prz->buffer_size;
61 } while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
63 return old;
66 /* increase the size counter until it hits the max size */
67 static void buffer_size_add_atomic(struct persistent_ram_zone *prz, size_t a)
69 size_t old;
70 size_t new;
72 if (atomic_read(&prz->buffer->size) == prz->buffer_size)
73 return;
75 do {
76 old = atomic_read(&prz->buffer->size);
77 new = old + a;
78 if (new > prz->buffer_size)
79 new = prz->buffer_size;
80 } while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
83 static DEFINE_RAW_SPINLOCK(buffer_lock);
85 /* increase and wrap the start pointer, returning the old value */
86 static size_t buffer_start_add_locked(struct persistent_ram_zone *prz, size_t a)
88 int old;
89 int new;
90 unsigned long flags;
92 raw_spin_lock_irqsave(&buffer_lock, flags);
94 old = atomic_read(&prz->buffer->start);
95 new = old + a;
96 while (unlikely(new >= prz->buffer_size))
97 new -= prz->buffer_size;
98 atomic_set(&prz->buffer->start, new);
100 raw_spin_unlock_irqrestore(&buffer_lock, flags);
102 return old;
105 /* increase the size counter until it hits the max size */
106 static void buffer_size_add_locked(struct persistent_ram_zone *prz, size_t a)
108 size_t old;
109 size_t new;
110 unsigned long flags;
112 raw_spin_lock_irqsave(&buffer_lock, flags);
114 old = atomic_read(&prz->buffer->size);
115 if (old == prz->buffer_size)
116 goto exit;
118 new = old + a;
119 if (new > prz->buffer_size)
120 new = prz->buffer_size;
121 atomic_set(&prz->buffer->size, new);
123 exit:
124 raw_spin_unlock_irqrestore(&buffer_lock, flags);
127 static size_t (*buffer_start_add)(struct persistent_ram_zone *, size_t) = buffer_start_add_atomic;
128 static void (*buffer_size_add)(struct persistent_ram_zone *, size_t) = buffer_size_add_atomic;
130 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
131 uint8_t *data, size_t len, uint8_t *ecc)
133 int i;
134 uint16_t par[prz->ecc_info.ecc_size];
136 /* Initialize the parity buffer */
137 memset(par, 0, sizeof(par));
138 encode_rs8(prz->rs_decoder, data, len, par, 0);
139 for (i = 0; i < prz->ecc_info.ecc_size; i++)
140 ecc[i] = par[i];
143 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
144 void *data, size_t len, uint8_t *ecc)
146 int i;
147 uint16_t par[prz->ecc_info.ecc_size];
149 for (i = 0; i < prz->ecc_info.ecc_size; i++)
150 par[i] = ecc[i];
151 return decode_rs8(prz->rs_decoder, data, par, len,
152 NULL, 0, NULL, 0, NULL);
155 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
156 unsigned int start, unsigned int count)
158 struct persistent_ram_buffer *buffer = prz->buffer;
159 uint8_t *buffer_end = buffer->data + prz->buffer_size;
160 uint8_t *block;
161 uint8_t *par;
162 int ecc_block_size = prz->ecc_info.block_size;
163 int ecc_size = prz->ecc_info.ecc_size;
164 int size = ecc_block_size;
166 if (!ecc_size)
167 return;
169 block = buffer->data + (start & ~(ecc_block_size - 1));
170 par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
172 do {
173 if (block + ecc_block_size > buffer_end)
174 size = buffer_end - block;
175 persistent_ram_encode_rs8(prz, block, size, par);
176 block += ecc_block_size;
177 par += ecc_size;
178 } while (block < buffer->data + start + count);
181 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
183 struct persistent_ram_buffer *buffer = prz->buffer;
185 if (!prz->ecc_info.ecc_size)
186 return;
188 persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
189 prz->par_header);
192 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
194 struct persistent_ram_buffer *buffer = prz->buffer;
195 uint8_t *block;
196 uint8_t *par;
198 if (!prz->ecc_info.ecc_size)
199 return;
201 block = buffer->data;
202 par = prz->par_buffer;
203 while (block < buffer->data + buffer_size(prz)) {
204 int numerr;
205 int size = prz->ecc_info.block_size;
206 if (block + size > buffer->data + prz->buffer_size)
207 size = buffer->data + prz->buffer_size - block;
208 numerr = persistent_ram_decode_rs8(prz, block, size, par);
209 if (numerr > 0) {
210 pr_devel("error in block %p, %d\n", block, numerr);
211 prz->corrected_bytes += numerr;
212 } else if (numerr < 0) {
213 pr_devel("uncorrectable error in block %p\n", block);
214 prz->bad_blocks++;
216 block += prz->ecc_info.block_size;
217 par += prz->ecc_info.ecc_size;
221 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
222 struct persistent_ram_ecc_info *ecc_info)
224 int numerr;
225 struct persistent_ram_buffer *buffer = prz->buffer;
226 int ecc_blocks;
227 size_t ecc_total;
229 if (!ecc_info || !ecc_info->ecc_size)
230 return 0;
232 prz->ecc_info.block_size = ecc_info->block_size ?: 128;
233 prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
234 prz->ecc_info.symsize = ecc_info->symsize ?: 8;
235 prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
237 ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
238 prz->ecc_info.block_size +
239 prz->ecc_info.ecc_size);
240 ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
241 if (ecc_total >= prz->buffer_size) {
242 pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
243 __func__, prz->ecc_info.ecc_size,
244 ecc_total, prz->buffer_size);
245 return -EINVAL;
248 prz->buffer_size -= ecc_total;
249 prz->par_buffer = buffer->data + prz->buffer_size;
250 prz->par_header = prz->par_buffer +
251 ecc_blocks * prz->ecc_info.ecc_size;
254 * first consecutive root is 0
255 * primitive element to generate roots = 1
257 prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
258 0, 1, prz->ecc_info.ecc_size);
259 if (prz->rs_decoder == NULL) {
260 pr_info("init_rs failed\n");
261 return -EINVAL;
264 prz->corrected_bytes = 0;
265 prz->bad_blocks = 0;
267 numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
268 prz->par_header);
269 if (numerr > 0) {
270 pr_info("error in header, %d\n", numerr);
271 prz->corrected_bytes += numerr;
272 } else if (numerr < 0) {
273 pr_info("uncorrectable error in header\n");
274 prz->bad_blocks++;
277 return 0;
280 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
281 char *str, size_t len)
283 ssize_t ret;
285 if (!prz->ecc_info.ecc_size)
286 return 0;
288 if (prz->corrected_bytes || prz->bad_blocks)
289 ret = snprintf(str, len, ""
290 "\n%d Corrected bytes, %d unrecoverable blocks\n",
291 prz->corrected_bytes, prz->bad_blocks);
292 else
293 ret = snprintf(str, len, "\nNo errors detected\n");
295 return ret;
298 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
299 const void *s, unsigned int start, unsigned int count)
301 struct persistent_ram_buffer *buffer = prz->buffer;
302 memcpy(buffer->data + start, s, count);
303 persistent_ram_update_ecc(prz, start, count);
306 void persistent_ram_save_old(struct persistent_ram_zone *prz)
308 struct persistent_ram_buffer *buffer = prz->buffer;
309 size_t size = buffer_size(prz);
310 size_t start = buffer_start(prz);
312 if (!size)
313 return;
315 if (!prz->old_log) {
316 persistent_ram_ecc_old(prz);
317 prz->old_log = kmalloc(size, GFP_KERNEL);
319 if (!prz->old_log) {
320 pr_err("failed to allocate buffer\n");
321 return;
324 prz->old_log_size = size;
325 memcpy(prz->old_log, &buffer->data[start], size - start);
326 memcpy(prz->old_log + size - start, &buffer->data[0], start);
329 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
330 const void *s, unsigned int count)
332 int rem;
333 int c = count;
334 size_t start;
336 if (unlikely(c > prz->buffer_size)) {
337 s += c - prz->buffer_size;
338 c = prz->buffer_size;
341 buffer_size_add(prz, c);
343 start = buffer_start_add(prz, c);
345 rem = prz->buffer_size - start;
346 if (unlikely(rem < c)) {
347 persistent_ram_update(prz, s, start, rem);
348 s += rem;
349 c -= rem;
350 start = 0;
352 persistent_ram_update(prz, s, start, c);
354 persistent_ram_update_header_ecc(prz);
356 return count;
359 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
361 return prz->old_log_size;
364 void *persistent_ram_old(struct persistent_ram_zone *prz)
366 return prz->old_log;
369 void persistent_ram_free_old(struct persistent_ram_zone *prz)
371 kfree(prz->old_log);
372 prz->old_log = NULL;
373 prz->old_log_size = 0;
376 void persistent_ram_zap(struct persistent_ram_zone *prz)
378 atomic_set(&prz->buffer->start, 0);
379 atomic_set(&prz->buffer->size, 0);
380 persistent_ram_update_header_ecc(prz);
383 static void *persistent_ram_vmap(phys_addr_t start, size_t size,
384 unsigned int memtype)
386 struct page **pages;
387 phys_addr_t page_start;
388 unsigned int page_count;
389 pgprot_t prot;
390 unsigned int i;
391 void *vaddr;
393 page_start = start - offset_in_page(start);
394 page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
396 if (memtype)
397 prot = pgprot_noncached(PAGE_KERNEL);
398 else
399 prot = pgprot_writecombine(PAGE_KERNEL);
401 pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
402 if (!pages) {
403 pr_err("%s: Failed to allocate array for %u pages\n",
404 __func__, page_count);
405 return NULL;
408 for (i = 0; i < page_count; i++) {
409 phys_addr_t addr = page_start + i * PAGE_SIZE;
410 pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
412 vaddr = vmap(pages, page_count, VM_MAP, prot);
413 kfree(pages);
415 return vaddr;
418 static void *persistent_ram_iomap(phys_addr_t start, size_t size,
419 unsigned int memtype)
421 void *va;
423 if (!request_mem_region(start, size, "persistent_ram")) {
424 pr_err("request mem region (0x%llx@0x%llx) failed\n",
425 (unsigned long long)size, (unsigned long long)start);
426 return NULL;
429 buffer_start_add = buffer_start_add_locked;
430 buffer_size_add = buffer_size_add_locked;
432 if (memtype)
433 va = ioremap(start, size);
434 else
435 va = ioremap_wc(start, size);
437 return va;
440 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
441 struct persistent_ram_zone *prz, int memtype)
443 prz->paddr = start;
444 prz->size = size;
446 if (pfn_valid(start >> PAGE_SHIFT))
447 prz->vaddr = persistent_ram_vmap(start, size, memtype);
448 else
449 prz->vaddr = persistent_ram_iomap(start, size, memtype);
451 if (!prz->vaddr) {
452 pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
453 (unsigned long long)size, (unsigned long long)start);
454 return -ENOMEM;
457 prz->buffer = prz->vaddr + offset_in_page(start);
458 prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
460 return 0;
463 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
464 struct persistent_ram_ecc_info *ecc_info)
466 int ret;
468 ret = persistent_ram_init_ecc(prz, ecc_info);
469 if (ret)
470 return ret;
472 sig ^= PERSISTENT_RAM_SIG;
474 if (prz->buffer->sig == sig) {
475 if (buffer_size(prz) > prz->buffer_size ||
476 buffer_start(prz) > buffer_size(prz))
477 pr_info("found existing invalid buffer, size %zu, start %zu\n",
478 buffer_size(prz), buffer_start(prz));
479 else {
480 pr_debug("found existing buffer, size %zu, start %zu\n",
481 buffer_size(prz), buffer_start(prz));
482 persistent_ram_save_old(prz);
483 return 0;
485 } else {
486 pr_debug("no valid data in buffer (sig = 0x%08x)\n",
487 prz->buffer->sig);
490 prz->buffer->sig = sig;
491 persistent_ram_zap(prz);
493 return 0;
496 void persistent_ram_free(struct persistent_ram_zone *prz)
498 if (!prz)
499 return;
501 if (prz->vaddr) {
502 if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
503 vunmap(prz->vaddr);
504 } else {
505 iounmap(prz->vaddr);
506 release_mem_region(prz->paddr, prz->size);
508 prz->vaddr = NULL;
510 persistent_ram_free_old(prz);
511 kfree(prz);
514 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
515 u32 sig, struct persistent_ram_ecc_info *ecc_info,
516 unsigned int memtype)
518 struct persistent_ram_zone *prz;
519 int ret = -ENOMEM;
521 prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
522 if (!prz) {
523 pr_err("failed to allocate persistent ram zone\n");
524 goto err;
527 ret = persistent_ram_buffer_map(start, size, prz, memtype);
528 if (ret)
529 goto err;
531 ret = persistent_ram_post_init(prz, sig, ecc_info);
532 if (ret)
533 goto err;
535 return prz;
536 err:
537 persistent_ram_free(prz);
538 return ERR_PTR(ret);