2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
50 #include <asm/irq_regs.h>
52 typedef int (*remote_function_f
)(void *);
54 struct remote_function_call
{
55 struct task_struct
*p
;
56 remote_function_f func
;
61 static void remote_function(void *data
)
63 struct remote_function_call
*tfc
= data
;
64 struct task_struct
*p
= tfc
->p
;
68 if (task_cpu(p
) != smp_processor_id())
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
76 tfc
->ret
= -ESRCH
; /* No such (running) process */
81 tfc
->ret
= tfc
->func(tfc
->info
);
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
98 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
100 struct remote_function_call data
= {
109 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
112 } while (ret
== -EAGAIN
);
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
122 * Calls the function @func on the remote cpu.
124 * returns: @func return value or -ENXIO when the cpu is offline
126 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
128 struct remote_function_call data
= {
132 .ret
= -ENXIO
, /* No such CPU */
135 smp_call_function_single(cpu
, remote_function
, &data
, 1);
140 static inline struct perf_cpu_context
*
141 __get_cpu_context(struct perf_event_context
*ctx
)
143 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
146 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
147 struct perf_event_context
*ctx
)
149 raw_spin_lock(&cpuctx
->ctx
.lock
);
151 raw_spin_lock(&ctx
->lock
);
154 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
155 struct perf_event_context
*ctx
)
158 raw_spin_unlock(&ctx
->lock
);
159 raw_spin_unlock(&cpuctx
->ctx
.lock
);
162 #define TASK_TOMBSTONE ((void *)-1L)
164 static bool is_kernel_event(struct perf_event
*event
)
166 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
170 * On task ctx scheduling...
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
176 * This however results in two special cases:
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
189 struct perf_event_context
*, void *);
191 struct event_function_struct
{
192 struct perf_event
*event
;
197 static int event_function(void *info
)
199 struct event_function_struct
*efs
= info
;
200 struct perf_event
*event
= efs
->event
;
201 struct perf_event_context
*ctx
= event
->ctx
;
202 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
203 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
206 WARN_ON_ONCE(!irqs_disabled());
208 perf_ctx_lock(cpuctx
, task_ctx
);
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
214 if (ctx
->task
!= current
) {
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
226 WARN_ON_ONCE(!ctx
->is_active
);
228 * And since we have ctx->is_active, cpuctx->task_ctx must
231 WARN_ON_ONCE(task_ctx
!= ctx
);
233 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
236 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
238 perf_ctx_unlock(cpuctx
, task_ctx
);
243 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
245 struct event_function_struct efs
= {
251 int ret
= event_function(&efs
);
255 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
257 struct perf_event_context
*ctx
= event
->ctx
;
258 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
259 struct event_function_struct efs
= {
265 if (!event
->parent
) {
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
271 lockdep_assert_held(&ctx
->mutex
);
275 cpu_function_call(event
->cpu
, event_function
, &efs
);
279 if (task
== TASK_TOMBSTONE
)
283 if (!task_function_call(task
, event_function
, &efs
))
286 raw_spin_lock_irq(&ctx
->lock
);
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
292 if (task
== TASK_TOMBSTONE
) {
293 raw_spin_unlock_irq(&ctx
->lock
);
296 if (ctx
->is_active
) {
297 raw_spin_unlock_irq(&ctx
->lock
);
300 func(event
, NULL
, ctx
, data
);
301 raw_spin_unlock_irq(&ctx
->lock
);
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
310 * branch priv levels that need permission checks
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
317 EVENT_FLEXIBLE
= 0x1,
320 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328 static void perf_sched_delayed(struct work_struct
*work
);
329 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
330 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
331 static DEFINE_MUTEX(perf_sched_mutex
);
332 static atomic_t perf_sched_count
;
334 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
335 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
337 static atomic_t nr_mmap_events __read_mostly
;
338 static atomic_t nr_comm_events __read_mostly
;
339 static atomic_t nr_task_events __read_mostly
;
340 static atomic_t nr_freq_events __read_mostly
;
341 static atomic_t nr_switch_events __read_mostly
;
343 static LIST_HEAD(pmus
);
344 static DEFINE_MUTEX(pmus_lock
);
345 static struct srcu_struct pmus_srcu
;
348 * perf event paranoia level:
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
351 * 1 - disallow cpu events for unpriv
352 * 2 - disallow kernel profiling for unpriv
354 int sysctl_perf_event_paranoid __read_mostly
= 1;
356 /* Minimum for 512 kiB + 1 user control page */
357 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
360 * max perf event sample rate
362 #define DEFAULT_MAX_SAMPLE_RATE 100000
363 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
366 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
368 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
369 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
371 static int perf_sample_allowed_ns __read_mostly
=
372 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
374 static void update_perf_cpu_limits(void)
376 u64 tmp
= perf_sample_period_ns
;
378 tmp
*= sysctl_perf_cpu_time_max_percent
;
379 tmp
= div_u64(tmp
, 100);
383 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
386 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
388 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
389 void __user
*buffer
, size_t *lenp
,
392 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
397 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
398 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
399 update_perf_cpu_limits();
404 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
406 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
407 void __user
*buffer
, size_t *lenp
,
410 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
415 if (sysctl_perf_cpu_time_max_percent
== 100 ||
416 sysctl_perf_cpu_time_max_percent
== 0) {
418 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
419 WRITE_ONCE(perf_sample_allowed_ns
, 0);
421 update_perf_cpu_limits();
428 * perf samples are done in some very critical code paths (NMIs).
429 * If they take too much CPU time, the system can lock up and not
430 * get any real work done. This will drop the sample rate when
431 * we detect that events are taking too long.
433 #define NR_ACCUMULATED_SAMPLES 128
434 static DEFINE_PER_CPU(u64
, running_sample_length
);
436 static u64 __report_avg
;
437 static u64 __report_allowed
;
439 static void perf_duration_warn(struct irq_work
*w
)
441 printk_ratelimited(KERN_WARNING
442 "perf: interrupt took too long (%lld > %lld), lowering "
443 "kernel.perf_event_max_sample_rate to %d\n",
444 __report_avg
, __report_allowed
,
445 sysctl_perf_event_sample_rate
);
448 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
450 void perf_sample_event_took(u64 sample_len_ns
)
452 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
460 /* Decay the counter by 1 average sample. */
461 running_len
= __this_cpu_read(running_sample_length
);
462 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
463 running_len
+= sample_len_ns
;
464 __this_cpu_write(running_sample_length
, running_len
);
467 * Note: this will be biased artifically low until we have
468 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
469 * from having to maintain a count.
471 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
472 if (avg_len
<= max_len
)
475 __report_avg
= avg_len
;
476 __report_allowed
= max_len
;
479 * Compute a throttle threshold 25% below the current duration.
481 avg_len
+= avg_len
/ 4;
482 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
488 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
489 WRITE_ONCE(max_samples_per_tick
, max
);
491 sysctl_perf_event_sample_rate
= max
* HZ
;
492 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
494 if (!irq_work_queue(&perf_duration_work
)) {
495 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
496 "kernel.perf_event_max_sample_rate to %d\n",
497 __report_avg
, __report_allowed
,
498 sysctl_perf_event_sample_rate
);
502 static atomic64_t perf_event_id
;
504 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
505 enum event_type_t event_type
);
507 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
508 enum event_type_t event_type
,
509 struct task_struct
*task
);
511 static void update_context_time(struct perf_event_context
*ctx
);
512 static u64
perf_event_time(struct perf_event
*event
);
514 void __weak
perf_event_print_debug(void) { }
516 extern __weak
const char *perf_pmu_name(void)
521 static inline u64
perf_clock(void)
523 return local_clock();
526 static inline u64
perf_event_clock(struct perf_event
*event
)
528 return event
->clock();
531 #ifdef CONFIG_CGROUP_PERF
534 perf_cgroup_match(struct perf_event
*event
)
536 struct perf_event_context
*ctx
= event
->ctx
;
537 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
539 /* @event doesn't care about cgroup */
543 /* wants specific cgroup scope but @cpuctx isn't associated with any */
548 * Cgroup scoping is recursive. An event enabled for a cgroup is
549 * also enabled for all its descendant cgroups. If @cpuctx's
550 * cgroup is a descendant of @event's (the test covers identity
551 * case), it's a match.
553 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
554 event
->cgrp
->css
.cgroup
);
557 static inline void perf_detach_cgroup(struct perf_event
*event
)
559 css_put(&event
->cgrp
->css
);
563 static inline int is_cgroup_event(struct perf_event
*event
)
565 return event
->cgrp
!= NULL
;
568 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
570 struct perf_cgroup_info
*t
;
572 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
576 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
578 struct perf_cgroup_info
*info
;
583 info
= this_cpu_ptr(cgrp
->info
);
585 info
->time
+= now
- info
->timestamp
;
586 info
->timestamp
= now
;
589 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
591 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
593 __update_cgrp_time(cgrp_out
);
596 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
598 struct perf_cgroup
*cgrp
;
601 * ensure we access cgroup data only when needed and
602 * when we know the cgroup is pinned (css_get)
604 if (!is_cgroup_event(event
))
607 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
609 * Do not update time when cgroup is not active
611 if (cgrp
== event
->cgrp
)
612 __update_cgrp_time(event
->cgrp
);
616 perf_cgroup_set_timestamp(struct task_struct
*task
,
617 struct perf_event_context
*ctx
)
619 struct perf_cgroup
*cgrp
;
620 struct perf_cgroup_info
*info
;
623 * ctx->lock held by caller
624 * ensure we do not access cgroup data
625 * unless we have the cgroup pinned (css_get)
627 if (!task
|| !ctx
->nr_cgroups
)
630 cgrp
= perf_cgroup_from_task(task
, ctx
);
631 info
= this_cpu_ptr(cgrp
->info
);
632 info
->timestamp
= ctx
->timestamp
;
635 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
636 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
639 * reschedule events based on the cgroup constraint of task.
641 * mode SWOUT : schedule out everything
642 * mode SWIN : schedule in based on cgroup for next
644 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
646 struct perf_cpu_context
*cpuctx
;
651 * disable interrupts to avoid geting nr_cgroup
652 * changes via __perf_event_disable(). Also
655 local_irq_save(flags
);
658 * we reschedule only in the presence of cgroup
659 * constrained events.
662 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
663 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
664 if (cpuctx
->unique_pmu
!= pmu
)
665 continue; /* ensure we process each cpuctx once */
668 * perf_cgroup_events says at least one
669 * context on this CPU has cgroup events.
671 * ctx->nr_cgroups reports the number of cgroup
672 * events for a context.
674 if (cpuctx
->ctx
.nr_cgroups
> 0) {
675 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
676 perf_pmu_disable(cpuctx
->ctx
.pmu
);
678 if (mode
& PERF_CGROUP_SWOUT
) {
679 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
681 * must not be done before ctxswout due
682 * to event_filter_match() in event_sched_out()
687 if (mode
& PERF_CGROUP_SWIN
) {
688 WARN_ON_ONCE(cpuctx
->cgrp
);
690 * set cgrp before ctxsw in to allow
691 * event_filter_match() to not have to pass
693 * we pass the cpuctx->ctx to perf_cgroup_from_task()
694 * because cgorup events are only per-cpu
696 cpuctx
->cgrp
= perf_cgroup_from_task(task
, &cpuctx
->ctx
);
697 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
699 perf_pmu_enable(cpuctx
->ctx
.pmu
);
700 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
704 local_irq_restore(flags
);
707 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
708 struct task_struct
*next
)
710 struct perf_cgroup
*cgrp1
;
711 struct perf_cgroup
*cgrp2
= NULL
;
715 * we come here when we know perf_cgroup_events > 0
716 * we do not need to pass the ctx here because we know
717 * we are holding the rcu lock
719 cgrp1
= perf_cgroup_from_task(task
, NULL
);
720 cgrp2
= perf_cgroup_from_task(next
, NULL
);
723 * only schedule out current cgroup events if we know
724 * that we are switching to a different cgroup. Otherwise,
725 * do no touch the cgroup events.
728 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
733 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
734 struct task_struct
*task
)
736 struct perf_cgroup
*cgrp1
;
737 struct perf_cgroup
*cgrp2
= NULL
;
741 * we come here when we know perf_cgroup_events > 0
742 * we do not need to pass the ctx here because we know
743 * we are holding the rcu lock
745 cgrp1
= perf_cgroup_from_task(task
, NULL
);
746 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
749 * only need to schedule in cgroup events if we are changing
750 * cgroup during ctxsw. Cgroup events were not scheduled
751 * out of ctxsw out if that was not the case.
754 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
759 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
760 struct perf_event_attr
*attr
,
761 struct perf_event
*group_leader
)
763 struct perf_cgroup
*cgrp
;
764 struct cgroup_subsys_state
*css
;
765 struct fd f
= fdget(fd
);
771 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
772 &perf_event_cgrp_subsys
);
778 cgrp
= container_of(css
, struct perf_cgroup
, css
);
782 * all events in a group must monitor
783 * the same cgroup because a task belongs
784 * to only one perf cgroup at a time
786 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
787 perf_detach_cgroup(event
);
796 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
798 struct perf_cgroup_info
*t
;
799 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
800 event
->shadow_ctx_time
= now
- t
->timestamp
;
804 perf_cgroup_defer_enabled(struct perf_event
*event
)
807 * when the current task's perf cgroup does not match
808 * the event's, we need to remember to call the
809 * perf_mark_enable() function the first time a task with
810 * a matching perf cgroup is scheduled in.
812 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
813 event
->cgrp_defer_enabled
= 1;
817 perf_cgroup_mark_enabled(struct perf_event
*event
,
818 struct perf_event_context
*ctx
)
820 struct perf_event
*sub
;
821 u64 tstamp
= perf_event_time(event
);
823 if (!event
->cgrp_defer_enabled
)
826 event
->cgrp_defer_enabled
= 0;
828 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
829 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
830 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
831 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
832 sub
->cgrp_defer_enabled
= 0;
836 #else /* !CONFIG_CGROUP_PERF */
839 perf_cgroup_match(struct perf_event
*event
)
844 static inline void perf_detach_cgroup(struct perf_event
*event
)
847 static inline int is_cgroup_event(struct perf_event
*event
)
852 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
857 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
861 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
865 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
866 struct task_struct
*next
)
870 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
871 struct task_struct
*task
)
875 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
876 struct perf_event_attr
*attr
,
877 struct perf_event
*group_leader
)
883 perf_cgroup_set_timestamp(struct task_struct
*task
,
884 struct perf_event_context
*ctx
)
889 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
894 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
898 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
904 perf_cgroup_defer_enabled(struct perf_event
*event
)
909 perf_cgroup_mark_enabled(struct perf_event
*event
,
910 struct perf_event_context
*ctx
)
916 * set default to be dependent on timer tick just
919 #define PERF_CPU_HRTIMER (1000 / HZ)
921 * function must be called with interrupts disbled
923 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
925 struct perf_cpu_context
*cpuctx
;
928 WARN_ON(!irqs_disabled());
930 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
931 rotations
= perf_rotate_context(cpuctx
);
933 raw_spin_lock(&cpuctx
->hrtimer_lock
);
935 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
937 cpuctx
->hrtimer_active
= 0;
938 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
940 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
943 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
945 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
946 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
949 /* no multiplexing needed for SW PMU */
950 if (pmu
->task_ctx_nr
== perf_sw_context
)
954 * check default is sane, if not set then force to
955 * default interval (1/tick)
957 interval
= pmu
->hrtimer_interval_ms
;
959 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
961 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
963 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
964 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
965 timer
->function
= perf_mux_hrtimer_handler
;
968 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
970 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
971 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
975 if (pmu
->task_ctx_nr
== perf_sw_context
)
978 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
979 if (!cpuctx
->hrtimer_active
) {
980 cpuctx
->hrtimer_active
= 1;
981 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
982 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
984 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
989 void perf_pmu_disable(struct pmu
*pmu
)
991 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
993 pmu
->pmu_disable(pmu
);
996 void perf_pmu_enable(struct pmu
*pmu
)
998 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1000 pmu
->pmu_enable(pmu
);
1003 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1006 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1007 * perf_event_task_tick() are fully serialized because they're strictly cpu
1008 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1009 * disabled, while perf_event_task_tick is called from IRQ context.
1011 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1013 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1015 WARN_ON(!irqs_disabled());
1017 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1019 list_add(&ctx
->active_ctx_list
, head
);
1022 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1024 WARN_ON(!irqs_disabled());
1026 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1028 list_del_init(&ctx
->active_ctx_list
);
1031 static void get_ctx(struct perf_event_context
*ctx
)
1033 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
1036 static void free_ctx(struct rcu_head
*head
)
1038 struct perf_event_context
*ctx
;
1040 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1041 kfree(ctx
->task_ctx_data
);
1045 static void put_ctx(struct perf_event_context
*ctx
)
1047 if (atomic_dec_and_test(&ctx
->refcount
)) {
1048 if (ctx
->parent_ctx
)
1049 put_ctx(ctx
->parent_ctx
);
1050 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1051 put_task_struct(ctx
->task
);
1052 call_rcu(&ctx
->rcu_head
, free_ctx
);
1057 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1058 * perf_pmu_migrate_context() we need some magic.
1060 * Those places that change perf_event::ctx will hold both
1061 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1063 * Lock ordering is by mutex address. There are two other sites where
1064 * perf_event_context::mutex nests and those are:
1066 * - perf_event_exit_task_context() [ child , 0 ]
1067 * perf_event_exit_event()
1068 * put_event() [ parent, 1 ]
1070 * - perf_event_init_context() [ parent, 0 ]
1071 * inherit_task_group()
1074 * perf_event_alloc()
1076 * perf_try_init_event() [ child , 1 ]
1078 * While it appears there is an obvious deadlock here -- the parent and child
1079 * nesting levels are inverted between the two. This is in fact safe because
1080 * life-time rules separate them. That is an exiting task cannot fork, and a
1081 * spawning task cannot (yet) exit.
1083 * But remember that that these are parent<->child context relations, and
1084 * migration does not affect children, therefore these two orderings should not
1087 * The change in perf_event::ctx does not affect children (as claimed above)
1088 * because the sys_perf_event_open() case will install a new event and break
1089 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1090 * concerned with cpuctx and that doesn't have children.
1092 * The places that change perf_event::ctx will issue:
1094 * perf_remove_from_context();
1095 * synchronize_rcu();
1096 * perf_install_in_context();
1098 * to affect the change. The remove_from_context() + synchronize_rcu() should
1099 * quiesce the event, after which we can install it in the new location. This
1100 * means that only external vectors (perf_fops, prctl) can perturb the event
1101 * while in transit. Therefore all such accessors should also acquire
1102 * perf_event_context::mutex to serialize against this.
1104 * However; because event->ctx can change while we're waiting to acquire
1105 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1110 * task_struct::perf_event_mutex
1111 * perf_event_context::mutex
1112 * perf_event::child_mutex;
1113 * perf_event_context::lock
1114 * perf_event::mmap_mutex
1117 static struct perf_event_context
*
1118 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1120 struct perf_event_context
*ctx
;
1124 ctx
= ACCESS_ONCE(event
->ctx
);
1125 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1131 mutex_lock_nested(&ctx
->mutex
, nesting
);
1132 if (event
->ctx
!= ctx
) {
1133 mutex_unlock(&ctx
->mutex
);
1141 static inline struct perf_event_context
*
1142 perf_event_ctx_lock(struct perf_event
*event
)
1144 return perf_event_ctx_lock_nested(event
, 0);
1147 static void perf_event_ctx_unlock(struct perf_event
*event
,
1148 struct perf_event_context
*ctx
)
1150 mutex_unlock(&ctx
->mutex
);
1155 * This must be done under the ctx->lock, such as to serialize against
1156 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1157 * calling scheduler related locks and ctx->lock nests inside those.
1159 static __must_check
struct perf_event_context
*
1160 unclone_ctx(struct perf_event_context
*ctx
)
1162 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1164 lockdep_assert_held(&ctx
->lock
);
1167 ctx
->parent_ctx
= NULL
;
1173 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1176 * only top level events have the pid namespace they were created in
1179 event
= event
->parent
;
1181 return task_tgid_nr_ns(p
, event
->ns
);
1184 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1187 * only top level events have the pid namespace they were created in
1190 event
= event
->parent
;
1192 return task_pid_nr_ns(p
, event
->ns
);
1196 * If we inherit events we want to return the parent event id
1199 static u64
primary_event_id(struct perf_event
*event
)
1204 id
= event
->parent
->id
;
1210 * Get the perf_event_context for a task and lock it.
1212 * This has to cope with with the fact that until it is locked,
1213 * the context could get moved to another task.
1215 static struct perf_event_context
*
1216 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1218 struct perf_event_context
*ctx
;
1222 * One of the few rules of preemptible RCU is that one cannot do
1223 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1224 * part of the read side critical section was irqs-enabled -- see
1225 * rcu_read_unlock_special().
1227 * Since ctx->lock nests under rq->lock we must ensure the entire read
1228 * side critical section has interrupts disabled.
1230 local_irq_save(*flags
);
1232 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1235 * If this context is a clone of another, it might
1236 * get swapped for another underneath us by
1237 * perf_event_task_sched_out, though the
1238 * rcu_read_lock() protects us from any context
1239 * getting freed. Lock the context and check if it
1240 * got swapped before we could get the lock, and retry
1241 * if so. If we locked the right context, then it
1242 * can't get swapped on us any more.
1244 raw_spin_lock(&ctx
->lock
);
1245 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1246 raw_spin_unlock(&ctx
->lock
);
1248 local_irq_restore(*flags
);
1252 if (ctx
->task
== TASK_TOMBSTONE
||
1253 !atomic_inc_not_zero(&ctx
->refcount
)) {
1254 raw_spin_unlock(&ctx
->lock
);
1257 WARN_ON_ONCE(ctx
->task
!= task
);
1262 local_irq_restore(*flags
);
1267 * Get the context for a task and increment its pin_count so it
1268 * can't get swapped to another task. This also increments its
1269 * reference count so that the context can't get freed.
1271 static struct perf_event_context
*
1272 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1274 struct perf_event_context
*ctx
;
1275 unsigned long flags
;
1277 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1280 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1285 static void perf_unpin_context(struct perf_event_context
*ctx
)
1287 unsigned long flags
;
1289 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1291 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1295 * Update the record of the current time in a context.
1297 static void update_context_time(struct perf_event_context
*ctx
)
1299 u64 now
= perf_clock();
1301 ctx
->time
+= now
- ctx
->timestamp
;
1302 ctx
->timestamp
= now
;
1305 static u64
perf_event_time(struct perf_event
*event
)
1307 struct perf_event_context
*ctx
= event
->ctx
;
1309 if (is_cgroup_event(event
))
1310 return perf_cgroup_event_time(event
);
1312 return ctx
? ctx
->time
: 0;
1316 * Update the total_time_enabled and total_time_running fields for a event.
1318 static void update_event_times(struct perf_event
*event
)
1320 struct perf_event_context
*ctx
= event
->ctx
;
1323 lockdep_assert_held(&ctx
->lock
);
1325 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1326 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1330 * in cgroup mode, time_enabled represents
1331 * the time the event was enabled AND active
1332 * tasks were in the monitored cgroup. This is
1333 * independent of the activity of the context as
1334 * there may be a mix of cgroup and non-cgroup events.
1336 * That is why we treat cgroup events differently
1339 if (is_cgroup_event(event
))
1340 run_end
= perf_cgroup_event_time(event
);
1341 else if (ctx
->is_active
)
1342 run_end
= ctx
->time
;
1344 run_end
= event
->tstamp_stopped
;
1346 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1348 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1349 run_end
= event
->tstamp_stopped
;
1351 run_end
= perf_event_time(event
);
1353 event
->total_time_running
= run_end
- event
->tstamp_running
;
1358 * Update total_time_enabled and total_time_running for all events in a group.
1360 static void update_group_times(struct perf_event
*leader
)
1362 struct perf_event
*event
;
1364 update_event_times(leader
);
1365 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1366 update_event_times(event
);
1369 static struct list_head
*
1370 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1372 if (event
->attr
.pinned
)
1373 return &ctx
->pinned_groups
;
1375 return &ctx
->flexible_groups
;
1379 * Add a event from the lists for its context.
1380 * Must be called with ctx->mutex and ctx->lock held.
1383 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1385 lockdep_assert_held(&ctx
->lock
);
1387 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1388 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1391 * If we're a stand alone event or group leader, we go to the context
1392 * list, group events are kept attached to the group so that
1393 * perf_group_detach can, at all times, locate all siblings.
1395 if (event
->group_leader
== event
) {
1396 struct list_head
*list
;
1398 if (is_software_event(event
))
1399 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
1401 list
= ctx_group_list(event
, ctx
);
1402 list_add_tail(&event
->group_entry
, list
);
1405 if (is_cgroup_event(event
))
1408 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1410 if (event
->attr
.inherit_stat
)
1417 * Initialize event state based on the perf_event_attr::disabled.
1419 static inline void perf_event__state_init(struct perf_event
*event
)
1421 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1422 PERF_EVENT_STATE_INACTIVE
;
1425 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1427 int entry
= sizeof(u64
); /* value */
1431 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1432 size
+= sizeof(u64
);
1434 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1435 size
+= sizeof(u64
);
1437 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1438 entry
+= sizeof(u64
);
1440 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1442 size
+= sizeof(u64
);
1446 event
->read_size
= size
;
1449 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1451 struct perf_sample_data
*data
;
1454 if (sample_type
& PERF_SAMPLE_IP
)
1455 size
+= sizeof(data
->ip
);
1457 if (sample_type
& PERF_SAMPLE_ADDR
)
1458 size
+= sizeof(data
->addr
);
1460 if (sample_type
& PERF_SAMPLE_PERIOD
)
1461 size
+= sizeof(data
->period
);
1463 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1464 size
+= sizeof(data
->weight
);
1466 if (sample_type
& PERF_SAMPLE_READ
)
1467 size
+= event
->read_size
;
1469 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1470 size
+= sizeof(data
->data_src
.val
);
1472 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1473 size
+= sizeof(data
->txn
);
1475 event
->header_size
= size
;
1479 * Called at perf_event creation and when events are attached/detached from a
1482 static void perf_event__header_size(struct perf_event
*event
)
1484 __perf_event_read_size(event
,
1485 event
->group_leader
->nr_siblings
);
1486 __perf_event_header_size(event
, event
->attr
.sample_type
);
1489 static void perf_event__id_header_size(struct perf_event
*event
)
1491 struct perf_sample_data
*data
;
1492 u64 sample_type
= event
->attr
.sample_type
;
1495 if (sample_type
& PERF_SAMPLE_TID
)
1496 size
+= sizeof(data
->tid_entry
);
1498 if (sample_type
& PERF_SAMPLE_TIME
)
1499 size
+= sizeof(data
->time
);
1501 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1502 size
+= sizeof(data
->id
);
1504 if (sample_type
& PERF_SAMPLE_ID
)
1505 size
+= sizeof(data
->id
);
1507 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1508 size
+= sizeof(data
->stream_id
);
1510 if (sample_type
& PERF_SAMPLE_CPU
)
1511 size
+= sizeof(data
->cpu_entry
);
1513 event
->id_header_size
= size
;
1516 static bool perf_event_validate_size(struct perf_event
*event
)
1519 * The values computed here will be over-written when we actually
1522 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1523 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1524 perf_event__id_header_size(event
);
1527 * Sum the lot; should not exceed the 64k limit we have on records.
1528 * Conservative limit to allow for callchains and other variable fields.
1530 if (event
->read_size
+ event
->header_size
+
1531 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1537 static void perf_group_attach(struct perf_event
*event
)
1539 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1542 * We can have double attach due to group movement in perf_event_open.
1544 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1547 event
->attach_state
|= PERF_ATTACH_GROUP
;
1549 if (group_leader
== event
)
1552 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1554 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
1555 !is_software_event(event
))
1556 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
1558 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1559 group_leader
->nr_siblings
++;
1561 perf_event__header_size(group_leader
);
1563 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1564 perf_event__header_size(pos
);
1568 * Remove a event from the lists for its context.
1569 * Must be called with ctx->mutex and ctx->lock held.
1572 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1574 struct perf_cpu_context
*cpuctx
;
1576 WARN_ON_ONCE(event
->ctx
!= ctx
);
1577 lockdep_assert_held(&ctx
->lock
);
1580 * We can have double detach due to exit/hot-unplug + close.
1582 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1585 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1587 if (is_cgroup_event(event
)) {
1590 * Because cgroup events are always per-cpu events, this will
1591 * always be called from the right CPU.
1593 cpuctx
= __get_cpu_context(ctx
);
1595 * If there are no more cgroup events then clear cgrp to avoid
1596 * stale pointer in update_cgrp_time_from_cpuctx().
1598 if (!ctx
->nr_cgroups
)
1599 cpuctx
->cgrp
= NULL
;
1603 if (event
->attr
.inherit_stat
)
1606 list_del_rcu(&event
->event_entry
);
1608 if (event
->group_leader
== event
)
1609 list_del_init(&event
->group_entry
);
1611 update_group_times(event
);
1614 * If event was in error state, then keep it
1615 * that way, otherwise bogus counts will be
1616 * returned on read(). The only way to get out
1617 * of error state is by explicit re-enabling
1620 if (event
->state
> PERF_EVENT_STATE_OFF
)
1621 event
->state
= PERF_EVENT_STATE_OFF
;
1626 static void perf_group_detach(struct perf_event
*event
)
1628 struct perf_event
*sibling
, *tmp
;
1629 struct list_head
*list
= NULL
;
1632 * We can have double detach due to exit/hot-unplug + close.
1634 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1637 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1640 * If this is a sibling, remove it from its group.
1642 if (event
->group_leader
!= event
) {
1643 list_del_init(&event
->group_entry
);
1644 event
->group_leader
->nr_siblings
--;
1648 if (!list_empty(&event
->group_entry
))
1649 list
= &event
->group_entry
;
1652 * If this was a group event with sibling events then
1653 * upgrade the siblings to singleton events by adding them
1654 * to whatever list we are on.
1656 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1658 list_move_tail(&sibling
->group_entry
, list
);
1659 sibling
->group_leader
= sibling
;
1661 /* Inherit group flags from the previous leader */
1662 sibling
->group_flags
= event
->group_flags
;
1664 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1668 perf_event__header_size(event
->group_leader
);
1670 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1671 perf_event__header_size(tmp
);
1674 static bool is_orphaned_event(struct perf_event
*event
)
1676 return event
->state
== PERF_EVENT_STATE_DEAD
;
1679 static inline int pmu_filter_match(struct perf_event
*event
)
1681 struct pmu
*pmu
= event
->pmu
;
1682 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1686 event_filter_match(struct perf_event
*event
)
1688 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1689 && perf_cgroup_match(event
) && pmu_filter_match(event
);
1693 event_sched_out(struct perf_event
*event
,
1694 struct perf_cpu_context
*cpuctx
,
1695 struct perf_event_context
*ctx
)
1697 u64 tstamp
= perf_event_time(event
);
1700 WARN_ON_ONCE(event
->ctx
!= ctx
);
1701 lockdep_assert_held(&ctx
->lock
);
1704 * An event which could not be activated because of
1705 * filter mismatch still needs to have its timings
1706 * maintained, otherwise bogus information is return
1707 * via read() for time_enabled, time_running:
1709 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1710 && !event_filter_match(event
)) {
1711 delta
= tstamp
- event
->tstamp_stopped
;
1712 event
->tstamp_running
+= delta
;
1713 event
->tstamp_stopped
= tstamp
;
1716 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1719 perf_pmu_disable(event
->pmu
);
1721 event
->tstamp_stopped
= tstamp
;
1722 event
->pmu
->del(event
, 0);
1724 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1725 if (event
->pending_disable
) {
1726 event
->pending_disable
= 0;
1727 event
->state
= PERF_EVENT_STATE_OFF
;
1730 if (!is_software_event(event
))
1731 cpuctx
->active_oncpu
--;
1732 if (!--ctx
->nr_active
)
1733 perf_event_ctx_deactivate(ctx
);
1734 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1736 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1737 cpuctx
->exclusive
= 0;
1739 perf_pmu_enable(event
->pmu
);
1743 group_sched_out(struct perf_event
*group_event
,
1744 struct perf_cpu_context
*cpuctx
,
1745 struct perf_event_context
*ctx
)
1747 struct perf_event
*event
;
1748 int state
= group_event
->state
;
1750 event_sched_out(group_event
, cpuctx
, ctx
);
1753 * Schedule out siblings (if any):
1755 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1756 event_sched_out(event
, cpuctx
, ctx
);
1758 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1759 cpuctx
->exclusive
= 0;
1762 #define DETACH_GROUP 0x01UL
1765 * Cross CPU call to remove a performance event
1767 * We disable the event on the hardware level first. After that we
1768 * remove it from the context list.
1771 __perf_remove_from_context(struct perf_event
*event
,
1772 struct perf_cpu_context
*cpuctx
,
1773 struct perf_event_context
*ctx
,
1776 unsigned long flags
= (unsigned long)info
;
1778 event_sched_out(event
, cpuctx
, ctx
);
1779 if (flags
& DETACH_GROUP
)
1780 perf_group_detach(event
);
1781 list_del_event(event
, ctx
);
1783 if (!ctx
->nr_events
&& ctx
->is_active
) {
1786 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
1787 cpuctx
->task_ctx
= NULL
;
1793 * Remove the event from a task's (or a CPU's) list of events.
1795 * If event->ctx is a cloned context, callers must make sure that
1796 * every task struct that event->ctx->task could possibly point to
1797 * remains valid. This is OK when called from perf_release since
1798 * that only calls us on the top-level context, which can't be a clone.
1799 * When called from perf_event_exit_task, it's OK because the
1800 * context has been detached from its task.
1802 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
1804 lockdep_assert_held(&event
->ctx
->mutex
);
1806 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
1810 * Cross CPU call to disable a performance event
1812 static void __perf_event_disable(struct perf_event
*event
,
1813 struct perf_cpu_context
*cpuctx
,
1814 struct perf_event_context
*ctx
,
1817 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
1820 update_context_time(ctx
);
1821 update_cgrp_time_from_event(event
);
1822 update_group_times(event
);
1823 if (event
== event
->group_leader
)
1824 group_sched_out(event
, cpuctx
, ctx
);
1826 event_sched_out(event
, cpuctx
, ctx
);
1827 event
->state
= PERF_EVENT_STATE_OFF
;
1833 * If event->ctx is a cloned context, callers must make sure that
1834 * every task struct that event->ctx->task could possibly point to
1835 * remains valid. This condition is satisifed when called through
1836 * perf_event_for_each_child or perf_event_for_each because they
1837 * hold the top-level event's child_mutex, so any descendant that
1838 * goes to exit will block in perf_event_exit_event().
1840 * When called from perf_pending_event it's OK because event->ctx
1841 * is the current context on this CPU and preemption is disabled,
1842 * hence we can't get into perf_event_task_sched_out for this context.
1844 static void _perf_event_disable(struct perf_event
*event
)
1846 struct perf_event_context
*ctx
= event
->ctx
;
1848 raw_spin_lock_irq(&ctx
->lock
);
1849 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
1850 raw_spin_unlock_irq(&ctx
->lock
);
1853 raw_spin_unlock_irq(&ctx
->lock
);
1855 event_function_call(event
, __perf_event_disable
, NULL
);
1858 void perf_event_disable_local(struct perf_event
*event
)
1860 event_function_local(event
, __perf_event_disable
, NULL
);
1864 * Strictly speaking kernel users cannot create groups and therefore this
1865 * interface does not need the perf_event_ctx_lock() magic.
1867 void perf_event_disable(struct perf_event
*event
)
1869 struct perf_event_context
*ctx
;
1871 ctx
= perf_event_ctx_lock(event
);
1872 _perf_event_disable(event
);
1873 perf_event_ctx_unlock(event
, ctx
);
1875 EXPORT_SYMBOL_GPL(perf_event_disable
);
1877 static void perf_set_shadow_time(struct perf_event
*event
,
1878 struct perf_event_context
*ctx
,
1882 * use the correct time source for the time snapshot
1884 * We could get by without this by leveraging the
1885 * fact that to get to this function, the caller
1886 * has most likely already called update_context_time()
1887 * and update_cgrp_time_xx() and thus both timestamp
1888 * are identical (or very close). Given that tstamp is,
1889 * already adjusted for cgroup, we could say that:
1890 * tstamp - ctx->timestamp
1892 * tstamp - cgrp->timestamp.
1894 * Then, in perf_output_read(), the calculation would
1895 * work with no changes because:
1896 * - event is guaranteed scheduled in
1897 * - no scheduled out in between
1898 * - thus the timestamp would be the same
1900 * But this is a bit hairy.
1902 * So instead, we have an explicit cgroup call to remain
1903 * within the time time source all along. We believe it
1904 * is cleaner and simpler to understand.
1906 if (is_cgroup_event(event
))
1907 perf_cgroup_set_shadow_time(event
, tstamp
);
1909 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1912 #define MAX_INTERRUPTS (~0ULL)
1914 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1915 static void perf_log_itrace_start(struct perf_event
*event
);
1918 event_sched_in(struct perf_event
*event
,
1919 struct perf_cpu_context
*cpuctx
,
1920 struct perf_event_context
*ctx
)
1922 u64 tstamp
= perf_event_time(event
);
1925 lockdep_assert_held(&ctx
->lock
);
1927 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1930 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1931 event
->oncpu
= smp_processor_id();
1934 * Unthrottle events, since we scheduled we might have missed several
1935 * ticks already, also for a heavily scheduling task there is little
1936 * guarantee it'll get a tick in a timely manner.
1938 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1939 perf_log_throttle(event
, 1);
1940 event
->hw
.interrupts
= 0;
1944 * The new state must be visible before we turn it on in the hardware:
1948 perf_pmu_disable(event
->pmu
);
1950 perf_set_shadow_time(event
, ctx
, tstamp
);
1952 perf_log_itrace_start(event
);
1954 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1955 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1961 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1963 if (!is_software_event(event
))
1964 cpuctx
->active_oncpu
++;
1965 if (!ctx
->nr_active
++)
1966 perf_event_ctx_activate(ctx
);
1967 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1970 if (event
->attr
.exclusive
)
1971 cpuctx
->exclusive
= 1;
1974 perf_pmu_enable(event
->pmu
);
1980 group_sched_in(struct perf_event
*group_event
,
1981 struct perf_cpu_context
*cpuctx
,
1982 struct perf_event_context
*ctx
)
1984 struct perf_event
*event
, *partial_group
= NULL
;
1985 struct pmu
*pmu
= ctx
->pmu
;
1986 u64 now
= ctx
->time
;
1987 bool simulate
= false;
1989 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1992 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
1994 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1995 pmu
->cancel_txn(pmu
);
1996 perf_mux_hrtimer_restart(cpuctx
);
2001 * Schedule in siblings as one group (if any):
2003 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2004 if (event_sched_in(event
, cpuctx
, ctx
)) {
2005 partial_group
= event
;
2010 if (!pmu
->commit_txn(pmu
))
2015 * Groups can be scheduled in as one unit only, so undo any
2016 * partial group before returning:
2017 * The events up to the failed event are scheduled out normally,
2018 * tstamp_stopped will be updated.
2020 * The failed events and the remaining siblings need to have
2021 * their timings updated as if they had gone thru event_sched_in()
2022 * and event_sched_out(). This is required to get consistent timings
2023 * across the group. This also takes care of the case where the group
2024 * could never be scheduled by ensuring tstamp_stopped is set to mark
2025 * the time the event was actually stopped, such that time delta
2026 * calculation in update_event_times() is correct.
2028 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2029 if (event
== partial_group
)
2033 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
2034 event
->tstamp_stopped
= now
;
2036 event_sched_out(event
, cpuctx
, ctx
);
2039 event_sched_out(group_event
, cpuctx
, ctx
);
2041 pmu
->cancel_txn(pmu
);
2043 perf_mux_hrtimer_restart(cpuctx
);
2049 * Work out whether we can put this event group on the CPU now.
2051 static int group_can_go_on(struct perf_event
*event
,
2052 struct perf_cpu_context
*cpuctx
,
2056 * Groups consisting entirely of software events can always go on.
2058 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
2061 * If an exclusive group is already on, no other hardware
2064 if (cpuctx
->exclusive
)
2067 * If this group is exclusive and there are already
2068 * events on the CPU, it can't go on.
2070 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2073 * Otherwise, try to add it if all previous groups were able
2079 static void add_event_to_ctx(struct perf_event
*event
,
2080 struct perf_event_context
*ctx
)
2082 u64 tstamp
= perf_event_time(event
);
2084 list_add_event(event
, ctx
);
2085 perf_group_attach(event
);
2086 event
->tstamp_enabled
= tstamp
;
2087 event
->tstamp_running
= tstamp
;
2088 event
->tstamp_stopped
= tstamp
;
2091 static void ctx_sched_out(struct perf_event_context
*ctx
,
2092 struct perf_cpu_context
*cpuctx
,
2093 enum event_type_t event_type
);
2095 ctx_sched_in(struct perf_event_context
*ctx
,
2096 struct perf_cpu_context
*cpuctx
,
2097 enum event_type_t event_type
,
2098 struct task_struct
*task
);
2100 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2101 struct perf_event_context
*ctx
)
2103 if (!cpuctx
->task_ctx
)
2106 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2109 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2112 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2113 struct perf_event_context
*ctx
,
2114 struct task_struct
*task
)
2116 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2118 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2119 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2121 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2124 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2125 struct perf_event_context
*task_ctx
)
2127 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2129 task_ctx_sched_out(cpuctx
, task_ctx
);
2130 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
2131 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2132 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2136 * Cross CPU call to install and enable a performance event
2138 * Very similar to remote_function() + event_function() but cannot assume that
2139 * things like ctx->is_active and cpuctx->task_ctx are set.
2141 static int __perf_install_in_context(void *info
)
2143 struct perf_event
*event
= info
;
2144 struct perf_event_context
*ctx
= event
->ctx
;
2145 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2146 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2147 bool activate
= true;
2150 raw_spin_lock(&cpuctx
->ctx
.lock
);
2152 raw_spin_lock(&ctx
->lock
);
2155 /* If we're on the wrong CPU, try again */
2156 if (task_cpu(ctx
->task
) != smp_processor_id()) {
2162 * If we're on the right CPU, see if the task we target is
2163 * current, if not we don't have to activate the ctx, a future
2164 * context switch will do that for us.
2166 if (ctx
->task
!= current
)
2169 WARN_ON_ONCE(cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2171 } else if (task_ctx
) {
2172 raw_spin_lock(&task_ctx
->lock
);
2176 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2177 add_event_to_ctx(event
, ctx
);
2178 ctx_resched(cpuctx
, task_ctx
);
2180 add_event_to_ctx(event
, ctx
);
2184 perf_ctx_unlock(cpuctx
, task_ctx
);
2190 * Attach a performance event to a context.
2192 * Very similar to event_function_call, see comment there.
2195 perf_install_in_context(struct perf_event_context
*ctx
,
2196 struct perf_event
*event
,
2199 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2201 lockdep_assert_held(&ctx
->mutex
);
2204 if (event
->cpu
!= -1)
2208 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2213 * Should not happen, we validate the ctx is still alive before calling.
2215 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2219 * Installing events is tricky because we cannot rely on ctx->is_active
2220 * to be set in case this is the nr_events 0 -> 1 transition.
2224 * Cannot use task_function_call() because we need to run on the task's
2225 * CPU regardless of whether its current or not.
2227 if (!cpu_function_call(task_cpu(task
), __perf_install_in_context
, event
))
2230 raw_spin_lock_irq(&ctx
->lock
);
2232 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2234 * Cannot happen because we already checked above (which also
2235 * cannot happen), and we hold ctx->mutex, which serializes us
2236 * against perf_event_exit_task_context().
2238 raw_spin_unlock_irq(&ctx
->lock
);
2241 raw_spin_unlock_irq(&ctx
->lock
);
2243 * Since !ctx->is_active doesn't mean anything, we must IPI
2250 * Put a event into inactive state and update time fields.
2251 * Enabling the leader of a group effectively enables all
2252 * the group members that aren't explicitly disabled, so we
2253 * have to update their ->tstamp_enabled also.
2254 * Note: this works for group members as well as group leaders
2255 * since the non-leader members' sibling_lists will be empty.
2257 static void __perf_event_mark_enabled(struct perf_event
*event
)
2259 struct perf_event
*sub
;
2260 u64 tstamp
= perf_event_time(event
);
2262 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2263 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2264 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2265 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2266 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2271 * Cross CPU call to enable a performance event
2273 static void __perf_event_enable(struct perf_event
*event
,
2274 struct perf_cpu_context
*cpuctx
,
2275 struct perf_event_context
*ctx
,
2278 struct perf_event
*leader
= event
->group_leader
;
2279 struct perf_event_context
*task_ctx
;
2281 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2282 event
->state
<= PERF_EVENT_STATE_ERROR
)
2286 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2288 __perf_event_mark_enabled(event
);
2290 if (!ctx
->is_active
)
2293 if (!event_filter_match(event
)) {
2294 if (is_cgroup_event(event
))
2295 perf_cgroup_defer_enabled(event
);
2296 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2301 * If the event is in a group and isn't the group leader,
2302 * then don't put it on unless the group is on.
2304 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2305 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2309 task_ctx
= cpuctx
->task_ctx
;
2311 WARN_ON_ONCE(task_ctx
!= ctx
);
2313 ctx_resched(cpuctx
, task_ctx
);
2319 * If event->ctx is a cloned context, callers must make sure that
2320 * every task struct that event->ctx->task could possibly point to
2321 * remains valid. This condition is satisfied when called through
2322 * perf_event_for_each_child or perf_event_for_each as described
2323 * for perf_event_disable.
2325 static void _perf_event_enable(struct perf_event
*event
)
2327 struct perf_event_context
*ctx
= event
->ctx
;
2329 raw_spin_lock_irq(&ctx
->lock
);
2330 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2331 event
->state
< PERF_EVENT_STATE_ERROR
) {
2332 raw_spin_unlock_irq(&ctx
->lock
);
2337 * If the event is in error state, clear that first.
2339 * That way, if we see the event in error state below, we know that it
2340 * has gone back into error state, as distinct from the task having
2341 * been scheduled away before the cross-call arrived.
2343 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2344 event
->state
= PERF_EVENT_STATE_OFF
;
2345 raw_spin_unlock_irq(&ctx
->lock
);
2347 event_function_call(event
, __perf_event_enable
, NULL
);
2351 * See perf_event_disable();
2353 void perf_event_enable(struct perf_event
*event
)
2355 struct perf_event_context
*ctx
;
2357 ctx
= perf_event_ctx_lock(event
);
2358 _perf_event_enable(event
);
2359 perf_event_ctx_unlock(event
, ctx
);
2361 EXPORT_SYMBOL_GPL(perf_event_enable
);
2363 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2366 * not supported on inherited events
2368 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2371 atomic_add(refresh
, &event
->event_limit
);
2372 _perf_event_enable(event
);
2378 * See perf_event_disable()
2380 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2382 struct perf_event_context
*ctx
;
2385 ctx
= perf_event_ctx_lock(event
);
2386 ret
= _perf_event_refresh(event
, refresh
);
2387 perf_event_ctx_unlock(event
, ctx
);
2391 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2393 static void ctx_sched_out(struct perf_event_context
*ctx
,
2394 struct perf_cpu_context
*cpuctx
,
2395 enum event_type_t event_type
)
2397 int is_active
= ctx
->is_active
;
2398 struct perf_event
*event
;
2400 lockdep_assert_held(&ctx
->lock
);
2402 if (likely(!ctx
->nr_events
)) {
2404 * See __perf_remove_from_context().
2406 WARN_ON_ONCE(ctx
->is_active
);
2408 WARN_ON_ONCE(cpuctx
->task_ctx
);
2412 ctx
->is_active
&= ~event_type
;
2413 if (!(ctx
->is_active
& EVENT_ALL
))
2417 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2418 if (!ctx
->is_active
)
2419 cpuctx
->task_ctx
= NULL
;
2423 * Always update time if it was set; not only when it changes.
2424 * Otherwise we can 'forget' to update time for any but the last
2425 * context we sched out. For example:
2427 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2428 * ctx_sched_out(.event_type = EVENT_PINNED)
2430 * would only update time for the pinned events.
2432 if (is_active
& EVENT_TIME
) {
2433 /* update (and stop) ctx time */
2434 update_context_time(ctx
);
2435 update_cgrp_time_from_cpuctx(cpuctx
);
2438 is_active
^= ctx
->is_active
; /* changed bits */
2440 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
2443 perf_pmu_disable(ctx
->pmu
);
2444 if (is_active
& EVENT_PINNED
) {
2445 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2446 group_sched_out(event
, cpuctx
, ctx
);
2449 if (is_active
& EVENT_FLEXIBLE
) {
2450 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2451 group_sched_out(event
, cpuctx
, ctx
);
2453 perf_pmu_enable(ctx
->pmu
);
2457 * Test whether two contexts are equivalent, i.e. whether they have both been
2458 * cloned from the same version of the same context.
2460 * Equivalence is measured using a generation number in the context that is
2461 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2462 * and list_del_event().
2464 static int context_equiv(struct perf_event_context
*ctx1
,
2465 struct perf_event_context
*ctx2
)
2467 lockdep_assert_held(&ctx1
->lock
);
2468 lockdep_assert_held(&ctx2
->lock
);
2470 /* Pinning disables the swap optimization */
2471 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2474 /* If ctx1 is the parent of ctx2 */
2475 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2478 /* If ctx2 is the parent of ctx1 */
2479 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2483 * If ctx1 and ctx2 have the same parent; we flatten the parent
2484 * hierarchy, see perf_event_init_context().
2486 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2487 ctx1
->parent_gen
== ctx2
->parent_gen
)
2494 static void __perf_event_sync_stat(struct perf_event
*event
,
2495 struct perf_event
*next_event
)
2499 if (!event
->attr
.inherit_stat
)
2503 * Update the event value, we cannot use perf_event_read()
2504 * because we're in the middle of a context switch and have IRQs
2505 * disabled, which upsets smp_call_function_single(), however
2506 * we know the event must be on the current CPU, therefore we
2507 * don't need to use it.
2509 switch (event
->state
) {
2510 case PERF_EVENT_STATE_ACTIVE
:
2511 event
->pmu
->read(event
);
2514 case PERF_EVENT_STATE_INACTIVE
:
2515 update_event_times(event
);
2523 * In order to keep per-task stats reliable we need to flip the event
2524 * values when we flip the contexts.
2526 value
= local64_read(&next_event
->count
);
2527 value
= local64_xchg(&event
->count
, value
);
2528 local64_set(&next_event
->count
, value
);
2530 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2531 swap(event
->total_time_running
, next_event
->total_time_running
);
2534 * Since we swizzled the values, update the user visible data too.
2536 perf_event_update_userpage(event
);
2537 perf_event_update_userpage(next_event
);
2540 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2541 struct perf_event_context
*next_ctx
)
2543 struct perf_event
*event
, *next_event
;
2548 update_context_time(ctx
);
2550 event
= list_first_entry(&ctx
->event_list
,
2551 struct perf_event
, event_entry
);
2553 next_event
= list_first_entry(&next_ctx
->event_list
,
2554 struct perf_event
, event_entry
);
2556 while (&event
->event_entry
!= &ctx
->event_list
&&
2557 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2559 __perf_event_sync_stat(event
, next_event
);
2561 event
= list_next_entry(event
, event_entry
);
2562 next_event
= list_next_entry(next_event
, event_entry
);
2566 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2567 struct task_struct
*next
)
2569 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2570 struct perf_event_context
*next_ctx
;
2571 struct perf_event_context
*parent
, *next_parent
;
2572 struct perf_cpu_context
*cpuctx
;
2578 cpuctx
= __get_cpu_context(ctx
);
2579 if (!cpuctx
->task_ctx
)
2583 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2587 parent
= rcu_dereference(ctx
->parent_ctx
);
2588 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2590 /* If neither context have a parent context; they cannot be clones. */
2591 if (!parent
&& !next_parent
)
2594 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2596 * Looks like the two contexts are clones, so we might be
2597 * able to optimize the context switch. We lock both
2598 * contexts and check that they are clones under the
2599 * lock (including re-checking that neither has been
2600 * uncloned in the meantime). It doesn't matter which
2601 * order we take the locks because no other cpu could
2602 * be trying to lock both of these tasks.
2604 raw_spin_lock(&ctx
->lock
);
2605 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2606 if (context_equiv(ctx
, next_ctx
)) {
2607 WRITE_ONCE(ctx
->task
, next
);
2608 WRITE_ONCE(next_ctx
->task
, task
);
2610 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
2613 * RCU_INIT_POINTER here is safe because we've not
2614 * modified the ctx and the above modification of
2615 * ctx->task and ctx->task_ctx_data are immaterial
2616 * since those values are always verified under
2617 * ctx->lock which we're now holding.
2619 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
2620 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
2624 perf_event_sync_stat(ctx
, next_ctx
);
2626 raw_spin_unlock(&next_ctx
->lock
);
2627 raw_spin_unlock(&ctx
->lock
);
2633 raw_spin_lock(&ctx
->lock
);
2634 task_ctx_sched_out(cpuctx
, ctx
);
2635 raw_spin_unlock(&ctx
->lock
);
2639 void perf_sched_cb_dec(struct pmu
*pmu
)
2641 this_cpu_dec(perf_sched_cb_usages
);
2644 void perf_sched_cb_inc(struct pmu
*pmu
)
2646 this_cpu_inc(perf_sched_cb_usages
);
2650 * This function provides the context switch callback to the lower code
2651 * layer. It is invoked ONLY when the context switch callback is enabled.
2653 static void perf_pmu_sched_task(struct task_struct
*prev
,
2654 struct task_struct
*next
,
2657 struct perf_cpu_context
*cpuctx
;
2659 unsigned long flags
;
2664 local_irq_save(flags
);
2668 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
2669 if (pmu
->sched_task
) {
2670 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2672 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2674 perf_pmu_disable(pmu
);
2676 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
2678 perf_pmu_enable(pmu
);
2680 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2686 local_irq_restore(flags
);
2689 static void perf_event_switch(struct task_struct
*task
,
2690 struct task_struct
*next_prev
, bool sched_in
);
2692 #define for_each_task_context_nr(ctxn) \
2693 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2696 * Called from scheduler to remove the events of the current task,
2697 * with interrupts disabled.
2699 * We stop each event and update the event value in event->count.
2701 * This does not protect us against NMI, but disable()
2702 * sets the disabled bit in the control field of event _before_
2703 * accessing the event control register. If a NMI hits, then it will
2704 * not restart the event.
2706 void __perf_event_task_sched_out(struct task_struct
*task
,
2707 struct task_struct
*next
)
2711 if (__this_cpu_read(perf_sched_cb_usages
))
2712 perf_pmu_sched_task(task
, next
, false);
2714 if (atomic_read(&nr_switch_events
))
2715 perf_event_switch(task
, next
, false);
2717 for_each_task_context_nr(ctxn
)
2718 perf_event_context_sched_out(task
, ctxn
, next
);
2721 * if cgroup events exist on this CPU, then we need
2722 * to check if we have to switch out PMU state.
2723 * cgroup event are system-wide mode only
2725 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2726 perf_cgroup_sched_out(task
, next
);
2730 * Called with IRQs disabled
2732 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2733 enum event_type_t event_type
)
2735 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2739 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2740 struct perf_cpu_context
*cpuctx
)
2742 struct perf_event
*event
;
2744 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2745 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2747 if (!event_filter_match(event
))
2750 /* may need to reset tstamp_enabled */
2751 if (is_cgroup_event(event
))
2752 perf_cgroup_mark_enabled(event
, ctx
);
2754 if (group_can_go_on(event
, cpuctx
, 1))
2755 group_sched_in(event
, cpuctx
, ctx
);
2758 * If this pinned group hasn't been scheduled,
2759 * put it in error state.
2761 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2762 update_group_times(event
);
2763 event
->state
= PERF_EVENT_STATE_ERROR
;
2769 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2770 struct perf_cpu_context
*cpuctx
)
2772 struct perf_event
*event
;
2775 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2776 /* Ignore events in OFF or ERROR state */
2777 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2780 * Listen to the 'cpu' scheduling filter constraint
2783 if (!event_filter_match(event
))
2786 /* may need to reset tstamp_enabled */
2787 if (is_cgroup_event(event
))
2788 perf_cgroup_mark_enabled(event
, ctx
);
2790 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2791 if (group_sched_in(event
, cpuctx
, ctx
))
2798 ctx_sched_in(struct perf_event_context
*ctx
,
2799 struct perf_cpu_context
*cpuctx
,
2800 enum event_type_t event_type
,
2801 struct task_struct
*task
)
2803 int is_active
= ctx
->is_active
;
2806 lockdep_assert_held(&ctx
->lock
);
2808 if (likely(!ctx
->nr_events
))
2811 ctx
->is_active
|= (event_type
| EVENT_TIME
);
2814 cpuctx
->task_ctx
= ctx
;
2816 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2819 is_active
^= ctx
->is_active
; /* changed bits */
2821 if (is_active
& EVENT_TIME
) {
2822 /* start ctx time */
2824 ctx
->timestamp
= now
;
2825 perf_cgroup_set_timestamp(task
, ctx
);
2829 * First go through the list and put on any pinned groups
2830 * in order to give them the best chance of going on.
2832 if (is_active
& EVENT_PINNED
)
2833 ctx_pinned_sched_in(ctx
, cpuctx
);
2835 /* Then walk through the lower prio flexible groups */
2836 if (is_active
& EVENT_FLEXIBLE
)
2837 ctx_flexible_sched_in(ctx
, cpuctx
);
2840 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2841 enum event_type_t event_type
,
2842 struct task_struct
*task
)
2844 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2846 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2849 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2850 struct task_struct
*task
)
2852 struct perf_cpu_context
*cpuctx
;
2854 cpuctx
= __get_cpu_context(ctx
);
2855 if (cpuctx
->task_ctx
== ctx
)
2858 perf_ctx_lock(cpuctx
, ctx
);
2859 perf_pmu_disable(ctx
->pmu
);
2861 * We want to keep the following priority order:
2862 * cpu pinned (that don't need to move), task pinned,
2863 * cpu flexible, task flexible.
2865 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2866 perf_event_sched_in(cpuctx
, ctx
, task
);
2867 perf_pmu_enable(ctx
->pmu
);
2868 perf_ctx_unlock(cpuctx
, ctx
);
2872 * Called from scheduler to add the events of the current task
2873 * with interrupts disabled.
2875 * We restore the event value and then enable it.
2877 * This does not protect us against NMI, but enable()
2878 * sets the enabled bit in the control field of event _before_
2879 * accessing the event control register. If a NMI hits, then it will
2880 * keep the event running.
2882 void __perf_event_task_sched_in(struct task_struct
*prev
,
2883 struct task_struct
*task
)
2885 struct perf_event_context
*ctx
;
2889 * If cgroup events exist on this CPU, then we need to check if we have
2890 * to switch in PMU state; cgroup event are system-wide mode only.
2892 * Since cgroup events are CPU events, we must schedule these in before
2893 * we schedule in the task events.
2895 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2896 perf_cgroup_sched_in(prev
, task
);
2898 for_each_task_context_nr(ctxn
) {
2899 ctx
= task
->perf_event_ctxp
[ctxn
];
2903 perf_event_context_sched_in(ctx
, task
);
2906 if (atomic_read(&nr_switch_events
))
2907 perf_event_switch(task
, prev
, true);
2909 if (__this_cpu_read(perf_sched_cb_usages
))
2910 perf_pmu_sched_task(prev
, task
, true);
2913 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2915 u64 frequency
= event
->attr
.sample_freq
;
2916 u64 sec
= NSEC_PER_SEC
;
2917 u64 divisor
, dividend
;
2919 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2921 count_fls
= fls64(count
);
2922 nsec_fls
= fls64(nsec
);
2923 frequency_fls
= fls64(frequency
);
2927 * We got @count in @nsec, with a target of sample_freq HZ
2928 * the target period becomes:
2931 * period = -------------------
2932 * @nsec * sample_freq
2937 * Reduce accuracy by one bit such that @a and @b converge
2938 * to a similar magnitude.
2940 #define REDUCE_FLS(a, b) \
2942 if (a##_fls > b##_fls) { \
2952 * Reduce accuracy until either term fits in a u64, then proceed with
2953 * the other, so that finally we can do a u64/u64 division.
2955 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2956 REDUCE_FLS(nsec
, frequency
);
2957 REDUCE_FLS(sec
, count
);
2960 if (count_fls
+ sec_fls
> 64) {
2961 divisor
= nsec
* frequency
;
2963 while (count_fls
+ sec_fls
> 64) {
2964 REDUCE_FLS(count
, sec
);
2968 dividend
= count
* sec
;
2970 dividend
= count
* sec
;
2972 while (nsec_fls
+ frequency_fls
> 64) {
2973 REDUCE_FLS(nsec
, frequency
);
2977 divisor
= nsec
* frequency
;
2983 return div64_u64(dividend
, divisor
);
2986 static DEFINE_PER_CPU(int, perf_throttled_count
);
2987 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
2989 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
2991 struct hw_perf_event
*hwc
= &event
->hw
;
2992 s64 period
, sample_period
;
2995 period
= perf_calculate_period(event
, nsec
, count
);
2997 delta
= (s64
)(period
- hwc
->sample_period
);
2998 delta
= (delta
+ 7) / 8; /* low pass filter */
3000 sample_period
= hwc
->sample_period
+ delta
;
3005 hwc
->sample_period
= sample_period
;
3007 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3009 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3011 local64_set(&hwc
->period_left
, 0);
3014 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3019 * combine freq adjustment with unthrottling to avoid two passes over the
3020 * events. At the same time, make sure, having freq events does not change
3021 * the rate of unthrottling as that would introduce bias.
3023 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3026 struct perf_event
*event
;
3027 struct hw_perf_event
*hwc
;
3028 u64 now
, period
= TICK_NSEC
;
3032 * only need to iterate over all events iff:
3033 * - context have events in frequency mode (needs freq adjust)
3034 * - there are events to unthrottle on this cpu
3036 if (!(ctx
->nr_freq
|| needs_unthr
))
3039 raw_spin_lock(&ctx
->lock
);
3040 perf_pmu_disable(ctx
->pmu
);
3042 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3043 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3046 if (!event_filter_match(event
))
3049 perf_pmu_disable(event
->pmu
);
3053 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3054 hwc
->interrupts
= 0;
3055 perf_log_throttle(event
, 1);
3056 event
->pmu
->start(event
, 0);
3059 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3063 * stop the event and update event->count
3065 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3067 now
= local64_read(&event
->count
);
3068 delta
= now
- hwc
->freq_count_stamp
;
3069 hwc
->freq_count_stamp
= now
;
3073 * reload only if value has changed
3074 * we have stopped the event so tell that
3075 * to perf_adjust_period() to avoid stopping it
3079 perf_adjust_period(event
, period
, delta
, false);
3081 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3083 perf_pmu_enable(event
->pmu
);
3086 perf_pmu_enable(ctx
->pmu
);
3087 raw_spin_unlock(&ctx
->lock
);
3091 * Round-robin a context's events:
3093 static void rotate_ctx(struct perf_event_context
*ctx
)
3096 * Rotate the first entry last of non-pinned groups. Rotation might be
3097 * disabled by the inheritance code.
3099 if (!ctx
->rotate_disable
)
3100 list_rotate_left(&ctx
->flexible_groups
);
3103 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3105 struct perf_event_context
*ctx
= NULL
;
3108 if (cpuctx
->ctx
.nr_events
) {
3109 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3113 ctx
= cpuctx
->task_ctx
;
3114 if (ctx
&& ctx
->nr_events
) {
3115 if (ctx
->nr_events
!= ctx
->nr_active
)
3122 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3123 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3125 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3127 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3129 rotate_ctx(&cpuctx
->ctx
);
3133 perf_event_sched_in(cpuctx
, ctx
, current
);
3135 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3136 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3142 void perf_event_task_tick(void)
3144 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3145 struct perf_event_context
*ctx
, *tmp
;
3148 WARN_ON(!irqs_disabled());
3150 __this_cpu_inc(perf_throttled_seq
);
3151 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3152 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3154 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3155 perf_adjust_freq_unthr_context(ctx
, throttled
);
3158 static int event_enable_on_exec(struct perf_event
*event
,
3159 struct perf_event_context
*ctx
)
3161 if (!event
->attr
.enable_on_exec
)
3164 event
->attr
.enable_on_exec
= 0;
3165 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3168 __perf_event_mark_enabled(event
);
3174 * Enable all of a task's events that have been marked enable-on-exec.
3175 * This expects task == current.
3177 static void perf_event_enable_on_exec(int ctxn
)
3179 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3180 struct perf_cpu_context
*cpuctx
;
3181 struct perf_event
*event
;
3182 unsigned long flags
;
3185 local_irq_save(flags
);
3186 ctx
= current
->perf_event_ctxp
[ctxn
];
3187 if (!ctx
|| !ctx
->nr_events
)
3190 cpuctx
= __get_cpu_context(ctx
);
3191 perf_ctx_lock(cpuctx
, ctx
);
3192 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3193 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
3194 enabled
|= event_enable_on_exec(event
, ctx
);
3197 * Unclone and reschedule this context if we enabled any event.
3200 clone_ctx
= unclone_ctx(ctx
);
3201 ctx_resched(cpuctx
, ctx
);
3203 perf_ctx_unlock(cpuctx
, ctx
);
3206 local_irq_restore(flags
);
3212 void perf_event_exec(void)
3217 for_each_task_context_nr(ctxn
)
3218 perf_event_enable_on_exec(ctxn
);
3222 struct perf_read_data
{
3223 struct perf_event
*event
;
3229 * Cross CPU call to read the hardware event
3231 static void __perf_event_read(void *info
)
3233 struct perf_read_data
*data
= info
;
3234 struct perf_event
*sub
, *event
= data
->event
;
3235 struct perf_event_context
*ctx
= event
->ctx
;
3236 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3237 struct pmu
*pmu
= event
->pmu
;
3240 * If this is a task context, we need to check whether it is
3241 * the current task context of this cpu. If not it has been
3242 * scheduled out before the smp call arrived. In that case
3243 * event->count would have been updated to a recent sample
3244 * when the event was scheduled out.
3246 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3249 raw_spin_lock(&ctx
->lock
);
3250 if (ctx
->is_active
) {
3251 update_context_time(ctx
);
3252 update_cgrp_time_from_event(event
);
3255 update_event_times(event
);
3256 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3265 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3269 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
3270 update_event_times(sub
);
3271 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3273 * Use sibling's PMU rather than @event's since
3274 * sibling could be on different (eg: software) PMU.
3276 sub
->pmu
->read(sub
);
3280 data
->ret
= pmu
->commit_txn(pmu
);
3283 raw_spin_unlock(&ctx
->lock
);
3286 static inline u64
perf_event_count(struct perf_event
*event
)
3288 if (event
->pmu
->count
)
3289 return event
->pmu
->count(event
);
3291 return __perf_event_count(event
);
3295 * NMI-safe method to read a local event, that is an event that
3297 * - either for the current task, or for this CPU
3298 * - does not have inherit set, for inherited task events
3299 * will not be local and we cannot read them atomically
3300 * - must not have a pmu::count method
3302 u64
perf_event_read_local(struct perf_event
*event
)
3304 unsigned long flags
;
3308 * Disabling interrupts avoids all counter scheduling (context
3309 * switches, timer based rotation and IPIs).
3311 local_irq_save(flags
);
3313 /* If this is a per-task event, it must be for current */
3314 WARN_ON_ONCE((event
->attach_state
& PERF_ATTACH_TASK
) &&
3315 event
->hw
.target
!= current
);
3317 /* If this is a per-CPU event, it must be for this CPU */
3318 WARN_ON_ONCE(!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3319 event
->cpu
!= smp_processor_id());
3322 * It must not be an event with inherit set, we cannot read
3323 * all child counters from atomic context.
3325 WARN_ON_ONCE(event
->attr
.inherit
);
3328 * It must not have a pmu::count method, those are not
3331 WARN_ON_ONCE(event
->pmu
->count
);
3334 * If the event is currently on this CPU, its either a per-task event,
3335 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3338 if (event
->oncpu
== smp_processor_id())
3339 event
->pmu
->read(event
);
3341 val
= local64_read(&event
->count
);
3342 local_irq_restore(flags
);
3347 static int perf_event_read(struct perf_event
*event
, bool group
)
3352 * If event is enabled and currently active on a CPU, update the
3353 * value in the event structure:
3355 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3356 struct perf_read_data data
= {
3361 smp_call_function_single(event
->oncpu
,
3362 __perf_event_read
, &data
, 1);
3364 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3365 struct perf_event_context
*ctx
= event
->ctx
;
3366 unsigned long flags
;
3368 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3370 * may read while context is not active
3371 * (e.g., thread is blocked), in that case
3372 * we cannot update context time
3374 if (ctx
->is_active
) {
3375 update_context_time(ctx
);
3376 update_cgrp_time_from_event(event
);
3379 update_group_times(event
);
3381 update_event_times(event
);
3382 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3389 * Initialize the perf_event context in a task_struct:
3391 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3393 raw_spin_lock_init(&ctx
->lock
);
3394 mutex_init(&ctx
->mutex
);
3395 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3396 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3397 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3398 INIT_LIST_HEAD(&ctx
->event_list
);
3399 atomic_set(&ctx
->refcount
, 1);
3402 static struct perf_event_context
*
3403 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3405 struct perf_event_context
*ctx
;
3407 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3411 __perf_event_init_context(ctx
);
3414 get_task_struct(task
);
3421 static struct task_struct
*
3422 find_lively_task_by_vpid(pid_t vpid
)
3424 struct task_struct
*task
;
3430 task
= find_task_by_vpid(vpid
);
3432 get_task_struct(task
);
3436 return ERR_PTR(-ESRCH
);
3442 * Returns a matching context with refcount and pincount.
3444 static struct perf_event_context
*
3445 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
3446 struct perf_event
*event
)
3448 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3449 struct perf_cpu_context
*cpuctx
;
3450 void *task_ctx_data
= NULL
;
3451 unsigned long flags
;
3453 int cpu
= event
->cpu
;
3456 /* Must be root to operate on a CPU event: */
3457 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3458 return ERR_PTR(-EACCES
);
3461 * We could be clever and allow to attach a event to an
3462 * offline CPU and activate it when the CPU comes up, but
3465 if (!cpu_online(cpu
))
3466 return ERR_PTR(-ENODEV
);
3468 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3477 ctxn
= pmu
->task_ctx_nr
;
3481 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
3482 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
3483 if (!task_ctx_data
) {
3490 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3492 clone_ctx
= unclone_ctx(ctx
);
3495 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
3496 ctx
->task_ctx_data
= task_ctx_data
;
3497 task_ctx_data
= NULL
;
3499 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3504 ctx
= alloc_perf_context(pmu
, task
);
3509 if (task_ctx_data
) {
3510 ctx
->task_ctx_data
= task_ctx_data
;
3511 task_ctx_data
= NULL
;
3515 mutex_lock(&task
->perf_event_mutex
);
3517 * If it has already passed perf_event_exit_task().
3518 * we must see PF_EXITING, it takes this mutex too.
3520 if (task
->flags
& PF_EXITING
)
3522 else if (task
->perf_event_ctxp
[ctxn
])
3527 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3529 mutex_unlock(&task
->perf_event_mutex
);
3531 if (unlikely(err
)) {
3540 kfree(task_ctx_data
);
3544 kfree(task_ctx_data
);
3545 return ERR_PTR(err
);
3548 static void perf_event_free_filter(struct perf_event
*event
);
3549 static void perf_event_free_bpf_prog(struct perf_event
*event
);
3551 static void free_event_rcu(struct rcu_head
*head
)
3553 struct perf_event
*event
;
3555 event
= container_of(head
, struct perf_event
, rcu_head
);
3557 put_pid_ns(event
->ns
);
3558 perf_event_free_filter(event
);
3562 static void ring_buffer_attach(struct perf_event
*event
,
3563 struct ring_buffer
*rb
);
3565 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3570 if (is_cgroup_event(event
))
3571 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3574 #ifdef CONFIG_NO_HZ_FULL
3575 static DEFINE_SPINLOCK(nr_freq_lock
);
3578 static void unaccount_freq_event_nohz(void)
3580 #ifdef CONFIG_NO_HZ_FULL
3581 spin_lock(&nr_freq_lock
);
3582 if (atomic_dec_and_test(&nr_freq_events
))
3583 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
3584 spin_unlock(&nr_freq_lock
);
3588 static void unaccount_freq_event(void)
3590 if (tick_nohz_full_enabled())
3591 unaccount_freq_event_nohz();
3593 atomic_dec(&nr_freq_events
);
3596 static void unaccount_event(struct perf_event
*event
)
3603 if (event
->attach_state
& PERF_ATTACH_TASK
)
3605 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3606 atomic_dec(&nr_mmap_events
);
3607 if (event
->attr
.comm
)
3608 atomic_dec(&nr_comm_events
);
3609 if (event
->attr
.task
)
3610 atomic_dec(&nr_task_events
);
3611 if (event
->attr
.freq
)
3612 unaccount_freq_event();
3613 if (event
->attr
.context_switch
) {
3615 atomic_dec(&nr_switch_events
);
3617 if (is_cgroup_event(event
))
3619 if (has_branch_stack(event
))
3623 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
3624 schedule_delayed_work(&perf_sched_work
, HZ
);
3627 unaccount_event_cpu(event
, event
->cpu
);
3630 static void perf_sched_delayed(struct work_struct
*work
)
3632 mutex_lock(&perf_sched_mutex
);
3633 if (atomic_dec_and_test(&perf_sched_count
))
3634 static_branch_disable(&perf_sched_events
);
3635 mutex_unlock(&perf_sched_mutex
);
3639 * The following implement mutual exclusion of events on "exclusive" pmus
3640 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3641 * at a time, so we disallow creating events that might conflict, namely:
3643 * 1) cpu-wide events in the presence of per-task events,
3644 * 2) per-task events in the presence of cpu-wide events,
3645 * 3) two matching events on the same context.
3647 * The former two cases are handled in the allocation path (perf_event_alloc(),
3648 * _free_event()), the latter -- before the first perf_install_in_context().
3650 static int exclusive_event_init(struct perf_event
*event
)
3652 struct pmu
*pmu
= event
->pmu
;
3654 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3658 * Prevent co-existence of per-task and cpu-wide events on the
3659 * same exclusive pmu.
3661 * Negative pmu::exclusive_cnt means there are cpu-wide
3662 * events on this "exclusive" pmu, positive means there are
3665 * Since this is called in perf_event_alloc() path, event::ctx
3666 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3667 * to mean "per-task event", because unlike other attach states it
3668 * never gets cleared.
3670 if (event
->attach_state
& PERF_ATTACH_TASK
) {
3671 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
3674 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
3681 static void exclusive_event_destroy(struct perf_event
*event
)
3683 struct pmu
*pmu
= event
->pmu
;
3685 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3688 /* see comment in exclusive_event_init() */
3689 if (event
->attach_state
& PERF_ATTACH_TASK
)
3690 atomic_dec(&pmu
->exclusive_cnt
);
3692 atomic_inc(&pmu
->exclusive_cnt
);
3695 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
3697 if ((e1
->pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) &&
3698 (e1
->cpu
== e2
->cpu
||
3705 /* Called under the same ctx::mutex as perf_install_in_context() */
3706 static bool exclusive_event_installable(struct perf_event
*event
,
3707 struct perf_event_context
*ctx
)
3709 struct perf_event
*iter_event
;
3710 struct pmu
*pmu
= event
->pmu
;
3712 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
3715 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
3716 if (exclusive_event_match(iter_event
, event
))
3723 static void _free_event(struct perf_event
*event
)
3725 irq_work_sync(&event
->pending
);
3727 unaccount_event(event
);
3731 * Can happen when we close an event with re-directed output.
3733 * Since we have a 0 refcount, perf_mmap_close() will skip
3734 * over us; possibly making our ring_buffer_put() the last.
3736 mutex_lock(&event
->mmap_mutex
);
3737 ring_buffer_attach(event
, NULL
);
3738 mutex_unlock(&event
->mmap_mutex
);
3741 if (is_cgroup_event(event
))
3742 perf_detach_cgroup(event
);
3744 if (!event
->parent
) {
3745 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3746 put_callchain_buffers();
3749 perf_event_free_bpf_prog(event
);
3752 event
->destroy(event
);
3755 put_ctx(event
->ctx
);
3758 exclusive_event_destroy(event
);
3759 module_put(event
->pmu
->module
);
3762 call_rcu(&event
->rcu_head
, free_event_rcu
);
3766 * Used to free events which have a known refcount of 1, such as in error paths
3767 * where the event isn't exposed yet and inherited events.
3769 static void free_event(struct perf_event
*event
)
3771 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
3772 "unexpected event refcount: %ld; ptr=%p\n",
3773 atomic_long_read(&event
->refcount
), event
)) {
3774 /* leak to avoid use-after-free */
3782 * Remove user event from the owner task.
3784 static void perf_remove_from_owner(struct perf_event
*event
)
3786 struct task_struct
*owner
;
3790 * Matches the smp_store_release() in perf_event_exit_task(). If we
3791 * observe !owner it means the list deletion is complete and we can
3792 * indeed free this event, otherwise we need to serialize on
3793 * owner->perf_event_mutex.
3795 owner
= lockless_dereference(event
->owner
);
3798 * Since delayed_put_task_struct() also drops the last
3799 * task reference we can safely take a new reference
3800 * while holding the rcu_read_lock().
3802 get_task_struct(owner
);
3808 * If we're here through perf_event_exit_task() we're already
3809 * holding ctx->mutex which would be an inversion wrt. the
3810 * normal lock order.
3812 * However we can safely take this lock because its the child
3815 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
3818 * We have to re-check the event->owner field, if it is cleared
3819 * we raced with perf_event_exit_task(), acquiring the mutex
3820 * ensured they're done, and we can proceed with freeing the
3824 list_del_init(&event
->owner_entry
);
3825 smp_store_release(&event
->owner
, NULL
);
3827 mutex_unlock(&owner
->perf_event_mutex
);
3828 put_task_struct(owner
);
3832 static void put_event(struct perf_event
*event
)
3834 if (!atomic_long_dec_and_test(&event
->refcount
))
3841 * Kill an event dead; while event:refcount will preserve the event
3842 * object, it will not preserve its functionality. Once the last 'user'
3843 * gives up the object, we'll destroy the thing.
3845 int perf_event_release_kernel(struct perf_event
*event
)
3847 struct perf_event_context
*ctx
= event
->ctx
;
3848 struct perf_event
*child
, *tmp
;
3851 * If we got here through err_file: fput(event_file); we will not have
3852 * attached to a context yet.
3855 WARN_ON_ONCE(event
->attach_state
&
3856 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
3860 if (!is_kernel_event(event
))
3861 perf_remove_from_owner(event
);
3863 ctx
= perf_event_ctx_lock(event
);
3864 WARN_ON_ONCE(ctx
->parent_ctx
);
3865 perf_remove_from_context(event
, DETACH_GROUP
);
3867 raw_spin_lock_irq(&ctx
->lock
);
3869 * Mark this even as STATE_DEAD, there is no external reference to it
3872 * Anybody acquiring event->child_mutex after the below loop _must_
3873 * also see this, most importantly inherit_event() which will avoid
3874 * placing more children on the list.
3876 * Thus this guarantees that we will in fact observe and kill _ALL_
3879 event
->state
= PERF_EVENT_STATE_DEAD
;
3880 raw_spin_unlock_irq(&ctx
->lock
);
3882 perf_event_ctx_unlock(event
, ctx
);
3885 mutex_lock(&event
->child_mutex
);
3886 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3889 * Cannot change, child events are not migrated, see the
3890 * comment with perf_event_ctx_lock_nested().
3892 ctx
= lockless_dereference(child
->ctx
);
3894 * Since child_mutex nests inside ctx::mutex, we must jump
3895 * through hoops. We start by grabbing a reference on the ctx.
3897 * Since the event cannot get freed while we hold the
3898 * child_mutex, the context must also exist and have a !0
3904 * Now that we have a ctx ref, we can drop child_mutex, and
3905 * acquire ctx::mutex without fear of it going away. Then we
3906 * can re-acquire child_mutex.
3908 mutex_unlock(&event
->child_mutex
);
3909 mutex_lock(&ctx
->mutex
);
3910 mutex_lock(&event
->child_mutex
);
3913 * Now that we hold ctx::mutex and child_mutex, revalidate our
3914 * state, if child is still the first entry, it didn't get freed
3915 * and we can continue doing so.
3917 tmp
= list_first_entry_or_null(&event
->child_list
,
3918 struct perf_event
, child_list
);
3920 perf_remove_from_context(child
, DETACH_GROUP
);
3921 list_del(&child
->child_list
);
3924 * This matches the refcount bump in inherit_event();
3925 * this can't be the last reference.
3930 mutex_unlock(&event
->child_mutex
);
3931 mutex_unlock(&ctx
->mutex
);
3935 mutex_unlock(&event
->child_mutex
);
3938 put_event(event
); /* Must be the 'last' reference */
3941 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
3944 * Called when the last reference to the file is gone.
3946 static int perf_release(struct inode
*inode
, struct file
*file
)
3948 perf_event_release_kernel(file
->private_data
);
3952 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3954 struct perf_event
*child
;
3960 mutex_lock(&event
->child_mutex
);
3962 (void)perf_event_read(event
, false);
3963 total
+= perf_event_count(event
);
3965 *enabled
+= event
->total_time_enabled
+
3966 atomic64_read(&event
->child_total_time_enabled
);
3967 *running
+= event
->total_time_running
+
3968 atomic64_read(&event
->child_total_time_running
);
3970 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3971 (void)perf_event_read(child
, false);
3972 total
+= perf_event_count(child
);
3973 *enabled
+= child
->total_time_enabled
;
3974 *running
+= child
->total_time_running
;
3976 mutex_unlock(&event
->child_mutex
);
3980 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3982 static int __perf_read_group_add(struct perf_event
*leader
,
3983 u64 read_format
, u64
*values
)
3985 struct perf_event
*sub
;
3986 int n
= 1; /* skip @nr */
3989 ret
= perf_event_read(leader
, true);
3994 * Since we co-schedule groups, {enabled,running} times of siblings
3995 * will be identical to those of the leader, so we only publish one
3998 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3999 values
[n
++] += leader
->total_time_enabled
+
4000 atomic64_read(&leader
->child_total_time_enabled
);
4003 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4004 values
[n
++] += leader
->total_time_running
+
4005 atomic64_read(&leader
->child_total_time_running
);
4009 * Write {count,id} tuples for every sibling.
4011 values
[n
++] += perf_event_count(leader
);
4012 if (read_format
& PERF_FORMAT_ID
)
4013 values
[n
++] = primary_event_id(leader
);
4015 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4016 values
[n
++] += perf_event_count(sub
);
4017 if (read_format
& PERF_FORMAT_ID
)
4018 values
[n
++] = primary_event_id(sub
);
4024 static int perf_read_group(struct perf_event
*event
,
4025 u64 read_format
, char __user
*buf
)
4027 struct perf_event
*leader
= event
->group_leader
, *child
;
4028 struct perf_event_context
*ctx
= leader
->ctx
;
4032 lockdep_assert_held(&ctx
->mutex
);
4034 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4038 values
[0] = 1 + leader
->nr_siblings
;
4041 * By locking the child_mutex of the leader we effectively
4042 * lock the child list of all siblings.. XXX explain how.
4044 mutex_lock(&leader
->child_mutex
);
4046 ret
= __perf_read_group_add(leader
, read_format
, values
);
4050 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4051 ret
= __perf_read_group_add(child
, read_format
, values
);
4056 mutex_unlock(&leader
->child_mutex
);
4058 ret
= event
->read_size
;
4059 if (copy_to_user(buf
, values
, event
->read_size
))
4064 mutex_unlock(&leader
->child_mutex
);
4070 static int perf_read_one(struct perf_event
*event
,
4071 u64 read_format
, char __user
*buf
)
4073 u64 enabled
, running
;
4077 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
4078 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4079 values
[n
++] = enabled
;
4080 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4081 values
[n
++] = running
;
4082 if (read_format
& PERF_FORMAT_ID
)
4083 values
[n
++] = primary_event_id(event
);
4085 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4088 return n
* sizeof(u64
);
4091 static bool is_event_hup(struct perf_event
*event
)
4095 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4098 mutex_lock(&event
->child_mutex
);
4099 no_children
= list_empty(&event
->child_list
);
4100 mutex_unlock(&event
->child_mutex
);
4105 * Read the performance event - simple non blocking version for now
4108 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
4110 u64 read_format
= event
->attr
.read_format
;
4114 * Return end-of-file for a read on a event that is in
4115 * error state (i.e. because it was pinned but it couldn't be
4116 * scheduled on to the CPU at some point).
4118 if (event
->state
== PERF_EVENT_STATE_ERROR
)
4121 if (count
< event
->read_size
)
4124 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4125 if (read_format
& PERF_FORMAT_GROUP
)
4126 ret
= perf_read_group(event
, read_format
, buf
);
4128 ret
= perf_read_one(event
, read_format
, buf
);
4134 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4136 struct perf_event
*event
= file
->private_data
;
4137 struct perf_event_context
*ctx
;
4140 ctx
= perf_event_ctx_lock(event
);
4141 ret
= __perf_read(event
, buf
, count
);
4142 perf_event_ctx_unlock(event
, ctx
);
4147 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
4149 struct perf_event
*event
= file
->private_data
;
4150 struct ring_buffer
*rb
;
4151 unsigned int events
= POLLHUP
;
4153 poll_wait(file
, &event
->waitq
, wait
);
4155 if (is_event_hup(event
))
4159 * Pin the event->rb by taking event->mmap_mutex; otherwise
4160 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4162 mutex_lock(&event
->mmap_mutex
);
4165 events
= atomic_xchg(&rb
->poll
, 0);
4166 mutex_unlock(&event
->mmap_mutex
);
4170 static void _perf_event_reset(struct perf_event
*event
)
4172 (void)perf_event_read(event
, false);
4173 local64_set(&event
->count
, 0);
4174 perf_event_update_userpage(event
);
4178 * Holding the top-level event's child_mutex means that any
4179 * descendant process that has inherited this event will block
4180 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4181 * task existence requirements of perf_event_enable/disable.
4183 static void perf_event_for_each_child(struct perf_event
*event
,
4184 void (*func
)(struct perf_event
*))
4186 struct perf_event
*child
;
4188 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4190 mutex_lock(&event
->child_mutex
);
4192 list_for_each_entry(child
, &event
->child_list
, child_list
)
4194 mutex_unlock(&event
->child_mutex
);
4197 static void perf_event_for_each(struct perf_event
*event
,
4198 void (*func
)(struct perf_event
*))
4200 struct perf_event_context
*ctx
= event
->ctx
;
4201 struct perf_event
*sibling
;
4203 lockdep_assert_held(&ctx
->mutex
);
4205 event
= event
->group_leader
;
4207 perf_event_for_each_child(event
, func
);
4208 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
4209 perf_event_for_each_child(sibling
, func
);
4212 static void __perf_event_period(struct perf_event
*event
,
4213 struct perf_cpu_context
*cpuctx
,
4214 struct perf_event_context
*ctx
,
4217 u64 value
= *((u64
*)info
);
4220 if (event
->attr
.freq
) {
4221 event
->attr
.sample_freq
= value
;
4223 event
->attr
.sample_period
= value
;
4224 event
->hw
.sample_period
= value
;
4227 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4229 perf_pmu_disable(ctx
->pmu
);
4231 * We could be throttled; unthrottle now to avoid the tick
4232 * trying to unthrottle while we already re-started the event.
4234 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
4235 event
->hw
.interrupts
= 0;
4236 perf_log_throttle(event
, 1);
4238 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4241 local64_set(&event
->hw
.period_left
, 0);
4244 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4245 perf_pmu_enable(ctx
->pmu
);
4249 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4253 if (!is_sampling_event(event
))
4256 if (copy_from_user(&value
, arg
, sizeof(value
)))
4262 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4265 event_function_call(event
, __perf_event_period
, &value
);
4270 static const struct file_operations perf_fops
;
4272 static inline int perf_fget_light(int fd
, struct fd
*p
)
4274 struct fd f
= fdget(fd
);
4278 if (f
.file
->f_op
!= &perf_fops
) {
4286 static int perf_event_set_output(struct perf_event
*event
,
4287 struct perf_event
*output_event
);
4288 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
4289 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
4291 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
4293 void (*func
)(struct perf_event
*);
4297 case PERF_EVENT_IOC_ENABLE
:
4298 func
= _perf_event_enable
;
4300 case PERF_EVENT_IOC_DISABLE
:
4301 func
= _perf_event_disable
;
4303 case PERF_EVENT_IOC_RESET
:
4304 func
= _perf_event_reset
;
4307 case PERF_EVENT_IOC_REFRESH
:
4308 return _perf_event_refresh(event
, arg
);
4310 case PERF_EVENT_IOC_PERIOD
:
4311 return perf_event_period(event
, (u64 __user
*)arg
);
4313 case PERF_EVENT_IOC_ID
:
4315 u64 id
= primary_event_id(event
);
4317 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
4322 case PERF_EVENT_IOC_SET_OUTPUT
:
4326 struct perf_event
*output_event
;
4328 ret
= perf_fget_light(arg
, &output
);
4331 output_event
= output
.file
->private_data
;
4332 ret
= perf_event_set_output(event
, output_event
);
4335 ret
= perf_event_set_output(event
, NULL
);
4340 case PERF_EVENT_IOC_SET_FILTER
:
4341 return perf_event_set_filter(event
, (void __user
*)arg
);
4343 case PERF_EVENT_IOC_SET_BPF
:
4344 return perf_event_set_bpf_prog(event
, arg
);
4350 if (flags
& PERF_IOC_FLAG_GROUP
)
4351 perf_event_for_each(event
, func
);
4353 perf_event_for_each_child(event
, func
);
4358 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4360 struct perf_event
*event
= file
->private_data
;
4361 struct perf_event_context
*ctx
;
4364 ctx
= perf_event_ctx_lock(event
);
4365 ret
= _perf_ioctl(event
, cmd
, arg
);
4366 perf_event_ctx_unlock(event
, ctx
);
4371 #ifdef CONFIG_COMPAT
4372 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4375 switch (_IOC_NR(cmd
)) {
4376 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4377 case _IOC_NR(PERF_EVENT_IOC_ID
):
4378 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4379 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4380 cmd
&= ~IOCSIZE_MASK
;
4381 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4385 return perf_ioctl(file
, cmd
, arg
);
4388 # define perf_compat_ioctl NULL
4391 int perf_event_task_enable(void)
4393 struct perf_event_context
*ctx
;
4394 struct perf_event
*event
;
4396 mutex_lock(¤t
->perf_event_mutex
);
4397 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4398 ctx
= perf_event_ctx_lock(event
);
4399 perf_event_for_each_child(event
, _perf_event_enable
);
4400 perf_event_ctx_unlock(event
, ctx
);
4402 mutex_unlock(¤t
->perf_event_mutex
);
4407 int perf_event_task_disable(void)
4409 struct perf_event_context
*ctx
;
4410 struct perf_event
*event
;
4412 mutex_lock(¤t
->perf_event_mutex
);
4413 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4414 ctx
= perf_event_ctx_lock(event
);
4415 perf_event_for_each_child(event
, _perf_event_disable
);
4416 perf_event_ctx_unlock(event
, ctx
);
4418 mutex_unlock(¤t
->perf_event_mutex
);
4423 static int perf_event_index(struct perf_event
*event
)
4425 if (event
->hw
.state
& PERF_HES_STOPPED
)
4428 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4431 return event
->pmu
->event_idx(event
);
4434 static void calc_timer_values(struct perf_event
*event
,
4441 *now
= perf_clock();
4442 ctx_time
= event
->shadow_ctx_time
+ *now
;
4443 *enabled
= ctx_time
- event
->tstamp_enabled
;
4444 *running
= ctx_time
- event
->tstamp_running
;
4447 static void perf_event_init_userpage(struct perf_event
*event
)
4449 struct perf_event_mmap_page
*userpg
;
4450 struct ring_buffer
*rb
;
4453 rb
= rcu_dereference(event
->rb
);
4457 userpg
= rb
->user_page
;
4459 /* Allow new userspace to detect that bit 0 is deprecated */
4460 userpg
->cap_bit0_is_deprecated
= 1;
4461 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4462 userpg
->data_offset
= PAGE_SIZE
;
4463 userpg
->data_size
= perf_data_size(rb
);
4469 void __weak
arch_perf_update_userpage(
4470 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4475 * Callers need to ensure there can be no nesting of this function, otherwise
4476 * the seqlock logic goes bad. We can not serialize this because the arch
4477 * code calls this from NMI context.
4479 void perf_event_update_userpage(struct perf_event
*event
)
4481 struct perf_event_mmap_page
*userpg
;
4482 struct ring_buffer
*rb
;
4483 u64 enabled
, running
, now
;
4486 rb
= rcu_dereference(event
->rb
);
4491 * compute total_time_enabled, total_time_running
4492 * based on snapshot values taken when the event
4493 * was last scheduled in.
4495 * we cannot simply called update_context_time()
4496 * because of locking issue as we can be called in
4499 calc_timer_values(event
, &now
, &enabled
, &running
);
4501 userpg
= rb
->user_page
;
4503 * Disable preemption so as to not let the corresponding user-space
4504 * spin too long if we get preempted.
4509 userpg
->index
= perf_event_index(event
);
4510 userpg
->offset
= perf_event_count(event
);
4512 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4514 userpg
->time_enabled
= enabled
+
4515 atomic64_read(&event
->child_total_time_enabled
);
4517 userpg
->time_running
= running
+
4518 atomic64_read(&event
->child_total_time_running
);
4520 arch_perf_update_userpage(event
, userpg
, now
);
4529 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4531 struct perf_event
*event
= vma
->vm_file
->private_data
;
4532 struct ring_buffer
*rb
;
4533 int ret
= VM_FAULT_SIGBUS
;
4535 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4536 if (vmf
->pgoff
== 0)
4542 rb
= rcu_dereference(event
->rb
);
4546 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4549 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4553 get_page(vmf
->page
);
4554 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4555 vmf
->page
->index
= vmf
->pgoff
;
4564 static void ring_buffer_attach(struct perf_event
*event
,
4565 struct ring_buffer
*rb
)
4567 struct ring_buffer
*old_rb
= NULL
;
4568 unsigned long flags
;
4572 * Should be impossible, we set this when removing
4573 * event->rb_entry and wait/clear when adding event->rb_entry.
4575 WARN_ON_ONCE(event
->rcu_pending
);
4578 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4579 list_del_rcu(&event
->rb_entry
);
4580 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4582 event
->rcu_batches
= get_state_synchronize_rcu();
4583 event
->rcu_pending
= 1;
4587 if (event
->rcu_pending
) {
4588 cond_synchronize_rcu(event
->rcu_batches
);
4589 event
->rcu_pending
= 0;
4592 spin_lock_irqsave(&rb
->event_lock
, flags
);
4593 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4594 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4597 rcu_assign_pointer(event
->rb
, rb
);
4600 ring_buffer_put(old_rb
);
4602 * Since we detached before setting the new rb, so that we
4603 * could attach the new rb, we could have missed a wakeup.
4606 wake_up_all(&event
->waitq
);
4610 static void ring_buffer_wakeup(struct perf_event
*event
)
4612 struct ring_buffer
*rb
;
4615 rb
= rcu_dereference(event
->rb
);
4617 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4618 wake_up_all(&event
->waitq
);
4623 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
4625 struct ring_buffer
*rb
;
4628 rb
= rcu_dereference(event
->rb
);
4630 if (!atomic_inc_not_zero(&rb
->refcount
))
4638 void ring_buffer_put(struct ring_buffer
*rb
)
4640 if (!atomic_dec_and_test(&rb
->refcount
))
4643 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
4645 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
4648 static void perf_mmap_open(struct vm_area_struct
*vma
)
4650 struct perf_event
*event
= vma
->vm_file
->private_data
;
4652 atomic_inc(&event
->mmap_count
);
4653 atomic_inc(&event
->rb
->mmap_count
);
4656 atomic_inc(&event
->rb
->aux_mmap_count
);
4658 if (event
->pmu
->event_mapped
)
4659 event
->pmu
->event_mapped(event
);
4663 * A buffer can be mmap()ed multiple times; either directly through the same
4664 * event, or through other events by use of perf_event_set_output().
4666 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4667 * the buffer here, where we still have a VM context. This means we need
4668 * to detach all events redirecting to us.
4670 static void perf_mmap_close(struct vm_area_struct
*vma
)
4672 struct perf_event
*event
= vma
->vm_file
->private_data
;
4674 struct ring_buffer
*rb
= ring_buffer_get(event
);
4675 struct user_struct
*mmap_user
= rb
->mmap_user
;
4676 int mmap_locked
= rb
->mmap_locked
;
4677 unsigned long size
= perf_data_size(rb
);
4679 if (event
->pmu
->event_unmapped
)
4680 event
->pmu
->event_unmapped(event
);
4683 * rb->aux_mmap_count will always drop before rb->mmap_count and
4684 * event->mmap_count, so it is ok to use event->mmap_mutex to
4685 * serialize with perf_mmap here.
4687 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
4688 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
4689 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
4690 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
4693 mutex_unlock(&event
->mmap_mutex
);
4696 atomic_dec(&rb
->mmap_count
);
4698 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
4701 ring_buffer_attach(event
, NULL
);
4702 mutex_unlock(&event
->mmap_mutex
);
4704 /* If there's still other mmap()s of this buffer, we're done. */
4705 if (atomic_read(&rb
->mmap_count
))
4709 * No other mmap()s, detach from all other events that might redirect
4710 * into the now unreachable buffer. Somewhat complicated by the
4711 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4715 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
4716 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
4718 * This event is en-route to free_event() which will
4719 * detach it and remove it from the list.
4725 mutex_lock(&event
->mmap_mutex
);
4727 * Check we didn't race with perf_event_set_output() which can
4728 * swizzle the rb from under us while we were waiting to
4729 * acquire mmap_mutex.
4731 * If we find a different rb; ignore this event, a next
4732 * iteration will no longer find it on the list. We have to
4733 * still restart the iteration to make sure we're not now
4734 * iterating the wrong list.
4736 if (event
->rb
== rb
)
4737 ring_buffer_attach(event
, NULL
);
4739 mutex_unlock(&event
->mmap_mutex
);
4743 * Restart the iteration; either we're on the wrong list or
4744 * destroyed its integrity by doing a deletion.
4751 * It could be there's still a few 0-ref events on the list; they'll
4752 * get cleaned up by free_event() -- they'll also still have their
4753 * ref on the rb and will free it whenever they are done with it.
4755 * Aside from that, this buffer is 'fully' detached and unmapped,
4756 * undo the VM accounting.
4759 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
4760 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
4761 free_uid(mmap_user
);
4764 ring_buffer_put(rb
); /* could be last */
4767 static const struct vm_operations_struct perf_mmap_vmops
= {
4768 .open
= perf_mmap_open
,
4769 .close
= perf_mmap_close
, /* non mergable */
4770 .fault
= perf_mmap_fault
,
4771 .page_mkwrite
= perf_mmap_fault
,
4774 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
4776 struct perf_event
*event
= file
->private_data
;
4777 unsigned long user_locked
, user_lock_limit
;
4778 struct user_struct
*user
= current_user();
4779 unsigned long locked
, lock_limit
;
4780 struct ring_buffer
*rb
= NULL
;
4781 unsigned long vma_size
;
4782 unsigned long nr_pages
;
4783 long user_extra
= 0, extra
= 0;
4784 int ret
= 0, flags
= 0;
4787 * Don't allow mmap() of inherited per-task counters. This would
4788 * create a performance issue due to all children writing to the
4791 if (event
->cpu
== -1 && event
->attr
.inherit
)
4794 if (!(vma
->vm_flags
& VM_SHARED
))
4797 vma_size
= vma
->vm_end
- vma
->vm_start
;
4799 if (vma
->vm_pgoff
== 0) {
4800 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
4803 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4804 * mapped, all subsequent mappings should have the same size
4805 * and offset. Must be above the normal perf buffer.
4807 u64 aux_offset
, aux_size
;
4812 nr_pages
= vma_size
/ PAGE_SIZE
;
4814 mutex_lock(&event
->mmap_mutex
);
4821 aux_offset
= ACCESS_ONCE(rb
->user_page
->aux_offset
);
4822 aux_size
= ACCESS_ONCE(rb
->user_page
->aux_size
);
4824 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
4827 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
4830 /* already mapped with a different offset */
4831 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
4834 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
4837 /* already mapped with a different size */
4838 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
4841 if (!is_power_of_2(nr_pages
))
4844 if (!atomic_inc_not_zero(&rb
->mmap_count
))
4847 if (rb_has_aux(rb
)) {
4848 atomic_inc(&rb
->aux_mmap_count
);
4853 atomic_set(&rb
->aux_mmap_count
, 1);
4854 user_extra
= nr_pages
;
4860 * If we have rb pages ensure they're a power-of-two number, so we
4861 * can do bitmasks instead of modulo.
4863 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
4866 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
4869 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4871 mutex_lock(&event
->mmap_mutex
);
4873 if (event
->rb
->nr_pages
!= nr_pages
) {
4878 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
4880 * Raced against perf_mmap_close() through
4881 * perf_event_set_output(). Try again, hope for better
4884 mutex_unlock(&event
->mmap_mutex
);
4891 user_extra
= nr_pages
+ 1;
4894 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
4897 * Increase the limit linearly with more CPUs:
4899 user_lock_limit
*= num_online_cpus();
4901 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
4903 if (user_locked
> user_lock_limit
)
4904 extra
= user_locked
- user_lock_limit
;
4906 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
4907 lock_limit
>>= PAGE_SHIFT
;
4908 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
4910 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
4911 !capable(CAP_IPC_LOCK
)) {
4916 WARN_ON(!rb
&& event
->rb
);
4918 if (vma
->vm_flags
& VM_WRITE
)
4919 flags
|= RING_BUFFER_WRITABLE
;
4922 rb
= rb_alloc(nr_pages
,
4923 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
4931 atomic_set(&rb
->mmap_count
, 1);
4932 rb
->mmap_user
= get_current_user();
4933 rb
->mmap_locked
= extra
;
4935 ring_buffer_attach(event
, rb
);
4937 perf_event_init_userpage(event
);
4938 perf_event_update_userpage(event
);
4940 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
4941 event
->attr
.aux_watermark
, flags
);
4943 rb
->aux_mmap_locked
= extra
;
4948 atomic_long_add(user_extra
, &user
->locked_vm
);
4949 vma
->vm_mm
->pinned_vm
+= extra
;
4951 atomic_inc(&event
->mmap_count
);
4953 atomic_dec(&rb
->mmap_count
);
4956 mutex_unlock(&event
->mmap_mutex
);
4959 * Since pinned accounting is per vm we cannot allow fork() to copy our
4962 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
4963 vma
->vm_ops
= &perf_mmap_vmops
;
4965 if (event
->pmu
->event_mapped
)
4966 event
->pmu
->event_mapped(event
);
4971 static int perf_fasync(int fd
, struct file
*filp
, int on
)
4973 struct inode
*inode
= file_inode(filp
);
4974 struct perf_event
*event
= filp
->private_data
;
4978 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
4979 inode_unlock(inode
);
4987 static const struct file_operations perf_fops
= {
4988 .llseek
= no_llseek
,
4989 .release
= perf_release
,
4992 .unlocked_ioctl
= perf_ioctl
,
4993 .compat_ioctl
= perf_compat_ioctl
,
4995 .fasync
= perf_fasync
,
5001 * If there's data, ensure we set the poll() state and publish everything
5002 * to user-space before waking everybody up.
5005 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
5007 /* only the parent has fasync state */
5009 event
= event
->parent
;
5010 return &event
->fasync
;
5013 void perf_event_wakeup(struct perf_event
*event
)
5015 ring_buffer_wakeup(event
);
5017 if (event
->pending_kill
) {
5018 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
5019 event
->pending_kill
= 0;
5023 static void perf_pending_event(struct irq_work
*entry
)
5025 struct perf_event
*event
= container_of(entry
,
5026 struct perf_event
, pending
);
5029 rctx
= perf_swevent_get_recursion_context();
5031 * If we 'fail' here, that's OK, it means recursion is already disabled
5032 * and we won't recurse 'further'.
5035 if (event
->pending_disable
) {
5036 event
->pending_disable
= 0;
5037 perf_event_disable_local(event
);
5040 if (event
->pending_wakeup
) {
5041 event
->pending_wakeup
= 0;
5042 perf_event_wakeup(event
);
5046 perf_swevent_put_recursion_context(rctx
);
5050 * We assume there is only KVM supporting the callbacks.
5051 * Later on, we might change it to a list if there is
5052 * another virtualization implementation supporting the callbacks.
5054 struct perf_guest_info_callbacks
*perf_guest_cbs
;
5056 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5058 perf_guest_cbs
= cbs
;
5061 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
5063 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5065 perf_guest_cbs
= NULL
;
5068 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
5071 perf_output_sample_regs(struct perf_output_handle
*handle
,
5072 struct pt_regs
*regs
, u64 mask
)
5076 for_each_set_bit(bit
, (const unsigned long *) &mask
,
5077 sizeof(mask
) * BITS_PER_BYTE
) {
5080 val
= perf_reg_value(regs
, bit
);
5081 perf_output_put(handle
, val
);
5085 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
5086 struct pt_regs
*regs
,
5087 struct pt_regs
*regs_user_copy
)
5089 if (user_mode(regs
)) {
5090 regs_user
->abi
= perf_reg_abi(current
);
5091 regs_user
->regs
= regs
;
5092 } else if (current
->mm
) {
5093 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
5095 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
5096 regs_user
->regs
= NULL
;
5100 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
5101 struct pt_regs
*regs
)
5103 regs_intr
->regs
= regs
;
5104 regs_intr
->abi
= perf_reg_abi(current
);
5109 * Get remaining task size from user stack pointer.
5111 * It'd be better to take stack vma map and limit this more
5112 * precisly, but there's no way to get it safely under interrupt,
5113 * so using TASK_SIZE as limit.
5115 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5117 unsigned long addr
= perf_user_stack_pointer(regs
);
5119 if (!addr
|| addr
>= TASK_SIZE
)
5122 return TASK_SIZE
- addr
;
5126 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5127 struct pt_regs
*regs
)
5131 /* No regs, no stack pointer, no dump. */
5136 * Check if we fit in with the requested stack size into the:
5138 * If we don't, we limit the size to the TASK_SIZE.
5140 * - remaining sample size
5141 * If we don't, we customize the stack size to
5142 * fit in to the remaining sample size.
5145 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5146 stack_size
= min(stack_size
, (u16
) task_size
);
5148 /* Current header size plus static size and dynamic size. */
5149 header_size
+= 2 * sizeof(u64
);
5151 /* Do we fit in with the current stack dump size? */
5152 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5154 * If we overflow the maximum size for the sample,
5155 * we customize the stack dump size to fit in.
5157 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5158 stack_size
= round_up(stack_size
, sizeof(u64
));
5165 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5166 struct pt_regs
*regs
)
5168 /* Case of a kernel thread, nothing to dump */
5171 perf_output_put(handle
, size
);
5180 * - the size requested by user or the best one we can fit
5181 * in to the sample max size
5183 * - user stack dump data
5185 * - the actual dumped size
5189 perf_output_put(handle
, dump_size
);
5192 sp
= perf_user_stack_pointer(regs
);
5193 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5194 dyn_size
= dump_size
- rem
;
5196 perf_output_skip(handle
, rem
);
5199 perf_output_put(handle
, dyn_size
);
5203 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5204 struct perf_sample_data
*data
,
5205 struct perf_event
*event
)
5207 u64 sample_type
= event
->attr
.sample_type
;
5209 data
->type
= sample_type
;
5210 header
->size
+= event
->id_header_size
;
5212 if (sample_type
& PERF_SAMPLE_TID
) {
5213 /* namespace issues */
5214 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
5215 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
5218 if (sample_type
& PERF_SAMPLE_TIME
)
5219 data
->time
= perf_event_clock(event
);
5221 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
5222 data
->id
= primary_event_id(event
);
5224 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5225 data
->stream_id
= event
->id
;
5227 if (sample_type
& PERF_SAMPLE_CPU
) {
5228 data
->cpu_entry
.cpu
= raw_smp_processor_id();
5229 data
->cpu_entry
.reserved
= 0;
5233 void perf_event_header__init_id(struct perf_event_header
*header
,
5234 struct perf_sample_data
*data
,
5235 struct perf_event
*event
)
5237 if (event
->attr
.sample_id_all
)
5238 __perf_event_header__init_id(header
, data
, event
);
5241 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
5242 struct perf_sample_data
*data
)
5244 u64 sample_type
= data
->type
;
5246 if (sample_type
& PERF_SAMPLE_TID
)
5247 perf_output_put(handle
, data
->tid_entry
);
5249 if (sample_type
& PERF_SAMPLE_TIME
)
5250 perf_output_put(handle
, data
->time
);
5252 if (sample_type
& PERF_SAMPLE_ID
)
5253 perf_output_put(handle
, data
->id
);
5255 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5256 perf_output_put(handle
, data
->stream_id
);
5258 if (sample_type
& PERF_SAMPLE_CPU
)
5259 perf_output_put(handle
, data
->cpu_entry
);
5261 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5262 perf_output_put(handle
, data
->id
);
5265 void perf_event__output_id_sample(struct perf_event
*event
,
5266 struct perf_output_handle
*handle
,
5267 struct perf_sample_data
*sample
)
5269 if (event
->attr
.sample_id_all
)
5270 __perf_event__output_id_sample(handle
, sample
);
5273 static void perf_output_read_one(struct perf_output_handle
*handle
,
5274 struct perf_event
*event
,
5275 u64 enabled
, u64 running
)
5277 u64 read_format
= event
->attr
.read_format
;
5281 values
[n
++] = perf_event_count(event
);
5282 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5283 values
[n
++] = enabled
+
5284 atomic64_read(&event
->child_total_time_enabled
);
5286 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5287 values
[n
++] = running
+
5288 atomic64_read(&event
->child_total_time_running
);
5290 if (read_format
& PERF_FORMAT_ID
)
5291 values
[n
++] = primary_event_id(event
);
5293 __output_copy(handle
, values
, n
* sizeof(u64
));
5297 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5299 static void perf_output_read_group(struct perf_output_handle
*handle
,
5300 struct perf_event
*event
,
5301 u64 enabled
, u64 running
)
5303 struct perf_event
*leader
= event
->group_leader
, *sub
;
5304 u64 read_format
= event
->attr
.read_format
;
5308 values
[n
++] = 1 + leader
->nr_siblings
;
5310 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5311 values
[n
++] = enabled
;
5313 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5314 values
[n
++] = running
;
5316 if (leader
!= event
)
5317 leader
->pmu
->read(leader
);
5319 values
[n
++] = perf_event_count(leader
);
5320 if (read_format
& PERF_FORMAT_ID
)
5321 values
[n
++] = primary_event_id(leader
);
5323 __output_copy(handle
, values
, n
* sizeof(u64
));
5325 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
5328 if ((sub
!= event
) &&
5329 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
5330 sub
->pmu
->read(sub
);
5332 values
[n
++] = perf_event_count(sub
);
5333 if (read_format
& PERF_FORMAT_ID
)
5334 values
[n
++] = primary_event_id(sub
);
5336 __output_copy(handle
, values
, n
* sizeof(u64
));
5340 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5341 PERF_FORMAT_TOTAL_TIME_RUNNING)
5343 static void perf_output_read(struct perf_output_handle
*handle
,
5344 struct perf_event
*event
)
5346 u64 enabled
= 0, running
= 0, now
;
5347 u64 read_format
= event
->attr
.read_format
;
5350 * compute total_time_enabled, total_time_running
5351 * based on snapshot values taken when the event
5352 * was last scheduled in.
5354 * we cannot simply called update_context_time()
5355 * because of locking issue as we are called in
5358 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
5359 calc_timer_values(event
, &now
, &enabled
, &running
);
5361 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
5362 perf_output_read_group(handle
, event
, enabled
, running
);
5364 perf_output_read_one(handle
, event
, enabled
, running
);
5367 void perf_output_sample(struct perf_output_handle
*handle
,
5368 struct perf_event_header
*header
,
5369 struct perf_sample_data
*data
,
5370 struct perf_event
*event
)
5372 u64 sample_type
= data
->type
;
5374 perf_output_put(handle
, *header
);
5376 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5377 perf_output_put(handle
, data
->id
);
5379 if (sample_type
& PERF_SAMPLE_IP
)
5380 perf_output_put(handle
, data
->ip
);
5382 if (sample_type
& PERF_SAMPLE_TID
)
5383 perf_output_put(handle
, data
->tid_entry
);
5385 if (sample_type
& PERF_SAMPLE_TIME
)
5386 perf_output_put(handle
, data
->time
);
5388 if (sample_type
& PERF_SAMPLE_ADDR
)
5389 perf_output_put(handle
, data
->addr
);
5391 if (sample_type
& PERF_SAMPLE_ID
)
5392 perf_output_put(handle
, data
->id
);
5394 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5395 perf_output_put(handle
, data
->stream_id
);
5397 if (sample_type
& PERF_SAMPLE_CPU
)
5398 perf_output_put(handle
, data
->cpu_entry
);
5400 if (sample_type
& PERF_SAMPLE_PERIOD
)
5401 perf_output_put(handle
, data
->period
);
5403 if (sample_type
& PERF_SAMPLE_READ
)
5404 perf_output_read(handle
, event
);
5406 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5407 if (data
->callchain
) {
5410 if (data
->callchain
)
5411 size
+= data
->callchain
->nr
;
5413 size
*= sizeof(u64
);
5415 __output_copy(handle
, data
->callchain
, size
);
5418 perf_output_put(handle
, nr
);
5422 if (sample_type
& PERF_SAMPLE_RAW
) {
5424 u32 raw_size
= data
->raw
->size
;
5425 u32 real_size
= round_up(raw_size
+ sizeof(u32
),
5426 sizeof(u64
)) - sizeof(u32
);
5429 perf_output_put(handle
, real_size
);
5430 __output_copy(handle
, data
->raw
->data
, raw_size
);
5431 if (real_size
- raw_size
)
5432 __output_copy(handle
, &zero
, real_size
- raw_size
);
5438 .size
= sizeof(u32
),
5441 perf_output_put(handle
, raw
);
5445 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5446 if (data
->br_stack
) {
5449 size
= data
->br_stack
->nr
5450 * sizeof(struct perf_branch_entry
);
5452 perf_output_put(handle
, data
->br_stack
->nr
);
5453 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5456 * we always store at least the value of nr
5459 perf_output_put(handle
, nr
);
5463 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5464 u64 abi
= data
->regs_user
.abi
;
5467 * If there are no regs to dump, notice it through
5468 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5470 perf_output_put(handle
, abi
);
5473 u64 mask
= event
->attr
.sample_regs_user
;
5474 perf_output_sample_regs(handle
,
5475 data
->regs_user
.regs
,
5480 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5481 perf_output_sample_ustack(handle
,
5482 data
->stack_user_size
,
5483 data
->regs_user
.regs
);
5486 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5487 perf_output_put(handle
, data
->weight
);
5489 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5490 perf_output_put(handle
, data
->data_src
.val
);
5492 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5493 perf_output_put(handle
, data
->txn
);
5495 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5496 u64 abi
= data
->regs_intr
.abi
;
5498 * If there are no regs to dump, notice it through
5499 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5501 perf_output_put(handle
, abi
);
5504 u64 mask
= event
->attr
.sample_regs_intr
;
5506 perf_output_sample_regs(handle
,
5507 data
->regs_intr
.regs
,
5512 if (!event
->attr
.watermark
) {
5513 int wakeup_events
= event
->attr
.wakeup_events
;
5515 if (wakeup_events
) {
5516 struct ring_buffer
*rb
= handle
->rb
;
5517 int events
= local_inc_return(&rb
->events
);
5519 if (events
>= wakeup_events
) {
5520 local_sub(wakeup_events
, &rb
->events
);
5521 local_inc(&rb
->wakeup
);
5527 void perf_prepare_sample(struct perf_event_header
*header
,
5528 struct perf_sample_data
*data
,
5529 struct perf_event
*event
,
5530 struct pt_regs
*regs
)
5532 u64 sample_type
= event
->attr
.sample_type
;
5534 header
->type
= PERF_RECORD_SAMPLE
;
5535 header
->size
= sizeof(*header
) + event
->header_size
;
5538 header
->misc
|= perf_misc_flags(regs
);
5540 __perf_event_header__init_id(header
, data
, event
);
5542 if (sample_type
& PERF_SAMPLE_IP
)
5543 data
->ip
= perf_instruction_pointer(regs
);
5545 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5548 data
->callchain
= perf_callchain(event
, regs
);
5550 if (data
->callchain
)
5551 size
+= data
->callchain
->nr
;
5553 header
->size
+= size
* sizeof(u64
);
5556 if (sample_type
& PERF_SAMPLE_RAW
) {
5557 int size
= sizeof(u32
);
5560 size
+= data
->raw
->size
;
5562 size
+= sizeof(u32
);
5564 header
->size
+= round_up(size
, sizeof(u64
));
5567 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5568 int size
= sizeof(u64
); /* nr */
5569 if (data
->br_stack
) {
5570 size
+= data
->br_stack
->nr
5571 * sizeof(struct perf_branch_entry
);
5573 header
->size
+= size
;
5576 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
5577 perf_sample_regs_user(&data
->regs_user
, regs
,
5578 &data
->regs_user_copy
);
5580 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5581 /* regs dump ABI info */
5582 int size
= sizeof(u64
);
5584 if (data
->regs_user
.regs
) {
5585 u64 mask
= event
->attr
.sample_regs_user
;
5586 size
+= hweight64(mask
) * sizeof(u64
);
5589 header
->size
+= size
;
5592 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5594 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5595 * processed as the last one or have additional check added
5596 * in case new sample type is added, because we could eat
5597 * up the rest of the sample size.
5599 u16 stack_size
= event
->attr
.sample_stack_user
;
5600 u16 size
= sizeof(u64
);
5602 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
5603 data
->regs_user
.regs
);
5606 * If there is something to dump, add space for the dump
5607 * itself and for the field that tells the dynamic size,
5608 * which is how many have been actually dumped.
5611 size
+= sizeof(u64
) + stack_size
;
5613 data
->stack_user_size
= stack_size
;
5614 header
->size
+= size
;
5617 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5618 /* regs dump ABI info */
5619 int size
= sizeof(u64
);
5621 perf_sample_regs_intr(&data
->regs_intr
, regs
);
5623 if (data
->regs_intr
.regs
) {
5624 u64 mask
= event
->attr
.sample_regs_intr
;
5626 size
+= hweight64(mask
) * sizeof(u64
);
5629 header
->size
+= size
;
5633 void perf_event_output(struct perf_event
*event
,
5634 struct perf_sample_data
*data
,
5635 struct pt_regs
*regs
)
5637 struct perf_output_handle handle
;
5638 struct perf_event_header header
;
5640 /* protect the callchain buffers */
5643 perf_prepare_sample(&header
, data
, event
, regs
);
5645 if (perf_output_begin(&handle
, event
, header
.size
))
5648 perf_output_sample(&handle
, &header
, data
, event
);
5650 perf_output_end(&handle
);
5660 struct perf_read_event
{
5661 struct perf_event_header header
;
5668 perf_event_read_event(struct perf_event
*event
,
5669 struct task_struct
*task
)
5671 struct perf_output_handle handle
;
5672 struct perf_sample_data sample
;
5673 struct perf_read_event read_event
= {
5675 .type
= PERF_RECORD_READ
,
5677 .size
= sizeof(read_event
) + event
->read_size
,
5679 .pid
= perf_event_pid(event
, task
),
5680 .tid
= perf_event_tid(event
, task
),
5684 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
5685 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
5689 perf_output_put(&handle
, read_event
);
5690 perf_output_read(&handle
, event
);
5691 perf_event__output_id_sample(event
, &handle
, &sample
);
5693 perf_output_end(&handle
);
5696 typedef void (perf_event_aux_output_cb
)(struct perf_event
*event
, void *data
);
5699 perf_event_aux_ctx(struct perf_event_context
*ctx
,
5700 perf_event_aux_output_cb output
,
5703 struct perf_event
*event
;
5705 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
5706 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
5708 if (!event_filter_match(event
))
5710 output(event
, data
);
5715 perf_event_aux_task_ctx(perf_event_aux_output_cb output
, void *data
,
5716 struct perf_event_context
*task_ctx
)
5720 perf_event_aux_ctx(task_ctx
, output
, data
);
5726 perf_event_aux(perf_event_aux_output_cb output
, void *data
,
5727 struct perf_event_context
*task_ctx
)
5729 struct perf_cpu_context
*cpuctx
;
5730 struct perf_event_context
*ctx
;
5735 * If we have task_ctx != NULL we only notify
5736 * the task context itself. The task_ctx is set
5737 * only for EXIT events before releasing task
5741 perf_event_aux_task_ctx(output
, data
, task_ctx
);
5746 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5747 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
5748 if (cpuctx
->unique_pmu
!= pmu
)
5750 perf_event_aux_ctx(&cpuctx
->ctx
, output
, data
);
5751 ctxn
= pmu
->task_ctx_nr
;
5754 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
5756 perf_event_aux_ctx(ctx
, output
, data
);
5758 put_cpu_ptr(pmu
->pmu_cpu_context
);
5764 * task tracking -- fork/exit
5766 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5769 struct perf_task_event
{
5770 struct task_struct
*task
;
5771 struct perf_event_context
*task_ctx
;
5774 struct perf_event_header header
;
5784 static int perf_event_task_match(struct perf_event
*event
)
5786 return event
->attr
.comm
|| event
->attr
.mmap
||
5787 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
5791 static void perf_event_task_output(struct perf_event
*event
,
5794 struct perf_task_event
*task_event
= data
;
5795 struct perf_output_handle handle
;
5796 struct perf_sample_data sample
;
5797 struct task_struct
*task
= task_event
->task
;
5798 int ret
, size
= task_event
->event_id
.header
.size
;
5800 if (!perf_event_task_match(event
))
5803 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
5805 ret
= perf_output_begin(&handle
, event
,
5806 task_event
->event_id
.header
.size
);
5810 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
5811 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
5813 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
5814 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
5816 task_event
->event_id
.time
= perf_event_clock(event
);
5818 perf_output_put(&handle
, task_event
->event_id
);
5820 perf_event__output_id_sample(event
, &handle
, &sample
);
5822 perf_output_end(&handle
);
5824 task_event
->event_id
.header
.size
= size
;
5827 static void perf_event_task(struct task_struct
*task
,
5828 struct perf_event_context
*task_ctx
,
5831 struct perf_task_event task_event
;
5833 if (!atomic_read(&nr_comm_events
) &&
5834 !atomic_read(&nr_mmap_events
) &&
5835 !atomic_read(&nr_task_events
))
5838 task_event
= (struct perf_task_event
){
5840 .task_ctx
= task_ctx
,
5843 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
5845 .size
= sizeof(task_event
.event_id
),
5855 perf_event_aux(perf_event_task_output
,
5860 void perf_event_fork(struct task_struct
*task
)
5862 perf_event_task(task
, NULL
, 1);
5869 struct perf_comm_event
{
5870 struct task_struct
*task
;
5875 struct perf_event_header header
;
5882 static int perf_event_comm_match(struct perf_event
*event
)
5884 return event
->attr
.comm
;
5887 static void perf_event_comm_output(struct perf_event
*event
,
5890 struct perf_comm_event
*comm_event
= data
;
5891 struct perf_output_handle handle
;
5892 struct perf_sample_data sample
;
5893 int size
= comm_event
->event_id
.header
.size
;
5896 if (!perf_event_comm_match(event
))
5899 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
5900 ret
= perf_output_begin(&handle
, event
,
5901 comm_event
->event_id
.header
.size
);
5906 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
5907 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
5909 perf_output_put(&handle
, comm_event
->event_id
);
5910 __output_copy(&handle
, comm_event
->comm
,
5911 comm_event
->comm_size
);
5913 perf_event__output_id_sample(event
, &handle
, &sample
);
5915 perf_output_end(&handle
);
5917 comm_event
->event_id
.header
.size
= size
;
5920 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
5922 char comm
[TASK_COMM_LEN
];
5925 memset(comm
, 0, sizeof(comm
));
5926 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
5927 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
5929 comm_event
->comm
= comm
;
5930 comm_event
->comm_size
= size
;
5932 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
5934 perf_event_aux(perf_event_comm_output
,
5939 void perf_event_comm(struct task_struct
*task
, bool exec
)
5941 struct perf_comm_event comm_event
;
5943 if (!atomic_read(&nr_comm_events
))
5946 comm_event
= (struct perf_comm_event
){
5952 .type
= PERF_RECORD_COMM
,
5953 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
5961 perf_event_comm_event(&comm_event
);
5968 struct perf_mmap_event
{
5969 struct vm_area_struct
*vma
;
5971 const char *file_name
;
5979 struct perf_event_header header
;
5989 static int perf_event_mmap_match(struct perf_event
*event
,
5992 struct perf_mmap_event
*mmap_event
= data
;
5993 struct vm_area_struct
*vma
= mmap_event
->vma
;
5994 int executable
= vma
->vm_flags
& VM_EXEC
;
5996 return (!executable
&& event
->attr
.mmap_data
) ||
5997 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
6000 static void perf_event_mmap_output(struct perf_event
*event
,
6003 struct perf_mmap_event
*mmap_event
= data
;
6004 struct perf_output_handle handle
;
6005 struct perf_sample_data sample
;
6006 int size
= mmap_event
->event_id
.header
.size
;
6009 if (!perf_event_mmap_match(event
, data
))
6012 if (event
->attr
.mmap2
) {
6013 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
6014 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
6015 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
6016 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
6017 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
6018 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
6019 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
6022 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
6023 ret
= perf_output_begin(&handle
, event
,
6024 mmap_event
->event_id
.header
.size
);
6028 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
6029 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
6031 perf_output_put(&handle
, mmap_event
->event_id
);
6033 if (event
->attr
.mmap2
) {
6034 perf_output_put(&handle
, mmap_event
->maj
);
6035 perf_output_put(&handle
, mmap_event
->min
);
6036 perf_output_put(&handle
, mmap_event
->ino
);
6037 perf_output_put(&handle
, mmap_event
->ino_generation
);
6038 perf_output_put(&handle
, mmap_event
->prot
);
6039 perf_output_put(&handle
, mmap_event
->flags
);
6042 __output_copy(&handle
, mmap_event
->file_name
,
6043 mmap_event
->file_size
);
6045 perf_event__output_id_sample(event
, &handle
, &sample
);
6047 perf_output_end(&handle
);
6049 mmap_event
->event_id
.header
.size
= size
;
6052 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
6054 struct vm_area_struct
*vma
= mmap_event
->vma
;
6055 struct file
*file
= vma
->vm_file
;
6056 int maj
= 0, min
= 0;
6057 u64 ino
= 0, gen
= 0;
6058 u32 prot
= 0, flags
= 0;
6065 struct inode
*inode
;
6068 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
6074 * d_path() works from the end of the rb backwards, so we
6075 * need to add enough zero bytes after the string to handle
6076 * the 64bit alignment we do later.
6078 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
6083 inode
= file_inode(vma
->vm_file
);
6084 dev
= inode
->i_sb
->s_dev
;
6086 gen
= inode
->i_generation
;
6090 if (vma
->vm_flags
& VM_READ
)
6092 if (vma
->vm_flags
& VM_WRITE
)
6094 if (vma
->vm_flags
& VM_EXEC
)
6097 if (vma
->vm_flags
& VM_MAYSHARE
)
6100 flags
= MAP_PRIVATE
;
6102 if (vma
->vm_flags
& VM_DENYWRITE
)
6103 flags
|= MAP_DENYWRITE
;
6104 if (vma
->vm_flags
& VM_MAYEXEC
)
6105 flags
|= MAP_EXECUTABLE
;
6106 if (vma
->vm_flags
& VM_LOCKED
)
6107 flags
|= MAP_LOCKED
;
6108 if (vma
->vm_flags
& VM_HUGETLB
)
6109 flags
|= MAP_HUGETLB
;
6113 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
6114 name
= (char *) vma
->vm_ops
->name(vma
);
6119 name
= (char *)arch_vma_name(vma
);
6123 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
6124 vma
->vm_end
>= vma
->vm_mm
->brk
) {
6128 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
6129 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
6139 strlcpy(tmp
, name
, sizeof(tmp
));
6143 * Since our buffer works in 8 byte units we need to align our string
6144 * size to a multiple of 8. However, we must guarantee the tail end is
6145 * zero'd out to avoid leaking random bits to userspace.
6147 size
= strlen(name
)+1;
6148 while (!IS_ALIGNED(size
, sizeof(u64
)))
6149 name
[size
++] = '\0';
6151 mmap_event
->file_name
= name
;
6152 mmap_event
->file_size
= size
;
6153 mmap_event
->maj
= maj
;
6154 mmap_event
->min
= min
;
6155 mmap_event
->ino
= ino
;
6156 mmap_event
->ino_generation
= gen
;
6157 mmap_event
->prot
= prot
;
6158 mmap_event
->flags
= flags
;
6160 if (!(vma
->vm_flags
& VM_EXEC
))
6161 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
6163 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
6165 perf_event_aux(perf_event_mmap_output
,
6172 void perf_event_mmap(struct vm_area_struct
*vma
)
6174 struct perf_mmap_event mmap_event
;
6176 if (!atomic_read(&nr_mmap_events
))
6179 mmap_event
= (struct perf_mmap_event
){
6185 .type
= PERF_RECORD_MMAP
,
6186 .misc
= PERF_RECORD_MISC_USER
,
6191 .start
= vma
->vm_start
,
6192 .len
= vma
->vm_end
- vma
->vm_start
,
6193 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
6195 /* .maj (attr_mmap2 only) */
6196 /* .min (attr_mmap2 only) */
6197 /* .ino (attr_mmap2 only) */
6198 /* .ino_generation (attr_mmap2 only) */
6199 /* .prot (attr_mmap2 only) */
6200 /* .flags (attr_mmap2 only) */
6203 perf_event_mmap_event(&mmap_event
);
6206 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
6207 unsigned long size
, u64 flags
)
6209 struct perf_output_handle handle
;
6210 struct perf_sample_data sample
;
6211 struct perf_aux_event
{
6212 struct perf_event_header header
;
6218 .type
= PERF_RECORD_AUX
,
6220 .size
= sizeof(rec
),
6228 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6229 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6234 perf_output_put(&handle
, rec
);
6235 perf_event__output_id_sample(event
, &handle
, &sample
);
6237 perf_output_end(&handle
);
6241 * Lost/dropped samples logging
6243 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
6245 struct perf_output_handle handle
;
6246 struct perf_sample_data sample
;
6250 struct perf_event_header header
;
6252 } lost_samples_event
= {
6254 .type
= PERF_RECORD_LOST_SAMPLES
,
6256 .size
= sizeof(lost_samples_event
),
6261 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
6263 ret
= perf_output_begin(&handle
, event
,
6264 lost_samples_event
.header
.size
);
6268 perf_output_put(&handle
, lost_samples_event
);
6269 perf_event__output_id_sample(event
, &handle
, &sample
);
6270 perf_output_end(&handle
);
6274 * context_switch tracking
6277 struct perf_switch_event
{
6278 struct task_struct
*task
;
6279 struct task_struct
*next_prev
;
6282 struct perf_event_header header
;
6288 static int perf_event_switch_match(struct perf_event
*event
)
6290 return event
->attr
.context_switch
;
6293 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
6295 struct perf_switch_event
*se
= data
;
6296 struct perf_output_handle handle
;
6297 struct perf_sample_data sample
;
6300 if (!perf_event_switch_match(event
))
6303 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6304 if (event
->ctx
->task
) {
6305 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
6306 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
6308 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
6309 se
->event_id
.header
.size
= sizeof(se
->event_id
);
6310 se
->event_id
.next_prev_pid
=
6311 perf_event_pid(event
, se
->next_prev
);
6312 se
->event_id
.next_prev_tid
=
6313 perf_event_tid(event
, se
->next_prev
);
6316 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
6318 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
6322 if (event
->ctx
->task
)
6323 perf_output_put(&handle
, se
->event_id
.header
);
6325 perf_output_put(&handle
, se
->event_id
);
6327 perf_event__output_id_sample(event
, &handle
, &sample
);
6329 perf_output_end(&handle
);
6332 static void perf_event_switch(struct task_struct
*task
,
6333 struct task_struct
*next_prev
, bool sched_in
)
6335 struct perf_switch_event switch_event
;
6337 /* N.B. caller checks nr_switch_events != 0 */
6339 switch_event
= (struct perf_switch_event
){
6341 .next_prev
= next_prev
,
6345 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
6348 /* .next_prev_pid */
6349 /* .next_prev_tid */
6353 perf_event_aux(perf_event_switch_output
,
6359 * IRQ throttle logging
6362 static void perf_log_throttle(struct perf_event
*event
, int enable
)
6364 struct perf_output_handle handle
;
6365 struct perf_sample_data sample
;
6369 struct perf_event_header header
;
6373 } throttle_event
= {
6375 .type
= PERF_RECORD_THROTTLE
,
6377 .size
= sizeof(throttle_event
),
6379 .time
= perf_event_clock(event
),
6380 .id
= primary_event_id(event
),
6381 .stream_id
= event
->id
,
6385 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
6387 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
6389 ret
= perf_output_begin(&handle
, event
,
6390 throttle_event
.header
.size
);
6394 perf_output_put(&handle
, throttle_event
);
6395 perf_event__output_id_sample(event
, &handle
, &sample
);
6396 perf_output_end(&handle
);
6399 static void perf_log_itrace_start(struct perf_event
*event
)
6401 struct perf_output_handle handle
;
6402 struct perf_sample_data sample
;
6403 struct perf_aux_event
{
6404 struct perf_event_header header
;
6411 event
= event
->parent
;
6413 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
6414 event
->hw
.itrace_started
)
6417 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
6418 rec
.header
.misc
= 0;
6419 rec
.header
.size
= sizeof(rec
);
6420 rec
.pid
= perf_event_pid(event
, current
);
6421 rec
.tid
= perf_event_tid(event
, current
);
6423 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6424 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6429 perf_output_put(&handle
, rec
);
6430 perf_event__output_id_sample(event
, &handle
, &sample
);
6432 perf_output_end(&handle
);
6436 * Generic event overflow handling, sampling.
6439 static int __perf_event_overflow(struct perf_event
*event
,
6440 int throttle
, struct perf_sample_data
*data
,
6441 struct pt_regs
*regs
)
6443 int events
= atomic_read(&event
->event_limit
);
6444 struct hw_perf_event
*hwc
= &event
->hw
;
6449 * Non-sampling counters might still use the PMI to fold short
6450 * hardware counters, ignore those.
6452 if (unlikely(!is_sampling_event(event
)))
6455 seq
= __this_cpu_read(perf_throttled_seq
);
6456 if (seq
!= hwc
->interrupts_seq
) {
6457 hwc
->interrupts_seq
= seq
;
6458 hwc
->interrupts
= 1;
6461 if (unlikely(throttle
6462 && hwc
->interrupts
>= max_samples_per_tick
)) {
6463 __this_cpu_inc(perf_throttled_count
);
6464 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
6465 hwc
->interrupts
= MAX_INTERRUPTS
;
6466 perf_log_throttle(event
, 0);
6471 if (event
->attr
.freq
) {
6472 u64 now
= perf_clock();
6473 s64 delta
= now
- hwc
->freq_time_stamp
;
6475 hwc
->freq_time_stamp
= now
;
6477 if (delta
> 0 && delta
< 2*TICK_NSEC
)
6478 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
6482 * XXX event_limit might not quite work as expected on inherited
6486 event
->pending_kill
= POLL_IN
;
6487 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
6489 event
->pending_kill
= POLL_HUP
;
6490 event
->pending_disable
= 1;
6491 irq_work_queue(&event
->pending
);
6494 if (event
->overflow_handler
)
6495 event
->overflow_handler(event
, data
, regs
);
6497 perf_event_output(event
, data
, regs
);
6499 if (*perf_event_fasync(event
) && event
->pending_kill
) {
6500 event
->pending_wakeup
= 1;
6501 irq_work_queue(&event
->pending
);
6507 int perf_event_overflow(struct perf_event
*event
,
6508 struct perf_sample_data
*data
,
6509 struct pt_regs
*regs
)
6511 return __perf_event_overflow(event
, 1, data
, regs
);
6515 * Generic software event infrastructure
6518 struct swevent_htable
{
6519 struct swevent_hlist
*swevent_hlist
;
6520 struct mutex hlist_mutex
;
6523 /* Recursion avoidance in each contexts */
6524 int recursion
[PERF_NR_CONTEXTS
];
6527 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
6530 * We directly increment event->count and keep a second value in
6531 * event->hw.period_left to count intervals. This period event
6532 * is kept in the range [-sample_period, 0] so that we can use the
6536 u64
perf_swevent_set_period(struct perf_event
*event
)
6538 struct hw_perf_event
*hwc
= &event
->hw
;
6539 u64 period
= hwc
->last_period
;
6543 hwc
->last_period
= hwc
->sample_period
;
6546 old
= val
= local64_read(&hwc
->period_left
);
6550 nr
= div64_u64(period
+ val
, period
);
6551 offset
= nr
* period
;
6553 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
6559 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
6560 struct perf_sample_data
*data
,
6561 struct pt_regs
*regs
)
6563 struct hw_perf_event
*hwc
= &event
->hw
;
6567 overflow
= perf_swevent_set_period(event
);
6569 if (hwc
->interrupts
== MAX_INTERRUPTS
)
6572 for (; overflow
; overflow
--) {
6573 if (__perf_event_overflow(event
, throttle
,
6576 * We inhibit the overflow from happening when
6577 * hwc->interrupts == MAX_INTERRUPTS.
6585 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
6586 struct perf_sample_data
*data
,
6587 struct pt_regs
*regs
)
6589 struct hw_perf_event
*hwc
= &event
->hw
;
6591 local64_add(nr
, &event
->count
);
6596 if (!is_sampling_event(event
))
6599 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
6601 return perf_swevent_overflow(event
, 1, data
, regs
);
6603 data
->period
= event
->hw
.last_period
;
6605 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
6606 return perf_swevent_overflow(event
, 1, data
, regs
);
6608 if (local64_add_negative(nr
, &hwc
->period_left
))
6611 perf_swevent_overflow(event
, 0, data
, regs
);
6614 static int perf_exclude_event(struct perf_event
*event
,
6615 struct pt_regs
*regs
)
6617 if (event
->hw
.state
& PERF_HES_STOPPED
)
6621 if (event
->attr
.exclude_user
&& user_mode(regs
))
6624 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
6631 static int perf_swevent_match(struct perf_event
*event
,
6632 enum perf_type_id type
,
6634 struct perf_sample_data
*data
,
6635 struct pt_regs
*regs
)
6637 if (event
->attr
.type
!= type
)
6640 if (event
->attr
.config
!= event_id
)
6643 if (perf_exclude_event(event
, regs
))
6649 static inline u64
swevent_hash(u64 type
, u32 event_id
)
6651 u64 val
= event_id
| (type
<< 32);
6653 return hash_64(val
, SWEVENT_HLIST_BITS
);
6656 static inline struct hlist_head
*
6657 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
6659 u64 hash
= swevent_hash(type
, event_id
);
6661 return &hlist
->heads
[hash
];
6664 /* For the read side: events when they trigger */
6665 static inline struct hlist_head
*
6666 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
6668 struct swevent_hlist
*hlist
;
6670 hlist
= rcu_dereference(swhash
->swevent_hlist
);
6674 return __find_swevent_head(hlist
, type
, event_id
);
6677 /* For the event head insertion and removal in the hlist */
6678 static inline struct hlist_head
*
6679 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
6681 struct swevent_hlist
*hlist
;
6682 u32 event_id
= event
->attr
.config
;
6683 u64 type
= event
->attr
.type
;
6686 * Event scheduling is always serialized against hlist allocation
6687 * and release. Which makes the protected version suitable here.
6688 * The context lock guarantees that.
6690 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
6691 lockdep_is_held(&event
->ctx
->lock
));
6695 return __find_swevent_head(hlist
, type
, event_id
);
6698 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
6700 struct perf_sample_data
*data
,
6701 struct pt_regs
*regs
)
6703 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6704 struct perf_event
*event
;
6705 struct hlist_head
*head
;
6708 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
6712 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6713 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
6714 perf_swevent_event(event
, nr
, data
, regs
);
6720 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
6722 int perf_swevent_get_recursion_context(void)
6724 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6726 return get_recursion_context(swhash
->recursion
);
6728 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
6730 inline void perf_swevent_put_recursion_context(int rctx
)
6732 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6734 put_recursion_context(swhash
->recursion
, rctx
);
6737 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6739 struct perf_sample_data data
;
6741 if (WARN_ON_ONCE(!regs
))
6744 perf_sample_data_init(&data
, addr
, 0);
6745 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
6748 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
6752 preempt_disable_notrace();
6753 rctx
= perf_swevent_get_recursion_context();
6754 if (unlikely(rctx
< 0))
6757 ___perf_sw_event(event_id
, nr
, regs
, addr
);
6759 perf_swevent_put_recursion_context(rctx
);
6761 preempt_enable_notrace();
6764 static void perf_swevent_read(struct perf_event
*event
)
6768 static int perf_swevent_add(struct perf_event
*event
, int flags
)
6770 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
6771 struct hw_perf_event
*hwc
= &event
->hw
;
6772 struct hlist_head
*head
;
6774 if (is_sampling_event(event
)) {
6775 hwc
->last_period
= hwc
->sample_period
;
6776 perf_swevent_set_period(event
);
6779 hwc
->state
= !(flags
& PERF_EF_START
);
6781 head
= find_swevent_head(swhash
, event
);
6782 if (WARN_ON_ONCE(!head
))
6785 hlist_add_head_rcu(&event
->hlist_entry
, head
);
6786 perf_event_update_userpage(event
);
6791 static void perf_swevent_del(struct perf_event
*event
, int flags
)
6793 hlist_del_rcu(&event
->hlist_entry
);
6796 static void perf_swevent_start(struct perf_event
*event
, int flags
)
6798 event
->hw
.state
= 0;
6801 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
6803 event
->hw
.state
= PERF_HES_STOPPED
;
6806 /* Deref the hlist from the update side */
6807 static inline struct swevent_hlist
*
6808 swevent_hlist_deref(struct swevent_htable
*swhash
)
6810 return rcu_dereference_protected(swhash
->swevent_hlist
,
6811 lockdep_is_held(&swhash
->hlist_mutex
));
6814 static void swevent_hlist_release(struct swevent_htable
*swhash
)
6816 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
6821 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
6822 kfree_rcu(hlist
, rcu_head
);
6825 static void swevent_hlist_put_cpu(int cpu
)
6827 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6829 mutex_lock(&swhash
->hlist_mutex
);
6831 if (!--swhash
->hlist_refcount
)
6832 swevent_hlist_release(swhash
);
6834 mutex_unlock(&swhash
->hlist_mutex
);
6837 static void swevent_hlist_put(void)
6841 for_each_possible_cpu(cpu
)
6842 swevent_hlist_put_cpu(cpu
);
6845 static int swevent_hlist_get_cpu(int cpu
)
6847 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6850 mutex_lock(&swhash
->hlist_mutex
);
6851 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
6852 struct swevent_hlist
*hlist
;
6854 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
6859 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6861 swhash
->hlist_refcount
++;
6863 mutex_unlock(&swhash
->hlist_mutex
);
6868 static int swevent_hlist_get(void)
6870 int err
, cpu
, failed_cpu
;
6873 for_each_possible_cpu(cpu
) {
6874 err
= swevent_hlist_get_cpu(cpu
);
6884 for_each_possible_cpu(cpu
) {
6885 if (cpu
== failed_cpu
)
6887 swevent_hlist_put_cpu(cpu
);
6894 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
6896 static void sw_perf_event_destroy(struct perf_event
*event
)
6898 u64 event_id
= event
->attr
.config
;
6900 WARN_ON(event
->parent
);
6902 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
6903 swevent_hlist_put();
6906 static int perf_swevent_init(struct perf_event
*event
)
6908 u64 event_id
= event
->attr
.config
;
6910 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6914 * no branch sampling for software events
6916 if (has_branch_stack(event
))
6920 case PERF_COUNT_SW_CPU_CLOCK
:
6921 case PERF_COUNT_SW_TASK_CLOCK
:
6928 if (event_id
>= PERF_COUNT_SW_MAX
)
6931 if (!event
->parent
) {
6934 err
= swevent_hlist_get();
6938 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
6939 event
->destroy
= sw_perf_event_destroy
;
6945 static struct pmu perf_swevent
= {
6946 .task_ctx_nr
= perf_sw_context
,
6948 .capabilities
= PERF_PMU_CAP_NO_NMI
,
6950 .event_init
= perf_swevent_init
,
6951 .add
= perf_swevent_add
,
6952 .del
= perf_swevent_del
,
6953 .start
= perf_swevent_start
,
6954 .stop
= perf_swevent_stop
,
6955 .read
= perf_swevent_read
,
6958 #ifdef CONFIG_EVENT_TRACING
6960 static int perf_tp_filter_match(struct perf_event
*event
,
6961 struct perf_sample_data
*data
)
6963 void *record
= data
->raw
->data
;
6965 /* only top level events have filters set */
6967 event
= event
->parent
;
6969 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
6974 static int perf_tp_event_match(struct perf_event
*event
,
6975 struct perf_sample_data
*data
,
6976 struct pt_regs
*regs
)
6978 if (event
->hw
.state
& PERF_HES_STOPPED
)
6981 * All tracepoints are from kernel-space.
6983 if (event
->attr
.exclude_kernel
)
6986 if (!perf_tp_filter_match(event
, data
))
6992 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
6993 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
6994 struct task_struct
*task
)
6996 struct perf_sample_data data
;
6997 struct perf_event
*event
;
6999 struct perf_raw_record raw
= {
7004 perf_sample_data_init(&data
, addr
, 0);
7007 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7008 if (perf_tp_event_match(event
, &data
, regs
))
7009 perf_swevent_event(event
, count
, &data
, regs
);
7013 * If we got specified a target task, also iterate its context and
7014 * deliver this event there too.
7016 if (task
&& task
!= current
) {
7017 struct perf_event_context
*ctx
;
7018 struct trace_entry
*entry
= record
;
7021 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
7025 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7026 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7028 if (event
->attr
.config
!= entry
->type
)
7030 if (perf_tp_event_match(event
, &data
, regs
))
7031 perf_swevent_event(event
, count
, &data
, regs
);
7037 perf_swevent_put_recursion_context(rctx
);
7039 EXPORT_SYMBOL_GPL(perf_tp_event
);
7041 static void tp_perf_event_destroy(struct perf_event
*event
)
7043 perf_trace_destroy(event
);
7046 static int perf_tp_event_init(struct perf_event
*event
)
7050 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7054 * no branch sampling for tracepoint events
7056 if (has_branch_stack(event
))
7059 err
= perf_trace_init(event
);
7063 event
->destroy
= tp_perf_event_destroy
;
7068 static struct pmu perf_tracepoint
= {
7069 .task_ctx_nr
= perf_sw_context
,
7071 .event_init
= perf_tp_event_init
,
7072 .add
= perf_trace_add
,
7073 .del
= perf_trace_del
,
7074 .start
= perf_swevent_start
,
7075 .stop
= perf_swevent_stop
,
7076 .read
= perf_swevent_read
,
7079 static inline void perf_tp_register(void)
7081 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
7084 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
7089 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7092 filter_str
= strndup_user(arg
, PAGE_SIZE
);
7093 if (IS_ERR(filter_str
))
7094 return PTR_ERR(filter_str
);
7096 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
7102 static void perf_event_free_filter(struct perf_event
*event
)
7104 ftrace_profile_free_filter(event
);
7107 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7109 struct bpf_prog
*prog
;
7111 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7114 if (event
->tp_event
->prog
)
7117 if (!(event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
))
7118 /* bpf programs can only be attached to u/kprobes */
7121 prog
= bpf_prog_get(prog_fd
);
7123 return PTR_ERR(prog
);
7125 if (prog
->type
!= BPF_PROG_TYPE_KPROBE
) {
7126 /* valid fd, but invalid bpf program type */
7131 event
->tp_event
->prog
= prog
;
7136 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7138 struct bpf_prog
*prog
;
7140 if (!event
->tp_event
)
7143 prog
= event
->tp_event
->prog
;
7145 event
->tp_event
->prog
= NULL
;
7152 static inline void perf_tp_register(void)
7156 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
7161 static void perf_event_free_filter(struct perf_event
*event
)
7165 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7170 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7173 #endif /* CONFIG_EVENT_TRACING */
7175 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7176 void perf_bp_event(struct perf_event
*bp
, void *data
)
7178 struct perf_sample_data sample
;
7179 struct pt_regs
*regs
= data
;
7181 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
7183 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
7184 perf_swevent_event(bp
, 1, &sample
, regs
);
7189 * hrtimer based swevent callback
7192 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
7194 enum hrtimer_restart ret
= HRTIMER_RESTART
;
7195 struct perf_sample_data data
;
7196 struct pt_regs
*regs
;
7197 struct perf_event
*event
;
7200 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
7202 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
7203 return HRTIMER_NORESTART
;
7205 event
->pmu
->read(event
);
7207 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
7208 regs
= get_irq_regs();
7210 if (regs
&& !perf_exclude_event(event
, regs
)) {
7211 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
7212 if (__perf_event_overflow(event
, 1, &data
, regs
))
7213 ret
= HRTIMER_NORESTART
;
7216 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
7217 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
7222 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
7224 struct hw_perf_event
*hwc
= &event
->hw
;
7227 if (!is_sampling_event(event
))
7230 period
= local64_read(&hwc
->period_left
);
7235 local64_set(&hwc
->period_left
, 0);
7237 period
= max_t(u64
, 10000, hwc
->sample_period
);
7239 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
7240 HRTIMER_MODE_REL_PINNED
);
7243 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
7245 struct hw_perf_event
*hwc
= &event
->hw
;
7247 if (is_sampling_event(event
)) {
7248 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
7249 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
7251 hrtimer_cancel(&hwc
->hrtimer
);
7255 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
7257 struct hw_perf_event
*hwc
= &event
->hw
;
7259 if (!is_sampling_event(event
))
7262 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
7263 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
7266 * Since hrtimers have a fixed rate, we can do a static freq->period
7267 * mapping and avoid the whole period adjust feedback stuff.
7269 if (event
->attr
.freq
) {
7270 long freq
= event
->attr
.sample_freq
;
7272 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
7273 hwc
->sample_period
= event
->attr
.sample_period
;
7274 local64_set(&hwc
->period_left
, hwc
->sample_period
);
7275 hwc
->last_period
= hwc
->sample_period
;
7276 event
->attr
.freq
= 0;
7281 * Software event: cpu wall time clock
7284 static void cpu_clock_event_update(struct perf_event
*event
)
7289 now
= local_clock();
7290 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
7291 local64_add(now
- prev
, &event
->count
);
7294 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
7296 local64_set(&event
->hw
.prev_count
, local_clock());
7297 perf_swevent_start_hrtimer(event
);
7300 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
7302 perf_swevent_cancel_hrtimer(event
);
7303 cpu_clock_event_update(event
);
7306 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
7308 if (flags
& PERF_EF_START
)
7309 cpu_clock_event_start(event
, flags
);
7310 perf_event_update_userpage(event
);
7315 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
7317 cpu_clock_event_stop(event
, flags
);
7320 static void cpu_clock_event_read(struct perf_event
*event
)
7322 cpu_clock_event_update(event
);
7325 static int cpu_clock_event_init(struct perf_event
*event
)
7327 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7330 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
7334 * no branch sampling for software events
7336 if (has_branch_stack(event
))
7339 perf_swevent_init_hrtimer(event
);
7344 static struct pmu perf_cpu_clock
= {
7345 .task_ctx_nr
= perf_sw_context
,
7347 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7349 .event_init
= cpu_clock_event_init
,
7350 .add
= cpu_clock_event_add
,
7351 .del
= cpu_clock_event_del
,
7352 .start
= cpu_clock_event_start
,
7353 .stop
= cpu_clock_event_stop
,
7354 .read
= cpu_clock_event_read
,
7358 * Software event: task time clock
7361 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
7366 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
7368 local64_add(delta
, &event
->count
);
7371 static void task_clock_event_start(struct perf_event
*event
, int flags
)
7373 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
7374 perf_swevent_start_hrtimer(event
);
7377 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
7379 perf_swevent_cancel_hrtimer(event
);
7380 task_clock_event_update(event
, event
->ctx
->time
);
7383 static int task_clock_event_add(struct perf_event
*event
, int flags
)
7385 if (flags
& PERF_EF_START
)
7386 task_clock_event_start(event
, flags
);
7387 perf_event_update_userpage(event
);
7392 static void task_clock_event_del(struct perf_event
*event
, int flags
)
7394 task_clock_event_stop(event
, PERF_EF_UPDATE
);
7397 static void task_clock_event_read(struct perf_event
*event
)
7399 u64 now
= perf_clock();
7400 u64 delta
= now
- event
->ctx
->timestamp
;
7401 u64 time
= event
->ctx
->time
+ delta
;
7403 task_clock_event_update(event
, time
);
7406 static int task_clock_event_init(struct perf_event
*event
)
7408 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7411 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
7415 * no branch sampling for software events
7417 if (has_branch_stack(event
))
7420 perf_swevent_init_hrtimer(event
);
7425 static struct pmu perf_task_clock
= {
7426 .task_ctx_nr
= perf_sw_context
,
7428 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7430 .event_init
= task_clock_event_init
,
7431 .add
= task_clock_event_add
,
7432 .del
= task_clock_event_del
,
7433 .start
= task_clock_event_start
,
7434 .stop
= task_clock_event_stop
,
7435 .read
= task_clock_event_read
,
7438 static void perf_pmu_nop_void(struct pmu
*pmu
)
7442 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
7446 static int perf_pmu_nop_int(struct pmu
*pmu
)
7451 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
7453 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
7455 __this_cpu_write(nop_txn_flags
, flags
);
7457 if (flags
& ~PERF_PMU_TXN_ADD
)
7460 perf_pmu_disable(pmu
);
7463 static int perf_pmu_commit_txn(struct pmu
*pmu
)
7465 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
7467 __this_cpu_write(nop_txn_flags
, 0);
7469 if (flags
& ~PERF_PMU_TXN_ADD
)
7472 perf_pmu_enable(pmu
);
7476 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
7478 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
7480 __this_cpu_write(nop_txn_flags
, 0);
7482 if (flags
& ~PERF_PMU_TXN_ADD
)
7485 perf_pmu_enable(pmu
);
7488 static int perf_event_idx_default(struct perf_event
*event
)
7494 * Ensures all contexts with the same task_ctx_nr have the same
7495 * pmu_cpu_context too.
7497 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
7504 list_for_each_entry(pmu
, &pmus
, entry
) {
7505 if (pmu
->task_ctx_nr
== ctxn
)
7506 return pmu
->pmu_cpu_context
;
7512 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
7516 for_each_possible_cpu(cpu
) {
7517 struct perf_cpu_context
*cpuctx
;
7519 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
7521 if (cpuctx
->unique_pmu
== old_pmu
)
7522 cpuctx
->unique_pmu
= pmu
;
7526 static void free_pmu_context(struct pmu
*pmu
)
7530 mutex_lock(&pmus_lock
);
7532 * Like a real lame refcount.
7534 list_for_each_entry(i
, &pmus
, entry
) {
7535 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
7536 update_pmu_context(i
, pmu
);
7541 free_percpu(pmu
->pmu_cpu_context
);
7543 mutex_unlock(&pmus_lock
);
7545 static struct idr pmu_idr
;
7548 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
7550 struct pmu
*pmu
= dev_get_drvdata(dev
);
7552 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
7554 static DEVICE_ATTR_RO(type
);
7557 perf_event_mux_interval_ms_show(struct device
*dev
,
7558 struct device_attribute
*attr
,
7561 struct pmu
*pmu
= dev_get_drvdata(dev
);
7563 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
7566 static DEFINE_MUTEX(mux_interval_mutex
);
7569 perf_event_mux_interval_ms_store(struct device
*dev
,
7570 struct device_attribute
*attr
,
7571 const char *buf
, size_t count
)
7573 struct pmu
*pmu
= dev_get_drvdata(dev
);
7574 int timer
, cpu
, ret
;
7576 ret
= kstrtoint(buf
, 0, &timer
);
7583 /* same value, noting to do */
7584 if (timer
== pmu
->hrtimer_interval_ms
)
7587 mutex_lock(&mux_interval_mutex
);
7588 pmu
->hrtimer_interval_ms
= timer
;
7590 /* update all cpuctx for this PMU */
7592 for_each_online_cpu(cpu
) {
7593 struct perf_cpu_context
*cpuctx
;
7594 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
7595 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
7597 cpu_function_call(cpu
,
7598 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
7601 mutex_unlock(&mux_interval_mutex
);
7605 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
7607 static struct attribute
*pmu_dev_attrs
[] = {
7608 &dev_attr_type
.attr
,
7609 &dev_attr_perf_event_mux_interval_ms
.attr
,
7612 ATTRIBUTE_GROUPS(pmu_dev
);
7614 static int pmu_bus_running
;
7615 static struct bus_type pmu_bus
= {
7616 .name
= "event_source",
7617 .dev_groups
= pmu_dev_groups
,
7620 static void pmu_dev_release(struct device
*dev
)
7625 static int pmu_dev_alloc(struct pmu
*pmu
)
7629 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
7633 pmu
->dev
->groups
= pmu
->attr_groups
;
7634 device_initialize(pmu
->dev
);
7635 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
7639 dev_set_drvdata(pmu
->dev
, pmu
);
7640 pmu
->dev
->bus
= &pmu_bus
;
7641 pmu
->dev
->release
= pmu_dev_release
;
7642 ret
= device_add(pmu
->dev
);
7650 put_device(pmu
->dev
);
7654 static struct lock_class_key cpuctx_mutex
;
7655 static struct lock_class_key cpuctx_lock
;
7657 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
7661 mutex_lock(&pmus_lock
);
7663 pmu
->pmu_disable_count
= alloc_percpu(int);
7664 if (!pmu
->pmu_disable_count
)
7673 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
7681 if (pmu_bus_running
) {
7682 ret
= pmu_dev_alloc(pmu
);
7688 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
7689 if (pmu
->pmu_cpu_context
)
7690 goto got_cpu_context
;
7693 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
7694 if (!pmu
->pmu_cpu_context
)
7697 for_each_possible_cpu(cpu
) {
7698 struct perf_cpu_context
*cpuctx
;
7700 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
7701 __perf_event_init_context(&cpuctx
->ctx
);
7702 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
7703 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
7704 cpuctx
->ctx
.pmu
= pmu
;
7706 __perf_mux_hrtimer_init(cpuctx
, cpu
);
7708 cpuctx
->unique_pmu
= pmu
;
7712 if (!pmu
->start_txn
) {
7713 if (pmu
->pmu_enable
) {
7715 * If we have pmu_enable/pmu_disable calls, install
7716 * transaction stubs that use that to try and batch
7717 * hardware accesses.
7719 pmu
->start_txn
= perf_pmu_start_txn
;
7720 pmu
->commit_txn
= perf_pmu_commit_txn
;
7721 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
7723 pmu
->start_txn
= perf_pmu_nop_txn
;
7724 pmu
->commit_txn
= perf_pmu_nop_int
;
7725 pmu
->cancel_txn
= perf_pmu_nop_void
;
7729 if (!pmu
->pmu_enable
) {
7730 pmu
->pmu_enable
= perf_pmu_nop_void
;
7731 pmu
->pmu_disable
= perf_pmu_nop_void
;
7734 if (!pmu
->event_idx
)
7735 pmu
->event_idx
= perf_event_idx_default
;
7737 list_add_rcu(&pmu
->entry
, &pmus
);
7738 atomic_set(&pmu
->exclusive_cnt
, 0);
7741 mutex_unlock(&pmus_lock
);
7746 device_del(pmu
->dev
);
7747 put_device(pmu
->dev
);
7750 if (pmu
->type
>= PERF_TYPE_MAX
)
7751 idr_remove(&pmu_idr
, pmu
->type
);
7754 free_percpu(pmu
->pmu_disable_count
);
7757 EXPORT_SYMBOL_GPL(perf_pmu_register
);
7759 void perf_pmu_unregister(struct pmu
*pmu
)
7761 mutex_lock(&pmus_lock
);
7762 list_del_rcu(&pmu
->entry
);
7763 mutex_unlock(&pmus_lock
);
7766 * We dereference the pmu list under both SRCU and regular RCU, so
7767 * synchronize against both of those.
7769 synchronize_srcu(&pmus_srcu
);
7772 free_percpu(pmu
->pmu_disable_count
);
7773 if (pmu
->type
>= PERF_TYPE_MAX
)
7774 idr_remove(&pmu_idr
, pmu
->type
);
7775 device_del(pmu
->dev
);
7776 put_device(pmu
->dev
);
7777 free_pmu_context(pmu
);
7779 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
7781 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
7783 struct perf_event_context
*ctx
= NULL
;
7786 if (!try_module_get(pmu
->module
))
7789 if (event
->group_leader
!= event
) {
7791 * This ctx->mutex can nest when we're called through
7792 * inheritance. See the perf_event_ctx_lock_nested() comment.
7794 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
7795 SINGLE_DEPTH_NESTING
);
7800 ret
= pmu
->event_init(event
);
7803 perf_event_ctx_unlock(event
->group_leader
, ctx
);
7806 module_put(pmu
->module
);
7811 static struct pmu
*perf_init_event(struct perf_event
*event
)
7813 struct pmu
*pmu
= NULL
;
7817 idx
= srcu_read_lock(&pmus_srcu
);
7820 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
7823 ret
= perf_try_init_event(pmu
, event
);
7829 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
7830 ret
= perf_try_init_event(pmu
, event
);
7834 if (ret
!= -ENOENT
) {
7839 pmu
= ERR_PTR(-ENOENT
);
7841 srcu_read_unlock(&pmus_srcu
, idx
);
7846 static void account_event_cpu(struct perf_event
*event
, int cpu
)
7851 if (is_cgroup_event(event
))
7852 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
7855 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
7856 static void account_freq_event_nohz(void)
7858 #ifdef CONFIG_NO_HZ_FULL
7859 /* Lock so we don't race with concurrent unaccount */
7860 spin_lock(&nr_freq_lock
);
7861 if (atomic_inc_return(&nr_freq_events
) == 1)
7862 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
7863 spin_unlock(&nr_freq_lock
);
7867 static void account_freq_event(void)
7869 if (tick_nohz_full_enabled())
7870 account_freq_event_nohz();
7872 atomic_inc(&nr_freq_events
);
7876 static void account_event(struct perf_event
*event
)
7883 if (event
->attach_state
& PERF_ATTACH_TASK
)
7885 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
7886 atomic_inc(&nr_mmap_events
);
7887 if (event
->attr
.comm
)
7888 atomic_inc(&nr_comm_events
);
7889 if (event
->attr
.task
)
7890 atomic_inc(&nr_task_events
);
7891 if (event
->attr
.freq
)
7892 account_freq_event();
7893 if (event
->attr
.context_switch
) {
7894 atomic_inc(&nr_switch_events
);
7897 if (has_branch_stack(event
))
7899 if (is_cgroup_event(event
))
7903 if (atomic_inc_not_zero(&perf_sched_count
))
7906 mutex_lock(&perf_sched_mutex
);
7907 if (!atomic_read(&perf_sched_count
)) {
7908 static_branch_enable(&perf_sched_events
);
7910 * Guarantee that all CPUs observe they key change and
7911 * call the perf scheduling hooks before proceeding to
7912 * install events that need them.
7914 synchronize_sched();
7917 * Now that we have waited for the sync_sched(), allow further
7918 * increments to by-pass the mutex.
7920 atomic_inc(&perf_sched_count
);
7921 mutex_unlock(&perf_sched_mutex
);
7925 account_event_cpu(event
, event
->cpu
);
7929 * Allocate and initialize a event structure
7931 static struct perf_event
*
7932 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
7933 struct task_struct
*task
,
7934 struct perf_event
*group_leader
,
7935 struct perf_event
*parent_event
,
7936 perf_overflow_handler_t overflow_handler
,
7937 void *context
, int cgroup_fd
)
7940 struct perf_event
*event
;
7941 struct hw_perf_event
*hwc
;
7944 if ((unsigned)cpu
>= nr_cpu_ids
) {
7945 if (!task
|| cpu
!= -1)
7946 return ERR_PTR(-EINVAL
);
7949 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
7951 return ERR_PTR(-ENOMEM
);
7954 * Single events are their own group leaders, with an
7955 * empty sibling list:
7958 group_leader
= event
;
7960 mutex_init(&event
->child_mutex
);
7961 INIT_LIST_HEAD(&event
->child_list
);
7963 INIT_LIST_HEAD(&event
->group_entry
);
7964 INIT_LIST_HEAD(&event
->event_entry
);
7965 INIT_LIST_HEAD(&event
->sibling_list
);
7966 INIT_LIST_HEAD(&event
->rb_entry
);
7967 INIT_LIST_HEAD(&event
->active_entry
);
7968 INIT_HLIST_NODE(&event
->hlist_entry
);
7971 init_waitqueue_head(&event
->waitq
);
7972 init_irq_work(&event
->pending
, perf_pending_event
);
7974 mutex_init(&event
->mmap_mutex
);
7976 atomic_long_set(&event
->refcount
, 1);
7978 event
->attr
= *attr
;
7979 event
->group_leader
= group_leader
;
7983 event
->parent
= parent_event
;
7985 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
7986 event
->id
= atomic64_inc_return(&perf_event_id
);
7988 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7991 event
->attach_state
= PERF_ATTACH_TASK
;
7993 * XXX pmu::event_init needs to know what task to account to
7994 * and we cannot use the ctx information because we need the
7995 * pmu before we get a ctx.
7997 event
->hw
.target
= task
;
8000 event
->clock
= &local_clock
;
8002 event
->clock
= parent_event
->clock
;
8004 if (!overflow_handler
&& parent_event
) {
8005 overflow_handler
= parent_event
->overflow_handler
;
8006 context
= parent_event
->overflow_handler_context
;
8009 event
->overflow_handler
= overflow_handler
;
8010 event
->overflow_handler_context
= context
;
8012 perf_event__state_init(event
);
8017 hwc
->sample_period
= attr
->sample_period
;
8018 if (attr
->freq
&& attr
->sample_freq
)
8019 hwc
->sample_period
= 1;
8020 hwc
->last_period
= hwc
->sample_period
;
8022 local64_set(&hwc
->period_left
, hwc
->sample_period
);
8025 * we currently do not support PERF_FORMAT_GROUP on inherited events
8027 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
8030 if (!has_branch_stack(event
))
8031 event
->attr
.branch_sample_type
= 0;
8033 if (cgroup_fd
!= -1) {
8034 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
8039 pmu
= perf_init_event(event
);
8042 else if (IS_ERR(pmu
)) {
8047 err
= exclusive_event_init(event
);
8051 if (!event
->parent
) {
8052 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
8053 err
= get_callchain_buffers();
8059 /* symmetric to unaccount_event() in _free_event() */
8060 account_event(event
);
8065 exclusive_event_destroy(event
);
8069 event
->destroy(event
);
8070 module_put(pmu
->module
);
8072 if (is_cgroup_event(event
))
8073 perf_detach_cgroup(event
);
8075 put_pid_ns(event
->ns
);
8078 return ERR_PTR(err
);
8081 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
8082 struct perf_event_attr
*attr
)
8087 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
8091 * zero the full structure, so that a short copy will be nice.
8093 memset(attr
, 0, sizeof(*attr
));
8095 ret
= get_user(size
, &uattr
->size
);
8099 if (size
> PAGE_SIZE
) /* silly large */
8102 if (!size
) /* abi compat */
8103 size
= PERF_ATTR_SIZE_VER0
;
8105 if (size
< PERF_ATTR_SIZE_VER0
)
8109 * If we're handed a bigger struct than we know of,
8110 * ensure all the unknown bits are 0 - i.e. new
8111 * user-space does not rely on any kernel feature
8112 * extensions we dont know about yet.
8114 if (size
> sizeof(*attr
)) {
8115 unsigned char __user
*addr
;
8116 unsigned char __user
*end
;
8119 addr
= (void __user
*)uattr
+ sizeof(*attr
);
8120 end
= (void __user
*)uattr
+ size
;
8122 for (; addr
< end
; addr
++) {
8123 ret
= get_user(val
, addr
);
8129 size
= sizeof(*attr
);
8132 ret
= copy_from_user(attr
, uattr
, size
);
8136 if (attr
->__reserved_1
)
8139 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
8142 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
8145 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
8146 u64 mask
= attr
->branch_sample_type
;
8148 /* only using defined bits */
8149 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
8152 /* at least one branch bit must be set */
8153 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
8156 /* propagate priv level, when not set for branch */
8157 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
8159 /* exclude_kernel checked on syscall entry */
8160 if (!attr
->exclude_kernel
)
8161 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
8163 if (!attr
->exclude_user
)
8164 mask
|= PERF_SAMPLE_BRANCH_USER
;
8166 if (!attr
->exclude_hv
)
8167 mask
|= PERF_SAMPLE_BRANCH_HV
;
8169 * adjust user setting (for HW filter setup)
8171 attr
->branch_sample_type
= mask
;
8173 /* privileged levels capture (kernel, hv): check permissions */
8174 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
8175 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
8179 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
8180 ret
= perf_reg_validate(attr
->sample_regs_user
);
8185 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
8186 if (!arch_perf_have_user_stack_dump())
8190 * We have __u32 type for the size, but so far
8191 * we can only use __u16 as maximum due to the
8192 * __u16 sample size limit.
8194 if (attr
->sample_stack_user
>= USHRT_MAX
)
8196 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
8200 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
8201 ret
= perf_reg_validate(attr
->sample_regs_intr
);
8206 put_user(sizeof(*attr
), &uattr
->size
);
8212 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
8214 struct ring_buffer
*rb
= NULL
;
8220 /* don't allow circular references */
8221 if (event
== output_event
)
8225 * Don't allow cross-cpu buffers
8227 if (output_event
->cpu
!= event
->cpu
)
8231 * If its not a per-cpu rb, it must be the same task.
8233 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
8237 * Mixing clocks in the same buffer is trouble you don't need.
8239 if (output_event
->clock
!= event
->clock
)
8243 * If both events generate aux data, they must be on the same PMU
8245 if (has_aux(event
) && has_aux(output_event
) &&
8246 event
->pmu
!= output_event
->pmu
)
8250 mutex_lock(&event
->mmap_mutex
);
8251 /* Can't redirect output if we've got an active mmap() */
8252 if (atomic_read(&event
->mmap_count
))
8256 /* get the rb we want to redirect to */
8257 rb
= ring_buffer_get(output_event
);
8262 ring_buffer_attach(event
, rb
);
8266 mutex_unlock(&event
->mmap_mutex
);
8272 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
8278 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
8281 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
8283 bool nmi_safe
= false;
8286 case CLOCK_MONOTONIC
:
8287 event
->clock
= &ktime_get_mono_fast_ns
;
8291 case CLOCK_MONOTONIC_RAW
:
8292 event
->clock
= &ktime_get_raw_fast_ns
;
8296 case CLOCK_REALTIME
:
8297 event
->clock
= &ktime_get_real_ns
;
8300 case CLOCK_BOOTTIME
:
8301 event
->clock
= &ktime_get_boot_ns
;
8305 event
->clock
= &ktime_get_tai_ns
;
8312 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
8319 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8321 * @attr_uptr: event_id type attributes for monitoring/sampling
8324 * @group_fd: group leader event fd
8326 SYSCALL_DEFINE5(perf_event_open
,
8327 struct perf_event_attr __user
*, attr_uptr
,
8328 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
8330 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
8331 struct perf_event
*event
, *sibling
;
8332 struct perf_event_attr attr
;
8333 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
8334 struct file
*event_file
= NULL
;
8335 struct fd group
= {NULL
, 0};
8336 struct task_struct
*task
= NULL
;
8341 int f_flags
= O_RDWR
;
8344 /* for future expandability... */
8345 if (flags
& ~PERF_FLAG_ALL
)
8348 err
= perf_copy_attr(attr_uptr
, &attr
);
8352 if (!attr
.exclude_kernel
) {
8353 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
8358 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
8361 if (attr
.sample_period
& (1ULL << 63))
8366 * In cgroup mode, the pid argument is used to pass the fd
8367 * opened to the cgroup directory in cgroupfs. The cpu argument
8368 * designates the cpu on which to monitor threads from that
8371 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
8374 if (flags
& PERF_FLAG_FD_CLOEXEC
)
8375 f_flags
|= O_CLOEXEC
;
8377 event_fd
= get_unused_fd_flags(f_flags
);
8381 if (group_fd
!= -1) {
8382 err
= perf_fget_light(group_fd
, &group
);
8385 group_leader
= group
.file
->private_data
;
8386 if (flags
& PERF_FLAG_FD_OUTPUT
)
8387 output_event
= group_leader
;
8388 if (flags
& PERF_FLAG_FD_NO_GROUP
)
8389 group_leader
= NULL
;
8392 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
8393 task
= find_lively_task_by_vpid(pid
);
8395 err
= PTR_ERR(task
);
8400 if (task
&& group_leader
&&
8401 group_leader
->attr
.inherit
!= attr
.inherit
) {
8409 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
8414 * Reuse ptrace permission checks for now.
8416 * We must hold cred_guard_mutex across this and any potential
8417 * perf_install_in_context() call for this new event to
8418 * serialize against exec() altering our credentials (and the
8419 * perf_event_exit_task() that could imply).
8422 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
8426 if (flags
& PERF_FLAG_PID_CGROUP
)
8429 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
8430 NULL
, NULL
, cgroup_fd
);
8431 if (IS_ERR(event
)) {
8432 err
= PTR_ERR(event
);
8436 if (is_sampling_event(event
)) {
8437 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
8444 * Special case software events and allow them to be part of
8445 * any hardware group.
8449 if (attr
.use_clockid
) {
8450 err
= perf_event_set_clock(event
, attr
.clockid
);
8456 (is_software_event(event
) != is_software_event(group_leader
))) {
8457 if (is_software_event(event
)) {
8459 * If event and group_leader are not both a software
8460 * event, and event is, then group leader is not.
8462 * Allow the addition of software events to !software
8463 * groups, this is safe because software events never
8466 pmu
= group_leader
->pmu
;
8467 } else if (is_software_event(group_leader
) &&
8468 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
8470 * In case the group is a pure software group, and we
8471 * try to add a hardware event, move the whole group to
8472 * the hardware context.
8479 * Get the target context (task or percpu):
8481 ctx
= find_get_context(pmu
, task
, event
);
8487 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
8493 * Look up the group leader (we will attach this event to it):
8499 * Do not allow a recursive hierarchy (this new sibling
8500 * becoming part of another group-sibling):
8502 if (group_leader
->group_leader
!= group_leader
)
8505 /* All events in a group should have the same clock */
8506 if (group_leader
->clock
!= event
->clock
)
8510 * Do not allow to attach to a group in a different
8511 * task or CPU context:
8515 * Make sure we're both on the same task, or both
8518 if (group_leader
->ctx
->task
!= ctx
->task
)
8522 * Make sure we're both events for the same CPU;
8523 * grouping events for different CPUs is broken; since
8524 * you can never concurrently schedule them anyhow.
8526 if (group_leader
->cpu
!= event
->cpu
)
8529 if (group_leader
->ctx
!= ctx
)
8534 * Only a group leader can be exclusive or pinned
8536 if (attr
.exclusive
|| attr
.pinned
)
8541 err
= perf_event_set_output(event
, output_event
);
8546 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
8548 if (IS_ERR(event_file
)) {
8549 err
= PTR_ERR(event_file
);
8555 gctx
= group_leader
->ctx
;
8556 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
8557 if (gctx
->task
== TASK_TOMBSTONE
) {
8562 mutex_lock(&ctx
->mutex
);
8565 if (ctx
->task
== TASK_TOMBSTONE
) {
8570 if (!perf_event_validate_size(event
)) {
8576 * Must be under the same ctx::mutex as perf_install_in_context(),
8577 * because we need to serialize with concurrent event creation.
8579 if (!exclusive_event_installable(event
, ctx
)) {
8580 /* exclusive and group stuff are assumed mutually exclusive */
8581 WARN_ON_ONCE(move_group
);
8587 WARN_ON_ONCE(ctx
->parent_ctx
);
8590 * This is the point on no return; we cannot fail hereafter. This is
8591 * where we start modifying current state.
8596 * See perf_event_ctx_lock() for comments on the details
8597 * of swizzling perf_event::ctx.
8599 perf_remove_from_context(group_leader
, 0);
8601 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
8603 perf_remove_from_context(sibling
, 0);
8608 * Wait for everybody to stop referencing the events through
8609 * the old lists, before installing it on new lists.
8614 * Install the group siblings before the group leader.
8616 * Because a group leader will try and install the entire group
8617 * (through the sibling list, which is still in-tact), we can
8618 * end up with siblings installed in the wrong context.
8620 * By installing siblings first we NO-OP because they're not
8621 * reachable through the group lists.
8623 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
8625 perf_event__state_init(sibling
);
8626 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
8631 * Removing from the context ends up with disabled
8632 * event. What we want here is event in the initial
8633 * startup state, ready to be add into new context.
8635 perf_event__state_init(group_leader
);
8636 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
8640 * Now that all events are installed in @ctx, nothing
8641 * references @gctx anymore, so drop the last reference we have
8648 * Precalculate sample_data sizes; do while holding ctx::mutex such
8649 * that we're serialized against further additions and before
8650 * perf_install_in_context() which is the point the event is active and
8651 * can use these values.
8653 perf_event__header_size(event
);
8654 perf_event__id_header_size(event
);
8656 event
->owner
= current
;
8658 perf_install_in_context(ctx
, event
, event
->cpu
);
8659 perf_unpin_context(ctx
);
8662 mutex_unlock(&gctx
->mutex
);
8663 mutex_unlock(&ctx
->mutex
);
8666 mutex_unlock(&task
->signal
->cred_guard_mutex
);
8667 put_task_struct(task
);
8672 mutex_lock(¤t
->perf_event_mutex
);
8673 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
8674 mutex_unlock(¤t
->perf_event_mutex
);
8677 * Drop the reference on the group_event after placing the
8678 * new event on the sibling_list. This ensures destruction
8679 * of the group leader will find the pointer to itself in
8680 * perf_group_detach().
8683 fd_install(event_fd
, event_file
);
8688 mutex_unlock(&gctx
->mutex
);
8689 mutex_unlock(&ctx
->mutex
);
8693 perf_unpin_context(ctx
);
8697 * If event_file is set, the fput() above will have called ->release()
8698 * and that will take care of freeing the event.
8704 mutex_unlock(&task
->signal
->cred_guard_mutex
);
8709 put_task_struct(task
);
8713 put_unused_fd(event_fd
);
8718 * perf_event_create_kernel_counter
8720 * @attr: attributes of the counter to create
8721 * @cpu: cpu in which the counter is bound
8722 * @task: task to profile (NULL for percpu)
8725 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
8726 struct task_struct
*task
,
8727 perf_overflow_handler_t overflow_handler
,
8730 struct perf_event_context
*ctx
;
8731 struct perf_event
*event
;
8735 * Get the target context (task or percpu):
8738 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
8739 overflow_handler
, context
, -1);
8740 if (IS_ERR(event
)) {
8741 err
= PTR_ERR(event
);
8745 /* Mark owner so we could distinguish it from user events. */
8746 event
->owner
= TASK_TOMBSTONE
;
8748 ctx
= find_get_context(event
->pmu
, task
, event
);
8754 WARN_ON_ONCE(ctx
->parent_ctx
);
8755 mutex_lock(&ctx
->mutex
);
8756 if (ctx
->task
== TASK_TOMBSTONE
) {
8761 if (!exclusive_event_installable(event
, ctx
)) {
8766 perf_install_in_context(ctx
, event
, cpu
);
8767 perf_unpin_context(ctx
);
8768 mutex_unlock(&ctx
->mutex
);
8773 mutex_unlock(&ctx
->mutex
);
8774 perf_unpin_context(ctx
);
8779 return ERR_PTR(err
);
8781 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
8783 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
8785 struct perf_event_context
*src_ctx
;
8786 struct perf_event_context
*dst_ctx
;
8787 struct perf_event
*event
, *tmp
;
8790 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
8791 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
8794 * See perf_event_ctx_lock() for comments on the details
8795 * of swizzling perf_event::ctx.
8797 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
8798 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
8800 perf_remove_from_context(event
, 0);
8801 unaccount_event_cpu(event
, src_cpu
);
8803 list_add(&event
->migrate_entry
, &events
);
8807 * Wait for the events to quiesce before re-instating them.
8812 * Re-instate events in 2 passes.
8814 * Skip over group leaders and only install siblings on this first
8815 * pass, siblings will not get enabled without a leader, however a
8816 * leader will enable its siblings, even if those are still on the old
8819 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
8820 if (event
->group_leader
== event
)
8823 list_del(&event
->migrate_entry
);
8824 if (event
->state
>= PERF_EVENT_STATE_OFF
)
8825 event
->state
= PERF_EVENT_STATE_INACTIVE
;
8826 account_event_cpu(event
, dst_cpu
);
8827 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
8832 * Once all the siblings are setup properly, install the group leaders
8835 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
8836 list_del(&event
->migrate_entry
);
8837 if (event
->state
>= PERF_EVENT_STATE_OFF
)
8838 event
->state
= PERF_EVENT_STATE_INACTIVE
;
8839 account_event_cpu(event
, dst_cpu
);
8840 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
8843 mutex_unlock(&dst_ctx
->mutex
);
8844 mutex_unlock(&src_ctx
->mutex
);
8846 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
8848 static void sync_child_event(struct perf_event
*child_event
,
8849 struct task_struct
*child
)
8851 struct perf_event
*parent_event
= child_event
->parent
;
8854 if (child_event
->attr
.inherit_stat
)
8855 perf_event_read_event(child_event
, child
);
8857 child_val
= perf_event_count(child_event
);
8860 * Add back the child's count to the parent's count:
8862 atomic64_add(child_val
, &parent_event
->child_count
);
8863 atomic64_add(child_event
->total_time_enabled
,
8864 &parent_event
->child_total_time_enabled
);
8865 atomic64_add(child_event
->total_time_running
,
8866 &parent_event
->child_total_time_running
);
8870 perf_event_exit_event(struct perf_event
*child_event
,
8871 struct perf_event_context
*child_ctx
,
8872 struct task_struct
*child
)
8874 struct perf_event
*parent_event
= child_event
->parent
;
8877 * Do not destroy the 'original' grouping; because of the context
8878 * switch optimization the original events could've ended up in a
8879 * random child task.
8881 * If we were to destroy the original group, all group related
8882 * operations would cease to function properly after this random
8885 * Do destroy all inherited groups, we don't care about those
8886 * and being thorough is better.
8888 raw_spin_lock_irq(&child_ctx
->lock
);
8889 WARN_ON_ONCE(child_ctx
->is_active
);
8892 perf_group_detach(child_event
);
8893 list_del_event(child_event
, child_ctx
);
8894 child_event
->state
= PERF_EVENT_STATE_EXIT
; /* is_event_hup() */
8895 raw_spin_unlock_irq(&child_ctx
->lock
);
8898 * Parent events are governed by their filedesc, retain them.
8900 if (!parent_event
) {
8901 perf_event_wakeup(child_event
);
8905 * Child events can be cleaned up.
8908 sync_child_event(child_event
, child
);
8911 * Remove this event from the parent's list
8913 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
8914 mutex_lock(&parent_event
->child_mutex
);
8915 list_del_init(&child_event
->child_list
);
8916 mutex_unlock(&parent_event
->child_mutex
);
8919 * Kick perf_poll() for is_event_hup().
8921 perf_event_wakeup(parent_event
);
8922 free_event(child_event
);
8923 put_event(parent_event
);
8926 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
8928 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
8929 struct perf_event
*child_event
, *next
;
8931 WARN_ON_ONCE(child
!= current
);
8933 child_ctx
= perf_pin_task_context(child
, ctxn
);
8938 * In order to reduce the amount of tricky in ctx tear-down, we hold
8939 * ctx::mutex over the entire thing. This serializes against almost
8940 * everything that wants to access the ctx.
8942 * The exception is sys_perf_event_open() /
8943 * perf_event_create_kernel_count() which does find_get_context()
8944 * without ctx::mutex (it cannot because of the move_group double mutex
8945 * lock thing). See the comments in perf_install_in_context().
8947 mutex_lock(&child_ctx
->mutex
);
8950 * In a single ctx::lock section, de-schedule the events and detach the
8951 * context from the task such that we cannot ever get it scheduled back
8954 raw_spin_lock_irq(&child_ctx
->lock
);
8955 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
);
8958 * Now that the context is inactive, destroy the task <-> ctx relation
8959 * and mark the context dead.
8961 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
8962 put_ctx(child_ctx
); /* cannot be last */
8963 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
8964 put_task_struct(current
); /* cannot be last */
8966 clone_ctx
= unclone_ctx(child_ctx
);
8967 raw_spin_unlock_irq(&child_ctx
->lock
);
8973 * Report the task dead after unscheduling the events so that we
8974 * won't get any samples after PERF_RECORD_EXIT. We can however still
8975 * get a few PERF_RECORD_READ events.
8977 perf_event_task(child
, child_ctx
, 0);
8979 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
8980 perf_event_exit_event(child_event
, child_ctx
, child
);
8982 mutex_unlock(&child_ctx
->mutex
);
8988 * When a child task exits, feed back event values to parent events.
8990 * Can be called with cred_guard_mutex held when called from
8991 * install_exec_creds().
8993 void perf_event_exit_task(struct task_struct
*child
)
8995 struct perf_event
*event
, *tmp
;
8998 mutex_lock(&child
->perf_event_mutex
);
8999 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
9001 list_del_init(&event
->owner_entry
);
9004 * Ensure the list deletion is visible before we clear
9005 * the owner, closes a race against perf_release() where
9006 * we need to serialize on the owner->perf_event_mutex.
9008 smp_store_release(&event
->owner
, NULL
);
9010 mutex_unlock(&child
->perf_event_mutex
);
9012 for_each_task_context_nr(ctxn
)
9013 perf_event_exit_task_context(child
, ctxn
);
9016 * The perf_event_exit_task_context calls perf_event_task
9017 * with child's task_ctx, which generates EXIT events for
9018 * child contexts and sets child->perf_event_ctxp[] to NULL.
9019 * At this point we need to send EXIT events to cpu contexts.
9021 perf_event_task(child
, NULL
, 0);
9024 static void perf_free_event(struct perf_event
*event
,
9025 struct perf_event_context
*ctx
)
9027 struct perf_event
*parent
= event
->parent
;
9029 if (WARN_ON_ONCE(!parent
))
9032 mutex_lock(&parent
->child_mutex
);
9033 list_del_init(&event
->child_list
);
9034 mutex_unlock(&parent
->child_mutex
);
9038 raw_spin_lock_irq(&ctx
->lock
);
9039 perf_group_detach(event
);
9040 list_del_event(event
, ctx
);
9041 raw_spin_unlock_irq(&ctx
->lock
);
9046 * Free an unexposed, unused context as created by inheritance by
9047 * perf_event_init_task below, used by fork() in case of fail.
9049 * Not all locks are strictly required, but take them anyway to be nice and
9050 * help out with the lockdep assertions.
9052 void perf_event_free_task(struct task_struct
*task
)
9054 struct perf_event_context
*ctx
;
9055 struct perf_event
*event
, *tmp
;
9058 for_each_task_context_nr(ctxn
) {
9059 ctx
= task
->perf_event_ctxp
[ctxn
];
9063 mutex_lock(&ctx
->mutex
);
9065 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
9067 perf_free_event(event
, ctx
);
9069 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
9071 perf_free_event(event
, ctx
);
9073 if (!list_empty(&ctx
->pinned_groups
) ||
9074 !list_empty(&ctx
->flexible_groups
))
9077 mutex_unlock(&ctx
->mutex
);
9083 void perf_event_delayed_put(struct task_struct
*task
)
9087 for_each_task_context_nr(ctxn
)
9088 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
9091 struct file
*perf_event_get(unsigned int fd
)
9095 file
= fget_raw(fd
);
9097 return ERR_PTR(-EBADF
);
9099 if (file
->f_op
!= &perf_fops
) {
9101 return ERR_PTR(-EBADF
);
9107 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
9110 return ERR_PTR(-EINVAL
);
9112 return &event
->attr
;
9116 * inherit a event from parent task to child task:
9118 static struct perf_event
*
9119 inherit_event(struct perf_event
*parent_event
,
9120 struct task_struct
*parent
,
9121 struct perf_event_context
*parent_ctx
,
9122 struct task_struct
*child
,
9123 struct perf_event
*group_leader
,
9124 struct perf_event_context
*child_ctx
)
9126 enum perf_event_active_state parent_state
= parent_event
->state
;
9127 struct perf_event
*child_event
;
9128 unsigned long flags
;
9131 * Instead of creating recursive hierarchies of events,
9132 * we link inherited events back to the original parent,
9133 * which has a filp for sure, which we use as the reference
9136 if (parent_event
->parent
)
9137 parent_event
= parent_event
->parent
;
9139 child_event
= perf_event_alloc(&parent_event
->attr
,
9142 group_leader
, parent_event
,
9144 if (IS_ERR(child_event
))
9148 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9149 * must be under the same lock in order to serialize against
9150 * perf_event_release_kernel(), such that either we must observe
9151 * is_orphaned_event() or they will observe us on the child_list.
9153 mutex_lock(&parent_event
->child_mutex
);
9154 if (is_orphaned_event(parent_event
) ||
9155 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
9156 mutex_unlock(&parent_event
->child_mutex
);
9157 free_event(child_event
);
9164 * Make the child state follow the state of the parent event,
9165 * not its attr.disabled bit. We hold the parent's mutex,
9166 * so we won't race with perf_event_{en, dis}able_family.
9168 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
9169 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
9171 child_event
->state
= PERF_EVENT_STATE_OFF
;
9173 if (parent_event
->attr
.freq
) {
9174 u64 sample_period
= parent_event
->hw
.sample_period
;
9175 struct hw_perf_event
*hwc
= &child_event
->hw
;
9177 hwc
->sample_period
= sample_period
;
9178 hwc
->last_period
= sample_period
;
9180 local64_set(&hwc
->period_left
, sample_period
);
9183 child_event
->ctx
= child_ctx
;
9184 child_event
->overflow_handler
= parent_event
->overflow_handler
;
9185 child_event
->overflow_handler_context
9186 = parent_event
->overflow_handler_context
;
9189 * Precalculate sample_data sizes
9191 perf_event__header_size(child_event
);
9192 perf_event__id_header_size(child_event
);
9195 * Link it up in the child's context:
9197 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
9198 add_event_to_ctx(child_event
, child_ctx
);
9199 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
9202 * Link this into the parent event's child list
9204 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
9205 mutex_unlock(&parent_event
->child_mutex
);
9210 static int inherit_group(struct perf_event
*parent_event
,
9211 struct task_struct
*parent
,
9212 struct perf_event_context
*parent_ctx
,
9213 struct task_struct
*child
,
9214 struct perf_event_context
*child_ctx
)
9216 struct perf_event
*leader
;
9217 struct perf_event
*sub
;
9218 struct perf_event
*child_ctr
;
9220 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
9221 child
, NULL
, child_ctx
);
9223 return PTR_ERR(leader
);
9224 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
9225 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
9226 child
, leader
, child_ctx
);
9227 if (IS_ERR(child_ctr
))
9228 return PTR_ERR(child_ctr
);
9234 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
9235 struct perf_event_context
*parent_ctx
,
9236 struct task_struct
*child
, int ctxn
,
9240 struct perf_event_context
*child_ctx
;
9242 if (!event
->attr
.inherit
) {
9247 child_ctx
= child
->perf_event_ctxp
[ctxn
];
9250 * This is executed from the parent task context, so
9251 * inherit events that have been marked for cloning.
9252 * First allocate and initialize a context for the
9256 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
9260 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
9263 ret
= inherit_group(event
, parent
, parent_ctx
,
9273 * Initialize the perf_event context in task_struct
9275 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
9277 struct perf_event_context
*child_ctx
, *parent_ctx
;
9278 struct perf_event_context
*cloned_ctx
;
9279 struct perf_event
*event
;
9280 struct task_struct
*parent
= current
;
9281 int inherited_all
= 1;
9282 unsigned long flags
;
9285 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
9289 * If the parent's context is a clone, pin it so it won't get
9292 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
9297 * No need to check if parent_ctx != NULL here; since we saw
9298 * it non-NULL earlier, the only reason for it to become NULL
9299 * is if we exit, and since we're currently in the middle of
9300 * a fork we can't be exiting at the same time.
9304 * Lock the parent list. No need to lock the child - not PID
9305 * hashed yet and not running, so nobody can access it.
9307 mutex_lock(&parent_ctx
->mutex
);
9310 * We dont have to disable NMIs - we are only looking at
9311 * the list, not manipulating it:
9313 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
9314 ret
= inherit_task_group(event
, parent
, parent_ctx
,
9315 child
, ctxn
, &inherited_all
);
9321 * We can't hold ctx->lock when iterating the ->flexible_group list due
9322 * to allocations, but we need to prevent rotation because
9323 * rotate_ctx() will change the list from interrupt context.
9325 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
9326 parent_ctx
->rotate_disable
= 1;
9327 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
9329 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
9330 ret
= inherit_task_group(event
, parent
, parent_ctx
,
9331 child
, ctxn
, &inherited_all
);
9336 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
9337 parent_ctx
->rotate_disable
= 0;
9339 child_ctx
= child
->perf_event_ctxp
[ctxn
];
9341 if (child_ctx
&& inherited_all
) {
9343 * Mark the child context as a clone of the parent
9344 * context, or of whatever the parent is a clone of.
9346 * Note that if the parent is a clone, the holding of
9347 * parent_ctx->lock avoids it from being uncloned.
9349 cloned_ctx
= parent_ctx
->parent_ctx
;
9351 child_ctx
->parent_ctx
= cloned_ctx
;
9352 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
9354 child_ctx
->parent_ctx
= parent_ctx
;
9355 child_ctx
->parent_gen
= parent_ctx
->generation
;
9357 get_ctx(child_ctx
->parent_ctx
);
9360 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
9361 mutex_unlock(&parent_ctx
->mutex
);
9363 perf_unpin_context(parent_ctx
);
9364 put_ctx(parent_ctx
);
9370 * Initialize the perf_event context in task_struct
9372 int perf_event_init_task(struct task_struct
*child
)
9376 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
9377 mutex_init(&child
->perf_event_mutex
);
9378 INIT_LIST_HEAD(&child
->perf_event_list
);
9380 for_each_task_context_nr(ctxn
) {
9381 ret
= perf_event_init_context(child
, ctxn
);
9383 perf_event_free_task(child
);
9391 static void __init
perf_event_init_all_cpus(void)
9393 struct swevent_htable
*swhash
;
9396 for_each_possible_cpu(cpu
) {
9397 swhash
= &per_cpu(swevent_htable
, cpu
);
9398 mutex_init(&swhash
->hlist_mutex
);
9399 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
9403 static void perf_event_init_cpu(int cpu
)
9405 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
9407 mutex_lock(&swhash
->hlist_mutex
);
9408 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
9409 struct swevent_hlist
*hlist
;
9411 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
9413 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
9415 mutex_unlock(&swhash
->hlist_mutex
);
9418 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9419 static void __perf_event_exit_context(void *__info
)
9421 struct perf_event_context
*ctx
= __info
;
9422 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
9423 struct perf_event
*event
;
9425 raw_spin_lock(&ctx
->lock
);
9426 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
9427 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
9428 raw_spin_unlock(&ctx
->lock
);
9431 static void perf_event_exit_cpu_context(int cpu
)
9433 struct perf_event_context
*ctx
;
9437 idx
= srcu_read_lock(&pmus_srcu
);
9438 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
9439 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
9441 mutex_lock(&ctx
->mutex
);
9442 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
9443 mutex_unlock(&ctx
->mutex
);
9445 srcu_read_unlock(&pmus_srcu
, idx
);
9448 static void perf_event_exit_cpu(int cpu
)
9450 perf_event_exit_cpu_context(cpu
);
9453 static inline void perf_event_exit_cpu(int cpu
) { }
9457 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
9461 for_each_online_cpu(cpu
)
9462 perf_event_exit_cpu(cpu
);
9468 * Run the perf reboot notifier at the very last possible moment so that
9469 * the generic watchdog code runs as long as possible.
9471 static struct notifier_block perf_reboot_notifier
= {
9472 .notifier_call
= perf_reboot
,
9473 .priority
= INT_MIN
,
9477 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
9479 unsigned int cpu
= (long)hcpu
;
9481 switch (action
& ~CPU_TASKS_FROZEN
) {
9483 case CPU_UP_PREPARE
:
9485 * This must be done before the CPU comes alive, because the
9486 * moment we can run tasks we can encounter (software) events.
9488 * Specifically, someone can have inherited events on kthreadd
9489 * or a pre-existing worker thread that gets re-bound.
9491 perf_event_init_cpu(cpu
);
9494 case CPU_DOWN_PREPARE
:
9496 * This must be done before the CPU dies because after that an
9497 * active event might want to IPI the CPU and that'll not work
9498 * so great for dead CPUs.
9500 * XXX smp_call_function_single() return -ENXIO without a warn
9501 * so we could possibly deal with this.
9503 * This is safe against new events arriving because
9504 * sys_perf_event_open() serializes against hotplug using
9505 * get_online_cpus().
9507 perf_event_exit_cpu(cpu
);
9516 void __init
perf_event_init(void)
9522 perf_event_init_all_cpus();
9523 init_srcu_struct(&pmus_srcu
);
9524 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
9525 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
9526 perf_pmu_register(&perf_task_clock
, NULL
, -1);
9528 perf_cpu_notifier(perf_cpu_notify
);
9529 register_reboot_notifier(&perf_reboot_notifier
);
9531 ret
= init_hw_breakpoint();
9532 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
9535 * Build time assertion that we keep the data_head at the intended
9536 * location. IOW, validation we got the __reserved[] size right.
9538 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
9542 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
9545 struct perf_pmu_events_attr
*pmu_attr
=
9546 container_of(attr
, struct perf_pmu_events_attr
, attr
);
9548 if (pmu_attr
->event_str
)
9549 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
9553 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
9555 static int __init
perf_event_sysfs_init(void)
9560 mutex_lock(&pmus_lock
);
9562 ret
= bus_register(&pmu_bus
);
9566 list_for_each_entry(pmu
, &pmus
, entry
) {
9567 if (!pmu
->name
|| pmu
->type
< 0)
9570 ret
= pmu_dev_alloc(pmu
);
9571 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
9573 pmu_bus_running
= 1;
9577 mutex_unlock(&pmus_lock
);
9581 device_initcall(perf_event_sysfs_init
);
9583 #ifdef CONFIG_CGROUP_PERF
9584 static struct cgroup_subsys_state
*
9585 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
9587 struct perf_cgroup
*jc
;
9589 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
9591 return ERR_PTR(-ENOMEM
);
9593 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
9596 return ERR_PTR(-ENOMEM
);
9602 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
9604 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
9606 free_percpu(jc
->info
);
9610 static int __perf_cgroup_move(void *info
)
9612 struct task_struct
*task
= info
;
9614 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
9619 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
9621 struct task_struct
*task
;
9622 struct cgroup_subsys_state
*css
;
9624 cgroup_taskset_for_each(task
, css
, tset
)
9625 task_function_call(task
, __perf_cgroup_move
, task
);
9628 struct cgroup_subsys perf_event_cgrp_subsys
= {
9629 .css_alloc
= perf_cgroup_css_alloc
,
9630 .css_free
= perf_cgroup_css_free
,
9631 .attach
= perf_cgroup_attach
,
9633 #endif /* CONFIG_CGROUP_PERF */