Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / kernel / fork.c
blobd277e83ed3e06d702875e4823a827c8a4c48b729
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
87 #include <trace/events/sched.h>
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
93 * Minimum number of threads to boot the kernel
95 #define MIN_THREADS 20
98 * Maximum number of threads
100 #define MAX_THREADS FUTEX_TID_MASK
103 * Protected counters by write_lock_irq(&tasklist_lock)
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
108 int max_threads; /* tunable limit on nr_threads */
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
117 return lockdep_is_held(&tasklist_lock);
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
122 int nr_processes(void)
124 int cpu;
125 int total = 0;
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
130 return total;
133 void __weak arch_release_task_struct(struct task_struct *tsk)
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
140 static inline struct task_struct *alloc_task_struct_node(int node)
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
145 static inline void free_task_struct(struct task_struct *tsk)
147 kmem_cache_free(task_struct_cachep, tsk);
149 #endif
151 void __weak arch_release_thread_info(struct thread_info *ti)
155 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
161 # if THREAD_SIZE >= PAGE_SIZE
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 int node)
165 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
166 THREAD_SIZE_ORDER);
168 if (page)
169 memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
170 1 << THREAD_SIZE_ORDER);
172 return page ? page_address(page) : NULL;
175 static inline void free_thread_info(struct thread_info *ti)
177 struct page *page = virt_to_page(ti);
179 memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
180 -(1 << THREAD_SIZE_ORDER));
181 __free_kmem_pages(page, THREAD_SIZE_ORDER);
183 # else
184 static struct kmem_cache *thread_info_cache;
186 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
187 int node)
189 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
192 static void free_thread_info(struct thread_info *ti)
194 kmem_cache_free(thread_info_cache, ti);
197 void thread_info_cache_init(void)
199 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
200 THREAD_SIZE, 0, NULL);
201 BUG_ON(thread_info_cache == NULL);
203 # endif
204 #endif
206 /* SLAB cache for signal_struct structures (tsk->signal) */
207 static struct kmem_cache *signal_cachep;
209 /* SLAB cache for sighand_struct structures (tsk->sighand) */
210 struct kmem_cache *sighand_cachep;
212 /* SLAB cache for files_struct structures (tsk->files) */
213 struct kmem_cache *files_cachep;
215 /* SLAB cache for fs_struct structures (tsk->fs) */
216 struct kmem_cache *fs_cachep;
218 /* SLAB cache for vm_area_struct structures */
219 struct kmem_cache *vm_area_cachep;
221 /* SLAB cache for mm_struct structures (tsk->mm) */
222 static struct kmem_cache *mm_cachep;
224 static void account_kernel_stack(struct thread_info *ti, int account)
226 struct zone *zone = page_zone(virt_to_page(ti));
228 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
231 void free_task(struct task_struct *tsk)
233 account_kernel_stack(tsk->stack, -1);
234 arch_release_thread_info(tsk->stack);
235 free_thread_info(tsk->stack);
236 rt_mutex_debug_task_free(tsk);
237 ftrace_graph_exit_task(tsk);
238 put_seccomp_filter(tsk);
239 arch_release_task_struct(tsk);
240 free_task_struct(tsk);
242 EXPORT_SYMBOL(free_task);
244 static inline void free_signal_struct(struct signal_struct *sig)
246 taskstats_tgid_free(sig);
247 sched_autogroup_exit(sig);
248 kmem_cache_free(signal_cachep, sig);
251 static inline void put_signal_struct(struct signal_struct *sig)
253 if (atomic_dec_and_test(&sig->sigcnt))
254 free_signal_struct(sig);
257 void __put_task_struct(struct task_struct *tsk)
259 WARN_ON(!tsk->exit_state);
260 WARN_ON(atomic_read(&tsk->usage));
261 WARN_ON(tsk == current);
263 cgroup_free(tsk);
264 task_numa_free(tsk);
265 security_task_free(tsk);
266 exit_creds(tsk);
267 delayacct_tsk_free(tsk);
268 put_signal_struct(tsk->signal);
270 if (!profile_handoff_task(tsk))
271 free_task(tsk);
273 EXPORT_SYMBOL_GPL(__put_task_struct);
275 void __init __weak arch_task_cache_init(void) { }
278 * set_max_threads
280 static void set_max_threads(unsigned int max_threads_suggested)
282 u64 threads;
285 * The number of threads shall be limited such that the thread
286 * structures may only consume a small part of the available memory.
288 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
289 threads = MAX_THREADS;
290 else
291 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
292 (u64) THREAD_SIZE * 8UL);
294 if (threads > max_threads_suggested)
295 threads = max_threads_suggested;
297 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
300 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
301 /* Initialized by the architecture: */
302 int arch_task_struct_size __read_mostly;
303 #endif
305 void __init fork_init(void)
307 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
308 #ifndef ARCH_MIN_TASKALIGN
309 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
310 #endif
311 /* create a slab on which task_structs can be allocated */
312 task_struct_cachep = kmem_cache_create("task_struct",
313 arch_task_struct_size, ARCH_MIN_TASKALIGN,
314 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
315 #endif
317 /* do the arch specific task caches init */
318 arch_task_cache_init();
320 set_max_threads(MAX_THREADS);
322 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
323 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
324 init_task.signal->rlim[RLIMIT_SIGPENDING] =
325 init_task.signal->rlim[RLIMIT_NPROC];
328 int __weak arch_dup_task_struct(struct task_struct *dst,
329 struct task_struct *src)
331 *dst = *src;
332 return 0;
335 void set_task_stack_end_magic(struct task_struct *tsk)
337 unsigned long *stackend;
339 stackend = end_of_stack(tsk);
340 *stackend = STACK_END_MAGIC; /* for overflow detection */
343 static struct task_struct *dup_task_struct(struct task_struct *orig)
345 struct task_struct *tsk;
346 struct thread_info *ti;
347 int node = tsk_fork_get_node(orig);
348 int err;
350 tsk = alloc_task_struct_node(node);
351 if (!tsk)
352 return NULL;
354 ti = alloc_thread_info_node(tsk, node);
355 if (!ti)
356 goto free_tsk;
358 err = arch_dup_task_struct(tsk, orig);
359 if (err)
360 goto free_ti;
362 tsk->stack = ti;
363 #ifdef CONFIG_SECCOMP
365 * We must handle setting up seccomp filters once we're under
366 * the sighand lock in case orig has changed between now and
367 * then. Until then, filter must be NULL to avoid messing up
368 * the usage counts on the error path calling free_task.
370 tsk->seccomp.filter = NULL;
371 #endif
373 setup_thread_stack(tsk, orig);
374 clear_user_return_notifier(tsk);
375 clear_tsk_need_resched(tsk);
376 set_task_stack_end_magic(tsk);
378 #ifdef CONFIG_CC_STACKPROTECTOR
379 tsk->stack_canary = get_random_int();
380 #endif
383 * One for us, one for whoever does the "release_task()" (usually
384 * parent)
386 atomic_set(&tsk->usage, 2);
387 #ifdef CONFIG_BLK_DEV_IO_TRACE
388 tsk->btrace_seq = 0;
389 #endif
390 tsk->splice_pipe = NULL;
391 tsk->task_frag.page = NULL;
392 tsk->wake_q.next = NULL;
394 account_kernel_stack(ti, 1);
396 kcov_task_init(tsk);
398 return tsk;
400 free_ti:
401 free_thread_info(ti);
402 free_tsk:
403 free_task_struct(tsk);
404 return NULL;
407 #ifdef CONFIG_MMU
408 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
410 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
411 struct rb_node **rb_link, *rb_parent;
412 int retval;
413 unsigned long charge;
415 uprobe_start_dup_mmap();
416 down_write(&oldmm->mmap_sem);
417 flush_cache_dup_mm(oldmm);
418 uprobe_dup_mmap(oldmm, mm);
420 * Not linked in yet - no deadlock potential:
422 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
424 /* No ordering required: file already has been exposed. */
425 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
427 mm->total_vm = oldmm->total_vm;
428 mm->data_vm = oldmm->data_vm;
429 mm->exec_vm = oldmm->exec_vm;
430 mm->stack_vm = oldmm->stack_vm;
432 rb_link = &mm->mm_rb.rb_node;
433 rb_parent = NULL;
434 pprev = &mm->mmap;
435 retval = ksm_fork(mm, oldmm);
436 if (retval)
437 goto out;
438 retval = khugepaged_fork(mm, oldmm);
439 if (retval)
440 goto out;
442 prev = NULL;
443 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
444 struct file *file;
446 if (mpnt->vm_flags & VM_DONTCOPY) {
447 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
448 continue;
450 charge = 0;
451 if (mpnt->vm_flags & VM_ACCOUNT) {
452 unsigned long len = vma_pages(mpnt);
454 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
455 goto fail_nomem;
456 charge = len;
458 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 if (!tmp)
460 goto fail_nomem;
461 *tmp = *mpnt;
462 INIT_LIST_HEAD(&tmp->anon_vma_chain);
463 retval = vma_dup_policy(mpnt, tmp);
464 if (retval)
465 goto fail_nomem_policy;
466 tmp->vm_mm = mm;
467 if (anon_vma_fork(tmp, mpnt))
468 goto fail_nomem_anon_vma_fork;
469 tmp->vm_flags &=
470 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
471 tmp->vm_next = tmp->vm_prev = NULL;
472 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
473 file = tmp->vm_file;
474 if (file) {
475 struct inode *inode = file_inode(file);
476 struct address_space *mapping = file->f_mapping;
478 get_file(file);
479 if (tmp->vm_flags & VM_DENYWRITE)
480 atomic_dec(&inode->i_writecount);
481 i_mmap_lock_write(mapping);
482 if (tmp->vm_flags & VM_SHARED)
483 atomic_inc(&mapping->i_mmap_writable);
484 flush_dcache_mmap_lock(mapping);
485 /* insert tmp into the share list, just after mpnt */
486 vma_interval_tree_insert_after(tmp, mpnt,
487 &mapping->i_mmap);
488 flush_dcache_mmap_unlock(mapping);
489 i_mmap_unlock_write(mapping);
493 * Clear hugetlb-related page reserves for children. This only
494 * affects MAP_PRIVATE mappings. Faults generated by the child
495 * are not guaranteed to succeed, even if read-only
497 if (is_vm_hugetlb_page(tmp))
498 reset_vma_resv_huge_pages(tmp);
501 * Link in the new vma and copy the page table entries.
503 *pprev = tmp;
504 pprev = &tmp->vm_next;
505 tmp->vm_prev = prev;
506 prev = tmp;
508 __vma_link_rb(mm, tmp, rb_link, rb_parent);
509 rb_link = &tmp->vm_rb.rb_right;
510 rb_parent = &tmp->vm_rb;
512 mm->map_count++;
513 retval = copy_page_range(mm, oldmm, mpnt);
515 if (tmp->vm_ops && tmp->vm_ops->open)
516 tmp->vm_ops->open(tmp);
518 if (retval)
519 goto out;
521 /* a new mm has just been created */
522 arch_dup_mmap(oldmm, mm);
523 retval = 0;
524 out:
525 up_write(&mm->mmap_sem);
526 flush_tlb_mm(oldmm);
527 up_write(&oldmm->mmap_sem);
528 uprobe_end_dup_mmap();
529 return retval;
530 fail_nomem_anon_vma_fork:
531 mpol_put(vma_policy(tmp));
532 fail_nomem_policy:
533 kmem_cache_free(vm_area_cachep, tmp);
534 fail_nomem:
535 retval = -ENOMEM;
536 vm_unacct_memory(charge);
537 goto out;
540 static inline int mm_alloc_pgd(struct mm_struct *mm)
542 mm->pgd = pgd_alloc(mm);
543 if (unlikely(!mm->pgd))
544 return -ENOMEM;
545 return 0;
548 static inline void mm_free_pgd(struct mm_struct *mm)
550 pgd_free(mm, mm->pgd);
552 #else
553 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
555 down_write(&oldmm->mmap_sem);
556 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
557 up_write(&oldmm->mmap_sem);
558 return 0;
560 #define mm_alloc_pgd(mm) (0)
561 #define mm_free_pgd(mm)
562 #endif /* CONFIG_MMU */
564 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
566 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
567 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
569 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
571 static int __init coredump_filter_setup(char *s)
573 default_dump_filter =
574 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
575 MMF_DUMP_FILTER_MASK;
576 return 1;
579 __setup("coredump_filter=", coredump_filter_setup);
581 #include <linux/init_task.h>
583 static void mm_init_aio(struct mm_struct *mm)
585 #ifdef CONFIG_AIO
586 spin_lock_init(&mm->ioctx_lock);
587 mm->ioctx_table = NULL;
588 #endif
591 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
593 #ifdef CONFIG_MEMCG
594 mm->owner = p;
595 #endif
598 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
600 mm->mmap = NULL;
601 mm->mm_rb = RB_ROOT;
602 mm->vmacache_seqnum = 0;
603 atomic_set(&mm->mm_users, 1);
604 atomic_set(&mm->mm_count, 1);
605 init_rwsem(&mm->mmap_sem);
606 INIT_LIST_HEAD(&mm->mmlist);
607 mm->core_state = NULL;
608 atomic_long_set(&mm->nr_ptes, 0);
609 mm_nr_pmds_init(mm);
610 mm->map_count = 0;
611 mm->locked_vm = 0;
612 mm->pinned_vm = 0;
613 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
614 spin_lock_init(&mm->page_table_lock);
615 mm_init_cpumask(mm);
616 mm_init_aio(mm);
617 mm_init_owner(mm, p);
618 mmu_notifier_mm_init(mm);
619 clear_tlb_flush_pending(mm);
620 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
621 mm->pmd_huge_pte = NULL;
622 #endif
624 if (current->mm) {
625 mm->flags = current->mm->flags & MMF_INIT_MASK;
626 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
627 } else {
628 mm->flags = default_dump_filter;
629 mm->def_flags = 0;
632 if (mm_alloc_pgd(mm))
633 goto fail_nopgd;
635 if (init_new_context(p, mm))
636 goto fail_nocontext;
638 return mm;
640 fail_nocontext:
641 mm_free_pgd(mm);
642 fail_nopgd:
643 free_mm(mm);
644 return NULL;
647 static void check_mm(struct mm_struct *mm)
649 int i;
651 for (i = 0; i < NR_MM_COUNTERS; i++) {
652 long x = atomic_long_read(&mm->rss_stat.count[i]);
654 if (unlikely(x))
655 printk(KERN_ALERT "BUG: Bad rss-counter state "
656 "mm:%p idx:%d val:%ld\n", mm, i, x);
659 if (atomic_long_read(&mm->nr_ptes))
660 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
661 atomic_long_read(&mm->nr_ptes));
662 if (mm_nr_pmds(mm))
663 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
664 mm_nr_pmds(mm));
666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
667 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
668 #endif
672 * Allocate and initialize an mm_struct.
674 struct mm_struct *mm_alloc(void)
676 struct mm_struct *mm;
678 mm = allocate_mm();
679 if (!mm)
680 return NULL;
682 memset(mm, 0, sizeof(*mm));
683 return mm_init(mm, current);
687 * Called when the last reference to the mm
688 * is dropped: either by a lazy thread or by
689 * mmput. Free the page directory and the mm.
691 void __mmdrop(struct mm_struct *mm)
693 BUG_ON(mm == &init_mm);
694 mm_free_pgd(mm);
695 destroy_context(mm);
696 mmu_notifier_mm_destroy(mm);
697 check_mm(mm);
698 free_mm(mm);
700 EXPORT_SYMBOL_GPL(__mmdrop);
703 * Decrement the use count and release all resources for an mm.
705 void mmput(struct mm_struct *mm)
707 might_sleep();
709 if (atomic_dec_and_test(&mm->mm_users)) {
710 uprobe_clear_state(mm);
711 exit_aio(mm);
712 ksm_exit(mm);
713 khugepaged_exit(mm); /* must run before exit_mmap */
714 exit_mmap(mm);
715 set_mm_exe_file(mm, NULL);
716 if (!list_empty(&mm->mmlist)) {
717 spin_lock(&mmlist_lock);
718 list_del(&mm->mmlist);
719 spin_unlock(&mmlist_lock);
721 if (mm->binfmt)
722 module_put(mm->binfmt->module);
723 mmdrop(mm);
726 EXPORT_SYMBOL_GPL(mmput);
729 * set_mm_exe_file - change a reference to the mm's executable file
731 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
733 * Main users are mmput() and sys_execve(). Callers prevent concurrent
734 * invocations: in mmput() nobody alive left, in execve task is single
735 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
736 * mm->exe_file, but does so without using set_mm_exe_file() in order
737 * to do avoid the need for any locks.
739 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
741 struct file *old_exe_file;
744 * It is safe to dereference the exe_file without RCU as
745 * this function is only called if nobody else can access
746 * this mm -- see comment above for justification.
748 old_exe_file = rcu_dereference_raw(mm->exe_file);
750 if (new_exe_file)
751 get_file(new_exe_file);
752 rcu_assign_pointer(mm->exe_file, new_exe_file);
753 if (old_exe_file)
754 fput(old_exe_file);
758 * get_mm_exe_file - acquire a reference to the mm's executable file
760 * Returns %NULL if mm has no associated executable file.
761 * User must release file via fput().
763 struct file *get_mm_exe_file(struct mm_struct *mm)
765 struct file *exe_file;
767 rcu_read_lock();
768 exe_file = rcu_dereference(mm->exe_file);
769 if (exe_file && !get_file_rcu(exe_file))
770 exe_file = NULL;
771 rcu_read_unlock();
772 return exe_file;
774 EXPORT_SYMBOL(get_mm_exe_file);
777 * get_task_mm - acquire a reference to the task's mm
779 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
780 * this kernel workthread has transiently adopted a user mm with use_mm,
781 * to do its AIO) is not set and if so returns a reference to it, after
782 * bumping up the use count. User must release the mm via mmput()
783 * after use. Typically used by /proc and ptrace.
785 struct mm_struct *get_task_mm(struct task_struct *task)
787 struct mm_struct *mm;
789 task_lock(task);
790 mm = task->mm;
791 if (mm) {
792 if (task->flags & PF_KTHREAD)
793 mm = NULL;
794 else
795 atomic_inc(&mm->mm_users);
797 task_unlock(task);
798 return mm;
800 EXPORT_SYMBOL_GPL(get_task_mm);
802 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
804 struct mm_struct *mm;
805 int err;
807 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
808 if (err)
809 return ERR_PTR(err);
811 mm = get_task_mm(task);
812 if (mm && mm != current->mm &&
813 !ptrace_may_access(task, mode)) {
814 mmput(mm);
815 mm = ERR_PTR(-EACCES);
817 mutex_unlock(&task->signal->cred_guard_mutex);
819 return mm;
822 static void complete_vfork_done(struct task_struct *tsk)
824 struct completion *vfork;
826 task_lock(tsk);
827 vfork = tsk->vfork_done;
828 if (likely(vfork)) {
829 tsk->vfork_done = NULL;
830 complete(vfork);
832 task_unlock(tsk);
835 static int wait_for_vfork_done(struct task_struct *child,
836 struct completion *vfork)
838 int killed;
840 freezer_do_not_count();
841 killed = wait_for_completion_killable(vfork);
842 freezer_count();
844 if (killed) {
845 task_lock(child);
846 child->vfork_done = NULL;
847 task_unlock(child);
850 put_task_struct(child);
851 return killed;
854 /* Please note the differences between mmput and mm_release.
855 * mmput is called whenever we stop holding onto a mm_struct,
856 * error success whatever.
858 * mm_release is called after a mm_struct has been removed
859 * from the current process.
861 * This difference is important for error handling, when we
862 * only half set up a mm_struct for a new process and need to restore
863 * the old one. Because we mmput the new mm_struct before
864 * restoring the old one. . .
865 * Eric Biederman 10 January 1998
867 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
869 /* Get rid of any futexes when releasing the mm */
870 #ifdef CONFIG_FUTEX
871 if (unlikely(tsk->robust_list)) {
872 exit_robust_list(tsk);
873 tsk->robust_list = NULL;
875 #ifdef CONFIG_COMPAT
876 if (unlikely(tsk->compat_robust_list)) {
877 compat_exit_robust_list(tsk);
878 tsk->compat_robust_list = NULL;
880 #endif
881 if (unlikely(!list_empty(&tsk->pi_state_list)))
882 exit_pi_state_list(tsk);
883 #endif
885 uprobe_free_utask(tsk);
887 /* Get rid of any cached register state */
888 deactivate_mm(tsk, mm);
891 * If we're exiting normally, clear a user-space tid field if
892 * requested. We leave this alone when dying by signal, to leave
893 * the value intact in a core dump, and to save the unnecessary
894 * trouble, say, a killed vfork parent shouldn't touch this mm.
895 * Userland only wants this done for a sys_exit.
897 if (tsk->clear_child_tid) {
898 if (!(tsk->flags & PF_SIGNALED) &&
899 atomic_read(&mm->mm_users) > 1) {
901 * We don't check the error code - if userspace has
902 * not set up a proper pointer then tough luck.
904 put_user(0, tsk->clear_child_tid);
905 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
906 1, NULL, NULL, 0);
908 tsk->clear_child_tid = NULL;
912 * All done, finally we can wake up parent and return this mm to him.
913 * Also kthread_stop() uses this completion for synchronization.
915 if (tsk->vfork_done)
916 complete_vfork_done(tsk);
920 * Allocate a new mm structure and copy contents from the
921 * mm structure of the passed in task structure.
923 static struct mm_struct *dup_mm(struct task_struct *tsk)
925 struct mm_struct *mm, *oldmm = current->mm;
926 int err;
928 mm = allocate_mm();
929 if (!mm)
930 goto fail_nomem;
932 memcpy(mm, oldmm, sizeof(*mm));
934 if (!mm_init(mm, tsk))
935 goto fail_nomem;
937 err = dup_mmap(mm, oldmm);
938 if (err)
939 goto free_pt;
941 mm->hiwater_rss = get_mm_rss(mm);
942 mm->hiwater_vm = mm->total_vm;
944 if (mm->binfmt && !try_module_get(mm->binfmt->module))
945 goto free_pt;
947 return mm;
949 free_pt:
950 /* don't put binfmt in mmput, we haven't got module yet */
951 mm->binfmt = NULL;
952 mmput(mm);
954 fail_nomem:
955 return NULL;
958 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
960 struct mm_struct *mm, *oldmm;
961 int retval;
963 tsk->min_flt = tsk->maj_flt = 0;
964 tsk->nvcsw = tsk->nivcsw = 0;
965 #ifdef CONFIG_DETECT_HUNG_TASK
966 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
967 #endif
969 tsk->mm = NULL;
970 tsk->active_mm = NULL;
973 * Are we cloning a kernel thread?
975 * We need to steal a active VM for that..
977 oldmm = current->mm;
978 if (!oldmm)
979 return 0;
981 /* initialize the new vmacache entries */
982 vmacache_flush(tsk);
984 if (clone_flags & CLONE_VM) {
985 atomic_inc(&oldmm->mm_users);
986 mm = oldmm;
987 goto good_mm;
990 retval = -ENOMEM;
991 mm = dup_mm(tsk);
992 if (!mm)
993 goto fail_nomem;
995 good_mm:
996 tsk->mm = mm;
997 tsk->active_mm = mm;
998 return 0;
1000 fail_nomem:
1001 return retval;
1004 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1006 struct fs_struct *fs = current->fs;
1007 if (clone_flags & CLONE_FS) {
1008 /* tsk->fs is already what we want */
1009 spin_lock(&fs->lock);
1010 if (fs->in_exec) {
1011 spin_unlock(&fs->lock);
1012 return -EAGAIN;
1014 fs->users++;
1015 spin_unlock(&fs->lock);
1016 return 0;
1018 tsk->fs = copy_fs_struct(fs);
1019 if (!tsk->fs)
1020 return -ENOMEM;
1021 return 0;
1024 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1026 struct files_struct *oldf, *newf;
1027 int error = 0;
1030 * A background process may not have any files ...
1032 oldf = current->files;
1033 if (!oldf)
1034 goto out;
1036 if (clone_flags & CLONE_FILES) {
1037 atomic_inc(&oldf->count);
1038 goto out;
1041 newf = dup_fd(oldf, &error);
1042 if (!newf)
1043 goto out;
1045 tsk->files = newf;
1046 error = 0;
1047 out:
1048 return error;
1051 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1053 #ifdef CONFIG_BLOCK
1054 struct io_context *ioc = current->io_context;
1055 struct io_context *new_ioc;
1057 if (!ioc)
1058 return 0;
1060 * Share io context with parent, if CLONE_IO is set
1062 if (clone_flags & CLONE_IO) {
1063 ioc_task_link(ioc);
1064 tsk->io_context = ioc;
1065 } else if (ioprio_valid(ioc->ioprio)) {
1066 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1067 if (unlikely(!new_ioc))
1068 return -ENOMEM;
1070 new_ioc->ioprio = ioc->ioprio;
1071 put_io_context(new_ioc);
1073 #endif
1074 return 0;
1077 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1079 struct sighand_struct *sig;
1081 if (clone_flags & CLONE_SIGHAND) {
1082 atomic_inc(&current->sighand->count);
1083 return 0;
1085 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1086 rcu_assign_pointer(tsk->sighand, sig);
1087 if (!sig)
1088 return -ENOMEM;
1090 atomic_set(&sig->count, 1);
1091 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1092 return 0;
1095 void __cleanup_sighand(struct sighand_struct *sighand)
1097 if (atomic_dec_and_test(&sighand->count)) {
1098 signalfd_cleanup(sighand);
1100 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1101 * without an RCU grace period, see __lock_task_sighand().
1103 kmem_cache_free(sighand_cachep, sighand);
1108 * Initialize POSIX timer handling for a thread group.
1110 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1112 unsigned long cpu_limit;
1114 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1115 if (cpu_limit != RLIM_INFINITY) {
1116 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1117 sig->cputimer.running = true;
1120 /* The timer lists. */
1121 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1122 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1123 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1126 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1128 struct signal_struct *sig;
1130 if (clone_flags & CLONE_THREAD)
1131 return 0;
1133 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1134 tsk->signal = sig;
1135 if (!sig)
1136 return -ENOMEM;
1138 sig->nr_threads = 1;
1139 atomic_set(&sig->live, 1);
1140 atomic_set(&sig->sigcnt, 1);
1142 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1143 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1144 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1146 init_waitqueue_head(&sig->wait_chldexit);
1147 sig->curr_target = tsk;
1148 init_sigpending(&sig->shared_pending);
1149 INIT_LIST_HEAD(&sig->posix_timers);
1150 seqlock_init(&sig->stats_lock);
1151 prev_cputime_init(&sig->prev_cputime);
1153 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1154 sig->real_timer.function = it_real_fn;
1156 task_lock(current->group_leader);
1157 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1158 task_unlock(current->group_leader);
1160 posix_cpu_timers_init_group(sig);
1162 tty_audit_fork(sig);
1163 sched_autogroup_fork(sig);
1165 sig->oom_score_adj = current->signal->oom_score_adj;
1166 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1168 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1169 current->signal->is_child_subreaper;
1171 mutex_init(&sig->cred_guard_mutex);
1173 return 0;
1176 static void copy_seccomp(struct task_struct *p)
1178 #ifdef CONFIG_SECCOMP
1180 * Must be called with sighand->lock held, which is common to
1181 * all threads in the group. Holding cred_guard_mutex is not
1182 * needed because this new task is not yet running and cannot
1183 * be racing exec.
1185 assert_spin_locked(&current->sighand->siglock);
1187 /* Ref-count the new filter user, and assign it. */
1188 get_seccomp_filter(current);
1189 p->seccomp = current->seccomp;
1192 * Explicitly enable no_new_privs here in case it got set
1193 * between the task_struct being duplicated and holding the
1194 * sighand lock. The seccomp state and nnp must be in sync.
1196 if (task_no_new_privs(current))
1197 task_set_no_new_privs(p);
1200 * If the parent gained a seccomp mode after copying thread
1201 * flags and between before we held the sighand lock, we have
1202 * to manually enable the seccomp thread flag here.
1204 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1205 set_tsk_thread_flag(p, TIF_SECCOMP);
1206 #endif
1209 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1211 current->clear_child_tid = tidptr;
1213 return task_pid_vnr(current);
1216 static void rt_mutex_init_task(struct task_struct *p)
1218 raw_spin_lock_init(&p->pi_lock);
1219 #ifdef CONFIG_RT_MUTEXES
1220 p->pi_waiters = RB_ROOT;
1221 p->pi_waiters_leftmost = NULL;
1222 p->pi_blocked_on = NULL;
1223 #endif
1227 * Initialize POSIX timer handling for a single task.
1229 static void posix_cpu_timers_init(struct task_struct *tsk)
1231 tsk->cputime_expires.prof_exp = 0;
1232 tsk->cputime_expires.virt_exp = 0;
1233 tsk->cputime_expires.sched_exp = 0;
1234 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1235 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1236 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1239 static inline void
1240 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1242 task->pids[type].pid = pid;
1246 * This creates a new process as a copy of the old one,
1247 * but does not actually start it yet.
1249 * It copies the registers, and all the appropriate
1250 * parts of the process environment (as per the clone
1251 * flags). The actual kick-off is left to the caller.
1253 static struct task_struct *copy_process(unsigned long clone_flags,
1254 unsigned long stack_start,
1255 unsigned long stack_size,
1256 int __user *child_tidptr,
1257 struct pid *pid,
1258 int trace,
1259 unsigned long tls)
1261 int retval;
1262 struct task_struct *p;
1264 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1265 return ERR_PTR(-EINVAL);
1267 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1268 return ERR_PTR(-EINVAL);
1271 * Thread groups must share signals as well, and detached threads
1272 * can only be started up within the thread group.
1274 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1275 return ERR_PTR(-EINVAL);
1278 * Shared signal handlers imply shared VM. By way of the above,
1279 * thread groups also imply shared VM. Blocking this case allows
1280 * for various simplifications in other code.
1282 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1283 return ERR_PTR(-EINVAL);
1286 * Siblings of global init remain as zombies on exit since they are
1287 * not reaped by their parent (swapper). To solve this and to avoid
1288 * multi-rooted process trees, prevent global and container-inits
1289 * from creating siblings.
1291 if ((clone_flags & CLONE_PARENT) &&
1292 current->signal->flags & SIGNAL_UNKILLABLE)
1293 return ERR_PTR(-EINVAL);
1296 * If the new process will be in a different pid or user namespace
1297 * do not allow it to share a thread group with the forking task.
1299 if (clone_flags & CLONE_THREAD) {
1300 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1301 (task_active_pid_ns(current) !=
1302 current->nsproxy->pid_ns_for_children))
1303 return ERR_PTR(-EINVAL);
1306 retval = security_task_create(clone_flags);
1307 if (retval)
1308 goto fork_out;
1310 retval = -ENOMEM;
1311 p = dup_task_struct(current);
1312 if (!p)
1313 goto fork_out;
1315 ftrace_graph_init_task(p);
1317 rt_mutex_init_task(p);
1319 #ifdef CONFIG_PROVE_LOCKING
1320 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1321 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1322 #endif
1323 retval = -EAGAIN;
1324 if (atomic_read(&p->real_cred->user->processes) >=
1325 task_rlimit(p, RLIMIT_NPROC)) {
1326 if (p->real_cred->user != INIT_USER &&
1327 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1328 goto bad_fork_free;
1330 current->flags &= ~PF_NPROC_EXCEEDED;
1332 retval = copy_creds(p, clone_flags);
1333 if (retval < 0)
1334 goto bad_fork_free;
1337 * If multiple threads are within copy_process(), then this check
1338 * triggers too late. This doesn't hurt, the check is only there
1339 * to stop root fork bombs.
1341 retval = -EAGAIN;
1342 if (nr_threads >= max_threads)
1343 goto bad_fork_cleanup_count;
1345 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1346 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1347 p->flags |= PF_FORKNOEXEC;
1348 INIT_LIST_HEAD(&p->children);
1349 INIT_LIST_HEAD(&p->sibling);
1350 rcu_copy_process(p);
1351 p->vfork_done = NULL;
1352 spin_lock_init(&p->alloc_lock);
1354 init_sigpending(&p->pending);
1356 p->utime = p->stime = p->gtime = 0;
1357 p->utimescaled = p->stimescaled = 0;
1358 prev_cputime_init(&p->prev_cputime);
1360 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1361 seqcount_init(&p->vtime_seqcount);
1362 p->vtime_snap = 0;
1363 p->vtime_snap_whence = VTIME_INACTIVE;
1364 #endif
1366 #if defined(SPLIT_RSS_COUNTING)
1367 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1368 #endif
1370 p->default_timer_slack_ns = current->timer_slack_ns;
1372 task_io_accounting_init(&p->ioac);
1373 acct_clear_integrals(p);
1375 posix_cpu_timers_init(p);
1377 p->start_time = ktime_get_ns();
1378 p->real_start_time = ktime_get_boot_ns();
1379 p->io_context = NULL;
1380 p->audit_context = NULL;
1381 threadgroup_change_begin(current);
1382 cgroup_fork(p);
1383 #ifdef CONFIG_NUMA
1384 p->mempolicy = mpol_dup(p->mempolicy);
1385 if (IS_ERR(p->mempolicy)) {
1386 retval = PTR_ERR(p->mempolicy);
1387 p->mempolicy = NULL;
1388 goto bad_fork_cleanup_threadgroup_lock;
1390 #endif
1391 #ifdef CONFIG_CPUSETS
1392 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1393 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1394 seqcount_init(&p->mems_allowed_seq);
1395 #endif
1396 #ifdef CONFIG_TRACE_IRQFLAGS
1397 p->irq_events = 0;
1398 p->hardirqs_enabled = 0;
1399 p->hardirq_enable_ip = 0;
1400 p->hardirq_enable_event = 0;
1401 p->hardirq_disable_ip = _THIS_IP_;
1402 p->hardirq_disable_event = 0;
1403 p->softirqs_enabled = 1;
1404 p->softirq_enable_ip = _THIS_IP_;
1405 p->softirq_enable_event = 0;
1406 p->softirq_disable_ip = 0;
1407 p->softirq_disable_event = 0;
1408 p->hardirq_context = 0;
1409 p->softirq_context = 0;
1410 #endif
1412 p->pagefault_disabled = 0;
1414 #ifdef CONFIG_LOCKDEP
1415 p->lockdep_depth = 0; /* no locks held yet */
1416 p->curr_chain_key = 0;
1417 p->lockdep_recursion = 0;
1418 #endif
1420 #ifdef CONFIG_DEBUG_MUTEXES
1421 p->blocked_on = NULL; /* not blocked yet */
1422 #endif
1423 #ifdef CONFIG_BCACHE
1424 p->sequential_io = 0;
1425 p->sequential_io_avg = 0;
1426 #endif
1428 /* Perform scheduler related setup. Assign this task to a CPU. */
1429 retval = sched_fork(clone_flags, p);
1430 if (retval)
1431 goto bad_fork_cleanup_policy;
1433 retval = perf_event_init_task(p);
1434 if (retval)
1435 goto bad_fork_cleanup_policy;
1436 retval = audit_alloc(p);
1437 if (retval)
1438 goto bad_fork_cleanup_perf;
1439 /* copy all the process information */
1440 shm_init_task(p);
1441 retval = copy_semundo(clone_flags, p);
1442 if (retval)
1443 goto bad_fork_cleanup_audit;
1444 retval = copy_files(clone_flags, p);
1445 if (retval)
1446 goto bad_fork_cleanup_semundo;
1447 retval = copy_fs(clone_flags, p);
1448 if (retval)
1449 goto bad_fork_cleanup_files;
1450 retval = copy_sighand(clone_flags, p);
1451 if (retval)
1452 goto bad_fork_cleanup_fs;
1453 retval = copy_signal(clone_flags, p);
1454 if (retval)
1455 goto bad_fork_cleanup_sighand;
1456 retval = copy_mm(clone_flags, p);
1457 if (retval)
1458 goto bad_fork_cleanup_signal;
1459 retval = copy_namespaces(clone_flags, p);
1460 if (retval)
1461 goto bad_fork_cleanup_mm;
1462 retval = copy_io(clone_flags, p);
1463 if (retval)
1464 goto bad_fork_cleanup_namespaces;
1465 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1466 if (retval)
1467 goto bad_fork_cleanup_io;
1469 if (pid != &init_struct_pid) {
1470 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1471 if (IS_ERR(pid)) {
1472 retval = PTR_ERR(pid);
1473 goto bad_fork_cleanup_io;
1477 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1479 * Clear TID on mm_release()?
1481 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1482 #ifdef CONFIG_BLOCK
1483 p->plug = NULL;
1484 #endif
1485 #ifdef CONFIG_FUTEX
1486 p->robust_list = NULL;
1487 #ifdef CONFIG_COMPAT
1488 p->compat_robust_list = NULL;
1489 #endif
1490 INIT_LIST_HEAD(&p->pi_state_list);
1491 p->pi_state_cache = NULL;
1492 #endif
1494 * sigaltstack should be cleared when sharing the same VM
1496 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1497 p->sas_ss_sp = p->sas_ss_size = 0;
1500 * Syscall tracing and stepping should be turned off in the
1501 * child regardless of CLONE_PTRACE.
1503 user_disable_single_step(p);
1504 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1505 #ifdef TIF_SYSCALL_EMU
1506 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1507 #endif
1508 clear_all_latency_tracing(p);
1510 /* ok, now we should be set up.. */
1511 p->pid = pid_nr(pid);
1512 if (clone_flags & CLONE_THREAD) {
1513 p->exit_signal = -1;
1514 p->group_leader = current->group_leader;
1515 p->tgid = current->tgid;
1516 } else {
1517 if (clone_flags & CLONE_PARENT)
1518 p->exit_signal = current->group_leader->exit_signal;
1519 else
1520 p->exit_signal = (clone_flags & CSIGNAL);
1521 p->group_leader = p;
1522 p->tgid = p->pid;
1525 p->nr_dirtied = 0;
1526 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1527 p->dirty_paused_when = 0;
1529 p->pdeath_signal = 0;
1530 INIT_LIST_HEAD(&p->thread_group);
1531 p->task_works = NULL;
1534 * Ensure that the cgroup subsystem policies allow the new process to be
1535 * forked. It should be noted the the new process's css_set can be changed
1536 * between here and cgroup_post_fork() if an organisation operation is in
1537 * progress.
1539 retval = cgroup_can_fork(p);
1540 if (retval)
1541 goto bad_fork_free_pid;
1544 * Make it visible to the rest of the system, but dont wake it up yet.
1545 * Need tasklist lock for parent etc handling!
1547 write_lock_irq(&tasklist_lock);
1549 /* CLONE_PARENT re-uses the old parent */
1550 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1551 p->real_parent = current->real_parent;
1552 p->parent_exec_id = current->parent_exec_id;
1553 } else {
1554 p->real_parent = current;
1555 p->parent_exec_id = current->self_exec_id;
1558 spin_lock(&current->sighand->siglock);
1561 * Copy seccomp details explicitly here, in case they were changed
1562 * before holding sighand lock.
1564 copy_seccomp(p);
1567 * Process group and session signals need to be delivered to just the
1568 * parent before the fork or both the parent and the child after the
1569 * fork. Restart if a signal comes in before we add the new process to
1570 * it's process group.
1571 * A fatal signal pending means that current will exit, so the new
1572 * thread can't slip out of an OOM kill (or normal SIGKILL).
1574 recalc_sigpending();
1575 if (signal_pending(current)) {
1576 spin_unlock(&current->sighand->siglock);
1577 write_unlock_irq(&tasklist_lock);
1578 retval = -ERESTARTNOINTR;
1579 goto bad_fork_cancel_cgroup;
1582 if (likely(p->pid)) {
1583 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1585 init_task_pid(p, PIDTYPE_PID, pid);
1586 if (thread_group_leader(p)) {
1587 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1588 init_task_pid(p, PIDTYPE_SID, task_session(current));
1590 if (is_child_reaper(pid)) {
1591 ns_of_pid(pid)->child_reaper = p;
1592 p->signal->flags |= SIGNAL_UNKILLABLE;
1595 p->signal->leader_pid = pid;
1596 p->signal->tty = tty_kref_get(current->signal->tty);
1597 list_add_tail(&p->sibling, &p->real_parent->children);
1598 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1599 attach_pid(p, PIDTYPE_PGID);
1600 attach_pid(p, PIDTYPE_SID);
1601 __this_cpu_inc(process_counts);
1602 } else {
1603 current->signal->nr_threads++;
1604 atomic_inc(&current->signal->live);
1605 atomic_inc(&current->signal->sigcnt);
1606 list_add_tail_rcu(&p->thread_group,
1607 &p->group_leader->thread_group);
1608 list_add_tail_rcu(&p->thread_node,
1609 &p->signal->thread_head);
1611 attach_pid(p, PIDTYPE_PID);
1612 nr_threads++;
1615 total_forks++;
1616 spin_unlock(&current->sighand->siglock);
1617 syscall_tracepoint_update(p);
1618 write_unlock_irq(&tasklist_lock);
1620 proc_fork_connector(p);
1621 cgroup_post_fork(p);
1622 threadgroup_change_end(current);
1623 perf_event_fork(p);
1625 trace_task_newtask(p, clone_flags);
1626 uprobe_copy_process(p, clone_flags);
1628 return p;
1630 bad_fork_cancel_cgroup:
1631 cgroup_cancel_fork(p);
1632 bad_fork_free_pid:
1633 if (pid != &init_struct_pid)
1634 free_pid(pid);
1635 bad_fork_cleanup_io:
1636 if (p->io_context)
1637 exit_io_context(p);
1638 bad_fork_cleanup_namespaces:
1639 exit_task_namespaces(p);
1640 bad_fork_cleanup_mm:
1641 if (p->mm)
1642 mmput(p->mm);
1643 bad_fork_cleanup_signal:
1644 if (!(clone_flags & CLONE_THREAD))
1645 free_signal_struct(p->signal);
1646 bad_fork_cleanup_sighand:
1647 __cleanup_sighand(p->sighand);
1648 bad_fork_cleanup_fs:
1649 exit_fs(p); /* blocking */
1650 bad_fork_cleanup_files:
1651 exit_files(p); /* blocking */
1652 bad_fork_cleanup_semundo:
1653 exit_sem(p);
1654 bad_fork_cleanup_audit:
1655 audit_free(p);
1656 bad_fork_cleanup_perf:
1657 perf_event_free_task(p);
1658 bad_fork_cleanup_policy:
1659 #ifdef CONFIG_NUMA
1660 mpol_put(p->mempolicy);
1661 bad_fork_cleanup_threadgroup_lock:
1662 #endif
1663 threadgroup_change_end(current);
1664 delayacct_tsk_free(p);
1665 bad_fork_cleanup_count:
1666 atomic_dec(&p->cred->user->processes);
1667 exit_creds(p);
1668 bad_fork_free:
1669 free_task(p);
1670 fork_out:
1671 return ERR_PTR(retval);
1674 static inline void init_idle_pids(struct pid_link *links)
1676 enum pid_type type;
1678 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1679 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1680 links[type].pid = &init_struct_pid;
1684 struct task_struct *fork_idle(int cpu)
1686 struct task_struct *task;
1687 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1688 if (!IS_ERR(task)) {
1689 init_idle_pids(task->pids);
1690 init_idle(task, cpu);
1693 return task;
1697 * Ok, this is the main fork-routine.
1699 * It copies the process, and if successful kick-starts
1700 * it and waits for it to finish using the VM if required.
1702 long _do_fork(unsigned long clone_flags,
1703 unsigned long stack_start,
1704 unsigned long stack_size,
1705 int __user *parent_tidptr,
1706 int __user *child_tidptr,
1707 unsigned long tls)
1709 struct task_struct *p;
1710 int trace = 0;
1711 long nr;
1714 * Determine whether and which event to report to ptracer. When
1715 * called from kernel_thread or CLONE_UNTRACED is explicitly
1716 * requested, no event is reported; otherwise, report if the event
1717 * for the type of forking is enabled.
1719 if (!(clone_flags & CLONE_UNTRACED)) {
1720 if (clone_flags & CLONE_VFORK)
1721 trace = PTRACE_EVENT_VFORK;
1722 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1723 trace = PTRACE_EVENT_CLONE;
1724 else
1725 trace = PTRACE_EVENT_FORK;
1727 if (likely(!ptrace_event_enabled(current, trace)))
1728 trace = 0;
1731 p = copy_process(clone_flags, stack_start, stack_size,
1732 child_tidptr, NULL, trace, tls);
1734 * Do this prior waking up the new thread - the thread pointer
1735 * might get invalid after that point, if the thread exits quickly.
1737 if (!IS_ERR(p)) {
1738 struct completion vfork;
1739 struct pid *pid;
1741 trace_sched_process_fork(current, p);
1743 pid = get_task_pid(p, PIDTYPE_PID);
1744 nr = pid_vnr(pid);
1746 if (clone_flags & CLONE_PARENT_SETTID)
1747 put_user(nr, parent_tidptr);
1749 if (clone_flags & CLONE_VFORK) {
1750 p->vfork_done = &vfork;
1751 init_completion(&vfork);
1752 get_task_struct(p);
1755 wake_up_new_task(p);
1757 /* forking complete and child started to run, tell ptracer */
1758 if (unlikely(trace))
1759 ptrace_event_pid(trace, pid);
1761 if (clone_flags & CLONE_VFORK) {
1762 if (!wait_for_vfork_done(p, &vfork))
1763 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1766 put_pid(pid);
1767 } else {
1768 nr = PTR_ERR(p);
1770 return nr;
1773 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1774 /* For compatibility with architectures that call do_fork directly rather than
1775 * using the syscall entry points below. */
1776 long do_fork(unsigned long clone_flags,
1777 unsigned long stack_start,
1778 unsigned long stack_size,
1779 int __user *parent_tidptr,
1780 int __user *child_tidptr)
1782 return _do_fork(clone_flags, stack_start, stack_size,
1783 parent_tidptr, child_tidptr, 0);
1785 #endif
1788 * Create a kernel thread.
1790 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1792 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1793 (unsigned long)arg, NULL, NULL, 0);
1796 #ifdef __ARCH_WANT_SYS_FORK
1797 SYSCALL_DEFINE0(fork)
1799 #ifdef CONFIG_MMU
1800 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1801 #else
1802 /* can not support in nommu mode */
1803 return -EINVAL;
1804 #endif
1806 #endif
1808 #ifdef __ARCH_WANT_SYS_VFORK
1809 SYSCALL_DEFINE0(vfork)
1811 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1812 0, NULL, NULL, 0);
1814 #endif
1816 #ifdef __ARCH_WANT_SYS_CLONE
1817 #ifdef CONFIG_CLONE_BACKWARDS
1818 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1819 int __user *, parent_tidptr,
1820 unsigned long, tls,
1821 int __user *, child_tidptr)
1822 #elif defined(CONFIG_CLONE_BACKWARDS2)
1823 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1824 int __user *, parent_tidptr,
1825 int __user *, child_tidptr,
1826 unsigned long, tls)
1827 #elif defined(CONFIG_CLONE_BACKWARDS3)
1828 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1829 int, stack_size,
1830 int __user *, parent_tidptr,
1831 int __user *, child_tidptr,
1832 unsigned long, tls)
1833 #else
1834 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1835 int __user *, parent_tidptr,
1836 int __user *, child_tidptr,
1837 unsigned long, tls)
1838 #endif
1840 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1842 #endif
1844 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1845 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1846 #endif
1848 static void sighand_ctor(void *data)
1850 struct sighand_struct *sighand = data;
1852 spin_lock_init(&sighand->siglock);
1853 init_waitqueue_head(&sighand->signalfd_wqh);
1856 void __init proc_caches_init(void)
1858 sighand_cachep = kmem_cache_create("sighand_cache",
1859 sizeof(struct sighand_struct), 0,
1860 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1861 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1862 signal_cachep = kmem_cache_create("signal_cache",
1863 sizeof(struct signal_struct), 0,
1864 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1865 NULL);
1866 files_cachep = kmem_cache_create("files_cache",
1867 sizeof(struct files_struct), 0,
1868 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1869 NULL);
1870 fs_cachep = kmem_cache_create("fs_cache",
1871 sizeof(struct fs_struct), 0,
1872 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1873 NULL);
1875 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1876 * whole struct cpumask for the OFFSTACK case. We could change
1877 * this to *only* allocate as much of it as required by the
1878 * maximum number of CPU's we can ever have. The cpumask_allocation
1879 * is at the end of the structure, exactly for that reason.
1881 mm_cachep = kmem_cache_create("mm_struct",
1882 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1883 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1884 NULL);
1885 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1886 mmap_init();
1887 nsproxy_cache_init();
1891 * Check constraints on flags passed to the unshare system call.
1893 static int check_unshare_flags(unsigned long unshare_flags)
1895 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1896 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1897 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1898 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1899 return -EINVAL;
1901 * Not implemented, but pretend it works if there is nothing
1902 * to unshare. Note that unsharing the address space or the
1903 * signal handlers also need to unshare the signal queues (aka
1904 * CLONE_THREAD).
1906 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1907 if (!thread_group_empty(current))
1908 return -EINVAL;
1910 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1911 if (atomic_read(&current->sighand->count) > 1)
1912 return -EINVAL;
1914 if (unshare_flags & CLONE_VM) {
1915 if (!current_is_single_threaded())
1916 return -EINVAL;
1919 return 0;
1923 * Unshare the filesystem structure if it is being shared
1925 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1927 struct fs_struct *fs = current->fs;
1929 if (!(unshare_flags & CLONE_FS) || !fs)
1930 return 0;
1932 /* don't need lock here; in the worst case we'll do useless copy */
1933 if (fs->users == 1)
1934 return 0;
1936 *new_fsp = copy_fs_struct(fs);
1937 if (!*new_fsp)
1938 return -ENOMEM;
1940 return 0;
1944 * Unshare file descriptor table if it is being shared
1946 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1948 struct files_struct *fd = current->files;
1949 int error = 0;
1951 if ((unshare_flags & CLONE_FILES) &&
1952 (fd && atomic_read(&fd->count) > 1)) {
1953 *new_fdp = dup_fd(fd, &error);
1954 if (!*new_fdp)
1955 return error;
1958 return 0;
1962 * unshare allows a process to 'unshare' part of the process
1963 * context which was originally shared using clone. copy_*
1964 * functions used by do_fork() cannot be used here directly
1965 * because they modify an inactive task_struct that is being
1966 * constructed. Here we are modifying the current, active,
1967 * task_struct.
1969 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1971 struct fs_struct *fs, *new_fs = NULL;
1972 struct files_struct *fd, *new_fd = NULL;
1973 struct cred *new_cred = NULL;
1974 struct nsproxy *new_nsproxy = NULL;
1975 int do_sysvsem = 0;
1976 int err;
1979 * If unsharing a user namespace must also unshare the thread group
1980 * and unshare the filesystem root and working directories.
1982 if (unshare_flags & CLONE_NEWUSER)
1983 unshare_flags |= CLONE_THREAD | CLONE_FS;
1985 * If unsharing vm, must also unshare signal handlers.
1987 if (unshare_flags & CLONE_VM)
1988 unshare_flags |= CLONE_SIGHAND;
1990 * If unsharing a signal handlers, must also unshare the signal queues.
1992 if (unshare_flags & CLONE_SIGHAND)
1993 unshare_flags |= CLONE_THREAD;
1995 * If unsharing namespace, must also unshare filesystem information.
1997 if (unshare_flags & CLONE_NEWNS)
1998 unshare_flags |= CLONE_FS;
2000 err = check_unshare_flags(unshare_flags);
2001 if (err)
2002 goto bad_unshare_out;
2004 * CLONE_NEWIPC must also detach from the undolist: after switching
2005 * to a new ipc namespace, the semaphore arrays from the old
2006 * namespace are unreachable.
2008 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2009 do_sysvsem = 1;
2010 err = unshare_fs(unshare_flags, &new_fs);
2011 if (err)
2012 goto bad_unshare_out;
2013 err = unshare_fd(unshare_flags, &new_fd);
2014 if (err)
2015 goto bad_unshare_cleanup_fs;
2016 err = unshare_userns(unshare_flags, &new_cred);
2017 if (err)
2018 goto bad_unshare_cleanup_fd;
2019 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2020 new_cred, new_fs);
2021 if (err)
2022 goto bad_unshare_cleanup_cred;
2024 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2025 if (do_sysvsem) {
2027 * CLONE_SYSVSEM is equivalent to sys_exit().
2029 exit_sem(current);
2031 if (unshare_flags & CLONE_NEWIPC) {
2032 /* Orphan segments in old ns (see sem above). */
2033 exit_shm(current);
2034 shm_init_task(current);
2037 if (new_nsproxy)
2038 switch_task_namespaces(current, new_nsproxy);
2040 task_lock(current);
2042 if (new_fs) {
2043 fs = current->fs;
2044 spin_lock(&fs->lock);
2045 current->fs = new_fs;
2046 if (--fs->users)
2047 new_fs = NULL;
2048 else
2049 new_fs = fs;
2050 spin_unlock(&fs->lock);
2053 if (new_fd) {
2054 fd = current->files;
2055 current->files = new_fd;
2056 new_fd = fd;
2059 task_unlock(current);
2061 if (new_cred) {
2062 /* Install the new user namespace */
2063 commit_creds(new_cred);
2064 new_cred = NULL;
2068 bad_unshare_cleanup_cred:
2069 if (new_cred)
2070 put_cred(new_cred);
2071 bad_unshare_cleanup_fd:
2072 if (new_fd)
2073 put_files_struct(new_fd);
2075 bad_unshare_cleanup_fs:
2076 if (new_fs)
2077 free_fs_struct(new_fs);
2079 bad_unshare_out:
2080 return err;
2084 * Helper to unshare the files of the current task.
2085 * We don't want to expose copy_files internals to
2086 * the exec layer of the kernel.
2089 int unshare_files(struct files_struct **displaced)
2091 struct task_struct *task = current;
2092 struct files_struct *copy = NULL;
2093 int error;
2095 error = unshare_fd(CLONE_FILES, &copy);
2096 if (error || !copy) {
2097 *displaced = NULL;
2098 return error;
2100 *displaced = task->files;
2101 task_lock(task);
2102 task->files = copy;
2103 task_unlock(task);
2104 return 0;
2107 int sysctl_max_threads(struct ctl_table *table, int write,
2108 void __user *buffer, size_t *lenp, loff_t *ppos)
2110 struct ctl_table t;
2111 int ret;
2112 int threads = max_threads;
2113 int min = MIN_THREADS;
2114 int max = MAX_THREADS;
2116 t = *table;
2117 t.data = &threads;
2118 t.extra1 = &min;
2119 t.extra2 = &max;
2121 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2122 if (ret || !write)
2123 return ret;
2125 set_max_threads(threads);
2127 return 0;