2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/capability.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
43 #include <asm/sections.h>
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 #include "kexec_internal.h"
49 DEFINE_MUTEX(kexec_mutex
);
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu
*crash_notes
;
54 /* vmcoreinfo stuff */
55 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
56 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
57 size_t vmcoreinfo_size
;
58 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
60 /* Flag to indicate we are going to kexec a new kernel */
61 bool kexec_in_progress
= false;
64 /* Location of the reserved area for the crash kernel */
65 struct resource crashk_res
= {
66 .name
= "Crash kernel",
69 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
70 .desc
= IORES_DESC_CRASH_KERNEL
72 struct resource crashk_low_res
= {
73 .name
= "Crash kernel",
76 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
77 .desc
= IORES_DESC_CRASH_KERNEL
80 int kexec_should_crash(struct task_struct
*p
)
83 * If crash_kexec_post_notifiers is enabled, don't run
84 * crash_kexec() here yet, which must be run after panic
85 * notifiers in panic().
87 if (crash_kexec_post_notifiers
)
90 * There are 4 panic() calls in do_exit() path, each of which
91 * corresponds to each of these 4 conditions.
93 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
99 * When kexec transitions to the new kernel there is a one-to-one
100 * mapping between physical and virtual addresses. On processors
101 * where you can disable the MMU this is trivial, and easy. For
102 * others it is still a simple predictable page table to setup.
104 * In that environment kexec copies the new kernel to its final
105 * resting place. This means I can only support memory whose
106 * physical address can fit in an unsigned long. In particular
107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108 * If the assembly stub has more restrictive requirements
109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110 * defined more restrictively in <asm/kexec.h>.
112 * The code for the transition from the current kernel to the
113 * the new kernel is placed in the control_code_buffer, whose size
114 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
115 * page of memory is necessary, but some architectures require more.
116 * Because this memory must be identity mapped in the transition from
117 * virtual to physical addresses it must live in the range
118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
121 * The assembly stub in the control code buffer is passed a linked list
122 * of descriptor pages detailing the source pages of the new kernel,
123 * and the destination addresses of those source pages. As this data
124 * structure is not used in the context of the current OS, it must
127 * The code has been made to work with highmem pages and will use a
128 * destination page in its final resting place (if it happens
129 * to allocate it). The end product of this is that most of the
130 * physical address space, and most of RAM can be used.
132 * Future directions include:
133 * - allocating a page table with the control code buffer identity
134 * mapped, to simplify machine_kexec and make kexec_on_panic more
139 * KIMAGE_NO_DEST is an impossible destination address..., for
140 * allocating pages whose destination address we do not care about.
142 #define KIMAGE_NO_DEST (-1UL)
144 static struct page
*kimage_alloc_page(struct kimage
*image
,
148 int sanity_check_segment_list(struct kimage
*image
)
151 unsigned long nr_segments
= image
->nr_segments
;
154 * Verify we have good destination addresses. The caller is
155 * responsible for making certain we don't attempt to load
156 * the new image into invalid or reserved areas of RAM. This
157 * just verifies it is an address we can use.
159 * Since the kernel does everything in page size chunks ensure
160 * the destination addresses are page aligned. Too many
161 * special cases crop of when we don't do this. The most
162 * insidious is getting overlapping destination addresses
163 * simply because addresses are changed to page size
166 result
= -EADDRNOTAVAIL
;
167 for (i
= 0; i
< nr_segments
; i
++) {
168 unsigned long mstart
, mend
;
170 mstart
= image
->segment
[i
].mem
;
171 mend
= mstart
+ image
->segment
[i
].memsz
;
172 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
174 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
178 /* Verify our destination addresses do not overlap.
179 * If we alloed overlapping destination addresses
180 * through very weird things can happen with no
181 * easy explanation as one segment stops on another.
184 for (i
= 0; i
< nr_segments
; i
++) {
185 unsigned long mstart
, mend
;
188 mstart
= image
->segment
[i
].mem
;
189 mend
= mstart
+ image
->segment
[i
].memsz
;
190 for (j
= 0; j
< i
; j
++) {
191 unsigned long pstart
, pend
;
193 pstart
= image
->segment
[j
].mem
;
194 pend
= pstart
+ image
->segment
[j
].memsz
;
195 /* Do the segments overlap ? */
196 if ((mend
> pstart
) && (mstart
< pend
))
201 /* Ensure our buffer sizes are strictly less than
202 * our memory sizes. This should always be the case,
203 * and it is easier to check up front than to be surprised
207 for (i
= 0; i
< nr_segments
; i
++) {
208 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
213 * Verify we have good destination addresses. Normally
214 * the caller is responsible for making certain we don't
215 * attempt to load the new image into invalid or reserved
216 * areas of RAM. But crash kernels are preloaded into a
217 * reserved area of ram. We must ensure the addresses
218 * are in the reserved area otherwise preloading the
219 * kernel could corrupt things.
222 if (image
->type
== KEXEC_TYPE_CRASH
) {
223 result
= -EADDRNOTAVAIL
;
224 for (i
= 0; i
< nr_segments
; i
++) {
225 unsigned long mstart
, mend
;
227 mstart
= image
->segment
[i
].mem
;
228 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
229 /* Ensure we are within the crash kernel limits */
230 if ((mstart
< crashk_res
.start
) ||
231 (mend
> crashk_res
.end
))
239 struct kimage
*do_kimage_alloc_init(void)
241 struct kimage
*image
;
243 /* Allocate a controlling structure */
244 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
249 image
->entry
= &image
->head
;
250 image
->last_entry
= &image
->head
;
251 image
->control_page
= ~0; /* By default this does not apply */
252 image
->type
= KEXEC_TYPE_DEFAULT
;
254 /* Initialize the list of control pages */
255 INIT_LIST_HEAD(&image
->control_pages
);
257 /* Initialize the list of destination pages */
258 INIT_LIST_HEAD(&image
->dest_pages
);
260 /* Initialize the list of unusable pages */
261 INIT_LIST_HEAD(&image
->unusable_pages
);
266 int kimage_is_destination_range(struct kimage
*image
,
272 for (i
= 0; i
< image
->nr_segments
; i
++) {
273 unsigned long mstart
, mend
;
275 mstart
= image
->segment
[i
].mem
;
276 mend
= mstart
+ image
->segment
[i
].memsz
;
277 if ((end
> mstart
) && (start
< mend
))
284 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
288 pages
= alloc_pages(gfp_mask
, order
);
290 unsigned int count
, i
;
292 pages
->mapping
= NULL
;
293 set_page_private(pages
, order
);
295 for (i
= 0; i
< count
; i
++)
296 SetPageReserved(pages
+ i
);
302 static void kimage_free_pages(struct page
*page
)
304 unsigned int order
, count
, i
;
306 order
= page_private(page
);
308 for (i
= 0; i
< count
; i
++)
309 ClearPageReserved(page
+ i
);
310 __free_pages(page
, order
);
313 void kimage_free_page_list(struct list_head
*list
)
315 struct page
*page
, *next
;
317 list_for_each_entry_safe(page
, next
, list
, lru
) {
318 list_del(&page
->lru
);
319 kimage_free_pages(page
);
323 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
326 /* Control pages are special, they are the intermediaries
327 * that are needed while we copy the rest of the pages
328 * to their final resting place. As such they must
329 * not conflict with either the destination addresses
330 * or memory the kernel is already using.
332 * The only case where we really need more than one of
333 * these are for architectures where we cannot disable
334 * the MMU and must instead generate an identity mapped
335 * page table for all of the memory.
337 * At worst this runs in O(N) of the image size.
339 struct list_head extra_pages
;
344 INIT_LIST_HEAD(&extra_pages
);
346 /* Loop while I can allocate a page and the page allocated
347 * is a destination page.
350 unsigned long pfn
, epfn
, addr
, eaddr
;
352 pages
= kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP
, order
);
355 pfn
= page_to_pfn(pages
);
357 addr
= pfn
<< PAGE_SHIFT
;
358 eaddr
= epfn
<< PAGE_SHIFT
;
359 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
360 kimage_is_destination_range(image
, addr
, eaddr
)) {
361 list_add(&pages
->lru
, &extra_pages
);
367 /* Remember the allocated page... */
368 list_add(&pages
->lru
, &image
->control_pages
);
370 /* Because the page is already in it's destination
371 * location we will never allocate another page at
372 * that address. Therefore kimage_alloc_pages
373 * will not return it (again) and we don't need
374 * to give it an entry in image->segment[].
377 /* Deal with the destination pages I have inadvertently allocated.
379 * Ideally I would convert multi-page allocations into single
380 * page allocations, and add everything to image->dest_pages.
382 * For now it is simpler to just free the pages.
384 kimage_free_page_list(&extra_pages
);
389 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
392 /* Control pages are special, they are the intermediaries
393 * that are needed while we copy the rest of the pages
394 * to their final resting place. As such they must
395 * not conflict with either the destination addresses
396 * or memory the kernel is already using.
398 * Control pages are also the only pags we must allocate
399 * when loading a crash kernel. All of the other pages
400 * are specified by the segments and we just memcpy
401 * into them directly.
403 * The only case where we really need more than one of
404 * these are for architectures where we cannot disable
405 * the MMU and must instead generate an identity mapped
406 * page table for all of the memory.
408 * Given the low demand this implements a very simple
409 * allocator that finds the first hole of the appropriate
410 * size in the reserved memory region, and allocates all
411 * of the memory up to and including the hole.
413 unsigned long hole_start
, hole_end
, size
;
417 size
= (1 << order
) << PAGE_SHIFT
;
418 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
419 hole_end
= hole_start
+ size
- 1;
420 while (hole_end
<= crashk_res
.end
) {
423 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
425 /* See if I overlap any of the segments */
426 for (i
= 0; i
< image
->nr_segments
; i
++) {
427 unsigned long mstart
, mend
;
429 mstart
= image
->segment
[i
].mem
;
430 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
431 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
432 /* Advance the hole to the end of the segment */
433 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
434 hole_end
= hole_start
+ size
- 1;
438 /* If I don't overlap any segments I have found my hole! */
439 if (i
== image
->nr_segments
) {
440 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
441 image
->control_page
= hole_end
;
450 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
453 struct page
*pages
= NULL
;
455 switch (image
->type
) {
456 case KEXEC_TYPE_DEFAULT
:
457 pages
= kimage_alloc_normal_control_pages(image
, order
);
459 case KEXEC_TYPE_CRASH
:
460 pages
= kimage_alloc_crash_control_pages(image
, order
);
467 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
469 if (*image
->entry
!= 0)
472 if (image
->entry
== image
->last_entry
) {
473 kimage_entry_t
*ind_page
;
476 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
480 ind_page
= page_address(page
);
481 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
482 image
->entry
= ind_page
;
483 image
->last_entry
= ind_page
+
484 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
486 *image
->entry
= entry
;
493 static int kimage_set_destination(struct kimage
*image
,
494 unsigned long destination
)
498 destination
&= PAGE_MASK
;
499 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
505 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
510 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
516 static void kimage_free_extra_pages(struct kimage
*image
)
518 /* Walk through and free any extra destination pages I may have */
519 kimage_free_page_list(&image
->dest_pages
);
521 /* Walk through and free any unusable pages I have cached */
522 kimage_free_page_list(&image
->unusable_pages
);
525 void kimage_terminate(struct kimage
*image
)
527 if (*image
->entry
!= 0)
530 *image
->entry
= IND_DONE
;
533 #define for_each_kimage_entry(image, ptr, entry) \
534 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
535 ptr = (entry & IND_INDIRECTION) ? \
536 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
538 static void kimage_free_entry(kimage_entry_t entry
)
542 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
543 kimage_free_pages(page
);
546 void kimage_free(struct kimage
*image
)
548 kimage_entry_t
*ptr
, entry
;
549 kimage_entry_t ind
= 0;
554 kimage_free_extra_pages(image
);
555 for_each_kimage_entry(image
, ptr
, entry
) {
556 if (entry
& IND_INDIRECTION
) {
557 /* Free the previous indirection page */
558 if (ind
& IND_INDIRECTION
)
559 kimage_free_entry(ind
);
560 /* Save this indirection page until we are
564 } else if (entry
& IND_SOURCE
)
565 kimage_free_entry(entry
);
567 /* Free the final indirection page */
568 if (ind
& IND_INDIRECTION
)
569 kimage_free_entry(ind
);
571 /* Handle any machine specific cleanup */
572 machine_kexec_cleanup(image
);
574 /* Free the kexec control pages... */
575 kimage_free_page_list(&image
->control_pages
);
578 * Free up any temporary buffers allocated. This might hit if
579 * error occurred much later after buffer allocation.
581 if (image
->file_mode
)
582 kimage_file_post_load_cleanup(image
);
587 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
590 kimage_entry_t
*ptr
, entry
;
591 unsigned long destination
= 0;
593 for_each_kimage_entry(image
, ptr
, entry
) {
594 if (entry
& IND_DESTINATION
)
595 destination
= entry
& PAGE_MASK
;
596 else if (entry
& IND_SOURCE
) {
597 if (page
== destination
)
599 destination
+= PAGE_SIZE
;
606 static struct page
*kimage_alloc_page(struct kimage
*image
,
608 unsigned long destination
)
611 * Here we implement safeguards to ensure that a source page
612 * is not copied to its destination page before the data on
613 * the destination page is no longer useful.
615 * To do this we maintain the invariant that a source page is
616 * either its own destination page, or it is not a
617 * destination page at all.
619 * That is slightly stronger than required, but the proof
620 * that no problems will not occur is trivial, and the
621 * implementation is simply to verify.
623 * When allocating all pages normally this algorithm will run
624 * in O(N) time, but in the worst case it will run in O(N^2)
625 * time. If the runtime is a problem the data structures can
632 * Walk through the list of destination pages, and see if I
635 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
636 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
637 if (addr
== destination
) {
638 list_del(&page
->lru
);
646 /* Allocate a page, if we run out of memory give up */
647 page
= kimage_alloc_pages(gfp_mask
, 0);
650 /* If the page cannot be used file it away */
651 if (page_to_pfn(page
) >
652 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
653 list_add(&page
->lru
, &image
->unusable_pages
);
656 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
658 /* If it is the destination page we want use it */
659 if (addr
== destination
)
662 /* If the page is not a destination page use it */
663 if (!kimage_is_destination_range(image
, addr
,
668 * I know that the page is someones destination page.
669 * See if there is already a source page for this
670 * destination page. And if so swap the source pages.
672 old
= kimage_dst_used(image
, addr
);
675 unsigned long old_addr
;
676 struct page
*old_page
;
678 old_addr
= *old
& PAGE_MASK
;
679 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
680 copy_highpage(page
, old_page
);
681 *old
= addr
| (*old
& ~PAGE_MASK
);
683 /* The old page I have found cannot be a
684 * destination page, so return it if it's
685 * gfp_flags honor the ones passed in.
687 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
688 PageHighMem(old_page
)) {
689 kimage_free_pages(old_page
);
696 /* Place the page on the destination list, to be used later */
697 list_add(&page
->lru
, &image
->dest_pages
);
703 static int kimage_load_normal_segment(struct kimage
*image
,
704 struct kexec_segment
*segment
)
707 size_t ubytes
, mbytes
;
709 unsigned char __user
*buf
= NULL
;
710 unsigned char *kbuf
= NULL
;
713 if (image
->file_mode
)
714 kbuf
= segment
->kbuf
;
717 ubytes
= segment
->bufsz
;
718 mbytes
= segment
->memsz
;
719 maddr
= segment
->mem
;
721 result
= kimage_set_destination(image
, maddr
);
728 size_t uchunk
, mchunk
;
730 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
735 result
= kimage_add_page(image
, page_to_pfn(page
)
741 /* Start with a clear page */
743 ptr
+= maddr
& ~PAGE_MASK
;
744 mchunk
= min_t(size_t, mbytes
,
745 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
746 uchunk
= min(ubytes
, mchunk
);
748 /* For file based kexec, source pages are in kernel memory */
749 if (image
->file_mode
)
750 memcpy(ptr
, kbuf
, uchunk
);
752 result
= copy_from_user(ptr
, buf
, uchunk
);
760 if (image
->file_mode
)
770 static int kimage_load_crash_segment(struct kimage
*image
,
771 struct kexec_segment
*segment
)
773 /* For crash dumps kernels we simply copy the data from
774 * user space to it's destination.
775 * We do things a page at a time for the sake of kmap.
778 size_t ubytes
, mbytes
;
780 unsigned char __user
*buf
= NULL
;
781 unsigned char *kbuf
= NULL
;
784 if (image
->file_mode
)
785 kbuf
= segment
->kbuf
;
788 ubytes
= segment
->bufsz
;
789 mbytes
= segment
->memsz
;
790 maddr
= segment
->mem
;
794 size_t uchunk
, mchunk
;
796 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
802 ptr
+= maddr
& ~PAGE_MASK
;
803 mchunk
= min_t(size_t, mbytes
,
804 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
805 uchunk
= min(ubytes
, mchunk
);
806 if (mchunk
> uchunk
) {
807 /* Zero the trailing part of the page */
808 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
811 /* For file based kexec, source pages are in kernel memory */
812 if (image
->file_mode
)
813 memcpy(ptr
, kbuf
, uchunk
);
815 result
= copy_from_user(ptr
, buf
, uchunk
);
816 kexec_flush_icache_page(page
);
824 if (image
->file_mode
)
834 int kimage_load_segment(struct kimage
*image
,
835 struct kexec_segment
*segment
)
837 int result
= -ENOMEM
;
839 switch (image
->type
) {
840 case KEXEC_TYPE_DEFAULT
:
841 result
= kimage_load_normal_segment(image
, segment
);
843 case KEXEC_TYPE_CRASH
:
844 result
= kimage_load_crash_segment(image
, segment
);
851 struct kimage
*kexec_image
;
852 struct kimage
*kexec_crash_image
;
853 int kexec_load_disabled
;
856 * No panic_cpu check version of crash_kexec(). This function is called
857 * only when panic_cpu holds the current CPU number; this is the only CPU
858 * which processes crash_kexec routines.
860 void __crash_kexec(struct pt_regs
*regs
)
862 /* Take the kexec_mutex here to prevent sys_kexec_load
863 * running on one cpu from replacing the crash kernel
864 * we are using after a panic on a different cpu.
866 * If the crash kernel was not located in a fixed area
867 * of memory the xchg(&kexec_crash_image) would be
868 * sufficient. But since I reuse the memory...
870 if (mutex_trylock(&kexec_mutex
)) {
871 if (kexec_crash_image
) {
872 struct pt_regs fixed_regs
;
874 crash_setup_regs(&fixed_regs
, regs
);
875 crash_save_vmcoreinfo();
876 machine_crash_shutdown(&fixed_regs
);
877 machine_kexec(kexec_crash_image
);
879 mutex_unlock(&kexec_mutex
);
883 void crash_kexec(struct pt_regs
*regs
)
885 int old_cpu
, this_cpu
;
888 * Only one CPU is allowed to execute the crash_kexec() code as with
889 * panic(). Otherwise parallel calls of panic() and crash_kexec()
890 * may stop each other. To exclude them, we use panic_cpu here too.
892 this_cpu
= raw_smp_processor_id();
893 old_cpu
= atomic_cmpxchg(&panic_cpu
, PANIC_CPU_INVALID
, this_cpu
);
894 if (old_cpu
== PANIC_CPU_INVALID
) {
895 /* This is the 1st CPU which comes here, so go ahead. */
899 * Reset panic_cpu to allow another panic()/crash_kexec()
902 atomic_set(&panic_cpu
, PANIC_CPU_INVALID
);
906 size_t crash_get_memory_size(void)
910 mutex_lock(&kexec_mutex
);
911 if (crashk_res
.end
!= crashk_res
.start
)
912 size
= resource_size(&crashk_res
);
913 mutex_unlock(&kexec_mutex
);
917 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
922 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
)
923 free_reserved_page(pfn_to_page(addr
>> PAGE_SHIFT
));
926 int crash_shrink_memory(unsigned long new_size
)
929 unsigned long start
, end
;
930 unsigned long old_size
;
931 struct resource
*ram_res
;
933 mutex_lock(&kexec_mutex
);
935 if (kexec_crash_image
) {
939 start
= crashk_res
.start
;
940 end
= crashk_res
.end
;
941 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
942 if (new_size
>= old_size
) {
943 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
947 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
953 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
954 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
956 crash_map_reserved_pages();
957 crash_free_reserved_phys_range(end
, crashk_res
.end
);
959 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
960 release_resource(&crashk_res
);
962 ram_res
->start
= end
;
963 ram_res
->end
= crashk_res
.end
;
964 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
965 ram_res
->name
= "System RAM";
967 crashk_res
.end
= end
- 1;
969 insert_resource(&iomem_resource
, ram_res
);
970 crash_unmap_reserved_pages();
973 mutex_unlock(&kexec_mutex
);
977 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
980 struct elf_note note
;
982 note
.n_namesz
= strlen(name
) + 1;
983 note
.n_descsz
= data_len
;
985 memcpy(buf
, ¬e
, sizeof(note
));
986 buf
+= (sizeof(note
) + 3)/4;
987 memcpy(buf
, name
, note
.n_namesz
);
988 buf
+= (note
.n_namesz
+ 3)/4;
989 memcpy(buf
, data
, note
.n_descsz
);
990 buf
+= (note
.n_descsz
+ 3)/4;
995 static void final_note(u32
*buf
)
997 struct elf_note note
;
1002 memcpy(buf
, ¬e
, sizeof(note
));
1005 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1007 struct elf_prstatus prstatus
;
1010 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1013 /* Using ELF notes here is opportunistic.
1014 * I need a well defined structure format
1015 * for the data I pass, and I need tags
1016 * on the data to indicate what information I have
1017 * squirrelled away. ELF notes happen to provide
1018 * all of that, so there is no need to invent something new.
1020 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1023 memset(&prstatus
, 0, sizeof(prstatus
));
1024 prstatus
.pr_pid
= current
->pid
;
1025 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1026 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1027 &prstatus
, sizeof(prstatus
));
1031 static int __init
crash_notes_memory_init(void)
1033 /* Allocate memory for saving cpu registers. */
1037 * crash_notes could be allocated across 2 vmalloc pages when percpu
1038 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1039 * pages are also on 2 continuous physical pages. In this case the
1040 * 2nd part of crash_notes in 2nd page could be lost since only the
1041 * starting address and size of crash_notes are exported through sysfs.
1042 * Here round up the size of crash_notes to the nearest power of two
1043 * and pass it to __alloc_percpu as align value. This can make sure
1044 * crash_notes is allocated inside one physical page.
1046 size
= sizeof(note_buf_t
);
1047 align
= min(roundup_pow_of_two(sizeof(note_buf_t
)), PAGE_SIZE
);
1050 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1051 * definitely will be in 2 pages with that.
1053 BUILD_BUG_ON(size
> PAGE_SIZE
);
1055 crash_notes
= __alloc_percpu(size
, align
);
1057 pr_warn("Memory allocation for saving cpu register states failed\n");
1062 subsys_initcall(crash_notes_memory_init
);
1066 * parsing the "crashkernel" commandline
1068 * this code is intended to be called from architecture specific code
1073 * This function parses command lines in the format
1075 * crashkernel=ramsize-range:size[,...][@offset]
1077 * The function returns 0 on success and -EINVAL on failure.
1079 static int __init
parse_crashkernel_mem(char *cmdline
,
1080 unsigned long long system_ram
,
1081 unsigned long long *crash_size
,
1082 unsigned long long *crash_base
)
1084 char *cur
= cmdline
, *tmp
;
1086 /* for each entry of the comma-separated list */
1088 unsigned long long start
, end
= ULLONG_MAX
, size
;
1090 /* get the start of the range */
1091 start
= memparse(cur
, &tmp
);
1093 pr_warn("crashkernel: Memory value expected\n");
1098 pr_warn("crashkernel: '-' expected\n");
1103 /* if no ':' is here, than we read the end */
1105 end
= memparse(cur
, &tmp
);
1107 pr_warn("crashkernel: Memory value expected\n");
1112 pr_warn("crashkernel: end <= start\n");
1118 pr_warn("crashkernel: ':' expected\n");
1123 size
= memparse(cur
, &tmp
);
1125 pr_warn("Memory value expected\n");
1129 if (size
>= system_ram
) {
1130 pr_warn("crashkernel: invalid size\n");
1135 if (system_ram
>= start
&& system_ram
< end
) {
1139 } while (*cur
++ == ',');
1141 if (*crash_size
> 0) {
1142 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1146 *crash_base
= memparse(cur
, &tmp
);
1148 pr_warn("Memory value expected after '@'\n");
1158 * That function parses "simple" (old) crashkernel command lines like
1160 * crashkernel=size[@offset]
1162 * It returns 0 on success and -EINVAL on failure.
1164 static int __init
parse_crashkernel_simple(char *cmdline
,
1165 unsigned long long *crash_size
,
1166 unsigned long long *crash_base
)
1168 char *cur
= cmdline
;
1170 *crash_size
= memparse(cmdline
, &cur
);
1171 if (cmdline
== cur
) {
1172 pr_warn("crashkernel: memory value expected\n");
1177 *crash_base
= memparse(cur
+1, &cur
);
1178 else if (*cur
!= ' ' && *cur
!= '\0') {
1179 pr_warn("crashkernel: unrecognized char: %c\n", *cur
);
1186 #define SUFFIX_HIGH 0
1187 #define SUFFIX_LOW 1
1188 #define SUFFIX_NULL 2
1189 static __initdata
char *suffix_tbl
[] = {
1190 [SUFFIX_HIGH
] = ",high",
1191 [SUFFIX_LOW
] = ",low",
1192 [SUFFIX_NULL
] = NULL
,
1196 * That function parses "suffix" crashkernel command lines like
1198 * crashkernel=size,[high|low]
1200 * It returns 0 on success and -EINVAL on failure.
1202 static int __init
parse_crashkernel_suffix(char *cmdline
,
1203 unsigned long long *crash_size
,
1206 char *cur
= cmdline
;
1208 *crash_size
= memparse(cmdline
, &cur
);
1209 if (cmdline
== cur
) {
1210 pr_warn("crashkernel: memory value expected\n");
1214 /* check with suffix */
1215 if (strncmp(cur
, suffix
, strlen(suffix
))) {
1216 pr_warn("crashkernel: unrecognized char: %c\n", *cur
);
1219 cur
+= strlen(suffix
);
1220 if (*cur
!= ' ' && *cur
!= '\0') {
1221 pr_warn("crashkernel: unrecognized char: %c\n", *cur
);
1228 static __init
char *get_last_crashkernel(char *cmdline
,
1232 char *p
= cmdline
, *ck_cmdline
= NULL
;
1234 /* find crashkernel and use the last one if there are more */
1235 p
= strstr(p
, name
);
1237 char *end_p
= strchr(p
, ' ');
1241 end_p
= p
+ strlen(p
);
1246 /* skip the one with any known suffix */
1247 for (i
= 0; suffix_tbl
[i
]; i
++) {
1248 q
= end_p
- strlen(suffix_tbl
[i
]);
1249 if (!strncmp(q
, suffix_tbl
[i
],
1250 strlen(suffix_tbl
[i
])))
1255 q
= end_p
- strlen(suffix
);
1256 if (!strncmp(q
, suffix
, strlen(suffix
)))
1260 p
= strstr(p
+1, name
);
1269 static int __init
__parse_crashkernel(char *cmdline
,
1270 unsigned long long system_ram
,
1271 unsigned long long *crash_size
,
1272 unsigned long long *crash_base
,
1276 char *first_colon
, *first_space
;
1279 BUG_ON(!crash_size
|| !crash_base
);
1283 ck_cmdline
= get_last_crashkernel(cmdline
, name
, suffix
);
1288 ck_cmdline
+= strlen(name
);
1291 return parse_crashkernel_suffix(ck_cmdline
, crash_size
,
1294 * if the commandline contains a ':', then that's the extended
1295 * syntax -- if not, it must be the classic syntax
1297 first_colon
= strchr(ck_cmdline
, ':');
1298 first_space
= strchr(ck_cmdline
, ' ');
1299 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1300 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1301 crash_size
, crash_base
);
1303 return parse_crashkernel_simple(ck_cmdline
, crash_size
, crash_base
);
1307 * That function is the entry point for command line parsing and should be
1308 * called from the arch-specific code.
1310 int __init
parse_crashkernel(char *cmdline
,
1311 unsigned long long system_ram
,
1312 unsigned long long *crash_size
,
1313 unsigned long long *crash_base
)
1315 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1316 "crashkernel=", NULL
);
1319 int __init
parse_crashkernel_high(char *cmdline
,
1320 unsigned long long system_ram
,
1321 unsigned long long *crash_size
,
1322 unsigned long long *crash_base
)
1324 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1325 "crashkernel=", suffix_tbl
[SUFFIX_HIGH
]);
1328 int __init
parse_crashkernel_low(char *cmdline
,
1329 unsigned long long system_ram
,
1330 unsigned long long *crash_size
,
1331 unsigned long long *crash_base
)
1333 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1334 "crashkernel=", suffix_tbl
[SUFFIX_LOW
]);
1337 static void update_vmcoreinfo_note(void)
1339 u32
*buf
= vmcoreinfo_note
;
1341 if (!vmcoreinfo_size
)
1343 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1348 void crash_save_vmcoreinfo(void)
1350 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1351 update_vmcoreinfo_note();
1354 void vmcoreinfo_append_str(const char *fmt
, ...)
1360 va_start(args
, fmt
);
1361 r
= vscnprintf(buf
, sizeof(buf
), fmt
, args
);
1364 r
= min(r
, vmcoreinfo_max_size
- vmcoreinfo_size
);
1366 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1368 vmcoreinfo_size
+= r
;
1372 * provide an empty default implementation here -- architecture
1373 * code may override this
1375 void __weak
arch_crash_save_vmcoreinfo(void)
1378 unsigned long __weak
paddr_vmcoreinfo_note(void)
1380 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1383 static int __init
crash_save_vmcoreinfo_init(void)
1385 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1386 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1388 VMCOREINFO_SYMBOL(init_uts_ns
);
1389 VMCOREINFO_SYMBOL(node_online_map
);
1391 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1393 VMCOREINFO_SYMBOL(_stext
);
1394 VMCOREINFO_SYMBOL(vmap_area_list
);
1396 #ifndef CONFIG_NEED_MULTIPLE_NODES
1397 VMCOREINFO_SYMBOL(mem_map
);
1398 VMCOREINFO_SYMBOL(contig_page_data
);
1400 #ifdef CONFIG_SPARSEMEM
1401 VMCOREINFO_SYMBOL(mem_section
);
1402 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1403 VMCOREINFO_STRUCT_SIZE(mem_section
);
1404 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1406 VMCOREINFO_STRUCT_SIZE(page
);
1407 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1408 VMCOREINFO_STRUCT_SIZE(zone
);
1409 VMCOREINFO_STRUCT_SIZE(free_area
);
1410 VMCOREINFO_STRUCT_SIZE(list_head
);
1411 VMCOREINFO_SIZE(nodemask_t
);
1412 VMCOREINFO_OFFSET(page
, flags
);
1413 VMCOREINFO_OFFSET(page
, _count
);
1414 VMCOREINFO_OFFSET(page
, mapping
);
1415 VMCOREINFO_OFFSET(page
, lru
);
1416 VMCOREINFO_OFFSET(page
, _mapcount
);
1417 VMCOREINFO_OFFSET(page
, private);
1418 VMCOREINFO_OFFSET(page
, compound_dtor
);
1419 VMCOREINFO_OFFSET(page
, compound_order
);
1420 VMCOREINFO_OFFSET(page
, compound_head
);
1421 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1422 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1423 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1424 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1426 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1427 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1428 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1429 VMCOREINFO_OFFSET(zone
, free_area
);
1430 VMCOREINFO_OFFSET(zone
, vm_stat
);
1431 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1432 VMCOREINFO_OFFSET(free_area
, free_list
);
1433 VMCOREINFO_OFFSET(list_head
, next
);
1434 VMCOREINFO_OFFSET(list_head
, prev
);
1435 VMCOREINFO_OFFSET(vmap_area
, va_start
);
1436 VMCOREINFO_OFFSET(vmap_area
, list
);
1437 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1438 log_buf_kexec_setup();
1439 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1440 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1441 VMCOREINFO_NUMBER(PG_lru
);
1442 VMCOREINFO_NUMBER(PG_private
);
1443 VMCOREINFO_NUMBER(PG_swapcache
);
1444 VMCOREINFO_NUMBER(PG_slab
);
1445 #ifdef CONFIG_MEMORY_FAILURE
1446 VMCOREINFO_NUMBER(PG_hwpoison
);
1448 VMCOREINFO_NUMBER(PG_head_mask
);
1449 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE
);
1451 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE
);
1453 #ifdef CONFIG_HUGETLB_PAGE
1454 VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR
);
1457 arch_crash_save_vmcoreinfo();
1458 update_vmcoreinfo_note();
1463 subsys_initcall(crash_save_vmcoreinfo_init
);
1466 * Move into place and start executing a preloaded standalone
1467 * executable. If nothing was preloaded return an error.
1469 int kernel_kexec(void)
1473 if (!mutex_trylock(&kexec_mutex
))
1480 #ifdef CONFIG_KEXEC_JUMP
1481 if (kexec_image
->preserve_context
) {
1482 lock_system_sleep();
1483 pm_prepare_console();
1484 error
= freeze_processes();
1487 goto Restore_console
;
1490 error
= dpm_suspend_start(PMSG_FREEZE
);
1492 goto Resume_console
;
1493 /* At this point, dpm_suspend_start() has been called,
1494 * but *not* dpm_suspend_end(). We *must* call
1495 * dpm_suspend_end() now. Otherwise, drivers for
1496 * some devices (e.g. interrupt controllers) become
1497 * desynchronized with the actual state of the
1498 * hardware at resume time, and evil weirdness ensues.
1500 error
= dpm_suspend_end(PMSG_FREEZE
);
1502 goto Resume_devices
;
1503 error
= disable_nonboot_cpus();
1506 local_irq_disable();
1507 error
= syscore_suspend();
1513 kexec_in_progress
= true;
1514 kernel_restart_prepare(NULL
);
1515 migrate_to_reboot_cpu();
1518 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1519 * no further code needs to use CPU hotplug (which is true in
1520 * the reboot case). However, the kexec path depends on using
1521 * CPU hotplug again; so re-enable it here.
1523 cpu_hotplug_enable();
1524 pr_emerg("Starting new kernel\n");
1528 machine_kexec(kexec_image
);
1530 #ifdef CONFIG_KEXEC_JUMP
1531 if (kexec_image
->preserve_context
) {
1536 enable_nonboot_cpus();
1537 dpm_resume_start(PMSG_RESTORE
);
1539 dpm_resume_end(PMSG_RESTORE
);
1544 pm_restore_console();
1545 unlock_system_sleep();
1550 mutex_unlock(&kexec_mutex
);
1555 * Add and remove page tables for crashkernel memory
1557 * Provide an empty default implementation here -- architecture
1558 * code may override this
1560 void __weak
crash_map_reserved_pages(void)
1563 void __weak
crash_unmap_reserved_pages(void)