2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
107 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
108 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
110 static struct rcu_state
*const rcu_state_p
;
111 LIST_HEAD(rcu_struct_flavors
);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree
;
115 module_param(dump_tree
, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact
;
118 module_param(rcu_fanout_exact
, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
121 module_param(rcu_fanout_leaf
, int, 0444);
122 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
125 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
128 * The rcu_scheduler_active variable transitions from zero to one just
129 * before the first task is spawned. So when this variable is zero, RCU
130 * can assume that there is but one task, allowing RCU to (for example)
131 * optimize synchronize_sched() to a simple barrier(). When this variable
132 * is one, RCU must actually do all the hard work required to detect real
133 * grace periods. This variable is also used to suppress boot-time false
134 * positives from lockdep-RCU error checking.
136 int rcu_scheduler_active __read_mostly
;
137 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
140 * The rcu_scheduler_fully_active variable transitions from zero to one
141 * during the early_initcall() processing, which is after the scheduler
142 * is capable of creating new tasks. So RCU processing (for example,
143 * creating tasks for RCU priority boosting) must be delayed until after
144 * rcu_scheduler_fully_active transitions from zero to one. We also
145 * currently delay invocation of any RCU callbacks until after this point.
147 * It might later prove better for people registering RCU callbacks during
148 * early boot to take responsibility for these callbacks, but one step at
151 static int rcu_scheduler_fully_active __read_mostly
;
153 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
154 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
155 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
156 static void invoke_rcu_core(void);
157 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
158 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
159 struct rcu_data
*rdp
, bool wake
);
161 /* rcuc/rcub kthread realtime priority */
162 #ifdef CONFIG_RCU_KTHREAD_PRIO
163 static int kthread_prio
= CONFIG_RCU_KTHREAD_PRIO
;
164 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
165 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
166 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 module_param(kthread_prio
, int, 0644);
169 /* Delay in jiffies for grace-period initialization delays, debug only. */
171 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
172 static int gp_preinit_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
;
173 module_param(gp_preinit_delay
, int, 0644);
174 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
175 static const int gp_preinit_delay
;
176 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
178 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
179 static int gp_init_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
;
180 module_param(gp_init_delay
, int, 0644);
181 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
182 static const int gp_init_delay
;
183 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
186 static int gp_cleanup_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
;
187 module_param(gp_cleanup_delay
, int, 0644);
188 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
189 static const int gp_cleanup_delay
;
190 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
193 * Number of grace periods between delays, normalized by the duration of
194 * the delay. The longer the the delay, the more the grace periods between
195 * each delay. The reason for this normalization is that it means that,
196 * for non-zero delays, the overall slowdown of grace periods is constant
197 * regardless of the duration of the delay. This arrangement balances
198 * the need for long delays to increase some race probabilities with the
199 * need for fast grace periods to increase other race probabilities.
201 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
204 * Track the rcutorture test sequence number and the update version
205 * number within a given test. The rcutorture_testseq is incremented
206 * on every rcutorture module load and unload, so has an odd value
207 * when a test is running. The rcutorture_vernum is set to zero
208 * when rcutorture starts and is incremented on each rcutorture update.
209 * These variables enable correlating rcutorture output with the
210 * RCU tracing information.
212 unsigned long rcutorture_testseq
;
213 unsigned long rcutorture_vernum
;
216 * Compute the mask of online CPUs for the specified rcu_node structure.
217 * This will not be stable unless the rcu_node structure's ->lock is
218 * held, but the bit corresponding to the current CPU will be stable
221 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
223 return READ_ONCE(rnp
->qsmaskinitnext
);
227 * Return true if an RCU grace period is in progress. The READ_ONCE()s
228 * permit this function to be invoked without holding the root rcu_node
229 * structure's ->lock, but of course results can be subject to change.
231 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
233 return READ_ONCE(rsp
->completed
) != READ_ONCE(rsp
->gpnum
);
237 * Note a quiescent state. Because we do not need to know
238 * how many quiescent states passed, just if there was at least
239 * one since the start of the grace period, this just sets a flag.
240 * The caller must have disabled preemption.
242 void rcu_sched_qs(void)
244 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
))
246 trace_rcu_grace_period(TPS("rcu_sched"),
247 __this_cpu_read(rcu_sched_data
.gpnum
),
249 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
250 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
252 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
253 rcu_report_exp_rdp(&rcu_sched_state
,
254 this_cpu_ptr(&rcu_sched_data
), true);
259 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
260 trace_rcu_grace_period(TPS("rcu_bh"),
261 __this_cpu_read(rcu_bh_data
.gpnum
),
263 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
267 static DEFINE_PER_CPU(int, rcu_sched_qs_mask
);
269 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
270 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
271 .dynticks
= ATOMIC_INIT(1),
272 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
273 .dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
,
274 .dynticks_idle
= ATOMIC_INIT(1),
275 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
278 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr
);
279 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr
);
282 * Let the RCU core know that this CPU has gone through the scheduler,
283 * which is a quiescent state. This is called when the need for a
284 * quiescent state is urgent, so we burn an atomic operation and full
285 * memory barriers to let the RCU core know about it, regardless of what
286 * this CPU might (or might not) do in the near future.
288 * We inform the RCU core by emulating a zero-duration dyntick-idle
289 * period, which we in turn do by incrementing the ->dynticks counter
292 * The caller must have disabled interrupts.
294 static void rcu_momentary_dyntick_idle(void)
296 struct rcu_data
*rdp
;
297 struct rcu_dynticks
*rdtp
;
299 struct rcu_state
*rsp
;
302 * Yes, we can lose flag-setting operations. This is OK, because
303 * the flag will be set again after some delay.
305 resched_mask
= raw_cpu_read(rcu_sched_qs_mask
);
306 raw_cpu_write(rcu_sched_qs_mask
, 0);
308 /* Find the flavor that needs a quiescent state. */
309 for_each_rcu_flavor(rsp
) {
310 rdp
= raw_cpu_ptr(rsp
->rda
);
311 if (!(resched_mask
& rsp
->flavor_mask
))
313 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 if (READ_ONCE(rdp
->mynode
->completed
) !=
315 READ_ONCE(rdp
->cond_resched_completed
))
319 * Pretend to be momentarily idle for the quiescent state.
320 * This allows the grace-period kthread to record the
321 * quiescent state, with no need for this CPU to do anything
324 rdtp
= this_cpu_ptr(&rcu_dynticks
);
325 smp_mb__before_atomic(); /* Earlier stuff before QS. */
326 atomic_add(2, &rdtp
->dynticks
); /* QS. */
327 smp_mb__after_atomic(); /* Later stuff after QS. */
333 * Note a context switch. This is a quiescent state for RCU-sched,
334 * and requires special handling for preemptible RCU.
335 * The caller must have disabled interrupts.
337 void rcu_note_context_switch(void)
339 barrier(); /* Avoid RCU read-side critical sections leaking down. */
340 trace_rcu_utilization(TPS("Start context switch"));
342 rcu_preempt_note_context_switch();
343 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
)))
344 rcu_momentary_dyntick_idle();
345 trace_rcu_utilization(TPS("End context switch"));
346 barrier(); /* Avoid RCU read-side critical sections leaking up. */
348 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
351 * Register a quiescent state for all RCU flavors. If there is an
352 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
353 * dyntick-idle quiescent state visible to other CPUs (but only for those
354 * RCU flavors in desperate need of a quiescent state, which will normally
355 * be none of them). Either way, do a lightweight quiescent state for
358 * The barrier() calls are redundant in the common case when this is
359 * called externally, but just in case this is called from within this
363 void rcu_all_qs(void)
367 barrier(); /* Avoid RCU read-side critical sections leaking down. */
368 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
))) {
369 local_irq_save(flags
);
370 rcu_momentary_dyntick_idle();
371 local_irq_restore(flags
);
373 this_cpu_inc(rcu_qs_ctr
);
374 barrier(); /* Avoid RCU read-side critical sections leaking up. */
376 EXPORT_SYMBOL_GPL(rcu_all_qs
);
378 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
379 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
380 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
382 module_param(blimit
, long, 0444);
383 module_param(qhimark
, long, 0444);
384 module_param(qlowmark
, long, 0444);
386 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
387 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
389 module_param(jiffies_till_first_fqs
, ulong
, 0644);
390 module_param(jiffies_till_next_fqs
, ulong
, 0644);
393 * How long the grace period must be before we start recruiting
394 * quiescent-state help from rcu_note_context_switch().
396 static ulong jiffies_till_sched_qs
= HZ
/ 20;
397 module_param(jiffies_till_sched_qs
, ulong
, 0644);
399 static bool rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
400 struct rcu_data
*rdp
);
401 static void force_qs_rnp(struct rcu_state
*rsp
,
402 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
403 unsigned long *maxj
),
404 bool *isidle
, unsigned long *maxj
);
405 static void force_quiescent_state(struct rcu_state
*rsp
);
406 static int rcu_pending(void);
409 * Return the number of RCU batches started thus far for debug & stats.
411 unsigned long rcu_batches_started(void)
413 return rcu_state_p
->gpnum
;
415 EXPORT_SYMBOL_GPL(rcu_batches_started
);
418 * Return the number of RCU-sched batches started thus far for debug & stats.
420 unsigned long rcu_batches_started_sched(void)
422 return rcu_sched_state
.gpnum
;
424 EXPORT_SYMBOL_GPL(rcu_batches_started_sched
);
427 * Return the number of RCU BH batches started thus far for debug & stats.
429 unsigned long rcu_batches_started_bh(void)
431 return rcu_bh_state
.gpnum
;
433 EXPORT_SYMBOL_GPL(rcu_batches_started_bh
);
436 * Return the number of RCU batches completed thus far for debug & stats.
438 unsigned long rcu_batches_completed(void)
440 return rcu_state_p
->completed
;
442 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
445 * Return the number of RCU-sched batches completed thus far for debug & stats.
447 unsigned long rcu_batches_completed_sched(void)
449 return rcu_sched_state
.completed
;
451 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
454 * Return the number of RCU BH batches completed thus far for debug & stats.
456 unsigned long rcu_batches_completed_bh(void)
458 return rcu_bh_state
.completed
;
460 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
463 * Force a quiescent state.
465 void rcu_force_quiescent_state(void)
467 force_quiescent_state(rcu_state_p
);
469 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
472 * Force a quiescent state for RCU BH.
474 void rcu_bh_force_quiescent_state(void)
476 force_quiescent_state(&rcu_bh_state
);
478 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
481 * Force a quiescent state for RCU-sched.
483 void rcu_sched_force_quiescent_state(void)
485 force_quiescent_state(&rcu_sched_state
);
487 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
490 * Show the state of the grace-period kthreads.
492 void show_rcu_gp_kthreads(void)
494 struct rcu_state
*rsp
;
496 for_each_rcu_flavor(rsp
) {
497 pr_info("%s: wait state: %d ->state: %#lx\n",
498 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
499 /* sched_show_task(rsp->gp_kthread); */
502 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
505 * Record the number of times rcutorture tests have been initiated and
506 * terminated. This information allows the debugfs tracing stats to be
507 * correlated to the rcutorture messages, even when the rcutorture module
508 * is being repeatedly loaded and unloaded. In other words, we cannot
509 * store this state in rcutorture itself.
511 void rcutorture_record_test_transition(void)
513 rcutorture_testseq
++;
514 rcutorture_vernum
= 0;
516 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
519 * Send along grace-period-related data for rcutorture diagnostics.
521 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
522 unsigned long *gpnum
, unsigned long *completed
)
524 struct rcu_state
*rsp
= NULL
;
533 case RCU_SCHED_FLAVOR
:
534 rsp
= &rcu_sched_state
;
540 *flags
= READ_ONCE(rsp
->gp_flags
);
541 *gpnum
= READ_ONCE(rsp
->gpnum
);
542 *completed
= READ_ONCE(rsp
->completed
);
549 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
552 * Record the number of writer passes through the current rcutorture test.
553 * This is also used to correlate debugfs tracing stats with the rcutorture
556 void rcutorture_record_progress(unsigned long vernum
)
560 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
563 * Does the CPU have callbacks ready to be invoked?
566 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
568 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
] &&
569 rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
;
573 * Return the root node of the specified rcu_state structure.
575 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
577 return &rsp
->node
[0];
581 * Is there any need for future grace periods?
582 * Interrupts must be disabled. If the caller does not hold the root
583 * rnp_node structure's ->lock, the results are advisory only.
585 static int rcu_future_needs_gp(struct rcu_state
*rsp
)
587 struct rcu_node
*rnp
= rcu_get_root(rsp
);
588 int idx
= (READ_ONCE(rnp
->completed
) + 1) & 0x1;
589 int *fp
= &rnp
->need_future_gp
[idx
];
591 return READ_ONCE(*fp
);
595 * Does the current CPU require a not-yet-started grace period?
596 * The caller must have disabled interrupts to prevent races with
597 * normal callback registry.
600 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
604 if (rcu_gp_in_progress(rsp
))
605 return false; /* No, a grace period is already in progress. */
606 if (rcu_future_needs_gp(rsp
))
607 return true; /* Yes, a no-CBs CPU needs one. */
608 if (!rdp
->nxttail
[RCU_NEXT_TAIL
])
609 return false; /* No, this is a no-CBs (or offline) CPU. */
610 if (*rdp
->nxttail
[RCU_NEXT_READY_TAIL
])
611 return true; /* Yes, CPU has newly registered callbacks. */
612 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
613 if (rdp
->nxttail
[i
- 1] != rdp
->nxttail
[i
] &&
614 ULONG_CMP_LT(READ_ONCE(rsp
->completed
),
615 rdp
->nxtcompleted
[i
]))
616 return true; /* Yes, CBs for future grace period. */
617 return false; /* No grace period needed. */
621 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
623 * If the new value of the ->dynticks_nesting counter now is zero,
624 * we really have entered idle, and must do the appropriate accounting.
625 * The caller must have disabled interrupts.
627 static void rcu_eqs_enter_common(long long oldval
, bool user
)
629 struct rcu_state
*rsp
;
630 struct rcu_data
*rdp
;
631 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
633 trace_rcu_dyntick(TPS("Start"), oldval
, rdtp
->dynticks_nesting
);
634 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
635 !user
&& !is_idle_task(current
)) {
636 struct task_struct
*idle __maybe_unused
=
637 idle_task(smp_processor_id());
639 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval
, 0);
640 ftrace_dump(DUMP_ORIG
);
641 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
642 current
->pid
, current
->comm
,
643 idle
->pid
, idle
->comm
); /* must be idle task! */
645 for_each_rcu_flavor(rsp
) {
646 rdp
= this_cpu_ptr(rsp
->rda
);
647 do_nocb_deferred_wakeup(rdp
);
649 rcu_prepare_for_idle();
650 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651 smp_mb__before_atomic(); /* See above. */
652 atomic_inc(&rdtp
->dynticks
);
653 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
654 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
655 atomic_read(&rdtp
->dynticks
) & 0x1);
656 rcu_dynticks_task_enter();
659 * It is illegal to enter an extended quiescent state while
660 * in an RCU read-side critical section.
662 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map
),
663 "Illegal idle entry in RCU read-side critical section.");
664 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
),
665 "Illegal idle entry in RCU-bh read-side critical section.");
666 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map
),
667 "Illegal idle entry in RCU-sched read-side critical section.");
671 * Enter an RCU extended quiescent state, which can be either the
672 * idle loop or adaptive-tickless usermode execution.
674 static void rcu_eqs_enter(bool user
)
677 struct rcu_dynticks
*rdtp
;
679 rdtp
= this_cpu_ptr(&rcu_dynticks
);
680 oldval
= rdtp
->dynticks_nesting
;
681 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
682 (oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
683 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
) {
684 rdtp
->dynticks_nesting
= 0;
685 rcu_eqs_enter_common(oldval
, user
);
687 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
692 * rcu_idle_enter - inform RCU that current CPU is entering idle
694 * Enter idle mode, in other words, -leave- the mode in which RCU
695 * read-side critical sections can occur. (Though RCU read-side
696 * critical sections can occur in irq handlers in idle, a possibility
697 * handled by irq_enter() and irq_exit().)
699 * We crowbar the ->dynticks_nesting field to zero to allow for
700 * the possibility of usermode upcalls having messed up our count
701 * of interrupt nesting level during the prior busy period.
703 void rcu_idle_enter(void)
707 local_irq_save(flags
);
708 rcu_eqs_enter(false);
709 rcu_sysidle_enter(0);
710 local_irq_restore(flags
);
712 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
714 #ifdef CONFIG_NO_HZ_FULL
716 * rcu_user_enter - inform RCU that we are resuming userspace.
718 * Enter RCU idle mode right before resuming userspace. No use of RCU
719 * is permitted between this call and rcu_user_exit(). This way the
720 * CPU doesn't need to maintain the tick for RCU maintenance purposes
721 * when the CPU runs in userspace.
723 void rcu_user_enter(void)
727 #endif /* CONFIG_NO_HZ_FULL */
730 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
732 * Exit from an interrupt handler, which might possibly result in entering
733 * idle mode, in other words, leaving the mode in which read-side critical
734 * sections can occur. The caller must have disabled interrupts.
736 * This code assumes that the idle loop never does anything that might
737 * result in unbalanced calls to irq_enter() and irq_exit(). If your
738 * architecture violates this assumption, RCU will give you what you
739 * deserve, good and hard. But very infrequently and irreproducibly.
741 * Use things like work queues to work around this limitation.
743 * You have been warned.
745 void rcu_irq_exit(void)
748 struct rcu_dynticks
*rdtp
;
750 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
751 rdtp
= this_cpu_ptr(&rcu_dynticks
);
752 oldval
= rdtp
->dynticks_nesting
;
753 rdtp
->dynticks_nesting
--;
754 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
755 rdtp
->dynticks_nesting
< 0);
756 if (rdtp
->dynticks_nesting
)
757 trace_rcu_dyntick(TPS("--="), oldval
, rdtp
->dynticks_nesting
);
759 rcu_eqs_enter_common(oldval
, true);
760 rcu_sysidle_enter(1);
764 * Wrapper for rcu_irq_exit() where interrupts are enabled.
766 void rcu_irq_exit_irqson(void)
770 local_irq_save(flags
);
772 local_irq_restore(flags
);
776 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
778 * If the new value of the ->dynticks_nesting counter was previously zero,
779 * we really have exited idle, and must do the appropriate accounting.
780 * The caller must have disabled interrupts.
782 static void rcu_eqs_exit_common(long long oldval
, int user
)
784 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
786 rcu_dynticks_task_exit();
787 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
788 atomic_inc(&rdtp
->dynticks
);
789 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
790 smp_mb__after_atomic(); /* See above. */
791 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
792 !(atomic_read(&rdtp
->dynticks
) & 0x1));
793 rcu_cleanup_after_idle();
794 trace_rcu_dyntick(TPS("End"), oldval
, rdtp
->dynticks_nesting
);
795 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
796 !user
&& !is_idle_task(current
)) {
797 struct task_struct
*idle __maybe_unused
=
798 idle_task(smp_processor_id());
800 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
801 oldval
, rdtp
->dynticks_nesting
);
802 ftrace_dump(DUMP_ORIG
);
803 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
804 current
->pid
, current
->comm
,
805 idle
->pid
, idle
->comm
); /* must be idle task! */
810 * Exit an RCU extended quiescent state, which can be either the
811 * idle loop or adaptive-tickless usermode execution.
813 static void rcu_eqs_exit(bool user
)
815 struct rcu_dynticks
*rdtp
;
818 rdtp
= this_cpu_ptr(&rcu_dynticks
);
819 oldval
= rdtp
->dynticks_nesting
;
820 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
821 if (oldval
& DYNTICK_TASK_NEST_MASK
) {
822 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
824 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
825 rcu_eqs_exit_common(oldval
, user
);
830 * rcu_idle_exit - inform RCU that current CPU is leaving idle
832 * Exit idle mode, in other words, -enter- the mode in which RCU
833 * read-side critical sections can occur.
835 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
836 * allow for the possibility of usermode upcalls messing up our count
837 * of interrupt nesting level during the busy period that is just
840 void rcu_idle_exit(void)
844 local_irq_save(flags
);
847 local_irq_restore(flags
);
849 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
851 #ifdef CONFIG_NO_HZ_FULL
853 * rcu_user_exit - inform RCU that we are exiting userspace.
855 * Exit RCU idle mode while entering the kernel because it can
856 * run a RCU read side critical section anytime.
858 void rcu_user_exit(void)
862 #endif /* CONFIG_NO_HZ_FULL */
865 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
867 * Enter an interrupt handler, which might possibly result in exiting
868 * idle mode, in other words, entering the mode in which read-side critical
869 * sections can occur. The caller must have disabled interrupts.
871 * Note that the Linux kernel is fully capable of entering an interrupt
872 * handler that it never exits, for example when doing upcalls to
873 * user mode! This code assumes that the idle loop never does upcalls to
874 * user mode. If your architecture does do upcalls from the idle loop (or
875 * does anything else that results in unbalanced calls to the irq_enter()
876 * and irq_exit() functions), RCU will give you what you deserve, good
877 * and hard. But very infrequently and irreproducibly.
879 * Use things like work queues to work around this limitation.
881 * You have been warned.
883 void rcu_irq_enter(void)
885 struct rcu_dynticks
*rdtp
;
888 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
889 rdtp
= this_cpu_ptr(&rcu_dynticks
);
890 oldval
= rdtp
->dynticks_nesting
;
891 rdtp
->dynticks_nesting
++;
892 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
893 rdtp
->dynticks_nesting
== 0);
895 trace_rcu_dyntick(TPS("++="), oldval
, rdtp
->dynticks_nesting
);
897 rcu_eqs_exit_common(oldval
, true);
902 * Wrapper for rcu_irq_enter() where interrupts are enabled.
904 void rcu_irq_enter_irqson(void)
908 local_irq_save(flags
);
910 local_irq_restore(flags
);
914 * rcu_nmi_enter - inform RCU of entry to NMI context
916 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
917 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
918 * that the CPU is active. This implementation permits nested NMIs, as
919 * long as the nesting level does not overflow an int. (You will probably
920 * run out of stack space first.)
922 void rcu_nmi_enter(void)
924 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
927 /* Complain about underflow. */
928 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
931 * If idle from RCU viewpoint, atomically increment ->dynticks
932 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
933 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
934 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
935 * to be in the outermost NMI handler that interrupted an RCU-idle
936 * period (observation due to Andy Lutomirski).
938 if (!(atomic_read(&rdtp
->dynticks
) & 0x1)) {
939 smp_mb__before_atomic(); /* Force delay from prior write. */
940 atomic_inc(&rdtp
->dynticks
);
941 /* atomic_inc() before later RCU read-side crit sects */
942 smp_mb__after_atomic(); /* See above. */
943 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
946 rdtp
->dynticks_nmi_nesting
+= incby
;
951 * rcu_nmi_exit - inform RCU of exit from NMI context
953 * If we are returning from the outermost NMI handler that interrupted an
954 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
955 * to let the RCU grace-period handling know that the CPU is back to
958 void rcu_nmi_exit(void)
960 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
963 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
964 * (We are exiting an NMI handler, so RCU better be paying attention
967 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
968 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
971 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
972 * leave it in non-RCU-idle state.
974 if (rdtp
->dynticks_nmi_nesting
!= 1) {
975 rdtp
->dynticks_nmi_nesting
-= 2;
979 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
980 rdtp
->dynticks_nmi_nesting
= 0;
981 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
982 smp_mb__before_atomic(); /* See above. */
983 atomic_inc(&rdtp
->dynticks
);
984 smp_mb__after_atomic(); /* Force delay to next write. */
985 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
989 * __rcu_is_watching - are RCU read-side critical sections safe?
991 * Return true if RCU is watching the running CPU, which means that
992 * this CPU can safely enter RCU read-side critical sections. Unlike
993 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
994 * least disabled preemption.
996 bool notrace
__rcu_is_watching(void)
998 return atomic_read(this_cpu_ptr(&rcu_dynticks
.dynticks
)) & 0x1;
1002 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1004 * If the current CPU is in its idle loop and is neither in an interrupt
1005 * or NMI handler, return true.
1007 bool notrace
rcu_is_watching(void)
1011 preempt_disable_notrace();
1012 ret
= __rcu_is_watching();
1013 preempt_enable_notrace();
1016 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1018 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1021 * Is the current CPU online? Disable preemption to avoid false positives
1022 * that could otherwise happen due to the current CPU number being sampled,
1023 * this task being preempted, its old CPU being taken offline, resuming
1024 * on some other CPU, then determining that its old CPU is now offline.
1025 * It is OK to use RCU on an offline processor during initial boot, hence
1026 * the check for rcu_scheduler_fully_active. Note also that it is OK
1027 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1028 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1029 * offline to continue to use RCU for one jiffy after marking itself
1030 * offline in the cpu_online_mask. This leniency is necessary given the
1031 * non-atomic nature of the online and offline processing, for example,
1032 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1035 * This is also why RCU internally marks CPUs online during the
1036 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1038 * Disable checking if in an NMI handler because we cannot safely report
1039 * errors from NMI handlers anyway.
1041 bool rcu_lockdep_current_cpu_online(void)
1043 struct rcu_data
*rdp
;
1044 struct rcu_node
*rnp
;
1050 rdp
= this_cpu_ptr(&rcu_sched_data
);
1052 ret
= (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) ||
1053 !rcu_scheduler_fully_active
;
1057 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1059 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1062 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1064 * If the current CPU is idle or running at a first-level (not nested)
1065 * interrupt from idle, return true. The caller must have at least
1066 * disabled preemption.
1068 static int rcu_is_cpu_rrupt_from_idle(void)
1070 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 1;
1074 * Snapshot the specified CPU's dynticks counter so that we can later
1075 * credit them with an implicit quiescent state. Return 1 if this CPU
1076 * is in dynticks idle mode, which is an extended quiescent state.
1078 static int dyntick_save_progress_counter(struct rcu_data
*rdp
,
1079 bool *isidle
, unsigned long *maxj
)
1081 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1082 rcu_sysidle_check_cpu(rdp
, isidle
, maxj
);
1083 if ((rdp
->dynticks_snap
& 0x1) == 0) {
1084 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1085 if (ULONG_CMP_LT(READ_ONCE(rdp
->gpnum
) + ULONG_MAX
/ 4,
1086 rdp
->mynode
->gpnum
))
1087 WRITE_ONCE(rdp
->gpwrap
, true);
1094 * Return true if the specified CPU has passed through a quiescent
1095 * state by virtue of being in or having passed through an dynticks
1096 * idle state since the last call to dyntick_save_progress_counter()
1097 * for this same CPU, or by virtue of having been offline.
1099 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
,
1100 bool *isidle
, unsigned long *maxj
)
1106 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1107 snap
= (unsigned int)rdp
->dynticks_snap
;
1110 * If the CPU passed through or entered a dynticks idle phase with
1111 * no active irq/NMI handlers, then we can safely pretend that the CPU
1112 * already acknowledged the request to pass through a quiescent
1113 * state. Either way, that CPU cannot possibly be in an RCU
1114 * read-side critical section that started before the beginning
1115 * of the current RCU grace period.
1117 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
1118 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1119 rdp
->dynticks_fqs
++;
1124 * Check for the CPU being offline, but only if the grace period
1125 * is old enough. We don't need to worry about the CPU changing
1126 * state: If we see it offline even once, it has been through a
1129 * The reason for insisting that the grace period be at least
1130 * one jiffy old is that CPUs that are not quite online and that
1131 * have just gone offline can still execute RCU read-side critical
1134 if (ULONG_CMP_GE(rdp
->rsp
->gp_start
+ 2, jiffies
))
1135 return 0; /* Grace period is not old enough. */
1137 if (cpu_is_offline(rdp
->cpu
)) {
1138 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
1144 * A CPU running for an extended time within the kernel can
1145 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1146 * even context-switching back and forth between a pair of
1147 * in-kernel CPU-bound tasks cannot advance grace periods.
1148 * So if the grace period is old enough, make the CPU pay attention.
1149 * Note that the unsynchronized assignments to the per-CPU
1150 * rcu_sched_qs_mask variable are safe. Yes, setting of
1151 * bits can be lost, but they will be set again on the next
1152 * force-quiescent-state pass. So lost bit sets do not result
1153 * in incorrect behavior, merely in a grace period lasting
1154 * a few jiffies longer than it might otherwise. Because
1155 * there are at most four threads involved, and because the
1156 * updates are only once every few jiffies, the probability of
1157 * lossage (and thus of slight grace-period extension) is
1160 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1161 * is set too high, we override with half of the RCU CPU stall
1164 rcrmp
= &per_cpu(rcu_sched_qs_mask
, rdp
->cpu
);
1165 if (ULONG_CMP_GE(jiffies
,
1166 rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
) ||
1167 ULONG_CMP_GE(jiffies
, rdp
->rsp
->jiffies_resched
)) {
1168 if (!(READ_ONCE(*rcrmp
) & rdp
->rsp
->flavor_mask
)) {
1169 WRITE_ONCE(rdp
->cond_resched_completed
,
1170 READ_ONCE(rdp
->mynode
->completed
));
1171 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1173 READ_ONCE(*rcrmp
) + rdp
->rsp
->flavor_mask
);
1175 rdp
->rsp
->jiffies_resched
+= 5; /* Re-enable beating. */
1178 /* And if it has been a really long time, kick the CPU as well. */
1179 if (ULONG_CMP_GE(jiffies
,
1180 rdp
->rsp
->gp_start
+ 2 * jiffies_till_sched_qs
) ||
1181 ULONG_CMP_GE(jiffies
, rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
))
1182 resched_cpu(rdp
->cpu
); /* Force CPU into scheduler. */
1187 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1189 unsigned long j
= jiffies
;
1193 smp_wmb(); /* Record start time before stall time. */
1194 j1
= rcu_jiffies_till_stall_check();
1195 WRITE_ONCE(rsp
->jiffies_stall
, j
+ j1
);
1196 rsp
->jiffies_resched
= j
+ j1
/ 2;
1197 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1201 * Convert a ->gp_state value to a character string.
1203 static const char *gp_state_getname(short gs
)
1205 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1207 return gp_state_names
[gs
];
1211 * Complain about starvation of grace-period kthread.
1213 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1219 gpa
= READ_ONCE(rsp
->gp_activity
);
1220 if (j
- gpa
> 2 * HZ
) {
1221 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1223 rsp
->gpnum
, rsp
->completed
,
1225 gp_state_getname(rsp
->gp_state
), rsp
->gp_state
,
1226 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: ~0);
1227 if (rsp
->gp_kthread
)
1228 sched_show_task(rsp
->gp_kthread
);
1233 * Dump stacks of all tasks running on stalled CPUs.
1235 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1238 unsigned long flags
;
1239 struct rcu_node
*rnp
;
1241 rcu_for_each_leaf_node(rsp
, rnp
) {
1242 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1243 if (rnp
->qsmask
!= 0) {
1244 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
1245 if (rnp
->qsmask
& (1UL << cpu
))
1246 dump_cpu_task(rnp
->grplo
+ cpu
);
1248 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1252 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gpnum
)
1256 unsigned long flags
;
1260 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1263 /* Only let one CPU complain about others per time interval. */
1265 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1266 delta
= jiffies
- READ_ONCE(rsp
->jiffies_stall
);
1267 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
1268 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1271 WRITE_ONCE(rsp
->jiffies_stall
,
1272 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1273 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1276 * OK, time to rat on our buddy...
1277 * See Documentation/RCU/stallwarn.txt for info on how to debug
1278 * RCU CPU stall warnings.
1280 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1282 print_cpu_stall_info_begin();
1283 rcu_for_each_leaf_node(rsp
, rnp
) {
1284 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1285 ndetected
+= rcu_print_task_stall(rnp
);
1286 if (rnp
->qsmask
!= 0) {
1287 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
1288 if (rnp
->qsmask
& (1UL << cpu
)) {
1289 print_cpu_stall_info(rsp
,
1294 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1297 print_cpu_stall_info_end();
1298 for_each_possible_cpu(cpu
)
1299 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1300 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1301 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1302 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1304 rcu_dump_cpu_stacks(rsp
);
1306 if (READ_ONCE(rsp
->gpnum
) != gpnum
||
1307 READ_ONCE(rsp
->completed
) == gpnum
) {
1308 pr_err("INFO: Stall ended before state dump start\n");
1311 gpa
= READ_ONCE(rsp
->gp_activity
);
1312 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1313 rsp
->name
, j
- gpa
, j
, gpa
,
1314 jiffies_till_next_fqs
,
1315 rcu_get_root(rsp
)->qsmask
);
1316 /* In this case, the current CPU might be at fault. */
1317 sched_show_task(current
);
1321 /* Complain about tasks blocking the grace period. */
1322 rcu_print_detail_task_stall(rsp
);
1324 rcu_check_gp_kthread_starvation(rsp
);
1326 force_quiescent_state(rsp
); /* Kick them all. */
1329 static void print_cpu_stall(struct rcu_state
*rsp
)
1332 unsigned long flags
;
1333 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1337 * OK, time to rat on ourselves...
1338 * See Documentation/RCU/stallwarn.txt for info on how to debug
1339 * RCU CPU stall warnings.
1341 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1342 print_cpu_stall_info_begin();
1343 print_cpu_stall_info(rsp
, smp_processor_id());
1344 print_cpu_stall_info_end();
1345 for_each_possible_cpu(cpu
)
1346 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1347 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1348 jiffies
- rsp
->gp_start
,
1349 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1351 rcu_check_gp_kthread_starvation(rsp
);
1353 rcu_dump_cpu_stacks(rsp
);
1355 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1356 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1357 WRITE_ONCE(rsp
->jiffies_stall
,
1358 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1359 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1362 * Attempt to revive the RCU machinery by forcing a context switch.
1364 * A context switch would normally allow the RCU state machine to make
1365 * progress and it could be we're stuck in kernel space without context
1366 * switches for an entirely unreasonable amount of time.
1368 resched_cpu(smp_processor_id());
1371 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1373 unsigned long completed
;
1374 unsigned long gpnum
;
1378 struct rcu_node
*rnp
;
1380 if (rcu_cpu_stall_suppress
|| !rcu_gp_in_progress(rsp
))
1385 * Lots of memory barriers to reject false positives.
1387 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1388 * then rsp->gp_start, and finally rsp->completed. These values
1389 * are updated in the opposite order with memory barriers (or
1390 * equivalent) during grace-period initialization and cleanup.
1391 * Now, a false positive can occur if we get an new value of
1392 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1393 * the memory barriers, the only way that this can happen is if one
1394 * grace period ends and another starts between these two fetches.
1395 * Detect this by comparing rsp->completed with the previous fetch
1398 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1399 * and rsp->gp_start suffice to forestall false positives.
1401 gpnum
= READ_ONCE(rsp
->gpnum
);
1402 smp_rmb(); /* Pick up ->gpnum first... */
1403 js
= READ_ONCE(rsp
->jiffies_stall
);
1404 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1405 gps
= READ_ONCE(rsp
->gp_start
);
1406 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1407 completed
= READ_ONCE(rsp
->completed
);
1408 if (ULONG_CMP_GE(completed
, gpnum
) ||
1409 ULONG_CMP_LT(j
, js
) ||
1410 ULONG_CMP_GE(gps
, js
))
1411 return; /* No stall or GP completed since entering function. */
1413 if (rcu_gp_in_progress(rsp
) &&
1414 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
)) {
1416 /* We haven't checked in, so go dump stack. */
1417 print_cpu_stall(rsp
);
1419 } else if (rcu_gp_in_progress(rsp
) &&
1420 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
1422 /* They had a few time units to dump stack, so complain. */
1423 print_other_cpu_stall(rsp
, gpnum
);
1428 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1430 * Set the stall-warning timeout way off into the future, thus preventing
1431 * any RCU CPU stall-warning messages from appearing in the current set of
1432 * RCU grace periods.
1434 * The caller must disable hard irqs.
1436 void rcu_cpu_stall_reset(void)
1438 struct rcu_state
*rsp
;
1440 for_each_rcu_flavor(rsp
)
1441 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1445 * Initialize the specified rcu_data structure's default callback list
1446 * to empty. The default callback list is the one that is not used by
1447 * no-callbacks CPUs.
1449 static void init_default_callback_list(struct rcu_data
*rdp
)
1453 rdp
->nxtlist
= NULL
;
1454 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1455 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1459 * Initialize the specified rcu_data structure's callback list to empty.
1461 static void init_callback_list(struct rcu_data
*rdp
)
1463 if (init_nocb_callback_list(rdp
))
1465 init_default_callback_list(rdp
);
1469 * Determine the value that ->completed will have at the end of the
1470 * next subsequent grace period. This is used to tag callbacks so that
1471 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1472 * been dyntick-idle for an extended period with callbacks under the
1473 * influence of RCU_FAST_NO_HZ.
1475 * The caller must hold rnp->lock with interrupts disabled.
1477 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1478 struct rcu_node
*rnp
)
1481 * If RCU is idle, we just wait for the next grace period.
1482 * But we can only be sure that RCU is idle if we are looking
1483 * at the root rcu_node structure -- otherwise, a new grace
1484 * period might have started, but just not yet gotten around
1485 * to initializing the current non-root rcu_node structure.
1487 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1488 return rnp
->completed
+ 1;
1491 * Otherwise, wait for a possible partial grace period and
1492 * then the subsequent full grace period.
1494 return rnp
->completed
+ 2;
1498 * Trace-event helper function for rcu_start_future_gp() and
1499 * rcu_nocb_wait_gp().
1501 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1502 unsigned long c
, const char *s
)
1504 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1505 rnp
->completed
, c
, rnp
->level
,
1506 rnp
->grplo
, rnp
->grphi
, s
);
1510 * Start some future grace period, as needed to handle newly arrived
1511 * callbacks. The required future grace periods are recorded in each
1512 * rcu_node structure's ->need_future_gp field. Returns true if there
1513 * is reason to awaken the grace-period kthread.
1515 * The caller must hold the specified rcu_node structure's ->lock.
1517 static bool __maybe_unused
1518 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1519 unsigned long *c_out
)
1524 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1527 * Pick up grace-period number for new callbacks. If this
1528 * grace period is already marked as needed, return to the caller.
1530 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1531 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1532 if (rnp
->need_future_gp
[c
& 0x1]) {
1533 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1538 * If either this rcu_node structure or the root rcu_node structure
1539 * believe that a grace period is in progress, then we must wait
1540 * for the one following, which is in "c". Because our request
1541 * will be noticed at the end of the current grace period, we don't
1542 * need to explicitly start one. We only do the lockless check
1543 * of rnp_root's fields if the current rcu_node structure thinks
1544 * there is no grace period in flight, and because we hold rnp->lock,
1545 * the only possible change is when rnp_root's two fields are
1546 * equal, in which case rnp_root->gpnum might be concurrently
1547 * incremented. But that is OK, as it will just result in our
1548 * doing some extra useless work.
1550 if (rnp
->gpnum
!= rnp
->completed
||
1551 READ_ONCE(rnp_root
->gpnum
) != READ_ONCE(rnp_root
->completed
)) {
1552 rnp
->need_future_gp
[c
& 0x1]++;
1553 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1558 * There might be no grace period in progress. If we don't already
1559 * hold it, acquire the root rcu_node structure's lock in order to
1560 * start one (if needed).
1562 if (rnp
!= rnp_root
)
1563 raw_spin_lock_rcu_node(rnp_root
);
1566 * Get a new grace-period number. If there really is no grace
1567 * period in progress, it will be smaller than the one we obtained
1568 * earlier. Adjust callbacks as needed. Note that even no-CBs
1569 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1571 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1572 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
1573 if (ULONG_CMP_LT(c
, rdp
->nxtcompleted
[i
]))
1574 rdp
->nxtcompleted
[i
] = c
;
1577 * If the needed for the required grace period is already
1578 * recorded, trace and leave.
1580 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1581 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1585 /* Record the need for the future grace period. */
1586 rnp_root
->need_future_gp
[c
& 0x1]++;
1588 /* If a grace period is not already in progress, start one. */
1589 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1590 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1592 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1593 ret
= rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1596 if (rnp
!= rnp_root
)
1597 raw_spin_unlock_rcu_node(rnp_root
);
1605 * Clean up any old requests for the just-ended grace period. Also return
1606 * whether any additional grace periods have been requested. Also invoke
1607 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1608 * waiting for this grace period to complete.
1610 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1612 int c
= rnp
->completed
;
1614 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1616 rnp
->need_future_gp
[c
& 0x1] = 0;
1617 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1618 trace_rcu_future_gp(rnp
, rdp
, c
,
1619 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1624 * Awaken the grace-period kthread for the specified flavor of RCU.
1625 * Don't do a self-awaken, and don't bother awakening when there is
1626 * nothing for the grace-period kthread to do (as in several CPUs
1627 * raced to awaken, and we lost), and finally don't try to awaken
1628 * a kthread that has not yet been created.
1630 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1632 if (current
== rsp
->gp_kthread
||
1633 !READ_ONCE(rsp
->gp_flags
) ||
1636 swake_up(&rsp
->gp_wq
);
1640 * If there is room, assign a ->completed number to any callbacks on
1641 * this CPU that have not already been assigned. Also accelerate any
1642 * callbacks that were previously assigned a ->completed number that has
1643 * since proven to be too conservative, which can happen if callbacks get
1644 * assigned a ->completed number while RCU is idle, but with reference to
1645 * a non-root rcu_node structure. This function is idempotent, so it does
1646 * not hurt to call it repeatedly. Returns an flag saying that we should
1647 * awaken the RCU grace-period kthread.
1649 * The caller must hold rnp->lock with interrupts disabled.
1651 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1652 struct rcu_data
*rdp
)
1658 /* If the CPU has no callbacks, nothing to do. */
1659 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1663 * Starting from the sublist containing the callbacks most
1664 * recently assigned a ->completed number and working down, find the
1665 * first sublist that is not assignable to an upcoming grace period.
1666 * Such a sublist has something in it (first two tests) and has
1667 * a ->completed number assigned that will complete sooner than
1668 * the ->completed number for newly arrived callbacks (last test).
1670 * The key point is that any later sublist can be assigned the
1671 * same ->completed number as the newly arrived callbacks, which
1672 * means that the callbacks in any of these later sublist can be
1673 * grouped into a single sublist, whether or not they have already
1674 * been assigned a ->completed number.
1676 c
= rcu_cbs_completed(rsp
, rnp
);
1677 for (i
= RCU_NEXT_TAIL
- 1; i
> RCU_DONE_TAIL
; i
--)
1678 if (rdp
->nxttail
[i
] != rdp
->nxttail
[i
- 1] &&
1679 !ULONG_CMP_GE(rdp
->nxtcompleted
[i
], c
))
1683 * If there are no sublist for unassigned callbacks, leave.
1684 * At the same time, advance "i" one sublist, so that "i" will
1685 * index into the sublist where all the remaining callbacks should
1688 if (++i
>= RCU_NEXT_TAIL
)
1692 * Assign all subsequent callbacks' ->completed number to the next
1693 * full grace period and group them all in the sublist initially
1696 for (; i
<= RCU_NEXT_TAIL
; i
++) {
1697 rdp
->nxttail
[i
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1698 rdp
->nxtcompleted
[i
] = c
;
1700 /* Record any needed additional grace periods. */
1701 ret
= rcu_start_future_gp(rnp
, rdp
, NULL
);
1703 /* Trace depending on how much we were able to accelerate. */
1704 if (!*rdp
->nxttail
[RCU_WAIT_TAIL
])
1705 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1707 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1712 * Move any callbacks whose grace period has completed to the
1713 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1714 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1715 * sublist. This function is idempotent, so it does not hurt to
1716 * invoke it repeatedly. As long as it is not invoked -too- often...
1717 * Returns true if the RCU grace-period kthread needs to be awakened.
1719 * The caller must hold rnp->lock with interrupts disabled.
1721 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1722 struct rcu_data
*rdp
)
1726 /* If the CPU has no callbacks, nothing to do. */
1727 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1731 * Find all callbacks whose ->completed numbers indicate that they
1732 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1734 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
1735 if (ULONG_CMP_LT(rnp
->completed
, rdp
->nxtcompleted
[i
]))
1737 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[i
];
1739 /* Clean up any sublist tail pointers that were misordered above. */
1740 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
1741 rdp
->nxttail
[j
] = rdp
->nxttail
[RCU_DONE_TAIL
];
1743 /* Copy down callbacks to fill in empty sublists. */
1744 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
1745 if (rdp
->nxttail
[j
] == rdp
->nxttail
[RCU_NEXT_TAIL
])
1747 rdp
->nxttail
[j
] = rdp
->nxttail
[i
];
1748 rdp
->nxtcompleted
[j
] = rdp
->nxtcompleted
[i
];
1751 /* Classify any remaining callbacks. */
1752 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1756 * Update CPU-local rcu_data state to record the beginnings and ends of
1757 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1758 * structure corresponding to the current CPU, and must have irqs disabled.
1759 * Returns true if the grace-period kthread needs to be awakened.
1761 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1762 struct rcu_data
*rdp
)
1766 /* Handle the ends of any preceding grace periods first. */
1767 if (rdp
->completed
== rnp
->completed
&&
1768 !unlikely(READ_ONCE(rdp
->gpwrap
))) {
1770 /* No grace period end, so just accelerate recent callbacks. */
1771 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1775 /* Advance callbacks. */
1776 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
);
1778 /* Remember that we saw this grace-period completion. */
1779 rdp
->completed
= rnp
->completed
;
1780 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1783 if (rdp
->gpnum
!= rnp
->gpnum
|| unlikely(READ_ONCE(rdp
->gpwrap
))) {
1785 * If the current grace period is waiting for this CPU,
1786 * set up to detect a quiescent state, otherwise don't
1787 * go looking for one.
1789 rdp
->gpnum
= rnp
->gpnum
;
1790 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1791 rdp
->cpu_no_qs
.b
.norm
= true;
1792 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
1793 rdp
->core_needs_qs
= !!(rnp
->qsmask
& rdp
->grpmask
);
1794 zero_cpu_stall_ticks(rdp
);
1795 WRITE_ONCE(rdp
->gpwrap
, false);
1800 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1802 unsigned long flags
;
1804 struct rcu_node
*rnp
;
1806 local_irq_save(flags
);
1808 if ((rdp
->gpnum
== READ_ONCE(rnp
->gpnum
) &&
1809 rdp
->completed
== READ_ONCE(rnp
->completed
) &&
1810 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1811 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1812 local_irq_restore(flags
);
1815 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1816 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1818 rcu_gp_kthread_wake(rsp
);
1821 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1824 !(rsp
->gpnum
% (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1825 schedule_timeout_uninterruptible(delay
);
1829 * Initialize a new grace period. Return false if no grace period required.
1831 static bool rcu_gp_init(struct rcu_state
*rsp
)
1833 unsigned long oldmask
;
1834 struct rcu_data
*rdp
;
1835 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1837 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1838 raw_spin_lock_irq_rcu_node(rnp
);
1839 if (!READ_ONCE(rsp
->gp_flags
)) {
1840 /* Spurious wakeup, tell caller to go back to sleep. */
1841 raw_spin_unlock_irq_rcu_node(rnp
);
1844 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1846 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1848 * Grace period already in progress, don't start another.
1849 * Not supposed to be able to happen.
1851 raw_spin_unlock_irq_rcu_node(rnp
);
1855 /* Advance to a new grace period and initialize state. */
1856 record_gp_stall_check_time(rsp
);
1857 /* Record GP times before starting GP, hence smp_store_release(). */
1858 smp_store_release(&rsp
->gpnum
, rsp
->gpnum
+ 1);
1859 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
1860 raw_spin_unlock_irq_rcu_node(rnp
);
1863 * Apply per-leaf buffered online and offline operations to the
1864 * rcu_node tree. Note that this new grace period need not wait
1865 * for subsequent online CPUs, and that quiescent-state forcing
1866 * will handle subsequent offline CPUs.
1868 rcu_for_each_leaf_node(rsp
, rnp
) {
1869 rcu_gp_slow(rsp
, gp_preinit_delay
);
1870 raw_spin_lock_irq_rcu_node(rnp
);
1871 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1872 !rnp
->wait_blkd_tasks
) {
1873 /* Nothing to do on this leaf rcu_node structure. */
1874 raw_spin_unlock_irq_rcu_node(rnp
);
1878 /* Record old state, apply changes to ->qsmaskinit field. */
1879 oldmask
= rnp
->qsmaskinit
;
1880 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1882 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1883 if (!oldmask
!= !rnp
->qsmaskinit
) {
1884 if (!oldmask
) /* First online CPU for this rcu_node. */
1885 rcu_init_new_rnp(rnp
);
1886 else if (rcu_preempt_has_tasks(rnp
)) /* blocked tasks */
1887 rnp
->wait_blkd_tasks
= true;
1888 else /* Last offline CPU and can propagate. */
1889 rcu_cleanup_dead_rnp(rnp
);
1893 * If all waited-on tasks from prior grace period are
1894 * done, and if all this rcu_node structure's CPUs are
1895 * still offline, propagate up the rcu_node tree and
1896 * clear ->wait_blkd_tasks. Otherwise, if one of this
1897 * rcu_node structure's CPUs has since come back online,
1898 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1899 * checks for this, so just call it unconditionally).
1901 if (rnp
->wait_blkd_tasks
&&
1902 (!rcu_preempt_has_tasks(rnp
) ||
1904 rnp
->wait_blkd_tasks
= false;
1905 rcu_cleanup_dead_rnp(rnp
);
1908 raw_spin_unlock_irq_rcu_node(rnp
);
1912 * Set the quiescent-state-needed bits in all the rcu_node
1913 * structures for all currently online CPUs in breadth-first order,
1914 * starting from the root rcu_node structure, relying on the layout
1915 * of the tree within the rsp->node[] array. Note that other CPUs
1916 * will access only the leaves of the hierarchy, thus seeing that no
1917 * grace period is in progress, at least until the corresponding
1918 * leaf node has been initialized. In addition, we have excluded
1919 * CPU-hotplug operations.
1921 * The grace period cannot complete until the initialization
1922 * process finishes, because this kthread handles both.
1924 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1925 rcu_gp_slow(rsp
, gp_init_delay
);
1926 raw_spin_lock_irq_rcu_node(rnp
);
1927 rdp
= this_cpu_ptr(rsp
->rda
);
1928 rcu_preempt_check_blocked_tasks(rnp
);
1929 rnp
->qsmask
= rnp
->qsmaskinit
;
1930 WRITE_ONCE(rnp
->gpnum
, rsp
->gpnum
);
1931 if (WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
))
1932 WRITE_ONCE(rnp
->completed
, rsp
->completed
);
1933 if (rnp
== rdp
->mynode
)
1934 (void)__note_gp_changes(rsp
, rnp
, rdp
);
1935 rcu_preempt_boost_start_gp(rnp
);
1936 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
1937 rnp
->level
, rnp
->grplo
,
1938 rnp
->grphi
, rnp
->qsmask
);
1939 raw_spin_unlock_irq_rcu_node(rnp
);
1940 cond_resched_rcu_qs();
1941 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1948 * Helper function for wait_event_interruptible_timeout() wakeup
1949 * at force-quiescent-state time.
1951 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
1953 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1955 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1956 *gfp
= READ_ONCE(rsp
->gp_flags
);
1957 if (*gfp
& RCU_GP_FLAG_FQS
)
1960 /* The current grace period has completed. */
1961 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
1968 * Do one round of quiescent-state forcing.
1970 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
1972 bool isidle
= false;
1974 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1976 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1979 /* Collect dyntick-idle snapshots. */
1980 if (is_sysidle_rcu_state(rsp
)) {
1982 maxj
= jiffies
- ULONG_MAX
/ 4;
1984 force_qs_rnp(rsp
, dyntick_save_progress_counter
,
1986 rcu_sysidle_report_gp(rsp
, isidle
, maxj
);
1988 /* Handle dyntick-idle and offline CPUs. */
1990 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
, &isidle
, &maxj
);
1992 /* Clear flag to prevent immediate re-entry. */
1993 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
1994 raw_spin_lock_irq_rcu_node(rnp
);
1995 WRITE_ONCE(rsp
->gp_flags
,
1996 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
1997 raw_spin_unlock_irq_rcu_node(rnp
);
2002 * Clean up after the old grace period.
2004 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2006 unsigned long gp_duration
;
2007 bool needgp
= false;
2009 struct rcu_data
*rdp
;
2010 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2011 struct swait_queue_head
*sq
;
2013 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2014 raw_spin_lock_irq_rcu_node(rnp
);
2015 gp_duration
= jiffies
- rsp
->gp_start
;
2016 if (gp_duration
> rsp
->gp_max
)
2017 rsp
->gp_max
= gp_duration
;
2020 * We know the grace period is complete, but to everyone else
2021 * it appears to still be ongoing. But it is also the case
2022 * that to everyone else it looks like there is nothing that
2023 * they can do to advance the grace period. It is therefore
2024 * safe for us to drop the lock in order to mark the grace
2025 * period as completed in all of the rcu_node structures.
2027 raw_spin_unlock_irq_rcu_node(rnp
);
2030 * Propagate new ->completed value to rcu_node structures so
2031 * that other CPUs don't have to wait until the start of the next
2032 * grace period to process their callbacks. This also avoids
2033 * some nasty RCU grace-period initialization races by forcing
2034 * the end of the current grace period to be completely recorded in
2035 * all of the rcu_node structures before the beginning of the next
2036 * grace period is recorded in any of the rcu_node structures.
2038 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2039 raw_spin_lock_irq_rcu_node(rnp
);
2040 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
2041 WARN_ON_ONCE(rnp
->qsmask
);
2042 WRITE_ONCE(rnp
->completed
, rsp
->gpnum
);
2043 rdp
= this_cpu_ptr(rsp
->rda
);
2044 if (rnp
== rdp
->mynode
)
2045 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2046 /* smp_mb() provided by prior unlock-lock pair. */
2047 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
2048 sq
= rcu_nocb_gp_get(rnp
);
2049 raw_spin_unlock_irq_rcu_node(rnp
);
2050 rcu_nocb_gp_cleanup(sq
);
2051 cond_resched_rcu_qs();
2052 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2053 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2055 rnp
= rcu_get_root(rsp
);
2056 raw_spin_lock_irq_rcu_node(rnp
); /* Order GP before ->completed update. */
2057 rcu_nocb_gp_set(rnp
, nocb
);
2059 /* Declare grace period done. */
2060 WRITE_ONCE(rsp
->completed
, rsp
->gpnum
);
2061 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
2062 rsp
->gp_state
= RCU_GP_IDLE
;
2063 rdp
= this_cpu_ptr(rsp
->rda
);
2064 /* Advance CBs to reduce false positives below. */
2065 needgp
= rcu_advance_cbs(rsp
, rnp
, rdp
) || needgp
;
2066 if (needgp
|| cpu_needs_another_gp(rsp
, rdp
)) {
2067 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2068 trace_rcu_grace_period(rsp
->name
,
2069 READ_ONCE(rsp
->gpnum
),
2072 raw_spin_unlock_irq_rcu_node(rnp
);
2076 * Body of kthread that handles grace periods.
2078 static int __noreturn
rcu_gp_kthread(void *arg
)
2084 struct rcu_state
*rsp
= arg
;
2085 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2087 rcu_bind_gp_kthread();
2090 /* Handle grace-period start. */
2092 trace_rcu_grace_period(rsp
->name
,
2093 READ_ONCE(rsp
->gpnum
),
2095 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2096 swait_event_interruptible(rsp
->gp_wq
,
2097 READ_ONCE(rsp
->gp_flags
) &
2099 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2100 /* Locking provides needed memory barrier. */
2101 if (rcu_gp_init(rsp
))
2103 cond_resched_rcu_qs();
2104 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2105 WARN_ON(signal_pending(current
));
2106 trace_rcu_grace_period(rsp
->name
,
2107 READ_ONCE(rsp
->gpnum
),
2111 /* Handle quiescent-state forcing. */
2112 first_gp_fqs
= true;
2113 j
= jiffies_till_first_fqs
;
2116 jiffies_till_first_fqs
= HZ
;
2121 rsp
->jiffies_force_qs
= jiffies
+ j
;
2122 trace_rcu_grace_period(rsp
->name
,
2123 READ_ONCE(rsp
->gpnum
),
2125 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2126 ret
= swait_event_interruptible_timeout(rsp
->gp_wq
,
2127 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2128 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2129 /* Locking provides needed memory barriers. */
2130 /* If grace period done, leave loop. */
2131 if (!READ_ONCE(rnp
->qsmask
) &&
2132 !rcu_preempt_blocked_readers_cgp(rnp
))
2134 /* If time for quiescent-state forcing, do it. */
2135 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2136 (gf
& RCU_GP_FLAG_FQS
)) {
2137 trace_rcu_grace_period(rsp
->name
,
2138 READ_ONCE(rsp
->gpnum
),
2140 rcu_gp_fqs(rsp
, first_gp_fqs
);
2141 first_gp_fqs
= false;
2142 trace_rcu_grace_period(rsp
->name
,
2143 READ_ONCE(rsp
->gpnum
),
2145 cond_resched_rcu_qs();
2146 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2148 /* Deal with stray signal. */
2149 cond_resched_rcu_qs();
2150 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2151 WARN_ON(signal_pending(current
));
2152 trace_rcu_grace_period(rsp
->name
,
2153 READ_ONCE(rsp
->gpnum
),
2156 j
= jiffies_till_next_fqs
;
2159 jiffies_till_next_fqs
= HZ
;
2162 jiffies_till_next_fqs
= 1;
2166 /* Handle grace-period end. */
2167 rsp
->gp_state
= RCU_GP_CLEANUP
;
2168 rcu_gp_cleanup(rsp
);
2169 rsp
->gp_state
= RCU_GP_CLEANED
;
2174 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2175 * in preparation for detecting the next grace period. The caller must hold
2176 * the root node's ->lock and hard irqs must be disabled.
2178 * Note that it is legal for a dying CPU (which is marked as offline) to
2179 * invoke this function. This can happen when the dying CPU reports its
2182 * Returns true if the grace-period kthread must be awakened.
2185 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2186 struct rcu_data
*rdp
)
2188 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
2190 * Either we have not yet spawned the grace-period
2191 * task, this CPU does not need another grace period,
2192 * or a grace period is already in progress.
2193 * Either way, don't start a new grace period.
2197 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2198 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gpnum
),
2202 * We can't do wakeups while holding the rnp->lock, as that
2203 * could cause possible deadlocks with the rq->lock. Defer
2204 * the wakeup to our caller.
2210 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2211 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2212 * is invoked indirectly from rcu_advance_cbs(), which would result in
2213 * endless recursion -- or would do so if it wasn't for the self-deadlock
2214 * that is encountered beforehand.
2216 * Returns true if the grace-period kthread needs to be awakened.
2218 static bool rcu_start_gp(struct rcu_state
*rsp
)
2220 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
2221 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2225 * If there is no grace period in progress right now, any
2226 * callbacks we have up to this point will be satisfied by the
2227 * next grace period. Also, advancing the callbacks reduces the
2228 * probability of false positives from cpu_needs_another_gp()
2229 * resulting in pointless grace periods. So, advance callbacks
2230 * then start the grace period!
2232 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
) || ret
;
2233 ret
= rcu_start_gp_advanced(rsp
, rnp
, rdp
) || ret
;
2238 * Report a full set of quiescent states to the specified rcu_state data
2239 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2240 * kthread if another grace period is required. Whether we wake
2241 * the grace-period kthread or it awakens itself for the next round
2242 * of quiescent-state forcing, that kthread will clean up after the
2243 * just-completed grace period. Note that the caller must hold rnp->lock,
2244 * which is released before return.
2246 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2247 __releases(rcu_get_root(rsp
)->lock
)
2249 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2250 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2251 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2252 swake_up(&rsp
->gp_wq
); /* Memory barrier implied by swake_up() path. */
2256 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2257 * Allows quiescent states for a group of CPUs to be reported at one go
2258 * to the specified rcu_node structure, though all the CPUs in the group
2259 * must be represented by the same rcu_node structure (which need not be a
2260 * leaf rcu_node structure, though it often will be). The gps parameter
2261 * is the grace-period snapshot, which means that the quiescent states
2262 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2263 * must be held upon entry, and it is released before return.
2266 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2267 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2268 __releases(rnp
->lock
)
2270 unsigned long oldmask
= 0;
2271 struct rcu_node
*rnp_c
;
2273 /* Walk up the rcu_node hierarchy. */
2275 if (!(rnp
->qsmask
& mask
) || rnp
->gpnum
!= gps
) {
2278 * Our bit has already been cleared, or the
2279 * relevant grace period is already over, so done.
2281 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2284 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2285 rnp
->qsmask
&= ~mask
;
2286 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
2287 mask
, rnp
->qsmask
, rnp
->level
,
2288 rnp
->grplo
, rnp
->grphi
,
2290 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2292 /* Other bits still set at this level, so done. */
2293 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2296 mask
= rnp
->grpmask
;
2297 if (rnp
->parent
== NULL
) {
2299 /* No more levels. Exit loop holding root lock. */
2303 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2306 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2307 oldmask
= rnp_c
->qsmask
;
2311 * Get here if we are the last CPU to pass through a quiescent
2312 * state for this grace period. Invoke rcu_report_qs_rsp()
2313 * to clean up and start the next grace period if one is needed.
2315 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2319 * Record a quiescent state for all tasks that were previously queued
2320 * on the specified rcu_node structure and that were blocking the current
2321 * RCU grace period. The caller must hold the specified rnp->lock with
2322 * irqs disabled, and this lock is released upon return, but irqs remain
2325 static void rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2326 struct rcu_node
*rnp
, unsigned long flags
)
2327 __releases(rnp
->lock
)
2331 struct rcu_node
*rnp_p
;
2333 if (rcu_state_p
== &rcu_sched_state
|| rsp
!= rcu_state_p
||
2334 rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2335 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2336 return; /* Still need more quiescent states! */
2339 rnp_p
= rnp
->parent
;
2340 if (rnp_p
== NULL
) {
2342 * Only one rcu_node structure in the tree, so don't
2343 * try to report up to its nonexistent parent!
2345 rcu_report_qs_rsp(rsp
, flags
);
2349 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2351 mask
= rnp
->grpmask
;
2352 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2353 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2354 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2358 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2359 * structure. This must be called from the specified CPU.
2362 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2364 unsigned long flags
;
2367 struct rcu_node
*rnp
;
2370 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2371 if ((rdp
->cpu_no_qs
.b
.norm
&&
2372 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) ||
2373 rdp
->gpnum
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
||
2377 * The grace period in which this quiescent state was
2378 * recorded has ended, so don't report it upwards.
2379 * We will instead need a new quiescent state that lies
2380 * within the current grace period.
2382 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2383 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
2384 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2387 mask
= rdp
->grpmask
;
2388 if ((rnp
->qsmask
& mask
) == 0) {
2389 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2391 rdp
->core_needs_qs
= false;
2394 * This GP can't end until cpu checks in, so all of our
2395 * callbacks can be processed during the next GP.
2397 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2399 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2400 /* ^^^ Released rnp->lock */
2402 rcu_gp_kthread_wake(rsp
);
2407 * Check to see if there is a new grace period of which this CPU
2408 * is not yet aware, and if so, set up local rcu_data state for it.
2409 * Otherwise, see if this CPU has just passed through its first
2410 * quiescent state for this grace period, and record that fact if so.
2413 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2415 /* Check for grace-period ends and beginnings. */
2416 note_gp_changes(rsp
, rdp
);
2419 * Does this CPU still need to do its part for current grace period?
2420 * If no, return and let the other CPUs do their part as well.
2422 if (!rdp
->core_needs_qs
)
2426 * Was there a quiescent state since the beginning of the grace
2427 * period? If no, then exit and wait for the next call.
2429 if (rdp
->cpu_no_qs
.b
.norm
&&
2430 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
))
2434 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2437 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2441 * Send the specified CPU's RCU callbacks to the orphanage. The
2442 * specified CPU must be offline, and the caller must hold the
2446 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
2447 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
2449 /* No-CBs CPUs do not have orphanable callbacks. */
2450 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) || rcu_is_nocb_cpu(rdp
->cpu
))
2454 * Orphan the callbacks. First adjust the counts. This is safe
2455 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2456 * cannot be running now. Thus no memory barrier is required.
2458 if (rdp
->nxtlist
!= NULL
) {
2459 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
2460 rsp
->qlen
+= rdp
->qlen
;
2461 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
2463 WRITE_ONCE(rdp
->qlen
, 0);
2467 * Next, move those callbacks still needing a grace period to
2468 * the orphanage, where some other CPU will pick them up.
2469 * Some of the callbacks might have gone partway through a grace
2470 * period, but that is too bad. They get to start over because we
2471 * cannot assume that grace periods are synchronized across CPUs.
2472 * We don't bother updating the ->nxttail[] array yet, instead
2473 * we just reset the whole thing later on.
2475 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
2476 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2477 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
2478 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2482 * Then move the ready-to-invoke callbacks to the orphanage,
2483 * where some other CPU will pick them up. These will not be
2484 * required to pass though another grace period: They are done.
2486 if (rdp
->nxtlist
!= NULL
) {
2487 *rsp
->orphan_donetail
= rdp
->nxtlist
;
2488 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2492 * Finally, initialize the rcu_data structure's list to empty and
2493 * disallow further callbacks on this CPU.
2495 init_callback_list(rdp
);
2496 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2500 * Adopt the RCU callbacks from the specified rcu_state structure's
2501 * orphanage. The caller must hold the ->orphan_lock.
2503 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
, unsigned long flags
)
2506 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2508 /* No-CBs CPUs are handled specially. */
2509 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2510 rcu_nocb_adopt_orphan_cbs(rsp
, rdp
, flags
))
2513 /* Do the accounting first. */
2514 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
2515 rdp
->qlen
+= rsp
->qlen
;
2516 rdp
->n_cbs_adopted
+= rsp
->qlen
;
2517 if (rsp
->qlen_lazy
!= rsp
->qlen
)
2518 rcu_idle_count_callbacks_posted();
2523 * We do not need a memory barrier here because the only way we
2524 * can get here if there is an rcu_barrier() in flight is if
2525 * we are the task doing the rcu_barrier().
2528 /* First adopt the ready-to-invoke callbacks. */
2529 if (rsp
->orphan_donelist
!= NULL
) {
2530 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2531 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
2532 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
2533 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2534 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
2535 rsp
->orphan_donelist
= NULL
;
2536 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2539 /* And then adopt the callbacks that still need a grace period. */
2540 if (rsp
->orphan_nxtlist
!= NULL
) {
2541 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
2542 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
2543 rsp
->orphan_nxtlist
= NULL
;
2544 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2549 * Trace the fact that this CPU is going offline.
2551 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2553 RCU_TRACE(unsigned long mask
);
2554 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
2555 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
2557 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2560 RCU_TRACE(mask
= rdp
->grpmask
);
2561 trace_rcu_grace_period(rsp
->name
,
2562 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
2567 * All CPUs for the specified rcu_node structure have gone offline,
2568 * and all tasks that were preempted within an RCU read-side critical
2569 * section while running on one of those CPUs have since exited their RCU
2570 * read-side critical section. Some other CPU is reporting this fact with
2571 * the specified rcu_node structure's ->lock held and interrupts disabled.
2572 * This function therefore goes up the tree of rcu_node structures,
2573 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2574 * the leaf rcu_node structure's ->qsmaskinit field has already been
2577 * This function does check that the specified rcu_node structure has
2578 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2579 * prematurely. That said, invoking it after the fact will cost you
2580 * a needless lock acquisition. So once it has done its work, don't
2583 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2586 struct rcu_node
*rnp
= rnp_leaf
;
2588 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2589 rnp
->qsmaskinit
|| rcu_preempt_has_tasks(rnp
))
2592 mask
= rnp
->grpmask
;
2596 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2597 rnp
->qsmaskinit
&= ~mask
;
2598 rnp
->qsmask
&= ~mask
;
2599 if (rnp
->qsmaskinit
) {
2600 raw_spin_unlock_rcu_node(rnp
);
2601 /* irqs remain disabled. */
2604 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2609 * The CPU has been completely removed, and some other CPU is reporting
2610 * this fact from process context. Do the remainder of the cleanup,
2611 * including orphaning the outgoing CPU's RCU callbacks, and also
2612 * adopting them. There can only be one CPU hotplug operation at a time,
2613 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2615 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2617 unsigned long flags
;
2618 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2619 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2621 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2624 /* Adjust any no-longer-needed kthreads. */
2625 rcu_boost_kthread_setaffinity(rnp
, -1);
2627 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2628 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
2629 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
2630 rcu_adopt_orphan_cbs(rsp
, flags
);
2631 raw_spin_unlock_irqrestore(&rsp
->orphan_lock
, flags
);
2633 WARN_ONCE(rdp
->qlen
!= 0 || rdp
->nxtlist
!= NULL
,
2634 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2635 cpu
, rdp
->qlen
, rdp
->nxtlist
);
2639 * Invoke any RCU callbacks that have made it to the end of their grace
2640 * period. Thottle as specified by rdp->blimit.
2642 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2644 unsigned long flags
;
2645 struct rcu_head
*next
, *list
, **tail
;
2646 long bl
, count
, count_lazy
;
2649 /* If no callbacks are ready, just return. */
2650 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
2651 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
2652 trace_rcu_batch_end(rsp
->name
, 0, !!READ_ONCE(rdp
->nxtlist
),
2653 need_resched(), is_idle_task(current
),
2654 rcu_is_callbacks_kthread());
2659 * Extract the list of ready callbacks, disabling to prevent
2660 * races with call_rcu() from interrupt handlers.
2662 local_irq_save(flags
);
2663 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2665 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
2666 list
= rdp
->nxtlist
;
2667 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2668 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2669 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2670 for (i
= RCU_NEXT_SIZE
- 1; i
>= 0; i
--)
2671 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2672 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2673 local_irq_restore(flags
);
2675 /* Invoke callbacks. */
2676 count
= count_lazy
= 0;
2680 debug_rcu_head_unqueue(list
);
2681 if (__rcu_reclaim(rsp
->name
, list
))
2684 /* Stop only if limit reached and CPU has something to do. */
2685 if (++count
>= bl
&&
2687 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2691 local_irq_save(flags
);
2692 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
2693 is_idle_task(current
),
2694 rcu_is_callbacks_kthread());
2696 /* Update count, and requeue any remaining callbacks. */
2698 *tail
= rdp
->nxtlist
;
2699 rdp
->nxtlist
= list
;
2700 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2701 if (&rdp
->nxtlist
== rdp
->nxttail
[i
])
2702 rdp
->nxttail
[i
] = tail
;
2706 smp_mb(); /* List handling before counting for rcu_barrier(). */
2707 rdp
->qlen_lazy
-= count_lazy
;
2708 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
- count
);
2709 rdp
->n_cbs_invoked
+= count
;
2711 /* Reinstate batch limit if we have worked down the excess. */
2712 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
2713 rdp
->blimit
= blimit
;
2715 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2716 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2717 rdp
->qlen_last_fqs_check
= 0;
2718 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2719 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
2720 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2721 WARN_ON_ONCE((rdp
->nxtlist
== NULL
) != (rdp
->qlen
== 0));
2723 local_irq_restore(flags
);
2725 /* Re-invoke RCU core processing if there are callbacks remaining. */
2726 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2731 * Check to see if this CPU is in a non-context-switch quiescent state
2732 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2733 * Also schedule RCU core processing.
2735 * This function must be called from hardirq context. It is normally
2736 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2737 * false, there is no point in invoking rcu_check_callbacks().
2739 void rcu_check_callbacks(int user
)
2741 trace_rcu_utilization(TPS("Start scheduler-tick"));
2742 increment_cpu_stall_ticks();
2743 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2746 * Get here if this CPU took its interrupt from user
2747 * mode or from the idle loop, and if this is not a
2748 * nested interrupt. In this case, the CPU is in
2749 * a quiescent state, so note it.
2751 * No memory barrier is required here because both
2752 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2753 * variables that other CPUs neither access nor modify,
2754 * at least not while the corresponding CPU is online.
2760 } else if (!in_softirq()) {
2763 * Get here if this CPU did not take its interrupt from
2764 * softirq, in other words, if it is not interrupting
2765 * a rcu_bh read-side critical section. This is an _bh
2766 * critical section, so note it.
2771 rcu_preempt_check_callbacks();
2775 rcu_note_voluntary_context_switch(current
);
2776 trace_rcu_utilization(TPS("End scheduler-tick"));
2780 * Scan the leaf rcu_node structures, processing dyntick state for any that
2781 * have not yet encountered a quiescent state, using the function specified.
2782 * Also initiate boosting for any threads blocked on the root rcu_node.
2784 * The caller must have suppressed start of new grace periods.
2786 static void force_qs_rnp(struct rcu_state
*rsp
,
2787 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
2788 unsigned long *maxj
),
2789 bool *isidle
, unsigned long *maxj
)
2793 unsigned long flags
;
2795 struct rcu_node
*rnp
;
2797 rcu_for_each_leaf_node(rsp
, rnp
) {
2798 cond_resched_rcu_qs();
2800 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2801 if (rnp
->qsmask
== 0) {
2802 if (rcu_state_p
== &rcu_sched_state
||
2803 rsp
!= rcu_state_p
||
2804 rcu_preempt_blocked_readers_cgp(rnp
)) {
2806 * No point in scanning bits because they
2807 * are all zero. But we might need to
2808 * priority-boost blocked readers.
2810 rcu_initiate_boost(rnp
, flags
);
2811 /* rcu_initiate_boost() releases rnp->lock */
2815 (rnp
->parent
->qsmask
& rnp
->grpmask
)) {
2817 * Race between grace-period
2818 * initialization and task exiting RCU
2819 * read-side critical section: Report.
2821 rcu_report_unblock_qs_rnp(rsp
, rnp
, flags
);
2822 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2828 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
2829 if ((rnp
->qsmask
& bit
) != 0) {
2830 if (f(per_cpu_ptr(rsp
->rda
, cpu
), isidle
, maxj
))
2835 /* Idle/offline CPUs, report (releases rnp->lock. */
2836 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2838 /* Nothing to do here, so just drop the lock. */
2839 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2845 * Force quiescent states on reluctant CPUs, and also detect which
2846 * CPUs are in dyntick-idle mode.
2848 static void force_quiescent_state(struct rcu_state
*rsp
)
2850 unsigned long flags
;
2852 struct rcu_node
*rnp
;
2853 struct rcu_node
*rnp_old
= NULL
;
2855 /* Funnel through hierarchy to reduce memory contention. */
2856 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2857 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2858 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2859 !raw_spin_trylock(&rnp
->fqslock
);
2860 if (rnp_old
!= NULL
)
2861 raw_spin_unlock(&rnp_old
->fqslock
);
2863 rsp
->n_force_qs_lh
++;
2868 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2870 /* Reached the root of the rcu_node tree, acquire lock. */
2871 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2872 raw_spin_unlock(&rnp_old
->fqslock
);
2873 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2874 rsp
->n_force_qs_lh
++;
2875 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2876 return; /* Someone beat us to it. */
2878 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2879 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2880 swake_up(&rsp
->gp_wq
); /* Memory barrier implied by swake_up() path. */
2884 * This does the RCU core processing work for the specified rcu_state
2885 * and rcu_data structures. This may be called only from the CPU to
2886 * whom the rdp belongs.
2889 __rcu_process_callbacks(struct rcu_state
*rsp
)
2891 unsigned long flags
;
2893 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2895 WARN_ON_ONCE(rdp
->beenonline
== 0);
2897 /* Update RCU state based on any recent quiescent states. */
2898 rcu_check_quiescent_state(rsp
, rdp
);
2900 /* Does this CPU require a not-yet-started grace period? */
2901 local_irq_save(flags
);
2902 if (cpu_needs_another_gp(rsp
, rdp
)) {
2903 raw_spin_lock_rcu_node(rcu_get_root(rsp
)); /* irqs disabled. */
2904 needwake
= rcu_start_gp(rsp
);
2905 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2907 rcu_gp_kthread_wake(rsp
);
2909 local_irq_restore(flags
);
2912 /* If there are callbacks ready, invoke them. */
2913 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2914 invoke_rcu_callbacks(rsp
, rdp
);
2916 /* Do any needed deferred wakeups of rcuo kthreads. */
2917 do_nocb_deferred_wakeup(rdp
);
2921 * Do RCU core processing for the current CPU.
2923 static void rcu_process_callbacks(struct softirq_action
*unused
)
2925 struct rcu_state
*rsp
;
2927 if (cpu_is_offline(smp_processor_id()))
2929 trace_rcu_utilization(TPS("Start RCU core"));
2930 for_each_rcu_flavor(rsp
)
2931 __rcu_process_callbacks(rsp
);
2932 trace_rcu_utilization(TPS("End RCU core"));
2936 * Schedule RCU callback invocation. If the specified type of RCU
2937 * does not support RCU priority boosting, just do a direct call,
2938 * otherwise wake up the per-CPU kernel kthread. Note that because we
2939 * are running on the current CPU with softirqs disabled, the
2940 * rcu_cpu_kthread_task cannot disappear out from under us.
2942 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2944 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
2946 if (likely(!rsp
->boost
)) {
2947 rcu_do_batch(rsp
, rdp
);
2950 invoke_rcu_callbacks_kthread();
2953 static void invoke_rcu_core(void)
2955 if (cpu_online(smp_processor_id()))
2956 raise_softirq(RCU_SOFTIRQ
);
2960 * Handle any core-RCU processing required by a call_rcu() invocation.
2962 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
2963 struct rcu_head
*head
, unsigned long flags
)
2968 * If called from an extended quiescent state, invoke the RCU
2969 * core in order to force a re-evaluation of RCU's idleness.
2971 if (!rcu_is_watching())
2974 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2975 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
2979 * Force the grace period if too many callbacks or too long waiting.
2980 * Enforce hysteresis, and don't invoke force_quiescent_state()
2981 * if some other CPU has recently done so. Also, don't bother
2982 * invoking force_quiescent_state() if the newly enqueued callback
2983 * is the only one waiting for a grace period to complete.
2985 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
2987 /* Are we ignoring a completed grace period? */
2988 note_gp_changes(rsp
, rdp
);
2990 /* Start a new grace period if one not already started. */
2991 if (!rcu_gp_in_progress(rsp
)) {
2992 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
2994 raw_spin_lock_rcu_node(rnp_root
);
2995 needwake
= rcu_start_gp(rsp
);
2996 raw_spin_unlock_rcu_node(rnp_root
);
2998 rcu_gp_kthread_wake(rsp
);
3000 /* Give the grace period a kick. */
3001 rdp
->blimit
= LONG_MAX
;
3002 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
3003 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
3004 force_quiescent_state(rsp
);
3005 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3006 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
3012 * RCU callback function to leak a callback.
3014 static void rcu_leak_callback(struct rcu_head
*rhp
)
3019 * Helper function for call_rcu() and friends. The cpu argument will
3020 * normally be -1, indicating "currently running CPU". It may specify
3021 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3022 * is expected to specify a CPU.
3025 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
3026 struct rcu_state
*rsp
, int cpu
, bool lazy
)
3028 unsigned long flags
;
3029 struct rcu_data
*rdp
;
3031 WARN_ON_ONCE((unsigned long)head
& 0x1); /* Misaligned rcu_head! */
3032 if (debug_rcu_head_queue(head
)) {
3033 /* Probable double call_rcu(), so leak the callback. */
3034 WRITE_ONCE(head
->func
, rcu_leak_callback
);
3035 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3042 * Opportunistically note grace-period endings and beginnings.
3043 * Note that we might see a beginning right after we see an
3044 * end, but never vice versa, since this CPU has to pass through
3045 * a quiescent state betweentimes.
3047 local_irq_save(flags
);
3048 rdp
= this_cpu_ptr(rsp
->rda
);
3050 /* Add the callback to our list. */
3051 if (unlikely(rdp
->nxttail
[RCU_NEXT_TAIL
] == NULL
) || cpu
!= -1) {
3055 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3056 if (likely(rdp
->mynode
)) {
3057 /* Post-boot, so this should be for a no-CBs CPU. */
3058 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3059 WARN_ON_ONCE(offline
);
3060 /* Offline CPU, _call_rcu() illegal, leak callback. */
3061 local_irq_restore(flags
);
3065 * Very early boot, before rcu_init(). Initialize if needed
3066 * and then drop through to queue the callback.
3069 WARN_ON_ONCE(!rcu_is_watching());
3070 if (!likely(rdp
->nxtlist
))
3071 init_default_callback_list(rdp
);
3073 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
+ 1);
3077 rcu_idle_count_callbacks_posted();
3078 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3079 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
3080 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
3082 if (__is_kfree_rcu_offset((unsigned long)func
))
3083 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3084 rdp
->qlen_lazy
, rdp
->qlen
);
3086 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
3088 /* Go handle any RCU core processing required. */
3089 __call_rcu_core(rsp
, rdp
, head
, flags
);
3090 local_irq_restore(flags
);
3094 * Queue an RCU-sched callback for invocation after a grace period.
3096 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3098 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3100 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3103 * Queue an RCU callback for invocation after a quicker grace period.
3105 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3107 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3109 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3112 * Queue an RCU callback for lazy invocation after a grace period.
3113 * This will likely be later named something like "call_rcu_lazy()",
3114 * but this change will require some way of tagging the lazy RCU
3115 * callbacks in the list of pending callbacks. Until then, this
3116 * function may only be called from __kfree_rcu().
3118 void kfree_call_rcu(struct rcu_head
*head
,
3119 rcu_callback_t func
)
3121 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3123 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3126 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3127 * any blocking grace-period wait automatically implies a grace period
3128 * if there is only one CPU online at any point time during execution
3129 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3130 * occasionally incorrectly indicate that there are multiple CPUs online
3131 * when there was in fact only one the whole time, as this just adds
3132 * some overhead: RCU still operates correctly.
3134 static inline int rcu_blocking_is_gp(void)
3138 might_sleep(); /* Check for RCU read-side critical section. */
3140 ret
= num_online_cpus() <= 1;
3146 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3148 * Control will return to the caller some time after a full rcu-sched
3149 * grace period has elapsed, in other words after all currently executing
3150 * rcu-sched read-side critical sections have completed. These read-side
3151 * critical sections are delimited by rcu_read_lock_sched() and
3152 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3153 * local_irq_disable(), and so on may be used in place of
3154 * rcu_read_lock_sched().
3156 * This means that all preempt_disable code sequences, including NMI and
3157 * non-threaded hardware-interrupt handlers, in progress on entry will
3158 * have completed before this primitive returns. However, this does not
3159 * guarantee that softirq handlers will have completed, since in some
3160 * kernels, these handlers can run in process context, and can block.
3162 * Note that this guarantee implies further memory-ordering guarantees.
3163 * On systems with more than one CPU, when synchronize_sched() returns,
3164 * each CPU is guaranteed to have executed a full memory barrier since the
3165 * end of its last RCU-sched read-side critical section whose beginning
3166 * preceded the call to synchronize_sched(). In addition, each CPU having
3167 * an RCU read-side critical section that extends beyond the return from
3168 * synchronize_sched() is guaranteed to have executed a full memory barrier
3169 * after the beginning of synchronize_sched() and before the beginning of
3170 * that RCU read-side critical section. Note that these guarantees include
3171 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3172 * that are executing in the kernel.
3174 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3175 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3176 * to have executed a full memory barrier during the execution of
3177 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3178 * again only if the system has more than one CPU).
3180 * This primitive provides the guarantees made by the (now removed)
3181 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3182 * guarantees that rcu_read_lock() sections will have completed.
3183 * In "classic RCU", these two guarantees happen to be one and
3184 * the same, but can differ in realtime RCU implementations.
3186 void synchronize_sched(void)
3188 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3189 lock_is_held(&rcu_lock_map
) ||
3190 lock_is_held(&rcu_sched_lock_map
),
3191 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3192 if (rcu_blocking_is_gp())
3194 if (rcu_gp_is_expedited())
3195 synchronize_sched_expedited();
3197 wait_rcu_gp(call_rcu_sched
);
3199 EXPORT_SYMBOL_GPL(synchronize_sched
);
3202 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3204 * Control will return to the caller some time after a full rcu_bh grace
3205 * period has elapsed, in other words after all currently executing rcu_bh
3206 * read-side critical sections have completed. RCU read-side critical
3207 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3208 * and may be nested.
3210 * See the description of synchronize_sched() for more detailed information
3211 * on memory ordering guarantees.
3213 void synchronize_rcu_bh(void)
3215 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3216 lock_is_held(&rcu_lock_map
) ||
3217 lock_is_held(&rcu_sched_lock_map
),
3218 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3219 if (rcu_blocking_is_gp())
3221 if (rcu_gp_is_expedited())
3222 synchronize_rcu_bh_expedited();
3224 wait_rcu_gp(call_rcu_bh
);
3226 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3229 * get_state_synchronize_rcu - Snapshot current RCU state
3231 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3232 * to determine whether or not a full grace period has elapsed in the
3235 unsigned long get_state_synchronize_rcu(void)
3238 * Any prior manipulation of RCU-protected data must happen
3239 * before the load from ->gpnum.
3244 * Make sure this load happens before the purportedly
3245 * time-consuming work between get_state_synchronize_rcu()
3246 * and cond_synchronize_rcu().
3248 return smp_load_acquire(&rcu_state_p
->gpnum
);
3250 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3253 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3255 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3257 * If a full RCU grace period has elapsed since the earlier call to
3258 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3259 * synchronize_rcu() to wait for a full grace period.
3261 * Yes, this function does not take counter wrap into account. But
3262 * counter wrap is harmless. If the counter wraps, we have waited for
3263 * more than 2 billion grace periods (and way more on a 64-bit system!),
3264 * so waiting for one additional grace period should be just fine.
3266 void cond_synchronize_rcu(unsigned long oldstate
)
3268 unsigned long newstate
;
3271 * Ensure that this load happens before any RCU-destructive
3272 * actions the caller might carry out after we return.
3274 newstate
= smp_load_acquire(&rcu_state_p
->completed
);
3275 if (ULONG_CMP_GE(oldstate
, newstate
))
3278 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3281 * get_state_synchronize_sched - Snapshot current RCU-sched state
3283 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3284 * to determine whether or not a full grace period has elapsed in the
3287 unsigned long get_state_synchronize_sched(void)
3290 * Any prior manipulation of RCU-protected data must happen
3291 * before the load from ->gpnum.
3296 * Make sure this load happens before the purportedly
3297 * time-consuming work between get_state_synchronize_sched()
3298 * and cond_synchronize_sched().
3300 return smp_load_acquire(&rcu_sched_state
.gpnum
);
3302 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3305 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3307 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3309 * If a full RCU-sched grace period has elapsed since the earlier call to
3310 * get_state_synchronize_sched(), just return. Otherwise, invoke
3311 * synchronize_sched() to wait for a full grace period.
3313 * Yes, this function does not take counter wrap into account. But
3314 * counter wrap is harmless. If the counter wraps, we have waited for
3315 * more than 2 billion grace periods (and way more on a 64-bit system!),
3316 * so waiting for one additional grace period should be just fine.
3318 void cond_synchronize_sched(unsigned long oldstate
)
3320 unsigned long newstate
;
3323 * Ensure that this load happens before any RCU-destructive
3324 * actions the caller might carry out after we return.
3326 newstate
= smp_load_acquire(&rcu_sched_state
.completed
);
3327 if (ULONG_CMP_GE(oldstate
, newstate
))
3328 synchronize_sched();
3330 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3332 /* Adjust sequence number for start of update-side operation. */
3333 static void rcu_seq_start(unsigned long *sp
)
3335 WRITE_ONCE(*sp
, *sp
+ 1);
3336 smp_mb(); /* Ensure update-side operation after counter increment. */
3337 WARN_ON_ONCE(!(*sp
& 0x1));
3340 /* Adjust sequence number for end of update-side operation. */
3341 static void rcu_seq_end(unsigned long *sp
)
3343 smp_mb(); /* Ensure update-side operation before counter increment. */
3344 WRITE_ONCE(*sp
, *sp
+ 1);
3345 WARN_ON_ONCE(*sp
& 0x1);
3348 /* Take a snapshot of the update side's sequence number. */
3349 static unsigned long rcu_seq_snap(unsigned long *sp
)
3353 s
= (READ_ONCE(*sp
) + 3) & ~0x1;
3354 smp_mb(); /* Above access must not bleed into critical section. */
3359 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3360 * full update-side operation has occurred.
3362 static bool rcu_seq_done(unsigned long *sp
, unsigned long s
)
3364 return ULONG_CMP_GE(READ_ONCE(*sp
), s
);
3367 /* Wrapper functions for expedited grace periods. */
3368 static void rcu_exp_gp_seq_start(struct rcu_state
*rsp
)
3370 rcu_seq_start(&rsp
->expedited_sequence
);
3372 static void rcu_exp_gp_seq_end(struct rcu_state
*rsp
)
3374 rcu_seq_end(&rsp
->expedited_sequence
);
3375 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3377 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state
*rsp
)
3379 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3380 return rcu_seq_snap(&rsp
->expedited_sequence
);
3382 static bool rcu_exp_gp_seq_done(struct rcu_state
*rsp
, unsigned long s
)
3384 return rcu_seq_done(&rsp
->expedited_sequence
, s
);
3388 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3389 * recent CPU-online activity. Note that these masks are not cleared
3390 * when CPUs go offline, so they reflect the union of all CPUs that have
3391 * ever been online. This means that this function normally takes its
3392 * no-work-to-do fastpath.
3394 static void sync_exp_reset_tree_hotplug(struct rcu_state
*rsp
)
3397 unsigned long flags
;
3399 unsigned long oldmask
;
3400 int ncpus
= READ_ONCE(rsp
->ncpus
);
3401 struct rcu_node
*rnp
;
3402 struct rcu_node
*rnp_up
;
3404 /* If no new CPUs onlined since last time, nothing to do. */
3405 if (likely(ncpus
== rsp
->ncpus_snap
))
3407 rsp
->ncpus_snap
= ncpus
;
3410 * Each pass through the following loop propagates newly onlined
3411 * CPUs for the current rcu_node structure up the rcu_node tree.
3413 rcu_for_each_leaf_node(rsp
, rnp
) {
3414 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3415 if (rnp
->expmaskinit
== rnp
->expmaskinitnext
) {
3416 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3417 continue; /* No new CPUs, nothing to do. */
3420 /* Update this node's mask, track old value for propagation. */
3421 oldmask
= rnp
->expmaskinit
;
3422 rnp
->expmaskinit
= rnp
->expmaskinitnext
;
3423 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3425 /* If was already nonzero, nothing to propagate. */
3429 /* Propagate the new CPU up the tree. */
3430 mask
= rnp
->grpmask
;
3431 rnp_up
= rnp
->parent
;
3434 raw_spin_lock_irqsave_rcu_node(rnp_up
, flags
);
3435 if (rnp_up
->expmaskinit
)
3437 rnp_up
->expmaskinit
|= mask
;
3438 raw_spin_unlock_irqrestore_rcu_node(rnp_up
, flags
);
3441 mask
= rnp_up
->grpmask
;
3442 rnp_up
= rnp_up
->parent
;
3448 * Reset the ->expmask values in the rcu_node tree in preparation for
3449 * a new expedited grace period.
3451 static void __maybe_unused
sync_exp_reset_tree(struct rcu_state
*rsp
)
3453 unsigned long flags
;
3454 struct rcu_node
*rnp
;
3456 sync_exp_reset_tree_hotplug(rsp
);
3457 rcu_for_each_node_breadth_first(rsp
, rnp
) {
3458 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3459 WARN_ON_ONCE(rnp
->expmask
);
3460 rnp
->expmask
= rnp
->expmaskinit
;
3461 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3466 * Return non-zero if there is no RCU expedited grace period in progress
3467 * for the specified rcu_node structure, in other words, if all CPUs and
3468 * tasks covered by the specified rcu_node structure have done their bit
3469 * for the current expedited grace period. Works only for preemptible
3470 * RCU -- other RCU implementation use other means.
3472 * Caller must hold the root rcu_node's exp_funnel_mutex.
3474 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
3476 return rnp
->exp_tasks
== NULL
&&
3477 READ_ONCE(rnp
->expmask
) == 0;
3481 * Report the exit from RCU read-side critical section for the last task
3482 * that queued itself during or before the current expedited preemptible-RCU
3483 * grace period. This event is reported either to the rcu_node structure on
3484 * which the task was queued or to one of that rcu_node structure's ancestors,
3485 * recursively up the tree. (Calm down, calm down, we do the recursion
3488 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3489 * specified rcu_node structure's ->lock.
3491 static void __rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
3492 bool wake
, unsigned long flags
)
3493 __releases(rnp
->lock
)
3498 if (!sync_rcu_preempt_exp_done(rnp
)) {
3500 rcu_initiate_boost(rnp
, flags
);
3502 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3505 if (rnp
->parent
== NULL
) {
3506 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3508 smp_mb(); /* EGP done before wake_up(). */
3509 swake_up(&rsp
->expedited_wq
);
3513 mask
= rnp
->grpmask
;
3514 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled */
3516 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled */
3517 WARN_ON_ONCE(!(rnp
->expmask
& mask
));
3518 rnp
->expmask
&= ~mask
;
3523 * Report expedited quiescent state for specified node. This is a
3524 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3526 * Caller must hold the root rcu_node's exp_funnel_mutex.
3528 static void __maybe_unused
rcu_report_exp_rnp(struct rcu_state
*rsp
,
3529 struct rcu_node
*rnp
, bool wake
)
3531 unsigned long flags
;
3533 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3534 __rcu_report_exp_rnp(rsp
, rnp
, wake
, flags
);
3538 * Report expedited quiescent state for multiple CPUs, all covered by the
3539 * specified leaf rcu_node structure. Caller must hold the root
3540 * rcu_node's exp_funnel_mutex.
3542 static void rcu_report_exp_cpu_mult(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
3543 unsigned long mask
, bool wake
)
3545 unsigned long flags
;
3547 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3548 if (!(rnp
->expmask
& mask
)) {
3549 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3552 rnp
->expmask
&= ~mask
;
3553 __rcu_report_exp_rnp(rsp
, rnp
, wake
, flags
); /* Releases rnp->lock. */
3557 * Report expedited quiescent state for specified rcu_data (CPU).
3558 * Caller must hold the root rcu_node's exp_funnel_mutex.
3560 static void rcu_report_exp_rdp(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
3563 rcu_report_exp_cpu_mult(rsp
, rdp
->mynode
, rdp
->grpmask
, wake
);
3566 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3567 static bool sync_exp_work_done(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
3568 struct rcu_data
*rdp
,
3569 atomic_long_t
*stat
, unsigned long s
)
3571 if (rcu_exp_gp_seq_done(rsp
, s
)) {
3573 mutex_unlock(&rnp
->exp_funnel_mutex
);
3575 mutex_unlock(&rdp
->exp_funnel_mutex
);
3576 /* Ensure test happens before caller kfree(). */
3577 smp_mb__before_atomic(); /* ^^^ */
3578 atomic_long_inc(stat
);
3585 * Funnel-lock acquisition for expedited grace periods. Returns a
3586 * pointer to the root rcu_node structure, or NULL if some other
3587 * task did the expedited grace period for us.
3589 static struct rcu_node
*exp_funnel_lock(struct rcu_state
*rsp
, unsigned long s
)
3591 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, raw_smp_processor_id());
3592 struct rcu_node
*rnp0
;
3593 struct rcu_node
*rnp1
= NULL
;
3596 * First try directly acquiring the root lock in order to reduce
3597 * latency in the common case where expedited grace periods are
3598 * rare. We check mutex_is_locked() to avoid pathological levels of
3599 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3601 rnp0
= rcu_get_root(rsp
);
3602 if (!mutex_is_locked(&rnp0
->exp_funnel_mutex
)) {
3603 if (mutex_trylock(&rnp0
->exp_funnel_mutex
)) {
3604 if (sync_exp_work_done(rsp
, rnp0
, NULL
,
3605 &rdp
->expedited_workdone0
, s
))
3612 * Each pass through the following loop works its way
3613 * up the rcu_node tree, returning if others have done the
3614 * work or otherwise falls through holding the root rnp's
3615 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3616 * can be inexact, as it is just promoting locality and is not
3617 * strictly needed for correctness.
3619 if (sync_exp_work_done(rsp
, NULL
, NULL
, &rdp
->expedited_workdone1
, s
))
3621 mutex_lock(&rdp
->exp_funnel_mutex
);
3623 for (; rnp0
!= NULL
; rnp0
= rnp0
->parent
) {
3624 if (sync_exp_work_done(rsp
, rnp1
, rdp
,
3625 &rdp
->expedited_workdone2
, s
))
3627 mutex_lock(&rnp0
->exp_funnel_mutex
);
3629 mutex_unlock(&rnp1
->exp_funnel_mutex
);
3631 mutex_unlock(&rdp
->exp_funnel_mutex
);
3634 if (sync_exp_work_done(rsp
, rnp1
, rdp
,
3635 &rdp
->expedited_workdone3
, s
))
3640 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3641 static void sync_sched_exp_handler(void *data
)
3643 struct rcu_data
*rdp
;
3644 struct rcu_node
*rnp
;
3645 struct rcu_state
*rsp
= data
;
3647 rdp
= this_cpu_ptr(rsp
->rda
);
3649 if (!(READ_ONCE(rnp
->expmask
) & rdp
->grpmask
) ||
3650 __this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
3652 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, true);
3653 resched_cpu(smp_processor_id());
3656 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3657 static void sync_sched_exp_online_cleanup(int cpu
)
3659 struct rcu_data
*rdp
;
3661 struct rcu_node
*rnp
;
3662 struct rcu_state
*rsp
= &rcu_sched_state
;
3664 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3666 if (!(READ_ONCE(rnp
->expmask
) & rdp
->grpmask
))
3668 ret
= smp_call_function_single(cpu
, sync_sched_exp_handler
, rsp
, 0);
3673 * Select the nodes that the upcoming expedited grace period needs
3676 static void sync_rcu_exp_select_cpus(struct rcu_state
*rsp
,
3677 smp_call_func_t func
)
3680 unsigned long flags
;
3682 unsigned long mask_ofl_test
;
3683 unsigned long mask_ofl_ipi
;
3685 struct rcu_node
*rnp
;
3687 sync_exp_reset_tree(rsp
);
3688 rcu_for_each_leaf_node(rsp
, rnp
) {
3689 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3691 /* Each pass checks a CPU for identity, offline, and idle. */
3693 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++) {
3694 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3695 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
3697 if (raw_smp_processor_id() == cpu
||
3698 !(atomic_add_return(0, &rdtp
->dynticks
) & 0x1))
3699 mask_ofl_test
|= rdp
->grpmask
;
3701 mask_ofl_ipi
= rnp
->expmask
& ~mask_ofl_test
;
3704 * Need to wait for any blocked tasks as well. Note that
3705 * additional blocking tasks will also block the expedited
3706 * GP until such time as the ->expmask bits are cleared.
3708 if (rcu_preempt_has_tasks(rnp
))
3709 rnp
->exp_tasks
= rnp
->blkd_tasks
.next
;
3710 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3712 /* IPI the remaining CPUs for expedited quiescent state. */
3714 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
<<= 1) {
3715 if (!(mask_ofl_ipi
& mask
))
3718 ret
= smp_call_function_single(cpu
, func
, rsp
, 0);
3720 mask_ofl_ipi
&= ~mask
;
3723 /* Failed, raced with offline. */
3724 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3725 if (cpu_online(cpu
) &&
3726 (rnp
->expmask
& mask
)) {
3727 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3728 schedule_timeout_uninterruptible(1);
3729 if (cpu_online(cpu
) &&
3730 (rnp
->expmask
& mask
))
3732 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3734 if (!(rnp
->expmask
& mask
))
3735 mask_ofl_ipi
&= ~mask
;
3736 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3738 /* Report quiescent states for those that went offline. */
3739 mask_ofl_test
|= mask_ofl_ipi
;
3741 rcu_report_exp_cpu_mult(rsp
, rnp
, mask_ofl_test
, false);
3745 static void synchronize_sched_expedited_wait(struct rcu_state
*rsp
)
3748 unsigned long jiffies_stall
;
3749 unsigned long jiffies_start
;
3752 struct rcu_node
*rnp
;
3753 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3756 jiffies_stall
= rcu_jiffies_till_stall_check();
3757 jiffies_start
= jiffies
;
3760 ret
= swait_event_timeout(
3762 sync_rcu_preempt_exp_done(rnp_root
),
3764 if (ret
> 0 || sync_rcu_preempt_exp_done(rnp_root
))
3767 /* Hit a signal, disable CPU stall warnings. */
3768 swait_event(rsp
->expedited_wq
,
3769 sync_rcu_preempt_exp_done(rnp_root
));
3772 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3775 rcu_for_each_leaf_node(rsp
, rnp
) {
3776 ndetected
= rcu_print_task_exp_stall(rnp
);
3778 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
<<= 1) {
3779 struct rcu_data
*rdp
;
3781 if (!(rnp
->expmask
& mask
))
3784 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3785 pr_cont(" %d-%c%c%c", cpu
,
3786 "O."[cpu_online(cpu
)],
3787 "o."[!!(rdp
->grpmask
& rnp
->expmaskinit
)],
3788 "N."[!!(rdp
->grpmask
& rnp
->expmaskinitnext
)]);
3792 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3793 jiffies
- jiffies_start
, rsp
->expedited_sequence
,
3794 rnp_root
->expmask
, ".T"[!!rnp_root
->exp_tasks
]);
3796 pr_err("blocking rcu_node structures:");
3797 rcu_for_each_node_breadth_first(rsp
, rnp
) {
3798 if (rnp
== rnp_root
)
3799 continue; /* printed unconditionally */
3800 if (sync_rcu_preempt_exp_done(rnp
))
3802 pr_cont(" l=%u:%d-%d:%#lx/%c",
3803 rnp
->level
, rnp
->grplo
, rnp
->grphi
,
3805 ".T"[!!rnp
->exp_tasks
]);
3809 rcu_for_each_leaf_node(rsp
, rnp
) {
3811 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
<<= 1) {
3812 if (!(rnp
->expmask
& mask
))
3817 jiffies_stall
= 3 * rcu_jiffies_till_stall_check() + 3;
3822 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3824 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3825 * approach to force the grace period to end quickly. This consumes
3826 * significant time on all CPUs and is unfriendly to real-time workloads,
3827 * so is thus not recommended for any sort of common-case code. In fact,
3828 * if you are using synchronize_sched_expedited() in a loop, please
3829 * restructure your code to batch your updates, and then use a single
3830 * synchronize_sched() instead.
3832 * This implementation can be thought of as an application of sequence
3833 * locking to expedited grace periods, but using the sequence counter to
3834 * determine when someone else has already done the work instead of for
3837 void synchronize_sched_expedited(void)
3840 struct rcu_node
*rnp
;
3841 struct rcu_state
*rsp
= &rcu_sched_state
;
3843 /* If only one CPU, this is automatically a grace period. */
3844 if (rcu_blocking_is_gp())
3847 /* If expedited grace periods are prohibited, fall back to normal. */
3848 if (rcu_gp_is_normal()) {
3849 wait_rcu_gp(call_rcu_sched
);
3853 /* Take a snapshot of the sequence number. */
3854 s
= rcu_exp_gp_seq_snap(rsp
);
3856 rnp
= exp_funnel_lock(rsp
, s
);
3858 return; /* Someone else did our work for us. */
3860 rcu_exp_gp_seq_start(rsp
);
3861 sync_rcu_exp_select_cpus(rsp
, sync_sched_exp_handler
);
3862 synchronize_sched_expedited_wait(rsp
);
3864 rcu_exp_gp_seq_end(rsp
);
3865 mutex_unlock(&rnp
->exp_funnel_mutex
);
3867 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
3870 * Check to see if there is any immediate RCU-related work to be done
3871 * by the current CPU, for the specified type of RCU, returning 1 if so.
3872 * The checks are in order of increasing expense: checks that can be
3873 * carried out against CPU-local state are performed first. However,
3874 * we must check for CPU stalls first, else we might not get a chance.
3876 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3878 struct rcu_node
*rnp
= rdp
->mynode
;
3880 rdp
->n_rcu_pending
++;
3882 /* Check for CPU stalls, if enabled. */
3883 check_cpu_stall(rsp
, rdp
);
3885 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3886 if (rcu_nohz_full_cpu(rsp
))
3889 /* Is the RCU core waiting for a quiescent state from this CPU? */
3890 if (rcu_scheduler_fully_active
&&
3891 rdp
->core_needs_qs
&& rdp
->cpu_no_qs
.b
.norm
&&
3892 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) {
3893 rdp
->n_rp_core_needs_qs
++;
3894 } else if (rdp
->core_needs_qs
&&
3895 (!rdp
->cpu_no_qs
.b
.norm
||
3896 rdp
->rcu_qs_ctr_snap
!= __this_cpu_read(rcu_qs_ctr
))) {
3897 rdp
->n_rp_report_qs
++;
3901 /* Does this CPU have callbacks ready to invoke? */
3902 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
3903 rdp
->n_rp_cb_ready
++;
3907 /* Has RCU gone idle with this CPU needing another grace period? */
3908 if (cpu_needs_another_gp(rsp
, rdp
)) {
3909 rdp
->n_rp_cpu_needs_gp
++;
3913 /* Has another RCU grace period completed? */
3914 if (READ_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
3915 rdp
->n_rp_gp_completed
++;
3919 /* Has a new RCU grace period started? */
3920 if (READ_ONCE(rnp
->gpnum
) != rdp
->gpnum
||
3921 unlikely(READ_ONCE(rdp
->gpwrap
))) { /* outside lock */
3922 rdp
->n_rp_gp_started
++;
3926 /* Does this CPU need a deferred NOCB wakeup? */
3927 if (rcu_nocb_need_deferred_wakeup(rdp
)) {
3928 rdp
->n_rp_nocb_defer_wakeup
++;
3933 rdp
->n_rp_need_nothing
++;
3938 * Check to see if there is any immediate RCU-related work to be done
3939 * by the current CPU, returning 1 if so. This function is part of the
3940 * RCU implementation; it is -not- an exported member of the RCU API.
3942 static int rcu_pending(void)
3944 struct rcu_state
*rsp
;
3946 for_each_rcu_flavor(rsp
)
3947 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3953 * Return true if the specified CPU has any callback. If all_lazy is
3954 * non-NULL, store an indication of whether all callbacks are lazy.
3955 * (If there are no callbacks, all of them are deemed to be lazy.)
3957 static bool __maybe_unused
rcu_cpu_has_callbacks(bool *all_lazy
)
3961 struct rcu_data
*rdp
;
3962 struct rcu_state
*rsp
;
3964 for_each_rcu_flavor(rsp
) {
3965 rdp
= this_cpu_ptr(rsp
->rda
);
3969 if (rdp
->qlen
!= rdp
->qlen_lazy
|| !all_lazy
) {
3980 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3981 * the compiler is expected to optimize this away.
3983 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
3984 int cpu
, unsigned long done
)
3986 trace_rcu_barrier(rsp
->name
, s
, cpu
,
3987 atomic_read(&rsp
->barrier_cpu_count
), done
);
3991 * RCU callback function for _rcu_barrier(). If we are last, wake
3992 * up the task executing _rcu_barrier().
3994 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3996 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
3997 struct rcu_state
*rsp
= rdp
->rsp
;
3999 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
4000 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->barrier_sequence
);
4001 complete(&rsp
->barrier_completion
);
4003 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->barrier_sequence
);
4008 * Called with preemption disabled, and from cross-cpu IRQ context.
4010 static void rcu_barrier_func(void *type
)
4012 struct rcu_state
*rsp
= type
;
4013 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
4015 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->barrier_sequence
);
4016 atomic_inc(&rsp
->barrier_cpu_count
);
4017 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
4021 * Orchestrate the specified type of RCU barrier, waiting for all
4022 * RCU callbacks of the specified type to complete.
4024 static void _rcu_barrier(struct rcu_state
*rsp
)
4027 struct rcu_data
*rdp
;
4028 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
4030 _rcu_barrier_trace(rsp
, "Begin", -1, s
);
4032 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4033 mutex_lock(&rsp
->barrier_mutex
);
4035 /* Did someone else do our work for us? */
4036 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
4037 _rcu_barrier_trace(rsp
, "EarlyExit", -1, rsp
->barrier_sequence
);
4038 smp_mb(); /* caller's subsequent code after above check. */
4039 mutex_unlock(&rsp
->barrier_mutex
);
4043 /* Mark the start of the barrier operation. */
4044 rcu_seq_start(&rsp
->barrier_sequence
);
4045 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->barrier_sequence
);
4048 * Initialize the count to one rather than to zero in order to
4049 * avoid a too-soon return to zero in case of a short grace period
4050 * (or preemption of this task). Exclude CPU-hotplug operations
4051 * to ensure that no offline CPU has callbacks queued.
4053 init_completion(&rsp
->barrier_completion
);
4054 atomic_set(&rsp
->barrier_cpu_count
, 1);
4058 * Force each CPU with callbacks to register a new callback.
4059 * When that callback is invoked, we will know that all of the
4060 * corresponding CPU's preceding callbacks have been invoked.
4062 for_each_possible_cpu(cpu
) {
4063 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
4065 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4066 if (rcu_is_nocb_cpu(cpu
)) {
4067 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
4068 _rcu_barrier_trace(rsp
, "OfflineNoCB", cpu
,
4069 rsp
->barrier_sequence
);
4071 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
4072 rsp
->barrier_sequence
);
4073 smp_mb__before_atomic();
4074 atomic_inc(&rsp
->barrier_cpu_count
);
4075 __call_rcu(&rdp
->barrier_head
,
4076 rcu_barrier_callback
, rsp
, cpu
, 0);
4078 } else if (READ_ONCE(rdp
->qlen
)) {
4079 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
4080 rsp
->barrier_sequence
);
4081 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
4083 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
4084 rsp
->barrier_sequence
);
4090 * Now that we have an rcu_barrier_callback() callback on each
4091 * CPU, and thus each counted, remove the initial count.
4093 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
4094 complete(&rsp
->barrier_completion
);
4096 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4097 wait_for_completion(&rsp
->barrier_completion
);
4099 /* Mark the end of the barrier operation. */
4100 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->barrier_sequence
);
4101 rcu_seq_end(&rsp
->barrier_sequence
);
4103 /* Other rcu_barrier() invocations can now safely proceed. */
4104 mutex_unlock(&rsp
->barrier_mutex
);
4108 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4110 void rcu_barrier_bh(void)
4112 _rcu_barrier(&rcu_bh_state
);
4114 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
4117 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4119 void rcu_barrier_sched(void)
4121 _rcu_barrier(&rcu_sched_state
);
4123 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
4126 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4127 * first CPU in a given leaf rcu_node structure coming online. The caller
4128 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4131 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
4134 struct rcu_node
*rnp
= rnp_leaf
;
4137 mask
= rnp
->grpmask
;
4141 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
4142 rnp
->qsmaskinit
|= mask
;
4143 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
4148 * Do boot-time initialization of a CPU's per-CPU RCU data.
4151 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
4153 unsigned long flags
;
4154 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4155 struct rcu_node
*rnp
= rcu_get_root(rsp
);
4157 /* Set up local state, ensuring consistent view of global state. */
4158 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
4159 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
4160 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
4161 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
4162 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
4165 mutex_init(&rdp
->exp_funnel_mutex
);
4166 rcu_boot_init_nocb_percpu_data(rdp
);
4167 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
4171 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4172 * offline event can be happening at a given time. Note also that we
4173 * can accept some slop in the rsp->completed access due to the fact
4174 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4177 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
4179 unsigned long flags
;
4181 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4182 struct rcu_node
*rnp
= rcu_get_root(rsp
);
4184 /* Set up local state, ensuring consistent view of global state. */
4185 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
4186 rdp
->qlen_last_fqs_check
= 0;
4187 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
4188 rdp
->blimit
= blimit
;
4190 init_callback_list(rdp
); /* Re-enable callbacks on this CPU. */
4191 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
4192 rcu_sysidle_init_percpu_data(rdp
->dynticks
);
4193 atomic_set(&rdp
->dynticks
->dynticks
,
4194 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
4195 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
4198 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4199 * propagation up the rcu_node tree will happen at the beginning
4200 * of the next grace period.
4203 mask
= rdp
->grpmask
;
4204 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
4205 rnp
->qsmaskinitnext
|= mask
;
4206 rnp
->expmaskinitnext
|= mask
;
4207 if (!rdp
->beenonline
)
4208 WRITE_ONCE(rsp
->ncpus
, READ_ONCE(rsp
->ncpus
) + 1);
4209 rdp
->beenonline
= true; /* We have now been online. */
4210 rdp
->gpnum
= rnp
->completed
; /* Make CPU later note any new GP. */
4211 rdp
->completed
= rnp
->completed
;
4212 rdp
->cpu_no_qs
.b
.norm
= true;
4213 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_qs_ctr
, cpu
);
4214 rdp
->core_needs_qs
= false;
4215 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
4216 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
4219 static void rcu_prepare_cpu(int cpu
)
4221 struct rcu_state
*rsp
;
4223 for_each_rcu_flavor(rsp
)
4224 rcu_init_percpu_data(cpu
, rsp
);
4227 #ifdef CONFIG_HOTPLUG_CPU
4229 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4230 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4232 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4233 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4236 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
4238 unsigned long flags
;
4240 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
4241 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
4243 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
4246 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4247 mask
= rdp
->grpmask
;
4248 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
4249 rnp
->qsmaskinitnext
&= ~mask
;
4250 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
4253 void rcu_report_dead(unsigned int cpu
)
4255 struct rcu_state
*rsp
;
4257 /* QS for any half-done expedited RCU-sched GP. */
4259 rcu_report_exp_rdp(&rcu_sched_state
,
4260 this_cpu_ptr(rcu_sched_state
.rda
), true);
4262 for_each_rcu_flavor(rsp
)
4263 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
4268 * Handle CPU online/offline notification events.
4270 int rcu_cpu_notify(struct notifier_block
*self
,
4271 unsigned long action
, void *hcpu
)
4273 long cpu
= (long)hcpu
;
4274 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
4275 struct rcu_node
*rnp
= rdp
->mynode
;
4276 struct rcu_state
*rsp
;
4279 case CPU_UP_PREPARE
:
4280 case CPU_UP_PREPARE_FROZEN
:
4281 rcu_prepare_cpu(cpu
);
4282 rcu_prepare_kthreads(cpu
);
4283 rcu_spawn_all_nocb_kthreads(cpu
);
4286 case CPU_DOWN_FAILED
:
4287 sync_sched_exp_online_cleanup(cpu
);
4288 rcu_boost_kthread_setaffinity(rnp
, -1);
4290 case CPU_DOWN_PREPARE
:
4291 rcu_boost_kthread_setaffinity(rnp
, cpu
);
4294 case CPU_DYING_FROZEN
:
4295 for_each_rcu_flavor(rsp
)
4296 rcu_cleanup_dying_cpu(rsp
);
4299 case CPU_DEAD_FROZEN
:
4300 case CPU_UP_CANCELED
:
4301 case CPU_UP_CANCELED_FROZEN
:
4302 for_each_rcu_flavor(rsp
) {
4303 rcu_cleanup_dead_cpu(cpu
, rsp
);
4304 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
4313 static int rcu_pm_notify(struct notifier_block
*self
,
4314 unsigned long action
, void *hcpu
)
4317 case PM_HIBERNATION_PREPARE
:
4318 case PM_SUSPEND_PREPARE
:
4319 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
4322 case PM_POST_HIBERNATION
:
4323 case PM_POST_SUSPEND
:
4324 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
4325 rcu_unexpedite_gp();
4334 * Spawn the kthreads that handle each RCU flavor's grace periods.
4336 static int __init
rcu_spawn_gp_kthread(void)
4338 unsigned long flags
;
4339 int kthread_prio_in
= kthread_prio
;
4340 struct rcu_node
*rnp
;
4341 struct rcu_state
*rsp
;
4342 struct sched_param sp
;
4343 struct task_struct
*t
;
4345 /* Force priority into range. */
4346 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
4348 else if (kthread_prio
< 0)
4350 else if (kthread_prio
> 99)
4352 if (kthread_prio
!= kthread_prio_in
)
4353 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4354 kthread_prio
, kthread_prio_in
);
4356 rcu_scheduler_fully_active
= 1;
4357 for_each_rcu_flavor(rsp
) {
4358 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
4360 rnp
= rcu_get_root(rsp
);
4361 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
4362 rsp
->gp_kthread
= t
;
4364 sp
.sched_priority
= kthread_prio
;
4365 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
4367 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
4370 rcu_spawn_nocb_kthreads();
4371 rcu_spawn_boost_kthreads();
4374 early_initcall(rcu_spawn_gp_kthread
);
4377 * This function is invoked towards the end of the scheduler's initialization
4378 * process. Before this is called, the idle task might contain
4379 * RCU read-side critical sections (during which time, this idle
4380 * task is booting the system). After this function is called, the
4381 * idle tasks are prohibited from containing RCU read-side critical
4382 * sections. This function also enables RCU lockdep checking.
4384 void rcu_scheduler_starting(void)
4386 WARN_ON(num_online_cpus() != 1);
4387 WARN_ON(nr_context_switches() > 0);
4388 rcu_scheduler_active
= 1;
4392 * Compute the per-level fanout, either using the exact fanout specified
4393 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4395 static void __init
rcu_init_levelspread(int *levelspread
, const int *levelcnt
)
4399 if (rcu_fanout_exact
) {
4400 levelspread
[rcu_num_lvls
- 1] = rcu_fanout_leaf
;
4401 for (i
= rcu_num_lvls
- 2; i
>= 0; i
--)
4402 levelspread
[i
] = RCU_FANOUT
;
4408 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4410 levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
4417 * Helper function for rcu_init() that initializes one rcu_state structure.
4419 static void __init
rcu_init_one(struct rcu_state
*rsp
)
4421 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
4422 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
4423 static const char * const exp
[] = RCU_EXP_NAME_INIT
;
4424 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
4425 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
4426 static struct lock_class_key rcu_exp_class
[RCU_NUM_LVLS
];
4427 static u8 fl_mask
= 0x1;
4429 int levelcnt
[RCU_NUM_LVLS
]; /* # nodes in each level. */
4430 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
4434 struct rcu_node
*rnp
;
4436 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
4438 /* Silence gcc 4.8 false positive about array index out of range. */
4439 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
4440 panic("rcu_init_one: rcu_num_lvls out of range");
4442 /* Initialize the level-tracking arrays. */
4444 for (i
= 0; i
< rcu_num_lvls
; i
++)
4445 levelcnt
[i
] = num_rcu_lvl
[i
];
4446 for (i
= 1; i
< rcu_num_lvls
; i
++)
4447 rsp
->level
[i
] = rsp
->level
[i
- 1] + levelcnt
[i
- 1];
4448 rcu_init_levelspread(levelspread
, levelcnt
);
4449 rsp
->flavor_mask
= fl_mask
;
4452 /* Initialize the elements themselves, starting from the leaves. */
4454 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4455 cpustride
*= levelspread
[i
];
4456 rnp
= rsp
->level
[i
];
4457 for (j
= 0; j
< levelcnt
[i
]; j
++, rnp
++) {
4458 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
4459 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
4460 &rcu_node_class
[i
], buf
[i
]);
4461 raw_spin_lock_init(&rnp
->fqslock
);
4462 lockdep_set_class_and_name(&rnp
->fqslock
,
4463 &rcu_fqs_class
[i
], fqs
[i
]);
4464 rnp
->gpnum
= rsp
->gpnum
;
4465 rnp
->completed
= rsp
->completed
;
4467 rnp
->qsmaskinit
= 0;
4468 rnp
->grplo
= j
* cpustride
;
4469 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4470 if (rnp
->grphi
>= nr_cpu_ids
)
4471 rnp
->grphi
= nr_cpu_ids
- 1;
4477 rnp
->grpnum
= j
% levelspread
[i
- 1];
4478 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4479 rnp
->parent
= rsp
->level
[i
- 1] +
4480 j
/ levelspread
[i
- 1];
4483 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4484 rcu_init_one_nocb(rnp
);
4485 mutex_init(&rnp
->exp_funnel_mutex
);
4486 lockdep_set_class_and_name(&rnp
->exp_funnel_mutex
,
4487 &rcu_exp_class
[i
], exp
[i
]);
4491 init_swait_queue_head(&rsp
->gp_wq
);
4492 init_swait_queue_head(&rsp
->expedited_wq
);
4493 rnp
= rsp
->level
[rcu_num_lvls
- 1];
4494 for_each_possible_cpu(i
) {
4495 while (i
> rnp
->grphi
)
4497 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4498 rcu_boot_init_percpu_data(i
, rsp
);
4500 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4504 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4505 * replace the definitions in tree.h because those are needed to size
4506 * the ->node array in the rcu_state structure.
4508 static void __init
rcu_init_geometry(void)
4512 int rcu_capacity
[RCU_NUM_LVLS
];
4515 * Initialize any unspecified boot parameters.
4516 * The default values of jiffies_till_first_fqs and
4517 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4518 * value, which is a function of HZ, then adding one for each
4519 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4521 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4522 if (jiffies_till_first_fqs
== ULONG_MAX
)
4523 jiffies_till_first_fqs
= d
;
4524 if (jiffies_till_next_fqs
== ULONG_MAX
)
4525 jiffies_till_next_fqs
= d
;
4527 /* If the compile-time values are accurate, just leave. */
4528 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4529 nr_cpu_ids
== NR_CPUS
)
4531 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4532 rcu_fanout_leaf
, nr_cpu_ids
);
4535 * The boot-time rcu_fanout_leaf parameter must be at least two
4536 * and cannot exceed the number of bits in the rcu_node masks.
4537 * Complain and fall back to the compile-time values if this
4538 * limit is exceeded.
4540 if (rcu_fanout_leaf
< 2 ||
4541 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4542 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4548 * Compute number of nodes that can be handled an rcu_node tree
4549 * with the given number of levels.
4551 rcu_capacity
[0] = rcu_fanout_leaf
;
4552 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4553 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4556 * The tree must be able to accommodate the configured number of CPUs.
4557 * If this limit is exceeded, fall back to the compile-time values.
4559 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4560 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4565 /* Calculate the number of levels in the tree. */
4566 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4568 rcu_num_lvls
= i
+ 1;
4570 /* Calculate the number of rcu_nodes at each level of the tree. */
4571 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4572 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4573 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4576 /* Calculate the total number of rcu_node structures. */
4578 for (i
= 0; i
< rcu_num_lvls
; i
++)
4579 rcu_num_nodes
+= num_rcu_lvl
[i
];
4583 * Dump out the structure of the rcu_node combining tree associated
4584 * with the rcu_state structure referenced by rsp.
4586 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4589 struct rcu_node
*rnp
;
4591 pr_info("rcu_node tree layout dump\n");
4593 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4594 if (rnp
->level
!= level
) {
4599 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4604 void __init
rcu_init(void)
4608 rcu_early_boot_tests();
4610 rcu_bootup_announce();
4611 rcu_init_geometry();
4612 rcu_init_one(&rcu_bh_state
);
4613 rcu_init_one(&rcu_sched_state
);
4615 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4616 __rcu_init_preempt();
4617 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4620 * We don't need protection against CPU-hotplug here because
4621 * this is called early in boot, before either interrupts
4622 * or the scheduler are operational.
4624 cpu_notifier(rcu_cpu_notify
, 0);
4625 pm_notifier(rcu_pm_notify
, 0);
4626 for_each_online_cpu(cpu
)
4627 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
4630 #include "tree_plugin.h"