Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / kernel / rcu / tree.c
blob9a535a86e7326b21dce28a002607370df4de4de4
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/module.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <linux/prefetch.h>
54 #include <linux/delay.h>
55 #include <linux/stop_machine.h>
56 #include <linux/random.h>
57 #include <linux/trace_events.h>
58 #include <linux/suspend.h>
60 #include "tree.h"
61 #include "rcu.h"
63 MODULE_ALIAS("rcutree");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
79 #ifdef CONFIG_TRACING
80 # define DEFINE_RCU_TPS(sname) \
81 static char sname##_varname[] = #sname; \
82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83 # define RCU_STATE_NAME(sname) sname##_varname
84 #else
85 # define DEFINE_RCU_TPS(sname)
86 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #endif
89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90 DEFINE_RCU_TPS(sname) \
91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
92 struct rcu_state sname##_state = { \
93 .level = { &sname##_state.node[0] }, \
94 .rda = &sname##_data, \
95 .call = cr, \
96 .gp_state = RCU_GP_IDLE, \
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
104 .abbr = sabbr, \
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128 * The rcu_scheduler_active variable transitions from zero to one just
129 * before the first task is spawned. So when this variable is zero, RCU
130 * can assume that there is but one task, allowing RCU to (for example)
131 * optimize synchronize_sched() to a simple barrier(). When this variable
132 * is one, RCU must actually do all the hard work required to detect real
133 * grace periods. This variable is also used to suppress boot-time false
134 * positives from lockdep-RCU error checking.
136 int rcu_scheduler_active __read_mostly;
137 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140 * The rcu_scheduler_fully_active variable transitions from zero to one
141 * during the early_initcall() processing, which is after the scheduler
142 * is capable of creating new tasks. So RCU processing (for example,
143 * creating tasks for RCU priority boosting) must be delayed until after
144 * rcu_scheduler_fully_active transitions from zero to one. We also
145 * currently delay invocation of any RCU callbacks until after this point.
147 * It might later prove better for people registering RCU callbacks during
148 * early boot to take responsibility for these callbacks, but one step at
149 * a time.
151 static int rcu_scheduler_fully_active __read_mostly;
153 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
154 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
156 static void invoke_rcu_core(void);
157 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
158 static void rcu_report_exp_rdp(struct rcu_state *rsp,
159 struct rcu_data *rdp, bool wake);
161 /* rcuc/rcub kthread realtime priority */
162 #ifdef CONFIG_RCU_KTHREAD_PRIO
163 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
164 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
165 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
166 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
167 module_param(kthread_prio, int, 0644);
169 /* Delay in jiffies for grace-period initialization delays, debug only. */
171 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
172 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
173 module_param(gp_preinit_delay, int, 0644);
174 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
175 static const int gp_preinit_delay;
176 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
178 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
179 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
180 module_param(gp_init_delay, int, 0644);
181 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
182 static const int gp_init_delay;
183 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
186 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
187 module_param(gp_cleanup_delay, int, 0644);
188 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
189 static const int gp_cleanup_delay;
190 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
193 * Number of grace periods between delays, normalized by the duration of
194 * the delay. The longer the the delay, the more the grace periods between
195 * each delay. The reason for this normalization is that it means that,
196 * for non-zero delays, the overall slowdown of grace periods is constant
197 * regardless of the duration of the delay. This arrangement balances
198 * the need for long delays to increase some race probabilities with the
199 * need for fast grace periods to increase other race probabilities.
201 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
204 * Track the rcutorture test sequence number and the update version
205 * number within a given test. The rcutorture_testseq is incremented
206 * on every rcutorture module load and unload, so has an odd value
207 * when a test is running. The rcutorture_vernum is set to zero
208 * when rcutorture starts and is incremented on each rcutorture update.
209 * These variables enable correlating rcutorture output with the
210 * RCU tracing information.
212 unsigned long rcutorture_testseq;
213 unsigned long rcutorture_vernum;
216 * Compute the mask of online CPUs for the specified rcu_node structure.
217 * This will not be stable unless the rcu_node structure's ->lock is
218 * held, but the bit corresponding to the current CPU will be stable
219 * in most contexts.
221 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
223 return READ_ONCE(rnp->qsmaskinitnext);
227 * Return true if an RCU grace period is in progress. The READ_ONCE()s
228 * permit this function to be invoked without holding the root rcu_node
229 * structure's ->lock, but of course results can be subject to change.
231 static int rcu_gp_in_progress(struct rcu_state *rsp)
233 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
237 * Note a quiescent state. Because we do not need to know
238 * how many quiescent states passed, just if there was at least
239 * one since the start of the grace period, this just sets a flag.
240 * The caller must have disabled preemption.
242 void rcu_sched_qs(void)
244 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
245 return;
246 trace_rcu_grace_period(TPS("rcu_sched"),
247 __this_cpu_read(rcu_sched_data.gpnum),
248 TPS("cpuqs"));
249 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
250 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
251 return;
252 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
253 rcu_report_exp_rdp(&rcu_sched_state,
254 this_cpu_ptr(&rcu_sched_data), true);
257 void rcu_bh_qs(void)
259 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
260 trace_rcu_grace_period(TPS("rcu_bh"),
261 __this_cpu_read(rcu_bh_data.gpnum),
262 TPS("cpuqs"));
263 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
267 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
269 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
270 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
271 .dynticks = ATOMIC_INIT(1),
272 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
273 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
274 .dynticks_idle = ATOMIC_INIT(1),
275 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
278 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
279 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
282 * Let the RCU core know that this CPU has gone through the scheduler,
283 * which is a quiescent state. This is called when the need for a
284 * quiescent state is urgent, so we burn an atomic operation and full
285 * memory barriers to let the RCU core know about it, regardless of what
286 * this CPU might (or might not) do in the near future.
288 * We inform the RCU core by emulating a zero-duration dyntick-idle
289 * period, which we in turn do by incrementing the ->dynticks counter
290 * by two.
292 * The caller must have disabled interrupts.
294 static void rcu_momentary_dyntick_idle(void)
296 struct rcu_data *rdp;
297 struct rcu_dynticks *rdtp;
298 int resched_mask;
299 struct rcu_state *rsp;
302 * Yes, we can lose flag-setting operations. This is OK, because
303 * the flag will be set again after some delay.
305 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
306 raw_cpu_write(rcu_sched_qs_mask, 0);
308 /* Find the flavor that needs a quiescent state. */
309 for_each_rcu_flavor(rsp) {
310 rdp = raw_cpu_ptr(rsp->rda);
311 if (!(resched_mask & rsp->flavor_mask))
312 continue;
313 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
314 if (READ_ONCE(rdp->mynode->completed) !=
315 READ_ONCE(rdp->cond_resched_completed))
316 continue;
319 * Pretend to be momentarily idle for the quiescent state.
320 * This allows the grace-period kthread to record the
321 * quiescent state, with no need for this CPU to do anything
322 * further.
324 rdtp = this_cpu_ptr(&rcu_dynticks);
325 smp_mb__before_atomic(); /* Earlier stuff before QS. */
326 atomic_add(2, &rdtp->dynticks); /* QS. */
327 smp_mb__after_atomic(); /* Later stuff after QS. */
328 break;
333 * Note a context switch. This is a quiescent state for RCU-sched,
334 * and requires special handling for preemptible RCU.
335 * The caller must have disabled interrupts.
337 void rcu_note_context_switch(void)
339 barrier(); /* Avoid RCU read-side critical sections leaking down. */
340 trace_rcu_utilization(TPS("Start context switch"));
341 rcu_sched_qs();
342 rcu_preempt_note_context_switch();
343 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
344 rcu_momentary_dyntick_idle();
345 trace_rcu_utilization(TPS("End context switch"));
346 barrier(); /* Avoid RCU read-side critical sections leaking up. */
348 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
351 * Register a quiescent state for all RCU flavors. If there is an
352 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
353 * dyntick-idle quiescent state visible to other CPUs (but only for those
354 * RCU flavors in desperate need of a quiescent state, which will normally
355 * be none of them). Either way, do a lightweight quiescent state for
356 * all RCU flavors.
358 * The barrier() calls are redundant in the common case when this is
359 * called externally, but just in case this is called from within this
360 * file.
363 void rcu_all_qs(void)
365 unsigned long flags;
367 barrier(); /* Avoid RCU read-side critical sections leaking down. */
368 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
369 local_irq_save(flags);
370 rcu_momentary_dyntick_idle();
371 local_irq_restore(flags);
373 this_cpu_inc(rcu_qs_ctr);
374 barrier(); /* Avoid RCU read-side critical sections leaking up. */
376 EXPORT_SYMBOL_GPL(rcu_all_qs);
378 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
379 static long qhimark = 10000; /* If this many pending, ignore blimit. */
380 static long qlowmark = 100; /* Once only this many pending, use blimit. */
382 module_param(blimit, long, 0444);
383 module_param(qhimark, long, 0444);
384 module_param(qlowmark, long, 0444);
386 static ulong jiffies_till_first_fqs = ULONG_MAX;
387 static ulong jiffies_till_next_fqs = ULONG_MAX;
389 module_param(jiffies_till_first_fqs, ulong, 0644);
390 module_param(jiffies_till_next_fqs, ulong, 0644);
393 * How long the grace period must be before we start recruiting
394 * quiescent-state help from rcu_note_context_switch().
396 static ulong jiffies_till_sched_qs = HZ / 20;
397 module_param(jiffies_till_sched_qs, ulong, 0644);
399 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
400 struct rcu_data *rdp);
401 static void force_qs_rnp(struct rcu_state *rsp,
402 int (*f)(struct rcu_data *rsp, bool *isidle,
403 unsigned long *maxj),
404 bool *isidle, unsigned long *maxj);
405 static void force_quiescent_state(struct rcu_state *rsp);
406 static int rcu_pending(void);
409 * Return the number of RCU batches started thus far for debug & stats.
411 unsigned long rcu_batches_started(void)
413 return rcu_state_p->gpnum;
415 EXPORT_SYMBOL_GPL(rcu_batches_started);
418 * Return the number of RCU-sched batches started thus far for debug & stats.
420 unsigned long rcu_batches_started_sched(void)
422 return rcu_sched_state.gpnum;
424 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
427 * Return the number of RCU BH batches started thus far for debug & stats.
429 unsigned long rcu_batches_started_bh(void)
431 return rcu_bh_state.gpnum;
433 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
436 * Return the number of RCU batches completed thus far for debug & stats.
438 unsigned long rcu_batches_completed(void)
440 return rcu_state_p->completed;
442 EXPORT_SYMBOL_GPL(rcu_batches_completed);
445 * Return the number of RCU-sched batches completed thus far for debug & stats.
447 unsigned long rcu_batches_completed_sched(void)
449 return rcu_sched_state.completed;
451 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
454 * Return the number of RCU BH batches completed thus far for debug & stats.
456 unsigned long rcu_batches_completed_bh(void)
458 return rcu_bh_state.completed;
460 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
463 * Force a quiescent state.
465 void rcu_force_quiescent_state(void)
467 force_quiescent_state(rcu_state_p);
469 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
472 * Force a quiescent state for RCU BH.
474 void rcu_bh_force_quiescent_state(void)
476 force_quiescent_state(&rcu_bh_state);
478 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
481 * Force a quiescent state for RCU-sched.
483 void rcu_sched_force_quiescent_state(void)
485 force_quiescent_state(&rcu_sched_state);
487 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
490 * Show the state of the grace-period kthreads.
492 void show_rcu_gp_kthreads(void)
494 struct rcu_state *rsp;
496 for_each_rcu_flavor(rsp) {
497 pr_info("%s: wait state: %d ->state: %#lx\n",
498 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
499 /* sched_show_task(rsp->gp_kthread); */
502 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
505 * Record the number of times rcutorture tests have been initiated and
506 * terminated. This information allows the debugfs tracing stats to be
507 * correlated to the rcutorture messages, even when the rcutorture module
508 * is being repeatedly loaded and unloaded. In other words, we cannot
509 * store this state in rcutorture itself.
511 void rcutorture_record_test_transition(void)
513 rcutorture_testseq++;
514 rcutorture_vernum = 0;
516 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
519 * Send along grace-period-related data for rcutorture diagnostics.
521 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
522 unsigned long *gpnum, unsigned long *completed)
524 struct rcu_state *rsp = NULL;
526 switch (test_type) {
527 case RCU_FLAVOR:
528 rsp = rcu_state_p;
529 break;
530 case RCU_BH_FLAVOR:
531 rsp = &rcu_bh_state;
532 break;
533 case RCU_SCHED_FLAVOR:
534 rsp = &rcu_sched_state;
535 break;
536 default:
537 break;
539 if (rsp != NULL) {
540 *flags = READ_ONCE(rsp->gp_flags);
541 *gpnum = READ_ONCE(rsp->gpnum);
542 *completed = READ_ONCE(rsp->completed);
543 return;
545 *flags = 0;
546 *gpnum = 0;
547 *completed = 0;
549 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
552 * Record the number of writer passes through the current rcutorture test.
553 * This is also used to correlate debugfs tracing stats with the rcutorture
554 * messages.
556 void rcutorture_record_progress(unsigned long vernum)
558 rcutorture_vernum++;
560 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
563 * Does the CPU have callbacks ready to be invoked?
565 static int
566 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
568 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
569 rdp->nxttail[RCU_DONE_TAIL] != NULL;
573 * Return the root node of the specified rcu_state structure.
575 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
577 return &rsp->node[0];
581 * Is there any need for future grace periods?
582 * Interrupts must be disabled. If the caller does not hold the root
583 * rnp_node structure's ->lock, the results are advisory only.
585 static int rcu_future_needs_gp(struct rcu_state *rsp)
587 struct rcu_node *rnp = rcu_get_root(rsp);
588 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
589 int *fp = &rnp->need_future_gp[idx];
591 return READ_ONCE(*fp);
595 * Does the current CPU require a not-yet-started grace period?
596 * The caller must have disabled interrupts to prevent races with
597 * normal callback registry.
599 static bool
600 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
602 int i;
604 if (rcu_gp_in_progress(rsp))
605 return false; /* No, a grace period is already in progress. */
606 if (rcu_future_needs_gp(rsp))
607 return true; /* Yes, a no-CBs CPU needs one. */
608 if (!rdp->nxttail[RCU_NEXT_TAIL])
609 return false; /* No, this is a no-CBs (or offline) CPU. */
610 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
611 return true; /* Yes, CPU has newly registered callbacks. */
612 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
613 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
614 ULONG_CMP_LT(READ_ONCE(rsp->completed),
615 rdp->nxtcompleted[i]))
616 return true; /* Yes, CBs for future grace period. */
617 return false; /* No grace period needed. */
621 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
623 * If the new value of the ->dynticks_nesting counter now is zero,
624 * we really have entered idle, and must do the appropriate accounting.
625 * The caller must have disabled interrupts.
627 static void rcu_eqs_enter_common(long long oldval, bool user)
629 struct rcu_state *rsp;
630 struct rcu_data *rdp;
631 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
633 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
634 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
635 !user && !is_idle_task(current)) {
636 struct task_struct *idle __maybe_unused =
637 idle_task(smp_processor_id());
639 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
640 ftrace_dump(DUMP_ORIG);
641 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
642 current->pid, current->comm,
643 idle->pid, idle->comm); /* must be idle task! */
645 for_each_rcu_flavor(rsp) {
646 rdp = this_cpu_ptr(rsp->rda);
647 do_nocb_deferred_wakeup(rdp);
649 rcu_prepare_for_idle();
650 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651 smp_mb__before_atomic(); /* See above. */
652 atomic_inc(&rdtp->dynticks);
653 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
654 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
655 atomic_read(&rdtp->dynticks) & 0x1);
656 rcu_dynticks_task_enter();
659 * It is illegal to enter an extended quiescent state while
660 * in an RCU read-side critical section.
662 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
663 "Illegal idle entry in RCU read-side critical section.");
664 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
665 "Illegal idle entry in RCU-bh read-side critical section.");
666 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
667 "Illegal idle entry in RCU-sched read-side critical section.");
671 * Enter an RCU extended quiescent state, which can be either the
672 * idle loop or adaptive-tickless usermode execution.
674 static void rcu_eqs_enter(bool user)
676 long long oldval;
677 struct rcu_dynticks *rdtp;
679 rdtp = this_cpu_ptr(&rcu_dynticks);
680 oldval = rdtp->dynticks_nesting;
681 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
682 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
683 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
684 rdtp->dynticks_nesting = 0;
685 rcu_eqs_enter_common(oldval, user);
686 } else {
687 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
692 * rcu_idle_enter - inform RCU that current CPU is entering idle
694 * Enter idle mode, in other words, -leave- the mode in which RCU
695 * read-side critical sections can occur. (Though RCU read-side
696 * critical sections can occur in irq handlers in idle, a possibility
697 * handled by irq_enter() and irq_exit().)
699 * We crowbar the ->dynticks_nesting field to zero to allow for
700 * the possibility of usermode upcalls having messed up our count
701 * of interrupt nesting level during the prior busy period.
703 void rcu_idle_enter(void)
705 unsigned long flags;
707 local_irq_save(flags);
708 rcu_eqs_enter(false);
709 rcu_sysidle_enter(0);
710 local_irq_restore(flags);
712 EXPORT_SYMBOL_GPL(rcu_idle_enter);
714 #ifdef CONFIG_NO_HZ_FULL
716 * rcu_user_enter - inform RCU that we are resuming userspace.
718 * Enter RCU idle mode right before resuming userspace. No use of RCU
719 * is permitted between this call and rcu_user_exit(). This way the
720 * CPU doesn't need to maintain the tick for RCU maintenance purposes
721 * when the CPU runs in userspace.
723 void rcu_user_enter(void)
725 rcu_eqs_enter(1);
727 #endif /* CONFIG_NO_HZ_FULL */
730 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
732 * Exit from an interrupt handler, which might possibly result in entering
733 * idle mode, in other words, leaving the mode in which read-side critical
734 * sections can occur. The caller must have disabled interrupts.
736 * This code assumes that the idle loop never does anything that might
737 * result in unbalanced calls to irq_enter() and irq_exit(). If your
738 * architecture violates this assumption, RCU will give you what you
739 * deserve, good and hard. But very infrequently and irreproducibly.
741 * Use things like work queues to work around this limitation.
743 * You have been warned.
745 void rcu_irq_exit(void)
747 long long oldval;
748 struct rcu_dynticks *rdtp;
750 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
751 rdtp = this_cpu_ptr(&rcu_dynticks);
752 oldval = rdtp->dynticks_nesting;
753 rdtp->dynticks_nesting--;
754 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
755 rdtp->dynticks_nesting < 0);
756 if (rdtp->dynticks_nesting)
757 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
758 else
759 rcu_eqs_enter_common(oldval, true);
760 rcu_sysidle_enter(1);
764 * Wrapper for rcu_irq_exit() where interrupts are enabled.
766 void rcu_irq_exit_irqson(void)
768 unsigned long flags;
770 local_irq_save(flags);
771 rcu_irq_exit();
772 local_irq_restore(flags);
776 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
778 * If the new value of the ->dynticks_nesting counter was previously zero,
779 * we really have exited idle, and must do the appropriate accounting.
780 * The caller must have disabled interrupts.
782 static void rcu_eqs_exit_common(long long oldval, int user)
784 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
786 rcu_dynticks_task_exit();
787 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
788 atomic_inc(&rdtp->dynticks);
789 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
790 smp_mb__after_atomic(); /* See above. */
791 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
792 !(atomic_read(&rdtp->dynticks) & 0x1));
793 rcu_cleanup_after_idle();
794 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
795 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
796 !user && !is_idle_task(current)) {
797 struct task_struct *idle __maybe_unused =
798 idle_task(smp_processor_id());
800 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
801 oldval, rdtp->dynticks_nesting);
802 ftrace_dump(DUMP_ORIG);
803 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
804 current->pid, current->comm,
805 idle->pid, idle->comm); /* must be idle task! */
810 * Exit an RCU extended quiescent state, which can be either the
811 * idle loop or adaptive-tickless usermode execution.
813 static void rcu_eqs_exit(bool user)
815 struct rcu_dynticks *rdtp;
816 long long oldval;
818 rdtp = this_cpu_ptr(&rcu_dynticks);
819 oldval = rdtp->dynticks_nesting;
820 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
821 if (oldval & DYNTICK_TASK_NEST_MASK) {
822 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
823 } else {
824 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
825 rcu_eqs_exit_common(oldval, user);
830 * rcu_idle_exit - inform RCU that current CPU is leaving idle
832 * Exit idle mode, in other words, -enter- the mode in which RCU
833 * read-side critical sections can occur.
835 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
836 * allow for the possibility of usermode upcalls messing up our count
837 * of interrupt nesting level during the busy period that is just
838 * now starting.
840 void rcu_idle_exit(void)
842 unsigned long flags;
844 local_irq_save(flags);
845 rcu_eqs_exit(false);
846 rcu_sysidle_exit(0);
847 local_irq_restore(flags);
849 EXPORT_SYMBOL_GPL(rcu_idle_exit);
851 #ifdef CONFIG_NO_HZ_FULL
853 * rcu_user_exit - inform RCU that we are exiting userspace.
855 * Exit RCU idle mode while entering the kernel because it can
856 * run a RCU read side critical section anytime.
858 void rcu_user_exit(void)
860 rcu_eqs_exit(1);
862 #endif /* CONFIG_NO_HZ_FULL */
865 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
867 * Enter an interrupt handler, which might possibly result in exiting
868 * idle mode, in other words, entering the mode in which read-side critical
869 * sections can occur. The caller must have disabled interrupts.
871 * Note that the Linux kernel is fully capable of entering an interrupt
872 * handler that it never exits, for example when doing upcalls to
873 * user mode! This code assumes that the idle loop never does upcalls to
874 * user mode. If your architecture does do upcalls from the idle loop (or
875 * does anything else that results in unbalanced calls to the irq_enter()
876 * and irq_exit() functions), RCU will give you what you deserve, good
877 * and hard. But very infrequently and irreproducibly.
879 * Use things like work queues to work around this limitation.
881 * You have been warned.
883 void rcu_irq_enter(void)
885 struct rcu_dynticks *rdtp;
886 long long oldval;
888 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
889 rdtp = this_cpu_ptr(&rcu_dynticks);
890 oldval = rdtp->dynticks_nesting;
891 rdtp->dynticks_nesting++;
892 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
893 rdtp->dynticks_nesting == 0);
894 if (oldval)
895 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
896 else
897 rcu_eqs_exit_common(oldval, true);
898 rcu_sysidle_exit(1);
902 * Wrapper for rcu_irq_enter() where interrupts are enabled.
904 void rcu_irq_enter_irqson(void)
906 unsigned long flags;
908 local_irq_save(flags);
909 rcu_irq_enter();
910 local_irq_restore(flags);
914 * rcu_nmi_enter - inform RCU of entry to NMI context
916 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
917 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
918 * that the CPU is active. This implementation permits nested NMIs, as
919 * long as the nesting level does not overflow an int. (You will probably
920 * run out of stack space first.)
922 void rcu_nmi_enter(void)
924 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
925 int incby = 2;
927 /* Complain about underflow. */
928 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
931 * If idle from RCU viewpoint, atomically increment ->dynticks
932 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
933 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
934 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
935 * to be in the outermost NMI handler that interrupted an RCU-idle
936 * period (observation due to Andy Lutomirski).
938 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
939 smp_mb__before_atomic(); /* Force delay from prior write. */
940 atomic_inc(&rdtp->dynticks);
941 /* atomic_inc() before later RCU read-side crit sects */
942 smp_mb__after_atomic(); /* See above. */
943 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
944 incby = 1;
946 rdtp->dynticks_nmi_nesting += incby;
947 barrier();
951 * rcu_nmi_exit - inform RCU of exit from NMI context
953 * If we are returning from the outermost NMI handler that interrupted an
954 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
955 * to let the RCU grace-period handling know that the CPU is back to
956 * being RCU-idle.
958 void rcu_nmi_exit(void)
960 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
963 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
964 * (We are exiting an NMI handler, so RCU better be paying attention
965 * to us!)
967 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
968 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
971 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
972 * leave it in non-RCU-idle state.
974 if (rdtp->dynticks_nmi_nesting != 1) {
975 rdtp->dynticks_nmi_nesting -= 2;
976 return;
979 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
980 rdtp->dynticks_nmi_nesting = 0;
981 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
982 smp_mb__before_atomic(); /* See above. */
983 atomic_inc(&rdtp->dynticks);
984 smp_mb__after_atomic(); /* Force delay to next write. */
985 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
989 * __rcu_is_watching - are RCU read-side critical sections safe?
991 * Return true if RCU is watching the running CPU, which means that
992 * this CPU can safely enter RCU read-side critical sections. Unlike
993 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
994 * least disabled preemption.
996 bool notrace __rcu_is_watching(void)
998 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1002 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1004 * If the current CPU is in its idle loop and is neither in an interrupt
1005 * or NMI handler, return true.
1007 bool notrace rcu_is_watching(void)
1009 bool ret;
1011 preempt_disable_notrace();
1012 ret = __rcu_is_watching();
1013 preempt_enable_notrace();
1014 return ret;
1016 EXPORT_SYMBOL_GPL(rcu_is_watching);
1018 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1021 * Is the current CPU online? Disable preemption to avoid false positives
1022 * that could otherwise happen due to the current CPU number being sampled,
1023 * this task being preempted, its old CPU being taken offline, resuming
1024 * on some other CPU, then determining that its old CPU is now offline.
1025 * It is OK to use RCU on an offline processor during initial boot, hence
1026 * the check for rcu_scheduler_fully_active. Note also that it is OK
1027 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1028 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1029 * offline to continue to use RCU for one jiffy after marking itself
1030 * offline in the cpu_online_mask. This leniency is necessary given the
1031 * non-atomic nature of the online and offline processing, for example,
1032 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1033 * notifiers.
1035 * This is also why RCU internally marks CPUs online during the
1036 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1038 * Disable checking if in an NMI handler because we cannot safely report
1039 * errors from NMI handlers anyway.
1041 bool rcu_lockdep_current_cpu_online(void)
1043 struct rcu_data *rdp;
1044 struct rcu_node *rnp;
1045 bool ret;
1047 if (in_nmi())
1048 return true;
1049 preempt_disable();
1050 rdp = this_cpu_ptr(&rcu_sched_data);
1051 rnp = rdp->mynode;
1052 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1053 !rcu_scheduler_fully_active;
1054 preempt_enable();
1055 return ret;
1057 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1059 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1062 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1064 * If the current CPU is idle or running at a first-level (not nested)
1065 * interrupt from idle, return true. The caller must have at least
1066 * disabled preemption.
1068 static int rcu_is_cpu_rrupt_from_idle(void)
1070 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1074 * Snapshot the specified CPU's dynticks counter so that we can later
1075 * credit them with an implicit quiescent state. Return 1 if this CPU
1076 * is in dynticks idle mode, which is an extended quiescent state.
1078 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1079 bool *isidle, unsigned long *maxj)
1081 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1082 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1083 if ((rdp->dynticks_snap & 0x1) == 0) {
1084 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1085 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1086 rdp->mynode->gpnum))
1087 WRITE_ONCE(rdp->gpwrap, true);
1088 return 1;
1090 return 0;
1094 * Return true if the specified CPU has passed through a quiescent
1095 * state by virtue of being in or having passed through an dynticks
1096 * idle state since the last call to dyntick_save_progress_counter()
1097 * for this same CPU, or by virtue of having been offline.
1099 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1100 bool *isidle, unsigned long *maxj)
1102 unsigned int curr;
1103 int *rcrmp;
1104 unsigned int snap;
1106 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1107 snap = (unsigned int)rdp->dynticks_snap;
1110 * If the CPU passed through or entered a dynticks idle phase with
1111 * no active irq/NMI handlers, then we can safely pretend that the CPU
1112 * already acknowledged the request to pass through a quiescent
1113 * state. Either way, that CPU cannot possibly be in an RCU
1114 * read-side critical section that started before the beginning
1115 * of the current RCU grace period.
1117 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1118 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1119 rdp->dynticks_fqs++;
1120 return 1;
1124 * Check for the CPU being offline, but only if the grace period
1125 * is old enough. We don't need to worry about the CPU changing
1126 * state: If we see it offline even once, it has been through a
1127 * quiescent state.
1129 * The reason for insisting that the grace period be at least
1130 * one jiffy old is that CPUs that are not quite online and that
1131 * have just gone offline can still execute RCU read-side critical
1132 * sections.
1134 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1135 return 0; /* Grace period is not old enough. */
1136 barrier();
1137 if (cpu_is_offline(rdp->cpu)) {
1138 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1139 rdp->offline_fqs++;
1140 return 1;
1144 * A CPU running for an extended time within the kernel can
1145 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1146 * even context-switching back and forth between a pair of
1147 * in-kernel CPU-bound tasks cannot advance grace periods.
1148 * So if the grace period is old enough, make the CPU pay attention.
1149 * Note that the unsynchronized assignments to the per-CPU
1150 * rcu_sched_qs_mask variable are safe. Yes, setting of
1151 * bits can be lost, but they will be set again on the next
1152 * force-quiescent-state pass. So lost bit sets do not result
1153 * in incorrect behavior, merely in a grace period lasting
1154 * a few jiffies longer than it might otherwise. Because
1155 * there are at most four threads involved, and because the
1156 * updates are only once every few jiffies, the probability of
1157 * lossage (and thus of slight grace-period extension) is
1158 * quite low.
1160 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1161 * is set too high, we override with half of the RCU CPU stall
1162 * warning delay.
1164 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1165 if (ULONG_CMP_GE(jiffies,
1166 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1167 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1168 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1169 WRITE_ONCE(rdp->cond_resched_completed,
1170 READ_ONCE(rdp->mynode->completed));
1171 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1172 WRITE_ONCE(*rcrmp,
1173 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1175 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1178 /* And if it has been a really long time, kick the CPU as well. */
1179 if (ULONG_CMP_GE(jiffies,
1180 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1181 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1182 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1184 return 0;
1187 static void record_gp_stall_check_time(struct rcu_state *rsp)
1189 unsigned long j = jiffies;
1190 unsigned long j1;
1192 rsp->gp_start = j;
1193 smp_wmb(); /* Record start time before stall time. */
1194 j1 = rcu_jiffies_till_stall_check();
1195 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1196 rsp->jiffies_resched = j + j1 / 2;
1197 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1201 * Convert a ->gp_state value to a character string.
1203 static const char *gp_state_getname(short gs)
1205 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1206 return "???";
1207 return gp_state_names[gs];
1211 * Complain about starvation of grace-period kthread.
1213 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1215 unsigned long gpa;
1216 unsigned long j;
1218 j = jiffies;
1219 gpa = READ_ONCE(rsp->gp_activity);
1220 if (j - gpa > 2 * HZ) {
1221 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1222 rsp->name, j - gpa,
1223 rsp->gpnum, rsp->completed,
1224 rsp->gp_flags,
1225 gp_state_getname(rsp->gp_state), rsp->gp_state,
1226 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1227 if (rsp->gp_kthread)
1228 sched_show_task(rsp->gp_kthread);
1233 * Dump stacks of all tasks running on stalled CPUs.
1235 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1237 int cpu;
1238 unsigned long flags;
1239 struct rcu_node *rnp;
1241 rcu_for_each_leaf_node(rsp, rnp) {
1242 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1243 if (rnp->qsmask != 0) {
1244 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1245 if (rnp->qsmask & (1UL << cpu))
1246 dump_cpu_task(rnp->grplo + cpu);
1248 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1252 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1254 int cpu;
1255 long delta;
1256 unsigned long flags;
1257 unsigned long gpa;
1258 unsigned long j;
1259 int ndetected = 0;
1260 struct rcu_node *rnp = rcu_get_root(rsp);
1261 long totqlen = 0;
1263 /* Only let one CPU complain about others per time interval. */
1265 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1266 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1267 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1268 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1269 return;
1271 WRITE_ONCE(rsp->jiffies_stall,
1272 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1273 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1276 * OK, time to rat on our buddy...
1277 * See Documentation/RCU/stallwarn.txt for info on how to debug
1278 * RCU CPU stall warnings.
1280 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1281 rsp->name);
1282 print_cpu_stall_info_begin();
1283 rcu_for_each_leaf_node(rsp, rnp) {
1284 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1285 ndetected += rcu_print_task_stall(rnp);
1286 if (rnp->qsmask != 0) {
1287 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1288 if (rnp->qsmask & (1UL << cpu)) {
1289 print_cpu_stall_info(rsp,
1290 rnp->grplo + cpu);
1291 ndetected++;
1294 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1297 print_cpu_stall_info_end();
1298 for_each_possible_cpu(cpu)
1299 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1300 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1301 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1302 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1303 if (ndetected) {
1304 rcu_dump_cpu_stacks(rsp);
1305 } else {
1306 if (READ_ONCE(rsp->gpnum) != gpnum ||
1307 READ_ONCE(rsp->completed) == gpnum) {
1308 pr_err("INFO: Stall ended before state dump start\n");
1309 } else {
1310 j = jiffies;
1311 gpa = READ_ONCE(rsp->gp_activity);
1312 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1313 rsp->name, j - gpa, j, gpa,
1314 jiffies_till_next_fqs,
1315 rcu_get_root(rsp)->qsmask);
1316 /* In this case, the current CPU might be at fault. */
1317 sched_show_task(current);
1321 /* Complain about tasks blocking the grace period. */
1322 rcu_print_detail_task_stall(rsp);
1324 rcu_check_gp_kthread_starvation(rsp);
1326 force_quiescent_state(rsp); /* Kick them all. */
1329 static void print_cpu_stall(struct rcu_state *rsp)
1331 int cpu;
1332 unsigned long flags;
1333 struct rcu_node *rnp = rcu_get_root(rsp);
1334 long totqlen = 0;
1337 * OK, time to rat on ourselves...
1338 * See Documentation/RCU/stallwarn.txt for info on how to debug
1339 * RCU CPU stall warnings.
1341 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1342 print_cpu_stall_info_begin();
1343 print_cpu_stall_info(rsp, smp_processor_id());
1344 print_cpu_stall_info_end();
1345 for_each_possible_cpu(cpu)
1346 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1347 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1348 jiffies - rsp->gp_start,
1349 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1351 rcu_check_gp_kthread_starvation(rsp);
1353 rcu_dump_cpu_stacks(rsp);
1355 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1356 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1357 WRITE_ONCE(rsp->jiffies_stall,
1358 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1359 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1362 * Attempt to revive the RCU machinery by forcing a context switch.
1364 * A context switch would normally allow the RCU state machine to make
1365 * progress and it could be we're stuck in kernel space without context
1366 * switches for an entirely unreasonable amount of time.
1368 resched_cpu(smp_processor_id());
1371 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1373 unsigned long completed;
1374 unsigned long gpnum;
1375 unsigned long gps;
1376 unsigned long j;
1377 unsigned long js;
1378 struct rcu_node *rnp;
1380 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1381 return;
1382 j = jiffies;
1385 * Lots of memory barriers to reject false positives.
1387 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1388 * then rsp->gp_start, and finally rsp->completed. These values
1389 * are updated in the opposite order with memory barriers (or
1390 * equivalent) during grace-period initialization and cleanup.
1391 * Now, a false positive can occur if we get an new value of
1392 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1393 * the memory barriers, the only way that this can happen is if one
1394 * grace period ends and another starts between these two fetches.
1395 * Detect this by comparing rsp->completed with the previous fetch
1396 * from rsp->gpnum.
1398 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1399 * and rsp->gp_start suffice to forestall false positives.
1401 gpnum = READ_ONCE(rsp->gpnum);
1402 smp_rmb(); /* Pick up ->gpnum first... */
1403 js = READ_ONCE(rsp->jiffies_stall);
1404 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1405 gps = READ_ONCE(rsp->gp_start);
1406 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1407 completed = READ_ONCE(rsp->completed);
1408 if (ULONG_CMP_GE(completed, gpnum) ||
1409 ULONG_CMP_LT(j, js) ||
1410 ULONG_CMP_GE(gps, js))
1411 return; /* No stall or GP completed since entering function. */
1412 rnp = rdp->mynode;
1413 if (rcu_gp_in_progress(rsp) &&
1414 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1416 /* We haven't checked in, so go dump stack. */
1417 print_cpu_stall(rsp);
1419 } else if (rcu_gp_in_progress(rsp) &&
1420 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1422 /* They had a few time units to dump stack, so complain. */
1423 print_other_cpu_stall(rsp, gpnum);
1428 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1430 * Set the stall-warning timeout way off into the future, thus preventing
1431 * any RCU CPU stall-warning messages from appearing in the current set of
1432 * RCU grace periods.
1434 * The caller must disable hard irqs.
1436 void rcu_cpu_stall_reset(void)
1438 struct rcu_state *rsp;
1440 for_each_rcu_flavor(rsp)
1441 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1445 * Initialize the specified rcu_data structure's default callback list
1446 * to empty. The default callback list is the one that is not used by
1447 * no-callbacks CPUs.
1449 static void init_default_callback_list(struct rcu_data *rdp)
1451 int i;
1453 rdp->nxtlist = NULL;
1454 for (i = 0; i < RCU_NEXT_SIZE; i++)
1455 rdp->nxttail[i] = &rdp->nxtlist;
1459 * Initialize the specified rcu_data structure's callback list to empty.
1461 static void init_callback_list(struct rcu_data *rdp)
1463 if (init_nocb_callback_list(rdp))
1464 return;
1465 init_default_callback_list(rdp);
1469 * Determine the value that ->completed will have at the end of the
1470 * next subsequent grace period. This is used to tag callbacks so that
1471 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1472 * been dyntick-idle for an extended period with callbacks under the
1473 * influence of RCU_FAST_NO_HZ.
1475 * The caller must hold rnp->lock with interrupts disabled.
1477 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1478 struct rcu_node *rnp)
1481 * If RCU is idle, we just wait for the next grace period.
1482 * But we can only be sure that RCU is idle if we are looking
1483 * at the root rcu_node structure -- otherwise, a new grace
1484 * period might have started, but just not yet gotten around
1485 * to initializing the current non-root rcu_node structure.
1487 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1488 return rnp->completed + 1;
1491 * Otherwise, wait for a possible partial grace period and
1492 * then the subsequent full grace period.
1494 return rnp->completed + 2;
1498 * Trace-event helper function for rcu_start_future_gp() and
1499 * rcu_nocb_wait_gp().
1501 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1502 unsigned long c, const char *s)
1504 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1505 rnp->completed, c, rnp->level,
1506 rnp->grplo, rnp->grphi, s);
1510 * Start some future grace period, as needed to handle newly arrived
1511 * callbacks. The required future grace periods are recorded in each
1512 * rcu_node structure's ->need_future_gp field. Returns true if there
1513 * is reason to awaken the grace-period kthread.
1515 * The caller must hold the specified rcu_node structure's ->lock.
1517 static bool __maybe_unused
1518 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1519 unsigned long *c_out)
1521 unsigned long c;
1522 int i;
1523 bool ret = false;
1524 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1527 * Pick up grace-period number for new callbacks. If this
1528 * grace period is already marked as needed, return to the caller.
1530 c = rcu_cbs_completed(rdp->rsp, rnp);
1531 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1532 if (rnp->need_future_gp[c & 0x1]) {
1533 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1534 goto out;
1538 * If either this rcu_node structure or the root rcu_node structure
1539 * believe that a grace period is in progress, then we must wait
1540 * for the one following, which is in "c". Because our request
1541 * will be noticed at the end of the current grace period, we don't
1542 * need to explicitly start one. We only do the lockless check
1543 * of rnp_root's fields if the current rcu_node structure thinks
1544 * there is no grace period in flight, and because we hold rnp->lock,
1545 * the only possible change is when rnp_root's two fields are
1546 * equal, in which case rnp_root->gpnum might be concurrently
1547 * incremented. But that is OK, as it will just result in our
1548 * doing some extra useless work.
1550 if (rnp->gpnum != rnp->completed ||
1551 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1552 rnp->need_future_gp[c & 0x1]++;
1553 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1554 goto out;
1558 * There might be no grace period in progress. If we don't already
1559 * hold it, acquire the root rcu_node structure's lock in order to
1560 * start one (if needed).
1562 if (rnp != rnp_root)
1563 raw_spin_lock_rcu_node(rnp_root);
1566 * Get a new grace-period number. If there really is no grace
1567 * period in progress, it will be smaller than the one we obtained
1568 * earlier. Adjust callbacks as needed. Note that even no-CBs
1569 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1571 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1572 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1573 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1574 rdp->nxtcompleted[i] = c;
1577 * If the needed for the required grace period is already
1578 * recorded, trace and leave.
1580 if (rnp_root->need_future_gp[c & 0x1]) {
1581 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1582 goto unlock_out;
1585 /* Record the need for the future grace period. */
1586 rnp_root->need_future_gp[c & 0x1]++;
1588 /* If a grace period is not already in progress, start one. */
1589 if (rnp_root->gpnum != rnp_root->completed) {
1590 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1591 } else {
1592 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1593 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1595 unlock_out:
1596 if (rnp != rnp_root)
1597 raw_spin_unlock_rcu_node(rnp_root);
1598 out:
1599 if (c_out != NULL)
1600 *c_out = c;
1601 return ret;
1605 * Clean up any old requests for the just-ended grace period. Also return
1606 * whether any additional grace periods have been requested. Also invoke
1607 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1608 * waiting for this grace period to complete.
1610 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1612 int c = rnp->completed;
1613 int needmore;
1614 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1616 rnp->need_future_gp[c & 0x1] = 0;
1617 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1618 trace_rcu_future_gp(rnp, rdp, c,
1619 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1620 return needmore;
1624 * Awaken the grace-period kthread for the specified flavor of RCU.
1625 * Don't do a self-awaken, and don't bother awakening when there is
1626 * nothing for the grace-period kthread to do (as in several CPUs
1627 * raced to awaken, and we lost), and finally don't try to awaken
1628 * a kthread that has not yet been created.
1630 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1632 if (current == rsp->gp_kthread ||
1633 !READ_ONCE(rsp->gp_flags) ||
1634 !rsp->gp_kthread)
1635 return;
1636 swake_up(&rsp->gp_wq);
1640 * If there is room, assign a ->completed number to any callbacks on
1641 * this CPU that have not already been assigned. Also accelerate any
1642 * callbacks that were previously assigned a ->completed number that has
1643 * since proven to be too conservative, which can happen if callbacks get
1644 * assigned a ->completed number while RCU is idle, but with reference to
1645 * a non-root rcu_node structure. This function is idempotent, so it does
1646 * not hurt to call it repeatedly. Returns an flag saying that we should
1647 * awaken the RCU grace-period kthread.
1649 * The caller must hold rnp->lock with interrupts disabled.
1651 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1652 struct rcu_data *rdp)
1654 unsigned long c;
1655 int i;
1656 bool ret;
1658 /* If the CPU has no callbacks, nothing to do. */
1659 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1660 return false;
1663 * Starting from the sublist containing the callbacks most
1664 * recently assigned a ->completed number and working down, find the
1665 * first sublist that is not assignable to an upcoming grace period.
1666 * Such a sublist has something in it (first two tests) and has
1667 * a ->completed number assigned that will complete sooner than
1668 * the ->completed number for newly arrived callbacks (last test).
1670 * The key point is that any later sublist can be assigned the
1671 * same ->completed number as the newly arrived callbacks, which
1672 * means that the callbacks in any of these later sublist can be
1673 * grouped into a single sublist, whether or not they have already
1674 * been assigned a ->completed number.
1676 c = rcu_cbs_completed(rsp, rnp);
1677 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1678 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1679 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1680 break;
1683 * If there are no sublist for unassigned callbacks, leave.
1684 * At the same time, advance "i" one sublist, so that "i" will
1685 * index into the sublist where all the remaining callbacks should
1686 * be grouped into.
1688 if (++i >= RCU_NEXT_TAIL)
1689 return false;
1692 * Assign all subsequent callbacks' ->completed number to the next
1693 * full grace period and group them all in the sublist initially
1694 * indexed by "i".
1696 for (; i <= RCU_NEXT_TAIL; i++) {
1697 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1698 rdp->nxtcompleted[i] = c;
1700 /* Record any needed additional grace periods. */
1701 ret = rcu_start_future_gp(rnp, rdp, NULL);
1703 /* Trace depending on how much we were able to accelerate. */
1704 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1705 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1706 else
1707 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1708 return ret;
1712 * Move any callbacks whose grace period has completed to the
1713 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1714 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1715 * sublist. This function is idempotent, so it does not hurt to
1716 * invoke it repeatedly. As long as it is not invoked -too- often...
1717 * Returns true if the RCU grace-period kthread needs to be awakened.
1719 * The caller must hold rnp->lock with interrupts disabled.
1721 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1722 struct rcu_data *rdp)
1724 int i, j;
1726 /* If the CPU has no callbacks, nothing to do. */
1727 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1728 return false;
1731 * Find all callbacks whose ->completed numbers indicate that they
1732 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1734 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1735 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1736 break;
1737 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1739 /* Clean up any sublist tail pointers that were misordered above. */
1740 for (j = RCU_WAIT_TAIL; j < i; j++)
1741 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1743 /* Copy down callbacks to fill in empty sublists. */
1744 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1745 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1746 break;
1747 rdp->nxttail[j] = rdp->nxttail[i];
1748 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1751 /* Classify any remaining callbacks. */
1752 return rcu_accelerate_cbs(rsp, rnp, rdp);
1756 * Update CPU-local rcu_data state to record the beginnings and ends of
1757 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1758 * structure corresponding to the current CPU, and must have irqs disabled.
1759 * Returns true if the grace-period kthread needs to be awakened.
1761 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1762 struct rcu_data *rdp)
1764 bool ret;
1766 /* Handle the ends of any preceding grace periods first. */
1767 if (rdp->completed == rnp->completed &&
1768 !unlikely(READ_ONCE(rdp->gpwrap))) {
1770 /* No grace period end, so just accelerate recent callbacks. */
1771 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1773 } else {
1775 /* Advance callbacks. */
1776 ret = rcu_advance_cbs(rsp, rnp, rdp);
1778 /* Remember that we saw this grace-period completion. */
1779 rdp->completed = rnp->completed;
1780 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1783 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1785 * If the current grace period is waiting for this CPU,
1786 * set up to detect a quiescent state, otherwise don't
1787 * go looking for one.
1789 rdp->gpnum = rnp->gpnum;
1790 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1791 rdp->cpu_no_qs.b.norm = true;
1792 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1793 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1794 zero_cpu_stall_ticks(rdp);
1795 WRITE_ONCE(rdp->gpwrap, false);
1797 return ret;
1800 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1802 unsigned long flags;
1803 bool needwake;
1804 struct rcu_node *rnp;
1806 local_irq_save(flags);
1807 rnp = rdp->mynode;
1808 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1809 rdp->completed == READ_ONCE(rnp->completed) &&
1810 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1811 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1812 local_irq_restore(flags);
1813 return;
1815 needwake = __note_gp_changes(rsp, rnp, rdp);
1816 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1817 if (needwake)
1818 rcu_gp_kthread_wake(rsp);
1821 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1823 if (delay > 0 &&
1824 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1825 schedule_timeout_uninterruptible(delay);
1829 * Initialize a new grace period. Return false if no grace period required.
1831 static bool rcu_gp_init(struct rcu_state *rsp)
1833 unsigned long oldmask;
1834 struct rcu_data *rdp;
1835 struct rcu_node *rnp = rcu_get_root(rsp);
1837 WRITE_ONCE(rsp->gp_activity, jiffies);
1838 raw_spin_lock_irq_rcu_node(rnp);
1839 if (!READ_ONCE(rsp->gp_flags)) {
1840 /* Spurious wakeup, tell caller to go back to sleep. */
1841 raw_spin_unlock_irq_rcu_node(rnp);
1842 return false;
1844 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1846 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1848 * Grace period already in progress, don't start another.
1849 * Not supposed to be able to happen.
1851 raw_spin_unlock_irq_rcu_node(rnp);
1852 return false;
1855 /* Advance to a new grace period and initialize state. */
1856 record_gp_stall_check_time(rsp);
1857 /* Record GP times before starting GP, hence smp_store_release(). */
1858 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1859 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1860 raw_spin_unlock_irq_rcu_node(rnp);
1863 * Apply per-leaf buffered online and offline operations to the
1864 * rcu_node tree. Note that this new grace period need not wait
1865 * for subsequent online CPUs, and that quiescent-state forcing
1866 * will handle subsequent offline CPUs.
1868 rcu_for_each_leaf_node(rsp, rnp) {
1869 rcu_gp_slow(rsp, gp_preinit_delay);
1870 raw_spin_lock_irq_rcu_node(rnp);
1871 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1872 !rnp->wait_blkd_tasks) {
1873 /* Nothing to do on this leaf rcu_node structure. */
1874 raw_spin_unlock_irq_rcu_node(rnp);
1875 continue;
1878 /* Record old state, apply changes to ->qsmaskinit field. */
1879 oldmask = rnp->qsmaskinit;
1880 rnp->qsmaskinit = rnp->qsmaskinitnext;
1882 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1883 if (!oldmask != !rnp->qsmaskinit) {
1884 if (!oldmask) /* First online CPU for this rcu_node. */
1885 rcu_init_new_rnp(rnp);
1886 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1887 rnp->wait_blkd_tasks = true;
1888 else /* Last offline CPU and can propagate. */
1889 rcu_cleanup_dead_rnp(rnp);
1893 * If all waited-on tasks from prior grace period are
1894 * done, and if all this rcu_node structure's CPUs are
1895 * still offline, propagate up the rcu_node tree and
1896 * clear ->wait_blkd_tasks. Otherwise, if one of this
1897 * rcu_node structure's CPUs has since come back online,
1898 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1899 * checks for this, so just call it unconditionally).
1901 if (rnp->wait_blkd_tasks &&
1902 (!rcu_preempt_has_tasks(rnp) ||
1903 rnp->qsmaskinit)) {
1904 rnp->wait_blkd_tasks = false;
1905 rcu_cleanup_dead_rnp(rnp);
1908 raw_spin_unlock_irq_rcu_node(rnp);
1912 * Set the quiescent-state-needed bits in all the rcu_node
1913 * structures for all currently online CPUs in breadth-first order,
1914 * starting from the root rcu_node structure, relying on the layout
1915 * of the tree within the rsp->node[] array. Note that other CPUs
1916 * will access only the leaves of the hierarchy, thus seeing that no
1917 * grace period is in progress, at least until the corresponding
1918 * leaf node has been initialized. In addition, we have excluded
1919 * CPU-hotplug operations.
1921 * The grace period cannot complete until the initialization
1922 * process finishes, because this kthread handles both.
1924 rcu_for_each_node_breadth_first(rsp, rnp) {
1925 rcu_gp_slow(rsp, gp_init_delay);
1926 raw_spin_lock_irq_rcu_node(rnp);
1927 rdp = this_cpu_ptr(rsp->rda);
1928 rcu_preempt_check_blocked_tasks(rnp);
1929 rnp->qsmask = rnp->qsmaskinit;
1930 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1931 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1932 WRITE_ONCE(rnp->completed, rsp->completed);
1933 if (rnp == rdp->mynode)
1934 (void)__note_gp_changes(rsp, rnp, rdp);
1935 rcu_preempt_boost_start_gp(rnp);
1936 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1937 rnp->level, rnp->grplo,
1938 rnp->grphi, rnp->qsmask);
1939 raw_spin_unlock_irq_rcu_node(rnp);
1940 cond_resched_rcu_qs();
1941 WRITE_ONCE(rsp->gp_activity, jiffies);
1944 return true;
1948 * Helper function for wait_event_interruptible_timeout() wakeup
1949 * at force-quiescent-state time.
1951 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1953 struct rcu_node *rnp = rcu_get_root(rsp);
1955 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1956 *gfp = READ_ONCE(rsp->gp_flags);
1957 if (*gfp & RCU_GP_FLAG_FQS)
1958 return true;
1960 /* The current grace period has completed. */
1961 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1962 return true;
1964 return false;
1968 * Do one round of quiescent-state forcing.
1970 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1972 bool isidle = false;
1973 unsigned long maxj;
1974 struct rcu_node *rnp = rcu_get_root(rsp);
1976 WRITE_ONCE(rsp->gp_activity, jiffies);
1977 rsp->n_force_qs++;
1978 if (first_time) {
1979 /* Collect dyntick-idle snapshots. */
1980 if (is_sysidle_rcu_state(rsp)) {
1981 isidle = true;
1982 maxj = jiffies - ULONG_MAX / 4;
1984 force_qs_rnp(rsp, dyntick_save_progress_counter,
1985 &isidle, &maxj);
1986 rcu_sysidle_report_gp(rsp, isidle, maxj);
1987 } else {
1988 /* Handle dyntick-idle and offline CPUs. */
1989 isidle = true;
1990 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1992 /* Clear flag to prevent immediate re-entry. */
1993 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1994 raw_spin_lock_irq_rcu_node(rnp);
1995 WRITE_ONCE(rsp->gp_flags,
1996 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1997 raw_spin_unlock_irq_rcu_node(rnp);
2002 * Clean up after the old grace period.
2004 static void rcu_gp_cleanup(struct rcu_state *rsp)
2006 unsigned long gp_duration;
2007 bool needgp = false;
2008 int nocb = 0;
2009 struct rcu_data *rdp;
2010 struct rcu_node *rnp = rcu_get_root(rsp);
2011 struct swait_queue_head *sq;
2013 WRITE_ONCE(rsp->gp_activity, jiffies);
2014 raw_spin_lock_irq_rcu_node(rnp);
2015 gp_duration = jiffies - rsp->gp_start;
2016 if (gp_duration > rsp->gp_max)
2017 rsp->gp_max = gp_duration;
2020 * We know the grace period is complete, but to everyone else
2021 * it appears to still be ongoing. But it is also the case
2022 * that to everyone else it looks like there is nothing that
2023 * they can do to advance the grace period. It is therefore
2024 * safe for us to drop the lock in order to mark the grace
2025 * period as completed in all of the rcu_node structures.
2027 raw_spin_unlock_irq_rcu_node(rnp);
2030 * Propagate new ->completed value to rcu_node structures so
2031 * that other CPUs don't have to wait until the start of the next
2032 * grace period to process their callbacks. This also avoids
2033 * some nasty RCU grace-period initialization races by forcing
2034 * the end of the current grace period to be completely recorded in
2035 * all of the rcu_node structures before the beginning of the next
2036 * grace period is recorded in any of the rcu_node structures.
2038 rcu_for_each_node_breadth_first(rsp, rnp) {
2039 raw_spin_lock_irq_rcu_node(rnp);
2040 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2041 WARN_ON_ONCE(rnp->qsmask);
2042 WRITE_ONCE(rnp->completed, rsp->gpnum);
2043 rdp = this_cpu_ptr(rsp->rda);
2044 if (rnp == rdp->mynode)
2045 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2046 /* smp_mb() provided by prior unlock-lock pair. */
2047 nocb += rcu_future_gp_cleanup(rsp, rnp);
2048 sq = rcu_nocb_gp_get(rnp);
2049 raw_spin_unlock_irq_rcu_node(rnp);
2050 rcu_nocb_gp_cleanup(sq);
2051 cond_resched_rcu_qs();
2052 WRITE_ONCE(rsp->gp_activity, jiffies);
2053 rcu_gp_slow(rsp, gp_cleanup_delay);
2055 rnp = rcu_get_root(rsp);
2056 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2057 rcu_nocb_gp_set(rnp, nocb);
2059 /* Declare grace period done. */
2060 WRITE_ONCE(rsp->completed, rsp->gpnum);
2061 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2062 rsp->gp_state = RCU_GP_IDLE;
2063 rdp = this_cpu_ptr(rsp->rda);
2064 /* Advance CBs to reduce false positives below. */
2065 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2066 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2067 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2068 trace_rcu_grace_period(rsp->name,
2069 READ_ONCE(rsp->gpnum),
2070 TPS("newreq"));
2072 raw_spin_unlock_irq_rcu_node(rnp);
2076 * Body of kthread that handles grace periods.
2078 static int __noreturn rcu_gp_kthread(void *arg)
2080 bool first_gp_fqs;
2081 int gf;
2082 unsigned long j;
2083 int ret;
2084 struct rcu_state *rsp = arg;
2085 struct rcu_node *rnp = rcu_get_root(rsp);
2087 rcu_bind_gp_kthread();
2088 for (;;) {
2090 /* Handle grace-period start. */
2091 for (;;) {
2092 trace_rcu_grace_period(rsp->name,
2093 READ_ONCE(rsp->gpnum),
2094 TPS("reqwait"));
2095 rsp->gp_state = RCU_GP_WAIT_GPS;
2096 swait_event_interruptible(rsp->gp_wq,
2097 READ_ONCE(rsp->gp_flags) &
2098 RCU_GP_FLAG_INIT);
2099 rsp->gp_state = RCU_GP_DONE_GPS;
2100 /* Locking provides needed memory barrier. */
2101 if (rcu_gp_init(rsp))
2102 break;
2103 cond_resched_rcu_qs();
2104 WRITE_ONCE(rsp->gp_activity, jiffies);
2105 WARN_ON(signal_pending(current));
2106 trace_rcu_grace_period(rsp->name,
2107 READ_ONCE(rsp->gpnum),
2108 TPS("reqwaitsig"));
2111 /* Handle quiescent-state forcing. */
2112 first_gp_fqs = true;
2113 j = jiffies_till_first_fqs;
2114 if (j > HZ) {
2115 j = HZ;
2116 jiffies_till_first_fqs = HZ;
2118 ret = 0;
2119 for (;;) {
2120 if (!ret)
2121 rsp->jiffies_force_qs = jiffies + j;
2122 trace_rcu_grace_period(rsp->name,
2123 READ_ONCE(rsp->gpnum),
2124 TPS("fqswait"));
2125 rsp->gp_state = RCU_GP_WAIT_FQS;
2126 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2127 rcu_gp_fqs_check_wake(rsp, &gf), j);
2128 rsp->gp_state = RCU_GP_DOING_FQS;
2129 /* Locking provides needed memory barriers. */
2130 /* If grace period done, leave loop. */
2131 if (!READ_ONCE(rnp->qsmask) &&
2132 !rcu_preempt_blocked_readers_cgp(rnp))
2133 break;
2134 /* If time for quiescent-state forcing, do it. */
2135 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2136 (gf & RCU_GP_FLAG_FQS)) {
2137 trace_rcu_grace_period(rsp->name,
2138 READ_ONCE(rsp->gpnum),
2139 TPS("fqsstart"));
2140 rcu_gp_fqs(rsp, first_gp_fqs);
2141 first_gp_fqs = false;
2142 trace_rcu_grace_period(rsp->name,
2143 READ_ONCE(rsp->gpnum),
2144 TPS("fqsend"));
2145 cond_resched_rcu_qs();
2146 WRITE_ONCE(rsp->gp_activity, jiffies);
2147 } else {
2148 /* Deal with stray signal. */
2149 cond_resched_rcu_qs();
2150 WRITE_ONCE(rsp->gp_activity, jiffies);
2151 WARN_ON(signal_pending(current));
2152 trace_rcu_grace_period(rsp->name,
2153 READ_ONCE(rsp->gpnum),
2154 TPS("fqswaitsig"));
2156 j = jiffies_till_next_fqs;
2157 if (j > HZ) {
2158 j = HZ;
2159 jiffies_till_next_fqs = HZ;
2160 } else if (j < 1) {
2161 j = 1;
2162 jiffies_till_next_fqs = 1;
2166 /* Handle grace-period end. */
2167 rsp->gp_state = RCU_GP_CLEANUP;
2168 rcu_gp_cleanup(rsp);
2169 rsp->gp_state = RCU_GP_CLEANED;
2174 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2175 * in preparation for detecting the next grace period. The caller must hold
2176 * the root node's ->lock and hard irqs must be disabled.
2178 * Note that it is legal for a dying CPU (which is marked as offline) to
2179 * invoke this function. This can happen when the dying CPU reports its
2180 * quiescent state.
2182 * Returns true if the grace-period kthread must be awakened.
2184 static bool
2185 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2186 struct rcu_data *rdp)
2188 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2190 * Either we have not yet spawned the grace-period
2191 * task, this CPU does not need another grace period,
2192 * or a grace period is already in progress.
2193 * Either way, don't start a new grace period.
2195 return false;
2197 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2198 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2199 TPS("newreq"));
2202 * We can't do wakeups while holding the rnp->lock, as that
2203 * could cause possible deadlocks with the rq->lock. Defer
2204 * the wakeup to our caller.
2206 return true;
2210 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2211 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2212 * is invoked indirectly from rcu_advance_cbs(), which would result in
2213 * endless recursion -- or would do so if it wasn't for the self-deadlock
2214 * that is encountered beforehand.
2216 * Returns true if the grace-period kthread needs to be awakened.
2218 static bool rcu_start_gp(struct rcu_state *rsp)
2220 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2221 struct rcu_node *rnp = rcu_get_root(rsp);
2222 bool ret = false;
2225 * If there is no grace period in progress right now, any
2226 * callbacks we have up to this point will be satisfied by the
2227 * next grace period. Also, advancing the callbacks reduces the
2228 * probability of false positives from cpu_needs_another_gp()
2229 * resulting in pointless grace periods. So, advance callbacks
2230 * then start the grace period!
2232 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2233 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2234 return ret;
2238 * Report a full set of quiescent states to the specified rcu_state data
2239 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2240 * kthread if another grace period is required. Whether we wake
2241 * the grace-period kthread or it awakens itself for the next round
2242 * of quiescent-state forcing, that kthread will clean up after the
2243 * just-completed grace period. Note that the caller must hold rnp->lock,
2244 * which is released before return.
2246 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2247 __releases(rcu_get_root(rsp)->lock)
2249 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2250 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2251 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2252 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2256 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2257 * Allows quiescent states for a group of CPUs to be reported at one go
2258 * to the specified rcu_node structure, though all the CPUs in the group
2259 * must be represented by the same rcu_node structure (which need not be a
2260 * leaf rcu_node structure, though it often will be). The gps parameter
2261 * is the grace-period snapshot, which means that the quiescent states
2262 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2263 * must be held upon entry, and it is released before return.
2265 static void
2266 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2267 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2268 __releases(rnp->lock)
2270 unsigned long oldmask = 0;
2271 struct rcu_node *rnp_c;
2273 /* Walk up the rcu_node hierarchy. */
2274 for (;;) {
2275 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2278 * Our bit has already been cleared, or the
2279 * relevant grace period is already over, so done.
2281 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2282 return;
2284 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2285 rnp->qsmask &= ~mask;
2286 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2287 mask, rnp->qsmask, rnp->level,
2288 rnp->grplo, rnp->grphi,
2289 !!rnp->gp_tasks);
2290 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2292 /* Other bits still set at this level, so done. */
2293 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2294 return;
2296 mask = rnp->grpmask;
2297 if (rnp->parent == NULL) {
2299 /* No more levels. Exit loop holding root lock. */
2301 break;
2303 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2304 rnp_c = rnp;
2305 rnp = rnp->parent;
2306 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2307 oldmask = rnp_c->qsmask;
2311 * Get here if we are the last CPU to pass through a quiescent
2312 * state for this grace period. Invoke rcu_report_qs_rsp()
2313 * to clean up and start the next grace period if one is needed.
2315 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2319 * Record a quiescent state for all tasks that were previously queued
2320 * on the specified rcu_node structure and that were blocking the current
2321 * RCU grace period. The caller must hold the specified rnp->lock with
2322 * irqs disabled, and this lock is released upon return, but irqs remain
2323 * disabled.
2325 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2326 struct rcu_node *rnp, unsigned long flags)
2327 __releases(rnp->lock)
2329 unsigned long gps;
2330 unsigned long mask;
2331 struct rcu_node *rnp_p;
2333 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2334 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2335 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2336 return; /* Still need more quiescent states! */
2339 rnp_p = rnp->parent;
2340 if (rnp_p == NULL) {
2342 * Only one rcu_node structure in the tree, so don't
2343 * try to report up to its nonexistent parent!
2345 rcu_report_qs_rsp(rsp, flags);
2346 return;
2349 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2350 gps = rnp->gpnum;
2351 mask = rnp->grpmask;
2352 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2353 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2354 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2358 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2359 * structure. This must be called from the specified CPU.
2361 static void
2362 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2364 unsigned long flags;
2365 unsigned long mask;
2366 bool needwake;
2367 struct rcu_node *rnp;
2369 rnp = rdp->mynode;
2370 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2371 if ((rdp->cpu_no_qs.b.norm &&
2372 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2373 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2374 rdp->gpwrap) {
2377 * The grace period in which this quiescent state was
2378 * recorded has ended, so don't report it upwards.
2379 * We will instead need a new quiescent state that lies
2380 * within the current grace period.
2382 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2383 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2384 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2385 return;
2387 mask = rdp->grpmask;
2388 if ((rnp->qsmask & mask) == 0) {
2389 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2390 } else {
2391 rdp->core_needs_qs = false;
2394 * This GP can't end until cpu checks in, so all of our
2395 * callbacks can be processed during the next GP.
2397 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2399 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2400 /* ^^^ Released rnp->lock */
2401 if (needwake)
2402 rcu_gp_kthread_wake(rsp);
2407 * Check to see if there is a new grace period of which this CPU
2408 * is not yet aware, and if so, set up local rcu_data state for it.
2409 * Otherwise, see if this CPU has just passed through its first
2410 * quiescent state for this grace period, and record that fact if so.
2412 static void
2413 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2415 /* Check for grace-period ends and beginnings. */
2416 note_gp_changes(rsp, rdp);
2419 * Does this CPU still need to do its part for current grace period?
2420 * If no, return and let the other CPUs do their part as well.
2422 if (!rdp->core_needs_qs)
2423 return;
2426 * Was there a quiescent state since the beginning of the grace
2427 * period? If no, then exit and wait for the next call.
2429 if (rdp->cpu_no_qs.b.norm &&
2430 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2431 return;
2434 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2435 * judge of that).
2437 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2441 * Send the specified CPU's RCU callbacks to the orphanage. The
2442 * specified CPU must be offline, and the caller must hold the
2443 * ->orphan_lock.
2445 static void
2446 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2447 struct rcu_node *rnp, struct rcu_data *rdp)
2449 /* No-CBs CPUs do not have orphanable callbacks. */
2450 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2451 return;
2454 * Orphan the callbacks. First adjust the counts. This is safe
2455 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2456 * cannot be running now. Thus no memory barrier is required.
2458 if (rdp->nxtlist != NULL) {
2459 rsp->qlen_lazy += rdp->qlen_lazy;
2460 rsp->qlen += rdp->qlen;
2461 rdp->n_cbs_orphaned += rdp->qlen;
2462 rdp->qlen_lazy = 0;
2463 WRITE_ONCE(rdp->qlen, 0);
2467 * Next, move those callbacks still needing a grace period to
2468 * the orphanage, where some other CPU will pick them up.
2469 * Some of the callbacks might have gone partway through a grace
2470 * period, but that is too bad. They get to start over because we
2471 * cannot assume that grace periods are synchronized across CPUs.
2472 * We don't bother updating the ->nxttail[] array yet, instead
2473 * we just reset the whole thing later on.
2475 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2476 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2477 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2478 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2482 * Then move the ready-to-invoke callbacks to the orphanage,
2483 * where some other CPU will pick them up. These will not be
2484 * required to pass though another grace period: They are done.
2486 if (rdp->nxtlist != NULL) {
2487 *rsp->orphan_donetail = rdp->nxtlist;
2488 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2492 * Finally, initialize the rcu_data structure's list to empty and
2493 * disallow further callbacks on this CPU.
2495 init_callback_list(rdp);
2496 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2500 * Adopt the RCU callbacks from the specified rcu_state structure's
2501 * orphanage. The caller must hold the ->orphan_lock.
2503 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2505 int i;
2506 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2508 /* No-CBs CPUs are handled specially. */
2509 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2510 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2511 return;
2513 /* Do the accounting first. */
2514 rdp->qlen_lazy += rsp->qlen_lazy;
2515 rdp->qlen += rsp->qlen;
2516 rdp->n_cbs_adopted += rsp->qlen;
2517 if (rsp->qlen_lazy != rsp->qlen)
2518 rcu_idle_count_callbacks_posted();
2519 rsp->qlen_lazy = 0;
2520 rsp->qlen = 0;
2523 * We do not need a memory barrier here because the only way we
2524 * can get here if there is an rcu_barrier() in flight is if
2525 * we are the task doing the rcu_barrier().
2528 /* First adopt the ready-to-invoke callbacks. */
2529 if (rsp->orphan_donelist != NULL) {
2530 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2531 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2532 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2533 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2534 rdp->nxttail[i] = rsp->orphan_donetail;
2535 rsp->orphan_donelist = NULL;
2536 rsp->orphan_donetail = &rsp->orphan_donelist;
2539 /* And then adopt the callbacks that still need a grace period. */
2540 if (rsp->orphan_nxtlist != NULL) {
2541 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2542 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2543 rsp->orphan_nxtlist = NULL;
2544 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2549 * Trace the fact that this CPU is going offline.
2551 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2553 RCU_TRACE(unsigned long mask);
2554 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2555 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2557 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2558 return;
2560 RCU_TRACE(mask = rdp->grpmask);
2561 trace_rcu_grace_period(rsp->name,
2562 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2563 TPS("cpuofl"));
2567 * All CPUs for the specified rcu_node structure have gone offline,
2568 * and all tasks that were preempted within an RCU read-side critical
2569 * section while running on one of those CPUs have since exited their RCU
2570 * read-side critical section. Some other CPU is reporting this fact with
2571 * the specified rcu_node structure's ->lock held and interrupts disabled.
2572 * This function therefore goes up the tree of rcu_node structures,
2573 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2574 * the leaf rcu_node structure's ->qsmaskinit field has already been
2575 * updated
2577 * This function does check that the specified rcu_node structure has
2578 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2579 * prematurely. That said, invoking it after the fact will cost you
2580 * a needless lock acquisition. So once it has done its work, don't
2581 * invoke it again.
2583 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2585 long mask;
2586 struct rcu_node *rnp = rnp_leaf;
2588 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2589 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2590 return;
2591 for (;;) {
2592 mask = rnp->grpmask;
2593 rnp = rnp->parent;
2594 if (!rnp)
2595 break;
2596 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2597 rnp->qsmaskinit &= ~mask;
2598 rnp->qsmask &= ~mask;
2599 if (rnp->qsmaskinit) {
2600 raw_spin_unlock_rcu_node(rnp);
2601 /* irqs remain disabled. */
2602 return;
2604 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2609 * The CPU has been completely removed, and some other CPU is reporting
2610 * this fact from process context. Do the remainder of the cleanup,
2611 * including orphaning the outgoing CPU's RCU callbacks, and also
2612 * adopting them. There can only be one CPU hotplug operation at a time,
2613 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2615 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2617 unsigned long flags;
2618 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2619 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2621 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2622 return;
2624 /* Adjust any no-longer-needed kthreads. */
2625 rcu_boost_kthread_setaffinity(rnp, -1);
2627 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2628 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2629 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2630 rcu_adopt_orphan_cbs(rsp, flags);
2631 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2633 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2634 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2635 cpu, rdp->qlen, rdp->nxtlist);
2639 * Invoke any RCU callbacks that have made it to the end of their grace
2640 * period. Thottle as specified by rdp->blimit.
2642 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2644 unsigned long flags;
2645 struct rcu_head *next, *list, **tail;
2646 long bl, count, count_lazy;
2647 int i;
2649 /* If no callbacks are ready, just return. */
2650 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2651 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2652 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2653 need_resched(), is_idle_task(current),
2654 rcu_is_callbacks_kthread());
2655 return;
2659 * Extract the list of ready callbacks, disabling to prevent
2660 * races with call_rcu() from interrupt handlers.
2662 local_irq_save(flags);
2663 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2664 bl = rdp->blimit;
2665 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2666 list = rdp->nxtlist;
2667 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2668 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2669 tail = rdp->nxttail[RCU_DONE_TAIL];
2670 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2671 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2672 rdp->nxttail[i] = &rdp->nxtlist;
2673 local_irq_restore(flags);
2675 /* Invoke callbacks. */
2676 count = count_lazy = 0;
2677 while (list) {
2678 next = list->next;
2679 prefetch(next);
2680 debug_rcu_head_unqueue(list);
2681 if (__rcu_reclaim(rsp->name, list))
2682 count_lazy++;
2683 list = next;
2684 /* Stop only if limit reached and CPU has something to do. */
2685 if (++count >= bl &&
2686 (need_resched() ||
2687 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2688 break;
2691 local_irq_save(flags);
2692 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2693 is_idle_task(current),
2694 rcu_is_callbacks_kthread());
2696 /* Update count, and requeue any remaining callbacks. */
2697 if (list != NULL) {
2698 *tail = rdp->nxtlist;
2699 rdp->nxtlist = list;
2700 for (i = 0; i < RCU_NEXT_SIZE; i++)
2701 if (&rdp->nxtlist == rdp->nxttail[i])
2702 rdp->nxttail[i] = tail;
2703 else
2704 break;
2706 smp_mb(); /* List handling before counting for rcu_barrier(). */
2707 rdp->qlen_lazy -= count_lazy;
2708 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2709 rdp->n_cbs_invoked += count;
2711 /* Reinstate batch limit if we have worked down the excess. */
2712 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2713 rdp->blimit = blimit;
2715 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2716 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2717 rdp->qlen_last_fqs_check = 0;
2718 rdp->n_force_qs_snap = rsp->n_force_qs;
2719 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2720 rdp->qlen_last_fqs_check = rdp->qlen;
2721 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2723 local_irq_restore(flags);
2725 /* Re-invoke RCU core processing if there are callbacks remaining. */
2726 if (cpu_has_callbacks_ready_to_invoke(rdp))
2727 invoke_rcu_core();
2731 * Check to see if this CPU is in a non-context-switch quiescent state
2732 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2733 * Also schedule RCU core processing.
2735 * This function must be called from hardirq context. It is normally
2736 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2737 * false, there is no point in invoking rcu_check_callbacks().
2739 void rcu_check_callbacks(int user)
2741 trace_rcu_utilization(TPS("Start scheduler-tick"));
2742 increment_cpu_stall_ticks();
2743 if (user || rcu_is_cpu_rrupt_from_idle()) {
2746 * Get here if this CPU took its interrupt from user
2747 * mode or from the idle loop, and if this is not a
2748 * nested interrupt. In this case, the CPU is in
2749 * a quiescent state, so note it.
2751 * No memory barrier is required here because both
2752 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2753 * variables that other CPUs neither access nor modify,
2754 * at least not while the corresponding CPU is online.
2757 rcu_sched_qs();
2758 rcu_bh_qs();
2760 } else if (!in_softirq()) {
2763 * Get here if this CPU did not take its interrupt from
2764 * softirq, in other words, if it is not interrupting
2765 * a rcu_bh read-side critical section. This is an _bh
2766 * critical section, so note it.
2769 rcu_bh_qs();
2771 rcu_preempt_check_callbacks();
2772 if (rcu_pending())
2773 invoke_rcu_core();
2774 if (user)
2775 rcu_note_voluntary_context_switch(current);
2776 trace_rcu_utilization(TPS("End scheduler-tick"));
2780 * Scan the leaf rcu_node structures, processing dyntick state for any that
2781 * have not yet encountered a quiescent state, using the function specified.
2782 * Also initiate boosting for any threads blocked on the root rcu_node.
2784 * The caller must have suppressed start of new grace periods.
2786 static void force_qs_rnp(struct rcu_state *rsp,
2787 int (*f)(struct rcu_data *rsp, bool *isidle,
2788 unsigned long *maxj),
2789 bool *isidle, unsigned long *maxj)
2791 unsigned long bit;
2792 int cpu;
2793 unsigned long flags;
2794 unsigned long mask;
2795 struct rcu_node *rnp;
2797 rcu_for_each_leaf_node(rsp, rnp) {
2798 cond_resched_rcu_qs();
2799 mask = 0;
2800 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2801 if (rnp->qsmask == 0) {
2802 if (rcu_state_p == &rcu_sched_state ||
2803 rsp != rcu_state_p ||
2804 rcu_preempt_blocked_readers_cgp(rnp)) {
2806 * No point in scanning bits because they
2807 * are all zero. But we might need to
2808 * priority-boost blocked readers.
2810 rcu_initiate_boost(rnp, flags);
2811 /* rcu_initiate_boost() releases rnp->lock */
2812 continue;
2814 if (rnp->parent &&
2815 (rnp->parent->qsmask & rnp->grpmask)) {
2817 * Race between grace-period
2818 * initialization and task exiting RCU
2819 * read-side critical section: Report.
2821 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2822 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2823 continue;
2826 cpu = rnp->grplo;
2827 bit = 1;
2828 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2829 if ((rnp->qsmask & bit) != 0) {
2830 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2831 mask |= bit;
2834 if (mask != 0) {
2835 /* Idle/offline CPUs, report (releases rnp->lock. */
2836 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2837 } else {
2838 /* Nothing to do here, so just drop the lock. */
2839 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2845 * Force quiescent states on reluctant CPUs, and also detect which
2846 * CPUs are in dyntick-idle mode.
2848 static void force_quiescent_state(struct rcu_state *rsp)
2850 unsigned long flags;
2851 bool ret;
2852 struct rcu_node *rnp;
2853 struct rcu_node *rnp_old = NULL;
2855 /* Funnel through hierarchy to reduce memory contention. */
2856 rnp = __this_cpu_read(rsp->rda->mynode);
2857 for (; rnp != NULL; rnp = rnp->parent) {
2858 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2859 !raw_spin_trylock(&rnp->fqslock);
2860 if (rnp_old != NULL)
2861 raw_spin_unlock(&rnp_old->fqslock);
2862 if (ret) {
2863 rsp->n_force_qs_lh++;
2864 return;
2866 rnp_old = rnp;
2868 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2870 /* Reached the root of the rcu_node tree, acquire lock. */
2871 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2872 raw_spin_unlock(&rnp_old->fqslock);
2873 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2874 rsp->n_force_qs_lh++;
2875 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2876 return; /* Someone beat us to it. */
2878 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2879 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2880 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2884 * This does the RCU core processing work for the specified rcu_state
2885 * and rcu_data structures. This may be called only from the CPU to
2886 * whom the rdp belongs.
2888 static void
2889 __rcu_process_callbacks(struct rcu_state *rsp)
2891 unsigned long flags;
2892 bool needwake;
2893 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2895 WARN_ON_ONCE(rdp->beenonline == 0);
2897 /* Update RCU state based on any recent quiescent states. */
2898 rcu_check_quiescent_state(rsp, rdp);
2900 /* Does this CPU require a not-yet-started grace period? */
2901 local_irq_save(flags);
2902 if (cpu_needs_another_gp(rsp, rdp)) {
2903 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2904 needwake = rcu_start_gp(rsp);
2905 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2906 if (needwake)
2907 rcu_gp_kthread_wake(rsp);
2908 } else {
2909 local_irq_restore(flags);
2912 /* If there are callbacks ready, invoke them. */
2913 if (cpu_has_callbacks_ready_to_invoke(rdp))
2914 invoke_rcu_callbacks(rsp, rdp);
2916 /* Do any needed deferred wakeups of rcuo kthreads. */
2917 do_nocb_deferred_wakeup(rdp);
2921 * Do RCU core processing for the current CPU.
2923 static void rcu_process_callbacks(struct softirq_action *unused)
2925 struct rcu_state *rsp;
2927 if (cpu_is_offline(smp_processor_id()))
2928 return;
2929 trace_rcu_utilization(TPS("Start RCU core"));
2930 for_each_rcu_flavor(rsp)
2931 __rcu_process_callbacks(rsp);
2932 trace_rcu_utilization(TPS("End RCU core"));
2936 * Schedule RCU callback invocation. If the specified type of RCU
2937 * does not support RCU priority boosting, just do a direct call,
2938 * otherwise wake up the per-CPU kernel kthread. Note that because we
2939 * are running on the current CPU with softirqs disabled, the
2940 * rcu_cpu_kthread_task cannot disappear out from under us.
2942 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2944 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2945 return;
2946 if (likely(!rsp->boost)) {
2947 rcu_do_batch(rsp, rdp);
2948 return;
2950 invoke_rcu_callbacks_kthread();
2953 static void invoke_rcu_core(void)
2955 if (cpu_online(smp_processor_id()))
2956 raise_softirq(RCU_SOFTIRQ);
2960 * Handle any core-RCU processing required by a call_rcu() invocation.
2962 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2963 struct rcu_head *head, unsigned long flags)
2965 bool needwake;
2968 * If called from an extended quiescent state, invoke the RCU
2969 * core in order to force a re-evaluation of RCU's idleness.
2971 if (!rcu_is_watching())
2972 invoke_rcu_core();
2974 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2975 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2976 return;
2979 * Force the grace period if too many callbacks or too long waiting.
2980 * Enforce hysteresis, and don't invoke force_quiescent_state()
2981 * if some other CPU has recently done so. Also, don't bother
2982 * invoking force_quiescent_state() if the newly enqueued callback
2983 * is the only one waiting for a grace period to complete.
2985 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2987 /* Are we ignoring a completed grace period? */
2988 note_gp_changes(rsp, rdp);
2990 /* Start a new grace period if one not already started. */
2991 if (!rcu_gp_in_progress(rsp)) {
2992 struct rcu_node *rnp_root = rcu_get_root(rsp);
2994 raw_spin_lock_rcu_node(rnp_root);
2995 needwake = rcu_start_gp(rsp);
2996 raw_spin_unlock_rcu_node(rnp_root);
2997 if (needwake)
2998 rcu_gp_kthread_wake(rsp);
2999 } else {
3000 /* Give the grace period a kick. */
3001 rdp->blimit = LONG_MAX;
3002 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3003 *rdp->nxttail[RCU_DONE_TAIL] != head)
3004 force_quiescent_state(rsp);
3005 rdp->n_force_qs_snap = rsp->n_force_qs;
3006 rdp->qlen_last_fqs_check = rdp->qlen;
3012 * RCU callback function to leak a callback.
3014 static void rcu_leak_callback(struct rcu_head *rhp)
3019 * Helper function for call_rcu() and friends. The cpu argument will
3020 * normally be -1, indicating "currently running CPU". It may specify
3021 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3022 * is expected to specify a CPU.
3024 static void
3025 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3026 struct rcu_state *rsp, int cpu, bool lazy)
3028 unsigned long flags;
3029 struct rcu_data *rdp;
3031 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3032 if (debug_rcu_head_queue(head)) {
3033 /* Probable double call_rcu(), so leak the callback. */
3034 WRITE_ONCE(head->func, rcu_leak_callback);
3035 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3036 return;
3038 head->func = func;
3039 head->next = NULL;
3042 * Opportunistically note grace-period endings and beginnings.
3043 * Note that we might see a beginning right after we see an
3044 * end, but never vice versa, since this CPU has to pass through
3045 * a quiescent state betweentimes.
3047 local_irq_save(flags);
3048 rdp = this_cpu_ptr(rsp->rda);
3050 /* Add the callback to our list. */
3051 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3052 int offline;
3054 if (cpu != -1)
3055 rdp = per_cpu_ptr(rsp->rda, cpu);
3056 if (likely(rdp->mynode)) {
3057 /* Post-boot, so this should be for a no-CBs CPU. */
3058 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3059 WARN_ON_ONCE(offline);
3060 /* Offline CPU, _call_rcu() illegal, leak callback. */
3061 local_irq_restore(flags);
3062 return;
3065 * Very early boot, before rcu_init(). Initialize if needed
3066 * and then drop through to queue the callback.
3068 BUG_ON(cpu != -1);
3069 WARN_ON_ONCE(!rcu_is_watching());
3070 if (!likely(rdp->nxtlist))
3071 init_default_callback_list(rdp);
3073 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3074 if (lazy)
3075 rdp->qlen_lazy++;
3076 else
3077 rcu_idle_count_callbacks_posted();
3078 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3079 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3080 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3082 if (__is_kfree_rcu_offset((unsigned long)func))
3083 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3084 rdp->qlen_lazy, rdp->qlen);
3085 else
3086 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3088 /* Go handle any RCU core processing required. */
3089 __call_rcu_core(rsp, rdp, head, flags);
3090 local_irq_restore(flags);
3094 * Queue an RCU-sched callback for invocation after a grace period.
3096 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3098 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3100 EXPORT_SYMBOL_GPL(call_rcu_sched);
3103 * Queue an RCU callback for invocation after a quicker grace period.
3105 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3107 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3109 EXPORT_SYMBOL_GPL(call_rcu_bh);
3112 * Queue an RCU callback for lazy invocation after a grace period.
3113 * This will likely be later named something like "call_rcu_lazy()",
3114 * but this change will require some way of tagging the lazy RCU
3115 * callbacks in the list of pending callbacks. Until then, this
3116 * function may only be called from __kfree_rcu().
3118 void kfree_call_rcu(struct rcu_head *head,
3119 rcu_callback_t func)
3121 __call_rcu(head, func, rcu_state_p, -1, 1);
3123 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3126 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3127 * any blocking grace-period wait automatically implies a grace period
3128 * if there is only one CPU online at any point time during execution
3129 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3130 * occasionally incorrectly indicate that there are multiple CPUs online
3131 * when there was in fact only one the whole time, as this just adds
3132 * some overhead: RCU still operates correctly.
3134 static inline int rcu_blocking_is_gp(void)
3136 int ret;
3138 might_sleep(); /* Check for RCU read-side critical section. */
3139 preempt_disable();
3140 ret = num_online_cpus() <= 1;
3141 preempt_enable();
3142 return ret;
3146 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3148 * Control will return to the caller some time after a full rcu-sched
3149 * grace period has elapsed, in other words after all currently executing
3150 * rcu-sched read-side critical sections have completed. These read-side
3151 * critical sections are delimited by rcu_read_lock_sched() and
3152 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3153 * local_irq_disable(), and so on may be used in place of
3154 * rcu_read_lock_sched().
3156 * This means that all preempt_disable code sequences, including NMI and
3157 * non-threaded hardware-interrupt handlers, in progress on entry will
3158 * have completed before this primitive returns. However, this does not
3159 * guarantee that softirq handlers will have completed, since in some
3160 * kernels, these handlers can run in process context, and can block.
3162 * Note that this guarantee implies further memory-ordering guarantees.
3163 * On systems with more than one CPU, when synchronize_sched() returns,
3164 * each CPU is guaranteed to have executed a full memory barrier since the
3165 * end of its last RCU-sched read-side critical section whose beginning
3166 * preceded the call to synchronize_sched(). In addition, each CPU having
3167 * an RCU read-side critical section that extends beyond the return from
3168 * synchronize_sched() is guaranteed to have executed a full memory barrier
3169 * after the beginning of synchronize_sched() and before the beginning of
3170 * that RCU read-side critical section. Note that these guarantees include
3171 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3172 * that are executing in the kernel.
3174 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3175 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3176 * to have executed a full memory barrier during the execution of
3177 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3178 * again only if the system has more than one CPU).
3180 * This primitive provides the guarantees made by the (now removed)
3181 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3182 * guarantees that rcu_read_lock() sections will have completed.
3183 * In "classic RCU", these two guarantees happen to be one and
3184 * the same, but can differ in realtime RCU implementations.
3186 void synchronize_sched(void)
3188 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3189 lock_is_held(&rcu_lock_map) ||
3190 lock_is_held(&rcu_sched_lock_map),
3191 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3192 if (rcu_blocking_is_gp())
3193 return;
3194 if (rcu_gp_is_expedited())
3195 synchronize_sched_expedited();
3196 else
3197 wait_rcu_gp(call_rcu_sched);
3199 EXPORT_SYMBOL_GPL(synchronize_sched);
3202 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3204 * Control will return to the caller some time after a full rcu_bh grace
3205 * period has elapsed, in other words after all currently executing rcu_bh
3206 * read-side critical sections have completed. RCU read-side critical
3207 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3208 * and may be nested.
3210 * See the description of synchronize_sched() for more detailed information
3211 * on memory ordering guarantees.
3213 void synchronize_rcu_bh(void)
3215 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3216 lock_is_held(&rcu_lock_map) ||
3217 lock_is_held(&rcu_sched_lock_map),
3218 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3219 if (rcu_blocking_is_gp())
3220 return;
3221 if (rcu_gp_is_expedited())
3222 synchronize_rcu_bh_expedited();
3223 else
3224 wait_rcu_gp(call_rcu_bh);
3226 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3229 * get_state_synchronize_rcu - Snapshot current RCU state
3231 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3232 * to determine whether or not a full grace period has elapsed in the
3233 * meantime.
3235 unsigned long get_state_synchronize_rcu(void)
3238 * Any prior manipulation of RCU-protected data must happen
3239 * before the load from ->gpnum.
3241 smp_mb(); /* ^^^ */
3244 * Make sure this load happens before the purportedly
3245 * time-consuming work between get_state_synchronize_rcu()
3246 * and cond_synchronize_rcu().
3248 return smp_load_acquire(&rcu_state_p->gpnum);
3250 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3253 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3255 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3257 * If a full RCU grace period has elapsed since the earlier call to
3258 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3259 * synchronize_rcu() to wait for a full grace period.
3261 * Yes, this function does not take counter wrap into account. But
3262 * counter wrap is harmless. If the counter wraps, we have waited for
3263 * more than 2 billion grace periods (and way more on a 64-bit system!),
3264 * so waiting for one additional grace period should be just fine.
3266 void cond_synchronize_rcu(unsigned long oldstate)
3268 unsigned long newstate;
3271 * Ensure that this load happens before any RCU-destructive
3272 * actions the caller might carry out after we return.
3274 newstate = smp_load_acquire(&rcu_state_p->completed);
3275 if (ULONG_CMP_GE(oldstate, newstate))
3276 synchronize_rcu();
3278 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3281 * get_state_synchronize_sched - Snapshot current RCU-sched state
3283 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3284 * to determine whether or not a full grace period has elapsed in the
3285 * meantime.
3287 unsigned long get_state_synchronize_sched(void)
3290 * Any prior manipulation of RCU-protected data must happen
3291 * before the load from ->gpnum.
3293 smp_mb(); /* ^^^ */
3296 * Make sure this load happens before the purportedly
3297 * time-consuming work between get_state_synchronize_sched()
3298 * and cond_synchronize_sched().
3300 return smp_load_acquire(&rcu_sched_state.gpnum);
3302 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3305 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3307 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3309 * If a full RCU-sched grace period has elapsed since the earlier call to
3310 * get_state_synchronize_sched(), just return. Otherwise, invoke
3311 * synchronize_sched() to wait for a full grace period.
3313 * Yes, this function does not take counter wrap into account. But
3314 * counter wrap is harmless. If the counter wraps, we have waited for
3315 * more than 2 billion grace periods (and way more on a 64-bit system!),
3316 * so waiting for one additional grace period should be just fine.
3318 void cond_synchronize_sched(unsigned long oldstate)
3320 unsigned long newstate;
3323 * Ensure that this load happens before any RCU-destructive
3324 * actions the caller might carry out after we return.
3326 newstate = smp_load_acquire(&rcu_sched_state.completed);
3327 if (ULONG_CMP_GE(oldstate, newstate))
3328 synchronize_sched();
3330 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3332 /* Adjust sequence number for start of update-side operation. */
3333 static void rcu_seq_start(unsigned long *sp)
3335 WRITE_ONCE(*sp, *sp + 1);
3336 smp_mb(); /* Ensure update-side operation after counter increment. */
3337 WARN_ON_ONCE(!(*sp & 0x1));
3340 /* Adjust sequence number for end of update-side operation. */
3341 static void rcu_seq_end(unsigned long *sp)
3343 smp_mb(); /* Ensure update-side operation before counter increment. */
3344 WRITE_ONCE(*sp, *sp + 1);
3345 WARN_ON_ONCE(*sp & 0x1);
3348 /* Take a snapshot of the update side's sequence number. */
3349 static unsigned long rcu_seq_snap(unsigned long *sp)
3351 unsigned long s;
3353 s = (READ_ONCE(*sp) + 3) & ~0x1;
3354 smp_mb(); /* Above access must not bleed into critical section. */
3355 return s;
3359 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3360 * full update-side operation has occurred.
3362 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3364 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3367 /* Wrapper functions for expedited grace periods. */
3368 static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3370 rcu_seq_start(&rsp->expedited_sequence);
3372 static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3374 rcu_seq_end(&rsp->expedited_sequence);
3375 smp_mb(); /* Ensure that consecutive grace periods serialize. */
3377 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3379 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3380 return rcu_seq_snap(&rsp->expedited_sequence);
3382 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3384 return rcu_seq_done(&rsp->expedited_sequence, s);
3388 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3389 * recent CPU-online activity. Note that these masks are not cleared
3390 * when CPUs go offline, so they reflect the union of all CPUs that have
3391 * ever been online. This means that this function normally takes its
3392 * no-work-to-do fastpath.
3394 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3396 bool done;
3397 unsigned long flags;
3398 unsigned long mask;
3399 unsigned long oldmask;
3400 int ncpus = READ_ONCE(rsp->ncpus);
3401 struct rcu_node *rnp;
3402 struct rcu_node *rnp_up;
3404 /* If no new CPUs onlined since last time, nothing to do. */
3405 if (likely(ncpus == rsp->ncpus_snap))
3406 return;
3407 rsp->ncpus_snap = ncpus;
3410 * Each pass through the following loop propagates newly onlined
3411 * CPUs for the current rcu_node structure up the rcu_node tree.
3413 rcu_for_each_leaf_node(rsp, rnp) {
3414 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3415 if (rnp->expmaskinit == rnp->expmaskinitnext) {
3416 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3417 continue; /* No new CPUs, nothing to do. */
3420 /* Update this node's mask, track old value for propagation. */
3421 oldmask = rnp->expmaskinit;
3422 rnp->expmaskinit = rnp->expmaskinitnext;
3423 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3425 /* If was already nonzero, nothing to propagate. */
3426 if (oldmask)
3427 continue;
3429 /* Propagate the new CPU up the tree. */
3430 mask = rnp->grpmask;
3431 rnp_up = rnp->parent;
3432 done = false;
3433 while (rnp_up) {
3434 raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3435 if (rnp_up->expmaskinit)
3436 done = true;
3437 rnp_up->expmaskinit |= mask;
3438 raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3439 if (done)
3440 break;
3441 mask = rnp_up->grpmask;
3442 rnp_up = rnp_up->parent;
3448 * Reset the ->expmask values in the rcu_node tree in preparation for
3449 * a new expedited grace period.
3451 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3453 unsigned long flags;
3454 struct rcu_node *rnp;
3456 sync_exp_reset_tree_hotplug(rsp);
3457 rcu_for_each_node_breadth_first(rsp, rnp) {
3458 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3459 WARN_ON_ONCE(rnp->expmask);
3460 rnp->expmask = rnp->expmaskinit;
3461 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3466 * Return non-zero if there is no RCU expedited grace period in progress
3467 * for the specified rcu_node structure, in other words, if all CPUs and
3468 * tasks covered by the specified rcu_node structure have done their bit
3469 * for the current expedited grace period. Works only for preemptible
3470 * RCU -- other RCU implementation use other means.
3472 * Caller must hold the root rcu_node's exp_funnel_mutex.
3474 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3476 return rnp->exp_tasks == NULL &&
3477 READ_ONCE(rnp->expmask) == 0;
3481 * Report the exit from RCU read-side critical section for the last task
3482 * that queued itself during or before the current expedited preemptible-RCU
3483 * grace period. This event is reported either to the rcu_node structure on
3484 * which the task was queued or to one of that rcu_node structure's ancestors,
3485 * recursively up the tree. (Calm down, calm down, we do the recursion
3486 * iteratively!)
3488 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3489 * specified rcu_node structure's ->lock.
3491 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3492 bool wake, unsigned long flags)
3493 __releases(rnp->lock)
3495 unsigned long mask;
3497 for (;;) {
3498 if (!sync_rcu_preempt_exp_done(rnp)) {
3499 if (!rnp->expmask)
3500 rcu_initiate_boost(rnp, flags);
3501 else
3502 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3503 break;
3505 if (rnp->parent == NULL) {
3506 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3507 if (wake) {
3508 smp_mb(); /* EGP done before wake_up(). */
3509 swake_up(&rsp->expedited_wq);
3511 break;
3513 mask = rnp->grpmask;
3514 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3515 rnp = rnp->parent;
3516 raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3517 WARN_ON_ONCE(!(rnp->expmask & mask));
3518 rnp->expmask &= ~mask;
3523 * Report expedited quiescent state for specified node. This is a
3524 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3526 * Caller must hold the root rcu_node's exp_funnel_mutex.
3528 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3529 struct rcu_node *rnp, bool wake)
3531 unsigned long flags;
3533 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3534 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3538 * Report expedited quiescent state for multiple CPUs, all covered by the
3539 * specified leaf rcu_node structure. Caller must hold the root
3540 * rcu_node's exp_funnel_mutex.
3542 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3543 unsigned long mask, bool wake)
3545 unsigned long flags;
3547 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3548 if (!(rnp->expmask & mask)) {
3549 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3550 return;
3552 rnp->expmask &= ~mask;
3553 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3557 * Report expedited quiescent state for specified rcu_data (CPU).
3558 * Caller must hold the root rcu_node's exp_funnel_mutex.
3560 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3561 bool wake)
3563 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3566 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3567 static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3568 struct rcu_data *rdp,
3569 atomic_long_t *stat, unsigned long s)
3571 if (rcu_exp_gp_seq_done(rsp, s)) {
3572 if (rnp)
3573 mutex_unlock(&rnp->exp_funnel_mutex);
3574 else if (rdp)
3575 mutex_unlock(&rdp->exp_funnel_mutex);
3576 /* Ensure test happens before caller kfree(). */
3577 smp_mb__before_atomic(); /* ^^^ */
3578 atomic_long_inc(stat);
3579 return true;
3581 return false;
3585 * Funnel-lock acquisition for expedited grace periods. Returns a
3586 * pointer to the root rcu_node structure, or NULL if some other
3587 * task did the expedited grace period for us.
3589 static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3591 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3592 struct rcu_node *rnp0;
3593 struct rcu_node *rnp1 = NULL;
3596 * First try directly acquiring the root lock in order to reduce
3597 * latency in the common case where expedited grace periods are
3598 * rare. We check mutex_is_locked() to avoid pathological levels of
3599 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3601 rnp0 = rcu_get_root(rsp);
3602 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3603 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3604 if (sync_exp_work_done(rsp, rnp0, NULL,
3605 &rdp->expedited_workdone0, s))
3606 return NULL;
3607 return rnp0;
3612 * Each pass through the following loop works its way
3613 * up the rcu_node tree, returning if others have done the
3614 * work or otherwise falls through holding the root rnp's
3615 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3616 * can be inexact, as it is just promoting locality and is not
3617 * strictly needed for correctness.
3619 if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
3620 return NULL;
3621 mutex_lock(&rdp->exp_funnel_mutex);
3622 rnp0 = rdp->mynode;
3623 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3624 if (sync_exp_work_done(rsp, rnp1, rdp,
3625 &rdp->expedited_workdone2, s))
3626 return NULL;
3627 mutex_lock(&rnp0->exp_funnel_mutex);
3628 if (rnp1)
3629 mutex_unlock(&rnp1->exp_funnel_mutex);
3630 else
3631 mutex_unlock(&rdp->exp_funnel_mutex);
3632 rnp1 = rnp0;
3634 if (sync_exp_work_done(rsp, rnp1, rdp,
3635 &rdp->expedited_workdone3, s))
3636 return NULL;
3637 return rnp1;
3640 /* Invoked on each online non-idle CPU for expedited quiescent state. */
3641 static void sync_sched_exp_handler(void *data)
3643 struct rcu_data *rdp;
3644 struct rcu_node *rnp;
3645 struct rcu_state *rsp = data;
3647 rdp = this_cpu_ptr(rsp->rda);
3648 rnp = rdp->mynode;
3649 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3650 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3651 return;
3652 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3653 resched_cpu(smp_processor_id());
3656 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3657 static void sync_sched_exp_online_cleanup(int cpu)
3659 struct rcu_data *rdp;
3660 int ret;
3661 struct rcu_node *rnp;
3662 struct rcu_state *rsp = &rcu_sched_state;
3664 rdp = per_cpu_ptr(rsp->rda, cpu);
3665 rnp = rdp->mynode;
3666 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3667 return;
3668 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3669 WARN_ON_ONCE(ret);
3673 * Select the nodes that the upcoming expedited grace period needs
3674 * to wait for.
3676 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3677 smp_call_func_t func)
3679 int cpu;
3680 unsigned long flags;
3681 unsigned long mask;
3682 unsigned long mask_ofl_test;
3683 unsigned long mask_ofl_ipi;
3684 int ret;
3685 struct rcu_node *rnp;
3687 sync_exp_reset_tree(rsp);
3688 rcu_for_each_leaf_node(rsp, rnp) {
3689 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3691 /* Each pass checks a CPU for identity, offline, and idle. */
3692 mask_ofl_test = 0;
3693 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3694 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3695 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3697 if (raw_smp_processor_id() == cpu ||
3698 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3699 mask_ofl_test |= rdp->grpmask;
3701 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3704 * Need to wait for any blocked tasks as well. Note that
3705 * additional blocking tasks will also block the expedited
3706 * GP until such time as the ->expmask bits are cleared.
3708 if (rcu_preempt_has_tasks(rnp))
3709 rnp->exp_tasks = rnp->blkd_tasks.next;
3710 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3712 /* IPI the remaining CPUs for expedited quiescent state. */
3713 mask = 1;
3714 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3715 if (!(mask_ofl_ipi & mask))
3716 continue;
3717 retry_ipi:
3718 ret = smp_call_function_single(cpu, func, rsp, 0);
3719 if (!ret) {
3720 mask_ofl_ipi &= ~mask;
3721 continue;
3723 /* Failed, raced with offline. */
3724 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3725 if (cpu_online(cpu) &&
3726 (rnp->expmask & mask)) {
3727 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3728 schedule_timeout_uninterruptible(1);
3729 if (cpu_online(cpu) &&
3730 (rnp->expmask & mask))
3731 goto retry_ipi;
3732 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3734 if (!(rnp->expmask & mask))
3735 mask_ofl_ipi &= ~mask;
3736 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3738 /* Report quiescent states for those that went offline. */
3739 mask_ofl_test |= mask_ofl_ipi;
3740 if (mask_ofl_test)
3741 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3745 static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3747 int cpu;
3748 unsigned long jiffies_stall;
3749 unsigned long jiffies_start;
3750 unsigned long mask;
3751 int ndetected;
3752 struct rcu_node *rnp;
3753 struct rcu_node *rnp_root = rcu_get_root(rsp);
3754 int ret;
3756 jiffies_stall = rcu_jiffies_till_stall_check();
3757 jiffies_start = jiffies;
3759 for (;;) {
3760 ret = swait_event_timeout(
3761 rsp->expedited_wq,
3762 sync_rcu_preempt_exp_done(rnp_root),
3763 jiffies_stall);
3764 if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3765 return;
3766 if (ret < 0) {
3767 /* Hit a signal, disable CPU stall warnings. */
3768 swait_event(rsp->expedited_wq,
3769 sync_rcu_preempt_exp_done(rnp_root));
3770 return;
3772 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3773 rsp->name);
3774 ndetected = 0;
3775 rcu_for_each_leaf_node(rsp, rnp) {
3776 ndetected = rcu_print_task_exp_stall(rnp);
3777 mask = 1;
3778 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3779 struct rcu_data *rdp;
3781 if (!(rnp->expmask & mask))
3782 continue;
3783 ndetected++;
3784 rdp = per_cpu_ptr(rsp->rda, cpu);
3785 pr_cont(" %d-%c%c%c", cpu,
3786 "O."[cpu_online(cpu)],
3787 "o."[!!(rdp->grpmask & rnp->expmaskinit)],
3788 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3790 mask <<= 1;
3792 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3793 jiffies - jiffies_start, rsp->expedited_sequence,
3794 rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3795 if (!ndetected) {
3796 pr_err("blocking rcu_node structures:");
3797 rcu_for_each_node_breadth_first(rsp, rnp) {
3798 if (rnp == rnp_root)
3799 continue; /* printed unconditionally */
3800 if (sync_rcu_preempt_exp_done(rnp))
3801 continue;
3802 pr_cont(" l=%u:%d-%d:%#lx/%c",
3803 rnp->level, rnp->grplo, rnp->grphi,
3804 rnp->expmask,
3805 ".T"[!!rnp->exp_tasks]);
3807 pr_cont("\n");
3809 rcu_for_each_leaf_node(rsp, rnp) {
3810 mask = 1;
3811 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3812 if (!(rnp->expmask & mask))
3813 continue;
3814 dump_cpu_task(cpu);
3817 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3822 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3824 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3825 * approach to force the grace period to end quickly. This consumes
3826 * significant time on all CPUs and is unfriendly to real-time workloads,
3827 * so is thus not recommended for any sort of common-case code. In fact,
3828 * if you are using synchronize_sched_expedited() in a loop, please
3829 * restructure your code to batch your updates, and then use a single
3830 * synchronize_sched() instead.
3832 * This implementation can be thought of as an application of sequence
3833 * locking to expedited grace periods, but using the sequence counter to
3834 * determine when someone else has already done the work instead of for
3835 * retrying readers.
3837 void synchronize_sched_expedited(void)
3839 unsigned long s;
3840 struct rcu_node *rnp;
3841 struct rcu_state *rsp = &rcu_sched_state;
3843 /* If only one CPU, this is automatically a grace period. */
3844 if (rcu_blocking_is_gp())
3845 return;
3847 /* If expedited grace periods are prohibited, fall back to normal. */
3848 if (rcu_gp_is_normal()) {
3849 wait_rcu_gp(call_rcu_sched);
3850 return;
3853 /* Take a snapshot of the sequence number. */
3854 s = rcu_exp_gp_seq_snap(rsp);
3856 rnp = exp_funnel_lock(rsp, s);
3857 if (rnp == NULL)
3858 return; /* Someone else did our work for us. */
3860 rcu_exp_gp_seq_start(rsp);
3861 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3862 synchronize_sched_expedited_wait(rsp);
3864 rcu_exp_gp_seq_end(rsp);
3865 mutex_unlock(&rnp->exp_funnel_mutex);
3867 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3870 * Check to see if there is any immediate RCU-related work to be done
3871 * by the current CPU, for the specified type of RCU, returning 1 if so.
3872 * The checks are in order of increasing expense: checks that can be
3873 * carried out against CPU-local state are performed first. However,
3874 * we must check for CPU stalls first, else we might not get a chance.
3876 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3878 struct rcu_node *rnp = rdp->mynode;
3880 rdp->n_rcu_pending++;
3882 /* Check for CPU stalls, if enabled. */
3883 check_cpu_stall(rsp, rdp);
3885 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3886 if (rcu_nohz_full_cpu(rsp))
3887 return 0;
3889 /* Is the RCU core waiting for a quiescent state from this CPU? */
3890 if (rcu_scheduler_fully_active &&
3891 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3892 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3893 rdp->n_rp_core_needs_qs++;
3894 } else if (rdp->core_needs_qs &&
3895 (!rdp->cpu_no_qs.b.norm ||
3896 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3897 rdp->n_rp_report_qs++;
3898 return 1;
3901 /* Does this CPU have callbacks ready to invoke? */
3902 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3903 rdp->n_rp_cb_ready++;
3904 return 1;
3907 /* Has RCU gone idle with this CPU needing another grace period? */
3908 if (cpu_needs_another_gp(rsp, rdp)) {
3909 rdp->n_rp_cpu_needs_gp++;
3910 return 1;
3913 /* Has another RCU grace period completed? */
3914 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3915 rdp->n_rp_gp_completed++;
3916 return 1;
3919 /* Has a new RCU grace period started? */
3920 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3921 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3922 rdp->n_rp_gp_started++;
3923 return 1;
3926 /* Does this CPU need a deferred NOCB wakeup? */
3927 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3928 rdp->n_rp_nocb_defer_wakeup++;
3929 return 1;
3932 /* nothing to do */
3933 rdp->n_rp_need_nothing++;
3934 return 0;
3938 * Check to see if there is any immediate RCU-related work to be done
3939 * by the current CPU, returning 1 if so. This function is part of the
3940 * RCU implementation; it is -not- an exported member of the RCU API.
3942 static int rcu_pending(void)
3944 struct rcu_state *rsp;
3946 for_each_rcu_flavor(rsp)
3947 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3948 return 1;
3949 return 0;
3953 * Return true if the specified CPU has any callback. If all_lazy is
3954 * non-NULL, store an indication of whether all callbacks are lazy.
3955 * (If there are no callbacks, all of them are deemed to be lazy.)
3957 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3959 bool al = true;
3960 bool hc = false;
3961 struct rcu_data *rdp;
3962 struct rcu_state *rsp;
3964 for_each_rcu_flavor(rsp) {
3965 rdp = this_cpu_ptr(rsp->rda);
3966 if (!rdp->nxtlist)
3967 continue;
3968 hc = true;
3969 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3970 al = false;
3971 break;
3974 if (all_lazy)
3975 *all_lazy = al;
3976 return hc;
3980 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3981 * the compiler is expected to optimize this away.
3983 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3984 int cpu, unsigned long done)
3986 trace_rcu_barrier(rsp->name, s, cpu,
3987 atomic_read(&rsp->barrier_cpu_count), done);
3991 * RCU callback function for _rcu_barrier(). If we are last, wake
3992 * up the task executing _rcu_barrier().
3994 static void rcu_barrier_callback(struct rcu_head *rhp)
3996 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3997 struct rcu_state *rsp = rdp->rsp;
3999 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4000 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4001 complete(&rsp->barrier_completion);
4002 } else {
4003 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4008 * Called with preemption disabled, and from cross-cpu IRQ context.
4010 static void rcu_barrier_func(void *type)
4012 struct rcu_state *rsp = type;
4013 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4015 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4016 atomic_inc(&rsp->barrier_cpu_count);
4017 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4021 * Orchestrate the specified type of RCU barrier, waiting for all
4022 * RCU callbacks of the specified type to complete.
4024 static void _rcu_barrier(struct rcu_state *rsp)
4026 int cpu;
4027 struct rcu_data *rdp;
4028 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
4030 _rcu_barrier_trace(rsp, "Begin", -1, s);
4032 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4033 mutex_lock(&rsp->barrier_mutex);
4035 /* Did someone else do our work for us? */
4036 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4037 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
4038 smp_mb(); /* caller's subsequent code after above check. */
4039 mutex_unlock(&rsp->barrier_mutex);
4040 return;
4043 /* Mark the start of the barrier operation. */
4044 rcu_seq_start(&rsp->barrier_sequence);
4045 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
4048 * Initialize the count to one rather than to zero in order to
4049 * avoid a too-soon return to zero in case of a short grace period
4050 * (or preemption of this task). Exclude CPU-hotplug operations
4051 * to ensure that no offline CPU has callbacks queued.
4053 init_completion(&rsp->barrier_completion);
4054 atomic_set(&rsp->barrier_cpu_count, 1);
4055 get_online_cpus();
4058 * Force each CPU with callbacks to register a new callback.
4059 * When that callback is invoked, we will know that all of the
4060 * corresponding CPU's preceding callbacks have been invoked.
4062 for_each_possible_cpu(cpu) {
4063 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4064 continue;
4065 rdp = per_cpu_ptr(rsp->rda, cpu);
4066 if (rcu_is_nocb_cpu(cpu)) {
4067 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4068 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4069 rsp->barrier_sequence);
4070 } else {
4071 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4072 rsp->barrier_sequence);
4073 smp_mb__before_atomic();
4074 atomic_inc(&rsp->barrier_cpu_count);
4075 __call_rcu(&rdp->barrier_head,
4076 rcu_barrier_callback, rsp, cpu, 0);
4078 } else if (READ_ONCE(rdp->qlen)) {
4079 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4080 rsp->barrier_sequence);
4081 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4082 } else {
4083 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4084 rsp->barrier_sequence);
4087 put_online_cpus();
4090 * Now that we have an rcu_barrier_callback() callback on each
4091 * CPU, and thus each counted, remove the initial count.
4093 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4094 complete(&rsp->barrier_completion);
4096 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4097 wait_for_completion(&rsp->barrier_completion);
4099 /* Mark the end of the barrier operation. */
4100 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4101 rcu_seq_end(&rsp->barrier_sequence);
4103 /* Other rcu_barrier() invocations can now safely proceed. */
4104 mutex_unlock(&rsp->barrier_mutex);
4108 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4110 void rcu_barrier_bh(void)
4112 _rcu_barrier(&rcu_bh_state);
4114 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4117 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4119 void rcu_barrier_sched(void)
4121 _rcu_barrier(&rcu_sched_state);
4123 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4126 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4127 * first CPU in a given leaf rcu_node structure coming online. The caller
4128 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4129 * disabled.
4131 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4133 long mask;
4134 struct rcu_node *rnp = rnp_leaf;
4136 for (;;) {
4137 mask = rnp->grpmask;
4138 rnp = rnp->parent;
4139 if (rnp == NULL)
4140 return;
4141 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4142 rnp->qsmaskinit |= mask;
4143 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4148 * Do boot-time initialization of a CPU's per-CPU RCU data.
4150 static void __init
4151 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4153 unsigned long flags;
4154 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4155 struct rcu_node *rnp = rcu_get_root(rsp);
4157 /* Set up local state, ensuring consistent view of global state. */
4158 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4159 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
4160 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4161 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4162 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4163 rdp->cpu = cpu;
4164 rdp->rsp = rsp;
4165 mutex_init(&rdp->exp_funnel_mutex);
4166 rcu_boot_init_nocb_percpu_data(rdp);
4167 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4171 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4172 * offline event can be happening at a given time. Note also that we
4173 * can accept some slop in the rsp->completed access due to the fact
4174 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4176 static void
4177 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4179 unsigned long flags;
4180 unsigned long mask;
4181 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4182 struct rcu_node *rnp = rcu_get_root(rsp);
4184 /* Set up local state, ensuring consistent view of global state. */
4185 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4186 rdp->qlen_last_fqs_check = 0;
4187 rdp->n_force_qs_snap = rsp->n_force_qs;
4188 rdp->blimit = blimit;
4189 if (!rdp->nxtlist)
4190 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
4191 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4192 rcu_sysidle_init_percpu_data(rdp->dynticks);
4193 atomic_set(&rdp->dynticks->dynticks,
4194 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4195 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4198 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4199 * propagation up the rcu_node tree will happen at the beginning
4200 * of the next grace period.
4202 rnp = rdp->mynode;
4203 mask = rdp->grpmask;
4204 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4205 rnp->qsmaskinitnext |= mask;
4206 rnp->expmaskinitnext |= mask;
4207 if (!rdp->beenonline)
4208 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4209 rdp->beenonline = true; /* We have now been online. */
4210 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4211 rdp->completed = rnp->completed;
4212 rdp->cpu_no_qs.b.norm = true;
4213 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4214 rdp->core_needs_qs = false;
4215 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4216 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4219 static void rcu_prepare_cpu(int cpu)
4221 struct rcu_state *rsp;
4223 for_each_rcu_flavor(rsp)
4224 rcu_init_percpu_data(cpu, rsp);
4227 #ifdef CONFIG_HOTPLUG_CPU
4229 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4230 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4231 * bit masks.
4232 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4233 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4234 * bit masks.
4236 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
4238 unsigned long flags;
4239 unsigned long mask;
4240 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4241 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4243 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4244 return;
4246 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4247 mask = rdp->grpmask;
4248 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4249 rnp->qsmaskinitnext &= ~mask;
4250 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4253 void rcu_report_dead(unsigned int cpu)
4255 struct rcu_state *rsp;
4257 /* QS for any half-done expedited RCU-sched GP. */
4258 preempt_disable();
4259 rcu_report_exp_rdp(&rcu_sched_state,
4260 this_cpu_ptr(rcu_sched_state.rda), true);
4261 preempt_enable();
4262 for_each_rcu_flavor(rsp)
4263 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4265 #endif
4268 * Handle CPU online/offline notification events.
4270 int rcu_cpu_notify(struct notifier_block *self,
4271 unsigned long action, void *hcpu)
4273 long cpu = (long)hcpu;
4274 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4275 struct rcu_node *rnp = rdp->mynode;
4276 struct rcu_state *rsp;
4278 switch (action) {
4279 case CPU_UP_PREPARE:
4280 case CPU_UP_PREPARE_FROZEN:
4281 rcu_prepare_cpu(cpu);
4282 rcu_prepare_kthreads(cpu);
4283 rcu_spawn_all_nocb_kthreads(cpu);
4284 break;
4285 case CPU_ONLINE:
4286 case CPU_DOWN_FAILED:
4287 sync_sched_exp_online_cleanup(cpu);
4288 rcu_boost_kthread_setaffinity(rnp, -1);
4289 break;
4290 case CPU_DOWN_PREPARE:
4291 rcu_boost_kthread_setaffinity(rnp, cpu);
4292 break;
4293 case CPU_DYING:
4294 case CPU_DYING_FROZEN:
4295 for_each_rcu_flavor(rsp)
4296 rcu_cleanup_dying_cpu(rsp);
4297 break;
4298 case CPU_DEAD:
4299 case CPU_DEAD_FROZEN:
4300 case CPU_UP_CANCELED:
4301 case CPU_UP_CANCELED_FROZEN:
4302 for_each_rcu_flavor(rsp) {
4303 rcu_cleanup_dead_cpu(cpu, rsp);
4304 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4306 break;
4307 default:
4308 break;
4310 return NOTIFY_OK;
4313 static int rcu_pm_notify(struct notifier_block *self,
4314 unsigned long action, void *hcpu)
4316 switch (action) {
4317 case PM_HIBERNATION_PREPARE:
4318 case PM_SUSPEND_PREPARE:
4319 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4320 rcu_expedite_gp();
4321 break;
4322 case PM_POST_HIBERNATION:
4323 case PM_POST_SUSPEND:
4324 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4325 rcu_unexpedite_gp();
4326 break;
4327 default:
4328 break;
4330 return NOTIFY_OK;
4334 * Spawn the kthreads that handle each RCU flavor's grace periods.
4336 static int __init rcu_spawn_gp_kthread(void)
4338 unsigned long flags;
4339 int kthread_prio_in = kthread_prio;
4340 struct rcu_node *rnp;
4341 struct rcu_state *rsp;
4342 struct sched_param sp;
4343 struct task_struct *t;
4345 /* Force priority into range. */
4346 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4347 kthread_prio = 1;
4348 else if (kthread_prio < 0)
4349 kthread_prio = 0;
4350 else if (kthread_prio > 99)
4351 kthread_prio = 99;
4352 if (kthread_prio != kthread_prio_in)
4353 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4354 kthread_prio, kthread_prio_in);
4356 rcu_scheduler_fully_active = 1;
4357 for_each_rcu_flavor(rsp) {
4358 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4359 BUG_ON(IS_ERR(t));
4360 rnp = rcu_get_root(rsp);
4361 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4362 rsp->gp_kthread = t;
4363 if (kthread_prio) {
4364 sp.sched_priority = kthread_prio;
4365 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4367 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4368 wake_up_process(t);
4370 rcu_spawn_nocb_kthreads();
4371 rcu_spawn_boost_kthreads();
4372 return 0;
4374 early_initcall(rcu_spawn_gp_kthread);
4377 * This function is invoked towards the end of the scheduler's initialization
4378 * process. Before this is called, the idle task might contain
4379 * RCU read-side critical sections (during which time, this idle
4380 * task is booting the system). After this function is called, the
4381 * idle tasks are prohibited from containing RCU read-side critical
4382 * sections. This function also enables RCU lockdep checking.
4384 void rcu_scheduler_starting(void)
4386 WARN_ON(num_online_cpus() != 1);
4387 WARN_ON(nr_context_switches() > 0);
4388 rcu_scheduler_active = 1;
4392 * Compute the per-level fanout, either using the exact fanout specified
4393 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4395 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4397 int i;
4399 if (rcu_fanout_exact) {
4400 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4401 for (i = rcu_num_lvls - 2; i >= 0; i--)
4402 levelspread[i] = RCU_FANOUT;
4403 } else {
4404 int ccur;
4405 int cprv;
4407 cprv = nr_cpu_ids;
4408 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4409 ccur = levelcnt[i];
4410 levelspread[i] = (cprv + ccur - 1) / ccur;
4411 cprv = ccur;
4417 * Helper function for rcu_init() that initializes one rcu_state structure.
4419 static void __init rcu_init_one(struct rcu_state *rsp)
4421 static const char * const buf[] = RCU_NODE_NAME_INIT;
4422 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4423 static const char * const exp[] = RCU_EXP_NAME_INIT;
4424 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4425 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4426 static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4427 static u8 fl_mask = 0x1;
4429 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4430 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4431 int cpustride = 1;
4432 int i;
4433 int j;
4434 struct rcu_node *rnp;
4436 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4438 /* Silence gcc 4.8 false positive about array index out of range. */
4439 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4440 panic("rcu_init_one: rcu_num_lvls out of range");
4442 /* Initialize the level-tracking arrays. */
4444 for (i = 0; i < rcu_num_lvls; i++)
4445 levelcnt[i] = num_rcu_lvl[i];
4446 for (i = 1; i < rcu_num_lvls; i++)
4447 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4448 rcu_init_levelspread(levelspread, levelcnt);
4449 rsp->flavor_mask = fl_mask;
4450 fl_mask <<= 1;
4452 /* Initialize the elements themselves, starting from the leaves. */
4454 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4455 cpustride *= levelspread[i];
4456 rnp = rsp->level[i];
4457 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4458 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4459 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4460 &rcu_node_class[i], buf[i]);
4461 raw_spin_lock_init(&rnp->fqslock);
4462 lockdep_set_class_and_name(&rnp->fqslock,
4463 &rcu_fqs_class[i], fqs[i]);
4464 rnp->gpnum = rsp->gpnum;
4465 rnp->completed = rsp->completed;
4466 rnp->qsmask = 0;
4467 rnp->qsmaskinit = 0;
4468 rnp->grplo = j * cpustride;
4469 rnp->grphi = (j + 1) * cpustride - 1;
4470 if (rnp->grphi >= nr_cpu_ids)
4471 rnp->grphi = nr_cpu_ids - 1;
4472 if (i == 0) {
4473 rnp->grpnum = 0;
4474 rnp->grpmask = 0;
4475 rnp->parent = NULL;
4476 } else {
4477 rnp->grpnum = j % levelspread[i - 1];
4478 rnp->grpmask = 1UL << rnp->grpnum;
4479 rnp->parent = rsp->level[i - 1] +
4480 j / levelspread[i - 1];
4482 rnp->level = i;
4483 INIT_LIST_HEAD(&rnp->blkd_tasks);
4484 rcu_init_one_nocb(rnp);
4485 mutex_init(&rnp->exp_funnel_mutex);
4486 lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4487 &rcu_exp_class[i], exp[i]);
4491 init_swait_queue_head(&rsp->gp_wq);
4492 init_swait_queue_head(&rsp->expedited_wq);
4493 rnp = rsp->level[rcu_num_lvls - 1];
4494 for_each_possible_cpu(i) {
4495 while (i > rnp->grphi)
4496 rnp++;
4497 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4498 rcu_boot_init_percpu_data(i, rsp);
4500 list_add(&rsp->flavors, &rcu_struct_flavors);
4504 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4505 * replace the definitions in tree.h because those are needed to size
4506 * the ->node array in the rcu_state structure.
4508 static void __init rcu_init_geometry(void)
4510 ulong d;
4511 int i;
4512 int rcu_capacity[RCU_NUM_LVLS];
4515 * Initialize any unspecified boot parameters.
4516 * The default values of jiffies_till_first_fqs and
4517 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4518 * value, which is a function of HZ, then adding one for each
4519 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4521 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4522 if (jiffies_till_first_fqs == ULONG_MAX)
4523 jiffies_till_first_fqs = d;
4524 if (jiffies_till_next_fqs == ULONG_MAX)
4525 jiffies_till_next_fqs = d;
4527 /* If the compile-time values are accurate, just leave. */
4528 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4529 nr_cpu_ids == NR_CPUS)
4530 return;
4531 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4532 rcu_fanout_leaf, nr_cpu_ids);
4535 * The boot-time rcu_fanout_leaf parameter must be at least two
4536 * and cannot exceed the number of bits in the rcu_node masks.
4537 * Complain and fall back to the compile-time values if this
4538 * limit is exceeded.
4540 if (rcu_fanout_leaf < 2 ||
4541 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4542 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4543 WARN_ON(1);
4544 return;
4548 * Compute number of nodes that can be handled an rcu_node tree
4549 * with the given number of levels.
4551 rcu_capacity[0] = rcu_fanout_leaf;
4552 for (i = 1; i < RCU_NUM_LVLS; i++)
4553 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4556 * The tree must be able to accommodate the configured number of CPUs.
4557 * If this limit is exceeded, fall back to the compile-time values.
4559 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4560 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4561 WARN_ON(1);
4562 return;
4565 /* Calculate the number of levels in the tree. */
4566 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4568 rcu_num_lvls = i + 1;
4570 /* Calculate the number of rcu_nodes at each level of the tree. */
4571 for (i = 0; i < rcu_num_lvls; i++) {
4572 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4573 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4576 /* Calculate the total number of rcu_node structures. */
4577 rcu_num_nodes = 0;
4578 for (i = 0; i < rcu_num_lvls; i++)
4579 rcu_num_nodes += num_rcu_lvl[i];
4583 * Dump out the structure of the rcu_node combining tree associated
4584 * with the rcu_state structure referenced by rsp.
4586 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4588 int level = 0;
4589 struct rcu_node *rnp;
4591 pr_info("rcu_node tree layout dump\n");
4592 pr_info(" ");
4593 rcu_for_each_node_breadth_first(rsp, rnp) {
4594 if (rnp->level != level) {
4595 pr_cont("\n");
4596 pr_info(" ");
4597 level = rnp->level;
4599 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4601 pr_cont("\n");
4604 void __init rcu_init(void)
4606 int cpu;
4608 rcu_early_boot_tests();
4610 rcu_bootup_announce();
4611 rcu_init_geometry();
4612 rcu_init_one(&rcu_bh_state);
4613 rcu_init_one(&rcu_sched_state);
4614 if (dump_tree)
4615 rcu_dump_rcu_node_tree(&rcu_sched_state);
4616 __rcu_init_preempt();
4617 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4620 * We don't need protection against CPU-hotplug here because
4621 * this is called early in boot, before either interrupts
4622 * or the scheduler are operational.
4624 cpu_notifier(rcu_cpu_notify, 0);
4625 pm_notifier(rcu_pm_notify, 0);
4626 for_each_online_cpu(cpu)
4627 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4630 #include "tree_plugin.h"