Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / kernel / workqueue.c
blob3bfdff06eea728b38364652808e9f548f0e6fe37
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
24 * Please read Documentation/workqueue.txt for details.
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
52 #include "workqueue_internal.h"
54 enum {
56 * worker_pool flags
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73 /* worker flags */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
76 WORKER_PREP = 1 << 3, /* preparing to run works */
77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give MIN_NICE.
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
105 WQ_NAME_LEN = 24,
109 * Structure fields follow one of the following exclusion rules.
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
117 * L: pool->lock protected. Access with pool->lock held.
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
124 * A: pool->attach_mutex protected.
126 * PL: wq_pool_mutex protected.
128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
135 * WQ: wq->mutex protected.
137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
139 * MD: wq_mayday_lock protected.
142 /* struct worker is defined in workqueue_internal.h */
144 struct worker_pool {
145 spinlock_t lock; /* the pool lock */
146 int cpu; /* I: the associated cpu */
147 int node; /* I: the associated node ID */
148 int id; /* I: pool ID */
149 unsigned int flags; /* X: flags */
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
156 /* nr_idle includes the ones off idle_list for rebinding */
157 int nr_idle; /* L: currently idle ones */
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
163 /* a workers is either on busy_hash or idle_list, or the manager */
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
167 /* see manage_workers() for details on the two manager mutexes */
168 struct mutex manager_arb; /* manager arbitration */
169 struct worker *manager; /* L: purely informational */
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
174 struct ida worker_ida; /* worker IDs for task name */
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
185 atomic_t nr_running ____cacheline_aligned_in_smp;
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
225 * Structure used to wait for workqueue flush.
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
233 struct wq_device;
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
273 struct rcu_head rcu;
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 static struct kmem_cache *pwq_cache;
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
302 static bool workqueue_freezing; /* PL: have wqs started freezing? */
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
325 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
336 struct workqueue_struct *system_wq __read_mostly;
337 EXPORT_SYMBOL(system_wq);
338 struct workqueue_struct *system_highpri_wq __read_mostly;
339 EXPORT_SYMBOL_GPL(system_highpri_wq);
340 struct workqueue_struct *system_long_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_long_wq);
342 struct workqueue_struct *system_unbound_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_unbound_wq);
344 struct workqueue_struct *system_freezable_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_freezable_wq);
346 struct workqueue_struct *system_power_efficient_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
351 static int worker_thread(void *__worker);
352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
357 #define assert_rcu_or_pool_mutex() \
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
362 #define assert_rcu_or_wq_mutex(wq) \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
373 #define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376 (pool)++)
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
381 * @pi: integer used for iteration
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
390 #define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
393 else
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
398 * @pool: worker_pool to iterate workers of
400 * This must be called with @pool->attach_mutex.
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
405 #define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 else
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
415 * This must be called either with wq->mutex held or sched RCU read locked.
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
419 * The if/else clause exists only for the lockdep assertion and can be
420 * ignored.
422 #define for_each_pwq(pwq, wq) \
423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
425 else
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
429 static struct debug_obj_descr work_debug_descr;
431 static void *work_debug_hint(void *addr)
433 return ((struct work_struct *) addr)->func;
437 * fixup_init is called when:
438 * - an active object is initialized
440 static int work_fixup_init(void *addr, enum debug_obj_state state)
442 struct work_struct *work = addr;
444 switch (state) {
445 case ODEBUG_STATE_ACTIVE:
446 cancel_work_sync(work);
447 debug_object_init(work, &work_debug_descr);
448 return 1;
449 default:
450 return 0;
455 * fixup_activate is called when:
456 * - an active object is activated
457 * - an unknown object is activated (might be a statically initialized object)
459 static int work_fixup_activate(void *addr, enum debug_obj_state state)
461 struct work_struct *work = addr;
463 switch (state) {
465 case ODEBUG_STATE_NOTAVAILABLE:
467 * This is not really a fixup. The work struct was
468 * statically initialized. We just make sure that it
469 * is tracked in the object tracker.
471 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
472 debug_object_init(work, &work_debug_descr);
473 debug_object_activate(work, &work_debug_descr);
474 return 0;
476 WARN_ON_ONCE(1);
477 return 0;
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
482 default:
483 return 0;
488 * fixup_free is called when:
489 * - an active object is freed
491 static int work_fixup_free(void *addr, enum debug_obj_state state)
493 struct work_struct *work = addr;
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 cancel_work_sync(work);
498 debug_object_free(work, &work_debug_descr);
499 return 1;
500 default:
501 return 0;
505 static struct debug_obj_descr work_debug_descr = {
506 .name = "work_struct",
507 .debug_hint = work_debug_hint,
508 .fixup_init = work_fixup_init,
509 .fixup_activate = work_fixup_activate,
510 .fixup_free = work_fixup_free,
513 static inline void debug_work_activate(struct work_struct *work)
515 debug_object_activate(work, &work_debug_descr);
518 static inline void debug_work_deactivate(struct work_struct *work)
520 debug_object_deactivate(work, &work_debug_descr);
523 void __init_work(struct work_struct *work, int onstack)
525 if (onstack)
526 debug_object_init_on_stack(work, &work_debug_descr);
527 else
528 debug_object_init(work, &work_debug_descr);
530 EXPORT_SYMBOL_GPL(__init_work);
532 void destroy_work_on_stack(struct work_struct *work)
534 debug_object_free(work, &work_debug_descr);
536 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
538 void destroy_delayed_work_on_stack(struct delayed_work *work)
540 destroy_timer_on_stack(&work->timer);
541 debug_object_free(&work->work, &work_debug_descr);
543 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
545 #else
546 static inline void debug_work_activate(struct work_struct *work) { }
547 static inline void debug_work_deactivate(struct work_struct *work) { }
548 #endif
551 * worker_pool_assign_id - allocate ID and assing it to @pool
552 * @pool: the pool pointer of interest
554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555 * successfully, -errno on failure.
557 static int worker_pool_assign_id(struct worker_pool *pool)
559 int ret;
561 lockdep_assert_held(&wq_pool_mutex);
563 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 GFP_KERNEL);
565 if (ret >= 0) {
566 pool->id = ret;
567 return 0;
569 return ret;
573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574 * @wq: the target workqueue
575 * @node: the node ID
577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578 * read locked.
579 * If the pwq needs to be used beyond the locking in effect, the caller is
580 * responsible for guaranteeing that the pwq stays online.
582 * Return: The unbound pool_workqueue for @node.
584 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 int node)
587 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
590 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 * delayed item is pending. The plan is to keep CPU -> NODE
592 * mapping valid and stable across CPU on/offlines. Once that
593 * happens, this workaround can be removed.
595 if (unlikely(node == NUMA_NO_NODE))
596 return wq->dfl_pwq;
598 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
601 static unsigned int work_color_to_flags(int color)
603 return color << WORK_STRUCT_COLOR_SHIFT;
606 static int get_work_color(struct work_struct *work)
608 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
612 static int work_next_color(int color)
614 return (color + 1) % WORK_NR_COLORS;
618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619 * contain the pointer to the queued pwq. Once execution starts, the flag
620 * is cleared and the high bits contain OFFQ flags and pool ID.
622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623 * and clear_work_data() can be used to set the pwq, pool or clear
624 * work->data. These functions should only be called while the work is
625 * owned - ie. while the PENDING bit is set.
627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
628 * corresponding to a work. Pool is available once the work has been
629 * queued anywhere after initialization until it is sync canceled. pwq is
630 * available only while the work item is queued.
632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633 * canceled. While being canceled, a work item may have its PENDING set
634 * but stay off timer and worklist for arbitrarily long and nobody should
635 * try to steal the PENDING bit.
637 static inline void set_work_data(struct work_struct *work, unsigned long data,
638 unsigned long flags)
640 WARN_ON_ONCE(!work_pending(work));
641 atomic_long_set(&work->data, data | flags | work_static(work));
644 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
645 unsigned long extra_flags)
647 set_work_data(work, (unsigned long)pwq,
648 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
651 static void set_work_pool_and_keep_pending(struct work_struct *work,
652 int pool_id)
654 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 WORK_STRUCT_PENDING);
658 static void set_work_pool_and_clear_pending(struct work_struct *work,
659 int pool_id)
662 * The following wmb is paired with the implied mb in
663 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 * here are visible to and precede any updates by the next PENDING
665 * owner.
667 smp_wmb();
668 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
670 * The following mb guarantees that previous clear of a PENDING bit
671 * will not be reordered with any speculative LOADS or STORES from
672 * work->current_func, which is executed afterwards. This possible
673 * reordering can lead to a missed execution on attempt to qeueue
674 * the same @work. E.g. consider this case:
676 * CPU#0 CPU#1
677 * ---------------------------- --------------------------------
679 * 1 STORE event_indicated
680 * 2 queue_work_on() {
681 * 3 test_and_set_bit(PENDING)
682 * 4 } set_..._and_clear_pending() {
683 * 5 set_work_data() # clear bit
684 * 6 smp_mb()
685 * 7 work->current_func() {
686 * 8 LOAD event_indicated
689 * Without an explicit full barrier speculative LOAD on line 8 can
690 * be executed before CPU#0 does STORE on line 1. If that happens,
691 * CPU#0 observes the PENDING bit is still set and new execution of
692 * a @work is not queued in a hope, that CPU#1 will eventually
693 * finish the queued @work. Meanwhile CPU#1 does not see
694 * event_indicated is set, because speculative LOAD was executed
695 * before actual STORE.
697 smp_mb();
700 static void clear_work_data(struct work_struct *work)
702 smp_wmb(); /* see set_work_pool_and_clear_pending() */
703 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
706 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
708 unsigned long data = atomic_long_read(&work->data);
710 if (data & WORK_STRUCT_PWQ)
711 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
712 else
713 return NULL;
717 * get_work_pool - return the worker_pool a given work was associated with
718 * @work: the work item of interest
720 * Pools are created and destroyed under wq_pool_mutex, and allows read
721 * access under sched-RCU read lock. As such, this function should be
722 * called under wq_pool_mutex or with preemption disabled.
724 * All fields of the returned pool are accessible as long as the above
725 * mentioned locking is in effect. If the returned pool needs to be used
726 * beyond the critical section, the caller is responsible for ensuring the
727 * returned pool is and stays online.
729 * Return: The worker_pool @work was last associated with. %NULL if none.
731 static struct worker_pool *get_work_pool(struct work_struct *work)
733 unsigned long data = atomic_long_read(&work->data);
734 int pool_id;
736 assert_rcu_or_pool_mutex();
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
742 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
743 if (pool_id == WORK_OFFQ_POOL_NONE)
744 return NULL;
746 return idr_find(&worker_pool_idr, pool_id);
750 * get_work_pool_id - return the worker pool ID a given work is associated with
751 * @work: the work item of interest
753 * Return: The worker_pool ID @work was last associated with.
754 * %WORK_OFFQ_POOL_NONE if none.
756 static int get_work_pool_id(struct work_struct *work)
758 unsigned long data = atomic_long_read(&work->data);
760 if (data & WORK_STRUCT_PWQ)
761 return ((struct pool_workqueue *)
762 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
764 return data >> WORK_OFFQ_POOL_SHIFT;
767 static void mark_work_canceling(struct work_struct *work)
769 unsigned long pool_id = get_work_pool_id(work);
771 pool_id <<= WORK_OFFQ_POOL_SHIFT;
772 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
775 static bool work_is_canceling(struct work_struct *work)
777 unsigned long data = atomic_long_read(&work->data);
779 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
783 * Policy functions. These define the policies on how the global worker
784 * pools are managed. Unless noted otherwise, these functions assume that
785 * they're being called with pool->lock held.
788 static bool __need_more_worker(struct worker_pool *pool)
790 return !atomic_read(&pool->nr_running);
794 * Need to wake up a worker? Called from anything but currently
795 * running workers.
797 * Note that, because unbound workers never contribute to nr_running, this
798 * function will always return %true for unbound pools as long as the
799 * worklist isn't empty.
801 static bool need_more_worker(struct worker_pool *pool)
803 return !list_empty(&pool->worklist) && __need_more_worker(pool);
806 /* Can I start working? Called from busy but !running workers. */
807 static bool may_start_working(struct worker_pool *pool)
809 return pool->nr_idle;
812 /* Do I need to keep working? Called from currently running workers. */
813 static bool keep_working(struct worker_pool *pool)
815 return !list_empty(&pool->worklist) &&
816 atomic_read(&pool->nr_running) <= 1;
819 /* Do we need a new worker? Called from manager. */
820 static bool need_to_create_worker(struct worker_pool *pool)
822 return need_more_worker(pool) && !may_start_working(pool);
825 /* Do we have too many workers and should some go away? */
826 static bool too_many_workers(struct worker_pool *pool)
828 bool managing = mutex_is_locked(&pool->manager_arb);
829 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
830 int nr_busy = pool->nr_workers - nr_idle;
832 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
836 * Wake up functions.
839 /* Return the first idle worker. Safe with preemption disabled */
840 static struct worker *first_idle_worker(struct worker_pool *pool)
842 if (unlikely(list_empty(&pool->idle_list)))
843 return NULL;
845 return list_first_entry(&pool->idle_list, struct worker, entry);
849 * wake_up_worker - wake up an idle worker
850 * @pool: worker pool to wake worker from
852 * Wake up the first idle worker of @pool.
854 * CONTEXT:
855 * spin_lock_irq(pool->lock).
857 static void wake_up_worker(struct worker_pool *pool)
859 struct worker *worker = first_idle_worker(pool);
861 if (likely(worker))
862 wake_up_process(worker->task);
866 * wq_worker_waking_up - a worker is waking up
867 * @task: task waking up
868 * @cpu: CPU @task is waking up to
870 * This function is called during try_to_wake_up() when a worker is
871 * being awoken.
873 * CONTEXT:
874 * spin_lock_irq(rq->lock)
876 void wq_worker_waking_up(struct task_struct *task, int cpu)
878 struct worker *worker = kthread_data(task);
880 if (!(worker->flags & WORKER_NOT_RUNNING)) {
881 WARN_ON_ONCE(worker->pool->cpu != cpu);
882 atomic_inc(&worker->pool->nr_running);
887 * wq_worker_sleeping - a worker is going to sleep
888 * @task: task going to sleep
890 * This function is called during schedule() when a busy worker is
891 * going to sleep. Worker on the same cpu can be woken up by
892 * returning pointer to its task.
894 * CONTEXT:
895 * spin_lock_irq(rq->lock)
897 * Return:
898 * Worker task on @cpu to wake up, %NULL if none.
900 struct task_struct *wq_worker_sleeping(struct task_struct *task)
902 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
903 struct worker_pool *pool;
906 * Rescuers, which may not have all the fields set up like normal
907 * workers, also reach here, let's not access anything before
908 * checking NOT_RUNNING.
910 if (worker->flags & WORKER_NOT_RUNNING)
911 return NULL;
913 pool = worker->pool;
915 /* this can only happen on the local cpu */
916 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
917 return NULL;
920 * The counterpart of the following dec_and_test, implied mb,
921 * worklist not empty test sequence is in insert_work().
922 * Please read comment there.
924 * NOT_RUNNING is clear. This means that we're bound to and
925 * running on the local cpu w/ rq lock held and preemption
926 * disabled, which in turn means that none else could be
927 * manipulating idle_list, so dereferencing idle_list without pool
928 * lock is safe.
930 if (atomic_dec_and_test(&pool->nr_running) &&
931 !list_empty(&pool->worklist))
932 to_wakeup = first_idle_worker(pool);
933 return to_wakeup ? to_wakeup->task : NULL;
937 * worker_set_flags - set worker flags and adjust nr_running accordingly
938 * @worker: self
939 * @flags: flags to set
941 * Set @flags in @worker->flags and adjust nr_running accordingly.
943 * CONTEXT:
944 * spin_lock_irq(pool->lock)
946 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
948 struct worker_pool *pool = worker->pool;
950 WARN_ON_ONCE(worker->task != current);
952 /* If transitioning into NOT_RUNNING, adjust nr_running. */
953 if ((flags & WORKER_NOT_RUNNING) &&
954 !(worker->flags & WORKER_NOT_RUNNING)) {
955 atomic_dec(&pool->nr_running);
958 worker->flags |= flags;
962 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
963 * @worker: self
964 * @flags: flags to clear
966 * Clear @flags in @worker->flags and adjust nr_running accordingly.
968 * CONTEXT:
969 * spin_lock_irq(pool->lock)
971 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
973 struct worker_pool *pool = worker->pool;
974 unsigned int oflags = worker->flags;
976 WARN_ON_ONCE(worker->task != current);
978 worker->flags &= ~flags;
981 * If transitioning out of NOT_RUNNING, increment nr_running. Note
982 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
983 * of multiple flags, not a single flag.
985 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
986 if (!(worker->flags & WORKER_NOT_RUNNING))
987 atomic_inc(&pool->nr_running);
991 * find_worker_executing_work - find worker which is executing a work
992 * @pool: pool of interest
993 * @work: work to find worker for
995 * Find a worker which is executing @work on @pool by searching
996 * @pool->busy_hash which is keyed by the address of @work. For a worker
997 * to match, its current execution should match the address of @work and
998 * its work function. This is to avoid unwanted dependency between
999 * unrelated work executions through a work item being recycled while still
1000 * being executed.
1002 * This is a bit tricky. A work item may be freed once its execution
1003 * starts and nothing prevents the freed area from being recycled for
1004 * another work item. If the same work item address ends up being reused
1005 * before the original execution finishes, workqueue will identify the
1006 * recycled work item as currently executing and make it wait until the
1007 * current execution finishes, introducing an unwanted dependency.
1009 * This function checks the work item address and work function to avoid
1010 * false positives. Note that this isn't complete as one may construct a
1011 * work function which can introduce dependency onto itself through a
1012 * recycled work item. Well, if somebody wants to shoot oneself in the
1013 * foot that badly, there's only so much we can do, and if such deadlock
1014 * actually occurs, it should be easy to locate the culprit work function.
1016 * CONTEXT:
1017 * spin_lock_irq(pool->lock).
1019 * Return:
1020 * Pointer to worker which is executing @work if found, %NULL
1021 * otherwise.
1023 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1024 struct work_struct *work)
1026 struct worker *worker;
1028 hash_for_each_possible(pool->busy_hash, worker, hentry,
1029 (unsigned long)work)
1030 if (worker->current_work == work &&
1031 worker->current_func == work->func)
1032 return worker;
1034 return NULL;
1038 * move_linked_works - move linked works to a list
1039 * @work: start of series of works to be scheduled
1040 * @head: target list to append @work to
1041 * @nextp: out parameter for nested worklist walking
1043 * Schedule linked works starting from @work to @head. Work series to
1044 * be scheduled starts at @work and includes any consecutive work with
1045 * WORK_STRUCT_LINKED set in its predecessor.
1047 * If @nextp is not NULL, it's updated to point to the next work of
1048 * the last scheduled work. This allows move_linked_works() to be
1049 * nested inside outer list_for_each_entry_safe().
1051 * CONTEXT:
1052 * spin_lock_irq(pool->lock).
1054 static void move_linked_works(struct work_struct *work, struct list_head *head,
1055 struct work_struct **nextp)
1057 struct work_struct *n;
1060 * Linked worklist will always end before the end of the list,
1061 * use NULL for list head.
1063 list_for_each_entry_safe_from(work, n, NULL, entry) {
1064 list_move_tail(&work->entry, head);
1065 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1066 break;
1070 * If we're already inside safe list traversal and have moved
1071 * multiple works to the scheduled queue, the next position
1072 * needs to be updated.
1074 if (nextp)
1075 *nextp = n;
1079 * get_pwq - get an extra reference on the specified pool_workqueue
1080 * @pwq: pool_workqueue to get
1082 * Obtain an extra reference on @pwq. The caller should guarantee that
1083 * @pwq has positive refcnt and be holding the matching pool->lock.
1085 static void get_pwq(struct pool_workqueue *pwq)
1087 lockdep_assert_held(&pwq->pool->lock);
1088 WARN_ON_ONCE(pwq->refcnt <= 0);
1089 pwq->refcnt++;
1093 * put_pwq - put a pool_workqueue reference
1094 * @pwq: pool_workqueue to put
1096 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1097 * destruction. The caller should be holding the matching pool->lock.
1099 static void put_pwq(struct pool_workqueue *pwq)
1101 lockdep_assert_held(&pwq->pool->lock);
1102 if (likely(--pwq->refcnt))
1103 return;
1104 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1105 return;
1107 * @pwq can't be released under pool->lock, bounce to
1108 * pwq_unbound_release_workfn(). This never recurses on the same
1109 * pool->lock as this path is taken only for unbound workqueues and
1110 * the release work item is scheduled on a per-cpu workqueue. To
1111 * avoid lockdep warning, unbound pool->locks are given lockdep
1112 * subclass of 1 in get_unbound_pool().
1114 schedule_work(&pwq->unbound_release_work);
1118 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1119 * @pwq: pool_workqueue to put (can be %NULL)
1121 * put_pwq() with locking. This function also allows %NULL @pwq.
1123 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1125 if (pwq) {
1127 * As both pwqs and pools are sched-RCU protected, the
1128 * following lock operations are safe.
1130 spin_lock_irq(&pwq->pool->lock);
1131 put_pwq(pwq);
1132 spin_unlock_irq(&pwq->pool->lock);
1136 static void pwq_activate_delayed_work(struct work_struct *work)
1138 struct pool_workqueue *pwq = get_work_pwq(work);
1140 trace_workqueue_activate_work(work);
1141 if (list_empty(&pwq->pool->worklist))
1142 pwq->pool->watchdog_ts = jiffies;
1143 move_linked_works(work, &pwq->pool->worklist, NULL);
1144 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1145 pwq->nr_active++;
1148 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1150 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1151 struct work_struct, entry);
1153 pwq_activate_delayed_work(work);
1157 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1158 * @pwq: pwq of interest
1159 * @color: color of work which left the queue
1161 * A work either has completed or is removed from pending queue,
1162 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1164 * CONTEXT:
1165 * spin_lock_irq(pool->lock).
1167 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1169 /* uncolored work items don't participate in flushing or nr_active */
1170 if (color == WORK_NO_COLOR)
1171 goto out_put;
1173 pwq->nr_in_flight[color]--;
1175 pwq->nr_active--;
1176 if (!list_empty(&pwq->delayed_works)) {
1177 /* one down, submit a delayed one */
1178 if (pwq->nr_active < pwq->max_active)
1179 pwq_activate_first_delayed(pwq);
1182 /* is flush in progress and are we at the flushing tip? */
1183 if (likely(pwq->flush_color != color))
1184 goto out_put;
1186 /* are there still in-flight works? */
1187 if (pwq->nr_in_flight[color])
1188 goto out_put;
1190 /* this pwq is done, clear flush_color */
1191 pwq->flush_color = -1;
1194 * If this was the last pwq, wake up the first flusher. It
1195 * will handle the rest.
1197 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1198 complete(&pwq->wq->first_flusher->done);
1199 out_put:
1200 put_pwq(pwq);
1204 * try_to_grab_pending - steal work item from worklist and disable irq
1205 * @work: work item to steal
1206 * @is_dwork: @work is a delayed_work
1207 * @flags: place to store irq state
1209 * Try to grab PENDING bit of @work. This function can handle @work in any
1210 * stable state - idle, on timer or on worklist.
1212 * Return:
1213 * 1 if @work was pending and we successfully stole PENDING
1214 * 0 if @work was idle and we claimed PENDING
1215 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1216 * -ENOENT if someone else is canceling @work, this state may persist
1217 * for arbitrarily long
1219 * Note:
1220 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1221 * interrupted while holding PENDING and @work off queue, irq must be
1222 * disabled on entry. This, combined with delayed_work->timer being
1223 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1225 * On successful return, >= 0, irq is disabled and the caller is
1226 * responsible for releasing it using local_irq_restore(*@flags).
1228 * This function is safe to call from any context including IRQ handler.
1230 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1231 unsigned long *flags)
1233 struct worker_pool *pool;
1234 struct pool_workqueue *pwq;
1236 local_irq_save(*flags);
1238 /* try to steal the timer if it exists */
1239 if (is_dwork) {
1240 struct delayed_work *dwork = to_delayed_work(work);
1243 * dwork->timer is irqsafe. If del_timer() fails, it's
1244 * guaranteed that the timer is not queued anywhere and not
1245 * running on the local CPU.
1247 if (likely(del_timer(&dwork->timer)))
1248 return 1;
1251 /* try to claim PENDING the normal way */
1252 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1253 return 0;
1256 * The queueing is in progress, or it is already queued. Try to
1257 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1259 pool = get_work_pool(work);
1260 if (!pool)
1261 goto fail;
1263 spin_lock(&pool->lock);
1265 * work->data is guaranteed to point to pwq only while the work
1266 * item is queued on pwq->wq, and both updating work->data to point
1267 * to pwq on queueing and to pool on dequeueing are done under
1268 * pwq->pool->lock. This in turn guarantees that, if work->data
1269 * points to pwq which is associated with a locked pool, the work
1270 * item is currently queued on that pool.
1272 pwq = get_work_pwq(work);
1273 if (pwq && pwq->pool == pool) {
1274 debug_work_deactivate(work);
1277 * A delayed work item cannot be grabbed directly because
1278 * it might have linked NO_COLOR work items which, if left
1279 * on the delayed_list, will confuse pwq->nr_active
1280 * management later on and cause stall. Make sure the work
1281 * item is activated before grabbing.
1283 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1284 pwq_activate_delayed_work(work);
1286 list_del_init(&work->entry);
1287 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1289 /* work->data points to pwq iff queued, point to pool */
1290 set_work_pool_and_keep_pending(work, pool->id);
1292 spin_unlock(&pool->lock);
1293 return 1;
1295 spin_unlock(&pool->lock);
1296 fail:
1297 local_irq_restore(*flags);
1298 if (work_is_canceling(work))
1299 return -ENOENT;
1300 cpu_relax();
1301 return -EAGAIN;
1305 * insert_work - insert a work into a pool
1306 * @pwq: pwq @work belongs to
1307 * @work: work to insert
1308 * @head: insertion point
1309 * @extra_flags: extra WORK_STRUCT_* flags to set
1311 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1312 * work_struct flags.
1314 * CONTEXT:
1315 * spin_lock_irq(pool->lock).
1317 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1318 struct list_head *head, unsigned int extra_flags)
1320 struct worker_pool *pool = pwq->pool;
1322 /* we own @work, set data and link */
1323 set_work_pwq(work, pwq, extra_flags);
1324 list_add_tail(&work->entry, head);
1325 get_pwq(pwq);
1328 * Ensure either wq_worker_sleeping() sees the above
1329 * list_add_tail() or we see zero nr_running to avoid workers lying
1330 * around lazily while there are works to be processed.
1332 smp_mb();
1334 if (__need_more_worker(pool))
1335 wake_up_worker(pool);
1339 * Test whether @work is being queued from another work executing on the
1340 * same workqueue.
1342 static bool is_chained_work(struct workqueue_struct *wq)
1344 struct worker *worker;
1346 worker = current_wq_worker();
1348 * Return %true iff I'm a worker execuing a work item on @wq. If
1349 * I'm @worker, it's safe to dereference it without locking.
1351 return worker && worker->current_pwq->wq == wq;
1355 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1356 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1357 * avoid perturbing sensitive tasks.
1359 static int wq_select_unbound_cpu(int cpu)
1361 static bool printed_dbg_warning;
1362 int new_cpu;
1364 if (likely(!wq_debug_force_rr_cpu)) {
1365 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1366 return cpu;
1367 } else if (!printed_dbg_warning) {
1368 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1369 printed_dbg_warning = true;
1372 if (cpumask_empty(wq_unbound_cpumask))
1373 return cpu;
1375 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1376 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1377 if (unlikely(new_cpu >= nr_cpu_ids)) {
1378 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1379 if (unlikely(new_cpu >= nr_cpu_ids))
1380 return cpu;
1382 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1384 return new_cpu;
1387 static void __queue_work(int cpu, struct workqueue_struct *wq,
1388 struct work_struct *work)
1390 struct pool_workqueue *pwq;
1391 struct worker_pool *last_pool;
1392 struct list_head *worklist;
1393 unsigned int work_flags;
1394 unsigned int req_cpu = cpu;
1397 * While a work item is PENDING && off queue, a task trying to
1398 * steal the PENDING will busy-loop waiting for it to either get
1399 * queued or lose PENDING. Grabbing PENDING and queueing should
1400 * happen with IRQ disabled.
1402 WARN_ON_ONCE(!irqs_disabled());
1404 debug_work_activate(work);
1406 /* if draining, only works from the same workqueue are allowed */
1407 if (unlikely(wq->flags & __WQ_DRAINING) &&
1408 WARN_ON_ONCE(!is_chained_work(wq)))
1409 return;
1410 retry:
1411 if (req_cpu == WORK_CPU_UNBOUND)
1412 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1414 /* pwq which will be used unless @work is executing elsewhere */
1415 if (!(wq->flags & WQ_UNBOUND))
1416 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1417 else
1418 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1421 * If @work was previously on a different pool, it might still be
1422 * running there, in which case the work needs to be queued on that
1423 * pool to guarantee non-reentrancy.
1425 last_pool = get_work_pool(work);
1426 if (last_pool && last_pool != pwq->pool) {
1427 struct worker *worker;
1429 spin_lock(&last_pool->lock);
1431 worker = find_worker_executing_work(last_pool, work);
1433 if (worker && worker->current_pwq->wq == wq) {
1434 pwq = worker->current_pwq;
1435 } else {
1436 /* meh... not running there, queue here */
1437 spin_unlock(&last_pool->lock);
1438 spin_lock(&pwq->pool->lock);
1440 } else {
1441 spin_lock(&pwq->pool->lock);
1445 * pwq is determined and locked. For unbound pools, we could have
1446 * raced with pwq release and it could already be dead. If its
1447 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1448 * without another pwq replacing it in the numa_pwq_tbl or while
1449 * work items are executing on it, so the retrying is guaranteed to
1450 * make forward-progress.
1452 if (unlikely(!pwq->refcnt)) {
1453 if (wq->flags & WQ_UNBOUND) {
1454 spin_unlock(&pwq->pool->lock);
1455 cpu_relax();
1456 goto retry;
1458 /* oops */
1459 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1460 wq->name, cpu);
1463 /* pwq determined, queue */
1464 trace_workqueue_queue_work(req_cpu, pwq, work);
1466 if (WARN_ON(!list_empty(&work->entry))) {
1467 spin_unlock(&pwq->pool->lock);
1468 return;
1471 pwq->nr_in_flight[pwq->work_color]++;
1472 work_flags = work_color_to_flags(pwq->work_color);
1474 if (likely(pwq->nr_active < pwq->max_active)) {
1475 trace_workqueue_activate_work(work);
1476 pwq->nr_active++;
1477 worklist = &pwq->pool->worklist;
1478 if (list_empty(worklist))
1479 pwq->pool->watchdog_ts = jiffies;
1480 } else {
1481 work_flags |= WORK_STRUCT_DELAYED;
1482 worklist = &pwq->delayed_works;
1485 insert_work(pwq, work, worklist, work_flags);
1487 spin_unlock(&pwq->pool->lock);
1491 * queue_work_on - queue work on specific cpu
1492 * @cpu: CPU number to execute work on
1493 * @wq: workqueue to use
1494 * @work: work to queue
1496 * We queue the work to a specific CPU, the caller must ensure it
1497 * can't go away.
1499 * Return: %false if @work was already on a queue, %true otherwise.
1501 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1502 struct work_struct *work)
1504 bool ret = false;
1505 unsigned long flags;
1507 local_irq_save(flags);
1509 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1510 __queue_work(cpu, wq, work);
1511 ret = true;
1514 local_irq_restore(flags);
1515 return ret;
1517 EXPORT_SYMBOL(queue_work_on);
1519 void delayed_work_timer_fn(unsigned long __data)
1521 struct delayed_work *dwork = (struct delayed_work *)__data;
1523 /* should have been called from irqsafe timer with irq already off */
1524 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1526 EXPORT_SYMBOL(delayed_work_timer_fn);
1528 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1529 struct delayed_work *dwork, unsigned long delay)
1531 struct timer_list *timer = &dwork->timer;
1532 struct work_struct *work = &dwork->work;
1534 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1535 timer->data != (unsigned long)dwork);
1536 WARN_ON_ONCE(timer_pending(timer));
1537 WARN_ON_ONCE(!list_empty(&work->entry));
1540 * If @delay is 0, queue @dwork->work immediately. This is for
1541 * both optimization and correctness. The earliest @timer can
1542 * expire is on the closest next tick and delayed_work users depend
1543 * on that there's no such delay when @delay is 0.
1545 if (!delay) {
1546 __queue_work(cpu, wq, &dwork->work);
1547 return;
1550 timer_stats_timer_set_start_info(&dwork->timer);
1552 dwork->wq = wq;
1553 dwork->cpu = cpu;
1554 timer->expires = jiffies + delay;
1556 if (unlikely(cpu != WORK_CPU_UNBOUND))
1557 add_timer_on(timer, cpu);
1558 else
1559 add_timer(timer);
1563 * queue_delayed_work_on - queue work on specific CPU after delay
1564 * @cpu: CPU number to execute work on
1565 * @wq: workqueue to use
1566 * @dwork: work to queue
1567 * @delay: number of jiffies to wait before queueing
1569 * Return: %false if @work was already on a queue, %true otherwise. If
1570 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1571 * execution.
1573 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1574 struct delayed_work *dwork, unsigned long delay)
1576 struct work_struct *work = &dwork->work;
1577 bool ret = false;
1578 unsigned long flags;
1580 /* read the comment in __queue_work() */
1581 local_irq_save(flags);
1583 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1584 __queue_delayed_work(cpu, wq, dwork, delay);
1585 ret = true;
1588 local_irq_restore(flags);
1589 return ret;
1591 EXPORT_SYMBOL(queue_delayed_work_on);
1594 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1595 * @cpu: CPU number to execute work on
1596 * @wq: workqueue to use
1597 * @dwork: work to queue
1598 * @delay: number of jiffies to wait before queueing
1600 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1601 * modify @dwork's timer so that it expires after @delay. If @delay is
1602 * zero, @work is guaranteed to be scheduled immediately regardless of its
1603 * current state.
1605 * Return: %false if @dwork was idle and queued, %true if @dwork was
1606 * pending and its timer was modified.
1608 * This function is safe to call from any context including IRQ handler.
1609 * See try_to_grab_pending() for details.
1611 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1612 struct delayed_work *dwork, unsigned long delay)
1614 unsigned long flags;
1615 int ret;
1617 do {
1618 ret = try_to_grab_pending(&dwork->work, true, &flags);
1619 } while (unlikely(ret == -EAGAIN));
1621 if (likely(ret >= 0)) {
1622 __queue_delayed_work(cpu, wq, dwork, delay);
1623 local_irq_restore(flags);
1626 /* -ENOENT from try_to_grab_pending() becomes %true */
1627 return ret;
1629 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1632 * worker_enter_idle - enter idle state
1633 * @worker: worker which is entering idle state
1635 * @worker is entering idle state. Update stats and idle timer if
1636 * necessary.
1638 * LOCKING:
1639 * spin_lock_irq(pool->lock).
1641 static void worker_enter_idle(struct worker *worker)
1643 struct worker_pool *pool = worker->pool;
1645 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1646 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1647 (worker->hentry.next || worker->hentry.pprev)))
1648 return;
1650 /* can't use worker_set_flags(), also called from create_worker() */
1651 worker->flags |= WORKER_IDLE;
1652 pool->nr_idle++;
1653 worker->last_active = jiffies;
1655 /* idle_list is LIFO */
1656 list_add(&worker->entry, &pool->idle_list);
1658 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1659 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1662 * Sanity check nr_running. Because wq_unbind_fn() releases
1663 * pool->lock between setting %WORKER_UNBOUND and zapping
1664 * nr_running, the warning may trigger spuriously. Check iff
1665 * unbind is not in progress.
1667 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1668 pool->nr_workers == pool->nr_idle &&
1669 atomic_read(&pool->nr_running));
1673 * worker_leave_idle - leave idle state
1674 * @worker: worker which is leaving idle state
1676 * @worker is leaving idle state. Update stats.
1678 * LOCKING:
1679 * spin_lock_irq(pool->lock).
1681 static void worker_leave_idle(struct worker *worker)
1683 struct worker_pool *pool = worker->pool;
1685 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1686 return;
1687 worker_clr_flags(worker, WORKER_IDLE);
1688 pool->nr_idle--;
1689 list_del_init(&worker->entry);
1692 static struct worker *alloc_worker(int node)
1694 struct worker *worker;
1696 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1697 if (worker) {
1698 INIT_LIST_HEAD(&worker->entry);
1699 INIT_LIST_HEAD(&worker->scheduled);
1700 INIT_LIST_HEAD(&worker->node);
1701 /* on creation a worker is in !idle && prep state */
1702 worker->flags = WORKER_PREP;
1704 return worker;
1708 * worker_attach_to_pool() - attach a worker to a pool
1709 * @worker: worker to be attached
1710 * @pool: the target pool
1712 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1713 * cpu-binding of @worker are kept coordinated with the pool across
1714 * cpu-[un]hotplugs.
1716 static void worker_attach_to_pool(struct worker *worker,
1717 struct worker_pool *pool)
1719 mutex_lock(&pool->attach_mutex);
1722 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723 * online CPUs. It'll be re-applied when any of the CPUs come up.
1725 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1728 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1729 * stable across this function. See the comments above the
1730 * flag definition for details.
1732 if (pool->flags & POOL_DISASSOCIATED)
1733 worker->flags |= WORKER_UNBOUND;
1735 list_add_tail(&worker->node, &pool->workers);
1737 mutex_unlock(&pool->attach_mutex);
1741 * worker_detach_from_pool() - detach a worker from its pool
1742 * @worker: worker which is attached to its pool
1743 * @pool: the pool @worker is attached to
1745 * Undo the attaching which had been done in worker_attach_to_pool(). The
1746 * caller worker shouldn't access to the pool after detached except it has
1747 * other reference to the pool.
1749 static void worker_detach_from_pool(struct worker *worker,
1750 struct worker_pool *pool)
1752 struct completion *detach_completion = NULL;
1754 mutex_lock(&pool->attach_mutex);
1755 list_del(&worker->node);
1756 if (list_empty(&pool->workers))
1757 detach_completion = pool->detach_completion;
1758 mutex_unlock(&pool->attach_mutex);
1760 /* clear leftover flags without pool->lock after it is detached */
1761 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1763 if (detach_completion)
1764 complete(detach_completion);
1768 * create_worker - create a new workqueue worker
1769 * @pool: pool the new worker will belong to
1771 * Create and start a new worker which is attached to @pool.
1773 * CONTEXT:
1774 * Might sleep. Does GFP_KERNEL allocations.
1776 * Return:
1777 * Pointer to the newly created worker.
1779 static struct worker *create_worker(struct worker_pool *pool)
1781 struct worker *worker = NULL;
1782 int id = -1;
1783 char id_buf[16];
1785 /* ID is needed to determine kthread name */
1786 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1787 if (id < 0)
1788 goto fail;
1790 worker = alloc_worker(pool->node);
1791 if (!worker)
1792 goto fail;
1794 worker->pool = pool;
1795 worker->id = id;
1797 if (pool->cpu >= 0)
1798 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1799 pool->attrs->nice < 0 ? "H" : "");
1800 else
1801 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1803 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1804 "kworker/%s", id_buf);
1805 if (IS_ERR(worker->task))
1806 goto fail;
1808 set_user_nice(worker->task, pool->attrs->nice);
1809 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1811 /* successful, attach the worker to the pool */
1812 worker_attach_to_pool(worker, pool);
1814 /* start the newly created worker */
1815 spin_lock_irq(&pool->lock);
1816 worker->pool->nr_workers++;
1817 worker_enter_idle(worker);
1818 wake_up_process(worker->task);
1819 spin_unlock_irq(&pool->lock);
1821 return worker;
1823 fail:
1824 if (id >= 0)
1825 ida_simple_remove(&pool->worker_ida, id);
1826 kfree(worker);
1827 return NULL;
1831 * destroy_worker - destroy a workqueue worker
1832 * @worker: worker to be destroyed
1834 * Destroy @worker and adjust @pool stats accordingly. The worker should
1835 * be idle.
1837 * CONTEXT:
1838 * spin_lock_irq(pool->lock).
1840 static void destroy_worker(struct worker *worker)
1842 struct worker_pool *pool = worker->pool;
1844 lockdep_assert_held(&pool->lock);
1846 /* sanity check frenzy */
1847 if (WARN_ON(worker->current_work) ||
1848 WARN_ON(!list_empty(&worker->scheduled)) ||
1849 WARN_ON(!(worker->flags & WORKER_IDLE)))
1850 return;
1852 pool->nr_workers--;
1853 pool->nr_idle--;
1855 list_del_init(&worker->entry);
1856 worker->flags |= WORKER_DIE;
1857 wake_up_process(worker->task);
1860 static void idle_worker_timeout(unsigned long __pool)
1862 struct worker_pool *pool = (void *)__pool;
1864 spin_lock_irq(&pool->lock);
1866 while (too_many_workers(pool)) {
1867 struct worker *worker;
1868 unsigned long expires;
1870 /* idle_list is kept in LIFO order, check the last one */
1871 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1872 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1874 if (time_before(jiffies, expires)) {
1875 mod_timer(&pool->idle_timer, expires);
1876 break;
1879 destroy_worker(worker);
1882 spin_unlock_irq(&pool->lock);
1885 static void send_mayday(struct work_struct *work)
1887 struct pool_workqueue *pwq = get_work_pwq(work);
1888 struct workqueue_struct *wq = pwq->wq;
1890 lockdep_assert_held(&wq_mayday_lock);
1892 if (!wq->rescuer)
1893 return;
1895 /* mayday mayday mayday */
1896 if (list_empty(&pwq->mayday_node)) {
1898 * If @pwq is for an unbound wq, its base ref may be put at
1899 * any time due to an attribute change. Pin @pwq until the
1900 * rescuer is done with it.
1902 get_pwq(pwq);
1903 list_add_tail(&pwq->mayday_node, &wq->maydays);
1904 wake_up_process(wq->rescuer->task);
1908 static void pool_mayday_timeout(unsigned long __pool)
1910 struct worker_pool *pool = (void *)__pool;
1911 struct work_struct *work;
1913 spin_lock_irq(&pool->lock);
1914 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1916 if (need_to_create_worker(pool)) {
1918 * We've been trying to create a new worker but
1919 * haven't been successful. We might be hitting an
1920 * allocation deadlock. Send distress signals to
1921 * rescuers.
1923 list_for_each_entry(work, &pool->worklist, entry)
1924 send_mayday(work);
1927 spin_unlock(&wq_mayday_lock);
1928 spin_unlock_irq(&pool->lock);
1930 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1934 * maybe_create_worker - create a new worker if necessary
1935 * @pool: pool to create a new worker for
1937 * Create a new worker for @pool if necessary. @pool is guaranteed to
1938 * have at least one idle worker on return from this function. If
1939 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1940 * sent to all rescuers with works scheduled on @pool to resolve
1941 * possible allocation deadlock.
1943 * On return, need_to_create_worker() is guaranteed to be %false and
1944 * may_start_working() %true.
1946 * LOCKING:
1947 * spin_lock_irq(pool->lock) which may be released and regrabbed
1948 * multiple times. Does GFP_KERNEL allocations. Called only from
1949 * manager.
1951 static void maybe_create_worker(struct worker_pool *pool)
1952 __releases(&pool->lock)
1953 __acquires(&pool->lock)
1955 restart:
1956 spin_unlock_irq(&pool->lock);
1958 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1959 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1961 while (true) {
1962 if (create_worker(pool) || !need_to_create_worker(pool))
1963 break;
1965 schedule_timeout_interruptible(CREATE_COOLDOWN);
1967 if (!need_to_create_worker(pool))
1968 break;
1971 del_timer_sync(&pool->mayday_timer);
1972 spin_lock_irq(&pool->lock);
1974 * This is necessary even after a new worker was just successfully
1975 * created as @pool->lock was dropped and the new worker might have
1976 * already become busy.
1978 if (need_to_create_worker(pool))
1979 goto restart;
1983 * manage_workers - manage worker pool
1984 * @worker: self
1986 * Assume the manager role and manage the worker pool @worker belongs
1987 * to. At any given time, there can be only zero or one manager per
1988 * pool. The exclusion is handled automatically by this function.
1990 * The caller can safely start processing works on false return. On
1991 * true return, it's guaranteed that need_to_create_worker() is false
1992 * and may_start_working() is true.
1994 * CONTEXT:
1995 * spin_lock_irq(pool->lock) which may be released and regrabbed
1996 * multiple times. Does GFP_KERNEL allocations.
1998 * Return:
1999 * %false if the pool doesn't need management and the caller can safely
2000 * start processing works, %true if management function was performed and
2001 * the conditions that the caller verified before calling the function may
2002 * no longer be true.
2004 static bool manage_workers(struct worker *worker)
2006 struct worker_pool *pool = worker->pool;
2009 * Anyone who successfully grabs manager_arb wins the arbitration
2010 * and becomes the manager. mutex_trylock() on pool->manager_arb
2011 * failure while holding pool->lock reliably indicates that someone
2012 * else is managing the pool and the worker which failed trylock
2013 * can proceed to executing work items. This means that anyone
2014 * grabbing manager_arb is responsible for actually performing
2015 * manager duties. If manager_arb is grabbed and released without
2016 * actual management, the pool may stall indefinitely.
2018 if (!mutex_trylock(&pool->manager_arb))
2019 return false;
2020 pool->manager = worker;
2022 maybe_create_worker(pool);
2024 pool->manager = NULL;
2025 mutex_unlock(&pool->manager_arb);
2026 return true;
2030 * process_one_work - process single work
2031 * @worker: self
2032 * @work: work to process
2034 * Process @work. This function contains all the logics necessary to
2035 * process a single work including synchronization against and
2036 * interaction with other workers on the same cpu, queueing and
2037 * flushing. As long as context requirement is met, any worker can
2038 * call this function to process a work.
2040 * CONTEXT:
2041 * spin_lock_irq(pool->lock) which is released and regrabbed.
2043 static void process_one_work(struct worker *worker, struct work_struct *work)
2044 __releases(&pool->lock)
2045 __acquires(&pool->lock)
2047 struct pool_workqueue *pwq = get_work_pwq(work);
2048 struct worker_pool *pool = worker->pool;
2049 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2050 int work_color;
2051 struct worker *collision;
2052 #ifdef CONFIG_LOCKDEP
2054 * It is permissible to free the struct work_struct from
2055 * inside the function that is called from it, this we need to
2056 * take into account for lockdep too. To avoid bogus "held
2057 * lock freed" warnings as well as problems when looking into
2058 * work->lockdep_map, make a copy and use that here.
2060 struct lockdep_map lockdep_map;
2062 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2063 #endif
2064 /* ensure we're on the correct CPU */
2065 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2066 raw_smp_processor_id() != pool->cpu);
2069 * A single work shouldn't be executed concurrently by
2070 * multiple workers on a single cpu. Check whether anyone is
2071 * already processing the work. If so, defer the work to the
2072 * currently executing one.
2074 collision = find_worker_executing_work(pool, work);
2075 if (unlikely(collision)) {
2076 move_linked_works(work, &collision->scheduled, NULL);
2077 return;
2080 /* claim and dequeue */
2081 debug_work_deactivate(work);
2082 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2083 worker->current_work = work;
2084 worker->current_func = work->func;
2085 worker->current_pwq = pwq;
2086 work_color = get_work_color(work);
2088 list_del_init(&work->entry);
2091 * CPU intensive works don't participate in concurrency management.
2092 * They're the scheduler's responsibility. This takes @worker out
2093 * of concurrency management and the next code block will chain
2094 * execution of the pending work items.
2096 if (unlikely(cpu_intensive))
2097 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2100 * Wake up another worker if necessary. The condition is always
2101 * false for normal per-cpu workers since nr_running would always
2102 * be >= 1 at this point. This is used to chain execution of the
2103 * pending work items for WORKER_NOT_RUNNING workers such as the
2104 * UNBOUND and CPU_INTENSIVE ones.
2106 if (need_more_worker(pool))
2107 wake_up_worker(pool);
2110 * Record the last pool and clear PENDING which should be the last
2111 * update to @work. Also, do this inside @pool->lock so that
2112 * PENDING and queued state changes happen together while IRQ is
2113 * disabled.
2115 set_work_pool_and_clear_pending(work, pool->id);
2117 spin_unlock_irq(&pool->lock);
2119 lock_map_acquire_read(&pwq->wq->lockdep_map);
2120 lock_map_acquire(&lockdep_map);
2121 trace_workqueue_execute_start(work);
2122 worker->current_func(work);
2124 * While we must be careful to not use "work" after this, the trace
2125 * point will only record its address.
2127 trace_workqueue_execute_end(work);
2128 lock_map_release(&lockdep_map);
2129 lock_map_release(&pwq->wq->lockdep_map);
2131 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2132 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2133 " last function: %pf\n",
2134 current->comm, preempt_count(), task_pid_nr(current),
2135 worker->current_func);
2136 debug_show_held_locks(current);
2137 dump_stack();
2141 * The following prevents a kworker from hogging CPU on !PREEMPT
2142 * kernels, where a requeueing work item waiting for something to
2143 * happen could deadlock with stop_machine as such work item could
2144 * indefinitely requeue itself while all other CPUs are trapped in
2145 * stop_machine. At the same time, report a quiescent RCU state so
2146 * the same condition doesn't freeze RCU.
2148 cond_resched_rcu_qs();
2150 spin_lock_irq(&pool->lock);
2152 /* clear cpu intensive status */
2153 if (unlikely(cpu_intensive))
2154 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2156 /* we're done with it, release */
2157 hash_del(&worker->hentry);
2158 worker->current_work = NULL;
2159 worker->current_func = NULL;
2160 worker->current_pwq = NULL;
2161 worker->desc_valid = false;
2162 pwq_dec_nr_in_flight(pwq, work_color);
2166 * process_scheduled_works - process scheduled works
2167 * @worker: self
2169 * Process all scheduled works. Please note that the scheduled list
2170 * may change while processing a work, so this function repeatedly
2171 * fetches a work from the top and executes it.
2173 * CONTEXT:
2174 * spin_lock_irq(pool->lock) which may be released and regrabbed
2175 * multiple times.
2177 static void process_scheduled_works(struct worker *worker)
2179 while (!list_empty(&worker->scheduled)) {
2180 struct work_struct *work = list_first_entry(&worker->scheduled,
2181 struct work_struct, entry);
2182 process_one_work(worker, work);
2187 * worker_thread - the worker thread function
2188 * @__worker: self
2190 * The worker thread function. All workers belong to a worker_pool -
2191 * either a per-cpu one or dynamic unbound one. These workers process all
2192 * work items regardless of their specific target workqueue. The only
2193 * exception is work items which belong to workqueues with a rescuer which
2194 * will be explained in rescuer_thread().
2196 * Return: 0
2198 static int worker_thread(void *__worker)
2200 struct worker *worker = __worker;
2201 struct worker_pool *pool = worker->pool;
2203 /* tell the scheduler that this is a workqueue worker */
2204 worker->task->flags |= PF_WQ_WORKER;
2205 woke_up:
2206 spin_lock_irq(&pool->lock);
2208 /* am I supposed to die? */
2209 if (unlikely(worker->flags & WORKER_DIE)) {
2210 spin_unlock_irq(&pool->lock);
2211 WARN_ON_ONCE(!list_empty(&worker->entry));
2212 worker->task->flags &= ~PF_WQ_WORKER;
2214 set_task_comm(worker->task, "kworker/dying");
2215 ida_simple_remove(&pool->worker_ida, worker->id);
2216 worker_detach_from_pool(worker, pool);
2217 kfree(worker);
2218 return 0;
2221 worker_leave_idle(worker);
2222 recheck:
2223 /* no more worker necessary? */
2224 if (!need_more_worker(pool))
2225 goto sleep;
2227 /* do we need to manage? */
2228 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2229 goto recheck;
2232 * ->scheduled list can only be filled while a worker is
2233 * preparing to process a work or actually processing it.
2234 * Make sure nobody diddled with it while I was sleeping.
2236 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2239 * Finish PREP stage. We're guaranteed to have at least one idle
2240 * worker or that someone else has already assumed the manager
2241 * role. This is where @worker starts participating in concurrency
2242 * management if applicable and concurrency management is restored
2243 * after being rebound. See rebind_workers() for details.
2245 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2247 do {
2248 struct work_struct *work =
2249 list_first_entry(&pool->worklist,
2250 struct work_struct, entry);
2252 pool->watchdog_ts = jiffies;
2254 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2255 /* optimization path, not strictly necessary */
2256 process_one_work(worker, work);
2257 if (unlikely(!list_empty(&worker->scheduled)))
2258 process_scheduled_works(worker);
2259 } else {
2260 move_linked_works(work, &worker->scheduled, NULL);
2261 process_scheduled_works(worker);
2263 } while (keep_working(pool));
2265 worker_set_flags(worker, WORKER_PREP);
2266 sleep:
2268 * pool->lock is held and there's no work to process and no need to
2269 * manage, sleep. Workers are woken up only while holding
2270 * pool->lock or from local cpu, so setting the current state
2271 * before releasing pool->lock is enough to prevent losing any
2272 * event.
2274 worker_enter_idle(worker);
2275 __set_current_state(TASK_INTERRUPTIBLE);
2276 spin_unlock_irq(&pool->lock);
2277 schedule();
2278 goto woke_up;
2282 * rescuer_thread - the rescuer thread function
2283 * @__rescuer: self
2285 * Workqueue rescuer thread function. There's one rescuer for each
2286 * workqueue which has WQ_MEM_RECLAIM set.
2288 * Regular work processing on a pool may block trying to create a new
2289 * worker which uses GFP_KERNEL allocation which has slight chance of
2290 * developing into deadlock if some works currently on the same queue
2291 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2292 * the problem rescuer solves.
2294 * When such condition is possible, the pool summons rescuers of all
2295 * workqueues which have works queued on the pool and let them process
2296 * those works so that forward progress can be guaranteed.
2298 * This should happen rarely.
2300 * Return: 0
2302 static int rescuer_thread(void *__rescuer)
2304 struct worker *rescuer = __rescuer;
2305 struct workqueue_struct *wq = rescuer->rescue_wq;
2306 struct list_head *scheduled = &rescuer->scheduled;
2307 bool should_stop;
2309 set_user_nice(current, RESCUER_NICE_LEVEL);
2312 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2313 * doesn't participate in concurrency management.
2315 rescuer->task->flags |= PF_WQ_WORKER;
2316 repeat:
2317 set_current_state(TASK_INTERRUPTIBLE);
2320 * By the time the rescuer is requested to stop, the workqueue
2321 * shouldn't have any work pending, but @wq->maydays may still have
2322 * pwq(s) queued. This can happen by non-rescuer workers consuming
2323 * all the work items before the rescuer got to them. Go through
2324 * @wq->maydays processing before acting on should_stop so that the
2325 * list is always empty on exit.
2327 should_stop = kthread_should_stop();
2329 /* see whether any pwq is asking for help */
2330 spin_lock_irq(&wq_mayday_lock);
2332 while (!list_empty(&wq->maydays)) {
2333 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2334 struct pool_workqueue, mayday_node);
2335 struct worker_pool *pool = pwq->pool;
2336 struct work_struct *work, *n;
2337 bool first = true;
2339 __set_current_state(TASK_RUNNING);
2340 list_del_init(&pwq->mayday_node);
2342 spin_unlock_irq(&wq_mayday_lock);
2344 worker_attach_to_pool(rescuer, pool);
2346 spin_lock_irq(&pool->lock);
2347 rescuer->pool = pool;
2350 * Slurp in all works issued via this workqueue and
2351 * process'em.
2353 WARN_ON_ONCE(!list_empty(scheduled));
2354 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2355 if (get_work_pwq(work) == pwq) {
2356 if (first)
2357 pool->watchdog_ts = jiffies;
2358 move_linked_works(work, scheduled, &n);
2360 first = false;
2363 if (!list_empty(scheduled)) {
2364 process_scheduled_works(rescuer);
2367 * The above execution of rescued work items could
2368 * have created more to rescue through
2369 * pwq_activate_first_delayed() or chained
2370 * queueing. Let's put @pwq back on mayday list so
2371 * that such back-to-back work items, which may be
2372 * being used to relieve memory pressure, don't
2373 * incur MAYDAY_INTERVAL delay inbetween.
2375 if (need_to_create_worker(pool)) {
2376 spin_lock(&wq_mayday_lock);
2377 get_pwq(pwq);
2378 list_move_tail(&pwq->mayday_node, &wq->maydays);
2379 spin_unlock(&wq_mayday_lock);
2384 * Put the reference grabbed by send_mayday(). @pool won't
2385 * go away while we're still attached to it.
2387 put_pwq(pwq);
2390 * Leave this pool. If need_more_worker() is %true, notify a
2391 * regular worker; otherwise, we end up with 0 concurrency
2392 * and stalling the execution.
2394 if (need_more_worker(pool))
2395 wake_up_worker(pool);
2397 rescuer->pool = NULL;
2398 spin_unlock_irq(&pool->lock);
2400 worker_detach_from_pool(rescuer, pool);
2402 spin_lock_irq(&wq_mayday_lock);
2405 spin_unlock_irq(&wq_mayday_lock);
2407 if (should_stop) {
2408 __set_current_state(TASK_RUNNING);
2409 rescuer->task->flags &= ~PF_WQ_WORKER;
2410 return 0;
2413 /* rescuers should never participate in concurrency management */
2414 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2415 schedule();
2416 goto repeat;
2420 * check_flush_dependency - check for flush dependency sanity
2421 * @target_wq: workqueue being flushed
2422 * @target_work: work item being flushed (NULL for workqueue flushes)
2424 * %current is trying to flush the whole @target_wq or @target_work on it.
2425 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2426 * reclaiming memory or running on a workqueue which doesn't have
2427 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2428 * a deadlock.
2430 static void check_flush_dependency(struct workqueue_struct *target_wq,
2431 struct work_struct *target_work)
2433 work_func_t target_func = target_work ? target_work->func : NULL;
2434 struct worker *worker;
2436 if (target_wq->flags & WQ_MEM_RECLAIM)
2437 return;
2439 worker = current_wq_worker();
2441 WARN_ONCE(current->flags & PF_MEMALLOC,
2442 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2443 current->pid, current->comm, target_wq->name, target_func);
2444 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2445 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2446 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2447 worker->current_pwq->wq->name, worker->current_func,
2448 target_wq->name, target_func);
2451 struct wq_barrier {
2452 struct work_struct work;
2453 struct completion done;
2454 struct task_struct *task; /* purely informational */
2457 static void wq_barrier_func(struct work_struct *work)
2459 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460 complete(&barr->done);
2464 * insert_wq_barrier - insert a barrier work
2465 * @pwq: pwq to insert barrier into
2466 * @barr: wq_barrier to insert
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution. Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2475 * Currently, a queued barrier can't be canceled. This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2481 * Note that when @worker is non-NULL, @target may be modified
2482 * underneath us, so we can't reliably determine pwq from @target.
2484 * CONTEXT:
2485 * spin_lock_irq(pool->lock).
2487 static void insert_wq_barrier(struct pool_workqueue *pwq,
2488 struct wq_barrier *barr,
2489 struct work_struct *target, struct worker *worker)
2491 struct list_head *head;
2492 unsigned int linked = 0;
2495 * debugobject calls are safe here even with pool->lock locked
2496 * as we know for sure that this will not trigger any of the
2497 * checks and call back into the fixup functions where we
2498 * might deadlock.
2500 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2501 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2502 init_completion(&barr->done);
2503 barr->task = current;
2506 * If @target is currently being executed, schedule the
2507 * barrier to the worker; otherwise, put it after @target.
2509 if (worker)
2510 head = worker->scheduled.next;
2511 else {
2512 unsigned long *bits = work_data_bits(target);
2514 head = target->entry.next;
2515 /* there can already be other linked works, inherit and set */
2516 linked = *bits & WORK_STRUCT_LINKED;
2517 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2520 debug_work_activate(&barr->work);
2521 insert_work(pwq, &barr->work, head,
2522 work_color_to_flags(WORK_NO_COLOR) | linked);
2526 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2527 * @wq: workqueue being flushed
2528 * @flush_color: new flush color, < 0 for no-op
2529 * @work_color: new work color, < 0 for no-op
2531 * Prepare pwqs for workqueue flushing.
2533 * If @flush_color is non-negative, flush_color on all pwqs should be
2534 * -1. If no pwq has in-flight commands at the specified color, all
2535 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2536 * has in flight commands, its pwq->flush_color is set to
2537 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2538 * wakeup logic is armed and %true is returned.
2540 * The caller should have initialized @wq->first_flusher prior to
2541 * calling this function with non-negative @flush_color. If
2542 * @flush_color is negative, no flush color update is done and %false
2543 * is returned.
2545 * If @work_color is non-negative, all pwqs should have the same
2546 * work_color which is previous to @work_color and all will be
2547 * advanced to @work_color.
2549 * CONTEXT:
2550 * mutex_lock(wq->mutex).
2552 * Return:
2553 * %true if @flush_color >= 0 and there's something to flush. %false
2554 * otherwise.
2556 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2557 int flush_color, int work_color)
2559 bool wait = false;
2560 struct pool_workqueue *pwq;
2562 if (flush_color >= 0) {
2563 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2564 atomic_set(&wq->nr_pwqs_to_flush, 1);
2567 for_each_pwq(pwq, wq) {
2568 struct worker_pool *pool = pwq->pool;
2570 spin_lock_irq(&pool->lock);
2572 if (flush_color >= 0) {
2573 WARN_ON_ONCE(pwq->flush_color != -1);
2575 if (pwq->nr_in_flight[flush_color]) {
2576 pwq->flush_color = flush_color;
2577 atomic_inc(&wq->nr_pwqs_to_flush);
2578 wait = true;
2582 if (work_color >= 0) {
2583 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2584 pwq->work_color = work_color;
2587 spin_unlock_irq(&pool->lock);
2590 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2591 complete(&wq->first_flusher->done);
2593 return wait;
2597 * flush_workqueue - ensure that any scheduled work has run to completion.
2598 * @wq: workqueue to flush
2600 * This function sleeps until all work items which were queued on entry
2601 * have finished execution, but it is not livelocked by new incoming ones.
2603 void flush_workqueue(struct workqueue_struct *wq)
2605 struct wq_flusher this_flusher = {
2606 .list = LIST_HEAD_INIT(this_flusher.list),
2607 .flush_color = -1,
2608 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2610 int next_color;
2612 lock_map_acquire(&wq->lockdep_map);
2613 lock_map_release(&wq->lockdep_map);
2615 mutex_lock(&wq->mutex);
2618 * Start-to-wait phase
2620 next_color = work_next_color(wq->work_color);
2622 if (next_color != wq->flush_color) {
2624 * Color space is not full. The current work_color
2625 * becomes our flush_color and work_color is advanced
2626 * by one.
2628 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2629 this_flusher.flush_color = wq->work_color;
2630 wq->work_color = next_color;
2632 if (!wq->first_flusher) {
2633 /* no flush in progress, become the first flusher */
2634 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2636 wq->first_flusher = &this_flusher;
2638 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2639 wq->work_color)) {
2640 /* nothing to flush, done */
2641 wq->flush_color = next_color;
2642 wq->first_flusher = NULL;
2643 goto out_unlock;
2645 } else {
2646 /* wait in queue */
2647 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2648 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2649 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2651 } else {
2653 * Oops, color space is full, wait on overflow queue.
2654 * The next flush completion will assign us
2655 * flush_color and transfer to flusher_queue.
2657 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2660 check_flush_dependency(wq, NULL);
2662 mutex_unlock(&wq->mutex);
2664 wait_for_completion(&this_flusher.done);
2667 * Wake-up-and-cascade phase
2669 * First flushers are responsible for cascading flushes and
2670 * handling overflow. Non-first flushers can simply return.
2672 if (wq->first_flusher != &this_flusher)
2673 return;
2675 mutex_lock(&wq->mutex);
2677 /* we might have raced, check again with mutex held */
2678 if (wq->first_flusher != &this_flusher)
2679 goto out_unlock;
2681 wq->first_flusher = NULL;
2683 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2684 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2686 while (true) {
2687 struct wq_flusher *next, *tmp;
2689 /* complete all the flushers sharing the current flush color */
2690 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2691 if (next->flush_color != wq->flush_color)
2692 break;
2693 list_del_init(&next->list);
2694 complete(&next->done);
2697 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2698 wq->flush_color != work_next_color(wq->work_color));
2700 /* this flush_color is finished, advance by one */
2701 wq->flush_color = work_next_color(wq->flush_color);
2703 /* one color has been freed, handle overflow queue */
2704 if (!list_empty(&wq->flusher_overflow)) {
2706 * Assign the same color to all overflowed
2707 * flushers, advance work_color and append to
2708 * flusher_queue. This is the start-to-wait
2709 * phase for these overflowed flushers.
2711 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2712 tmp->flush_color = wq->work_color;
2714 wq->work_color = work_next_color(wq->work_color);
2716 list_splice_tail_init(&wq->flusher_overflow,
2717 &wq->flusher_queue);
2718 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2721 if (list_empty(&wq->flusher_queue)) {
2722 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2723 break;
2727 * Need to flush more colors. Make the next flusher
2728 * the new first flusher and arm pwqs.
2730 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2731 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2733 list_del_init(&next->list);
2734 wq->first_flusher = next;
2736 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2737 break;
2740 * Meh... this color is already done, clear first
2741 * flusher and repeat cascading.
2743 wq->first_flusher = NULL;
2746 out_unlock:
2747 mutex_unlock(&wq->mutex);
2749 EXPORT_SYMBOL(flush_workqueue);
2752 * drain_workqueue - drain a workqueue
2753 * @wq: workqueue to drain
2755 * Wait until the workqueue becomes empty. While draining is in progress,
2756 * only chain queueing is allowed. IOW, only currently pending or running
2757 * work items on @wq can queue further work items on it. @wq is flushed
2758 * repeatedly until it becomes empty. The number of flushing is determined
2759 * by the depth of chaining and should be relatively short. Whine if it
2760 * takes too long.
2762 void drain_workqueue(struct workqueue_struct *wq)
2764 unsigned int flush_cnt = 0;
2765 struct pool_workqueue *pwq;
2768 * __queue_work() needs to test whether there are drainers, is much
2769 * hotter than drain_workqueue() and already looks at @wq->flags.
2770 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2772 mutex_lock(&wq->mutex);
2773 if (!wq->nr_drainers++)
2774 wq->flags |= __WQ_DRAINING;
2775 mutex_unlock(&wq->mutex);
2776 reflush:
2777 flush_workqueue(wq);
2779 mutex_lock(&wq->mutex);
2781 for_each_pwq(pwq, wq) {
2782 bool drained;
2784 spin_lock_irq(&pwq->pool->lock);
2785 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2786 spin_unlock_irq(&pwq->pool->lock);
2788 if (drained)
2789 continue;
2791 if (++flush_cnt == 10 ||
2792 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2793 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2794 wq->name, flush_cnt);
2796 mutex_unlock(&wq->mutex);
2797 goto reflush;
2800 if (!--wq->nr_drainers)
2801 wq->flags &= ~__WQ_DRAINING;
2802 mutex_unlock(&wq->mutex);
2804 EXPORT_SYMBOL_GPL(drain_workqueue);
2806 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2808 struct worker *worker = NULL;
2809 struct worker_pool *pool;
2810 struct pool_workqueue *pwq;
2812 might_sleep();
2814 local_irq_disable();
2815 pool = get_work_pool(work);
2816 if (!pool) {
2817 local_irq_enable();
2818 return false;
2821 spin_lock(&pool->lock);
2822 /* see the comment in try_to_grab_pending() with the same code */
2823 pwq = get_work_pwq(work);
2824 if (pwq) {
2825 if (unlikely(pwq->pool != pool))
2826 goto already_gone;
2827 } else {
2828 worker = find_worker_executing_work(pool, work);
2829 if (!worker)
2830 goto already_gone;
2831 pwq = worker->current_pwq;
2834 check_flush_dependency(pwq->wq, work);
2836 insert_wq_barrier(pwq, barr, work, worker);
2837 spin_unlock_irq(&pool->lock);
2840 * If @max_active is 1 or rescuer is in use, flushing another work
2841 * item on the same workqueue may lead to deadlock. Make sure the
2842 * flusher is not running on the same workqueue by verifying write
2843 * access.
2845 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2846 lock_map_acquire(&pwq->wq->lockdep_map);
2847 else
2848 lock_map_acquire_read(&pwq->wq->lockdep_map);
2849 lock_map_release(&pwq->wq->lockdep_map);
2851 return true;
2852 already_gone:
2853 spin_unlock_irq(&pool->lock);
2854 return false;
2858 * flush_work - wait for a work to finish executing the last queueing instance
2859 * @work: the work to flush
2861 * Wait until @work has finished execution. @work is guaranteed to be idle
2862 * on return if it hasn't been requeued since flush started.
2864 * Return:
2865 * %true if flush_work() waited for the work to finish execution,
2866 * %false if it was already idle.
2868 bool flush_work(struct work_struct *work)
2870 struct wq_barrier barr;
2872 lock_map_acquire(&work->lockdep_map);
2873 lock_map_release(&work->lockdep_map);
2875 if (start_flush_work(work, &barr)) {
2876 wait_for_completion(&barr.done);
2877 destroy_work_on_stack(&barr.work);
2878 return true;
2879 } else {
2880 return false;
2883 EXPORT_SYMBOL_GPL(flush_work);
2885 struct cwt_wait {
2886 wait_queue_t wait;
2887 struct work_struct *work;
2890 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2892 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2894 if (cwait->work != key)
2895 return 0;
2896 return autoremove_wake_function(wait, mode, sync, key);
2899 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2901 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2902 unsigned long flags;
2903 int ret;
2905 do {
2906 ret = try_to_grab_pending(work, is_dwork, &flags);
2908 * If someone else is already canceling, wait for it to
2909 * finish. flush_work() doesn't work for PREEMPT_NONE
2910 * because we may get scheduled between @work's completion
2911 * and the other canceling task resuming and clearing
2912 * CANCELING - flush_work() will return false immediately
2913 * as @work is no longer busy, try_to_grab_pending() will
2914 * return -ENOENT as @work is still being canceled and the
2915 * other canceling task won't be able to clear CANCELING as
2916 * we're hogging the CPU.
2918 * Let's wait for completion using a waitqueue. As this
2919 * may lead to the thundering herd problem, use a custom
2920 * wake function which matches @work along with exclusive
2921 * wait and wakeup.
2923 if (unlikely(ret == -ENOENT)) {
2924 struct cwt_wait cwait;
2926 init_wait(&cwait.wait);
2927 cwait.wait.func = cwt_wakefn;
2928 cwait.work = work;
2930 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2931 TASK_UNINTERRUPTIBLE);
2932 if (work_is_canceling(work))
2933 schedule();
2934 finish_wait(&cancel_waitq, &cwait.wait);
2936 } while (unlikely(ret < 0));
2938 /* tell other tasks trying to grab @work to back off */
2939 mark_work_canceling(work);
2940 local_irq_restore(flags);
2942 flush_work(work);
2943 clear_work_data(work);
2946 * Paired with prepare_to_wait() above so that either
2947 * waitqueue_active() is visible here or !work_is_canceling() is
2948 * visible there.
2950 smp_mb();
2951 if (waitqueue_active(&cancel_waitq))
2952 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2954 return ret;
2958 * cancel_work_sync - cancel a work and wait for it to finish
2959 * @work: the work to cancel
2961 * Cancel @work and wait for its execution to finish. This function
2962 * can be used even if the work re-queues itself or migrates to
2963 * another workqueue. On return from this function, @work is
2964 * guaranteed to be not pending or executing on any CPU.
2966 * cancel_work_sync(&delayed_work->work) must not be used for
2967 * delayed_work's. Use cancel_delayed_work_sync() instead.
2969 * The caller must ensure that the workqueue on which @work was last
2970 * queued can't be destroyed before this function returns.
2972 * Return:
2973 * %true if @work was pending, %false otherwise.
2975 bool cancel_work_sync(struct work_struct *work)
2977 return __cancel_work_timer(work, false);
2979 EXPORT_SYMBOL_GPL(cancel_work_sync);
2982 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2983 * @dwork: the delayed work to flush
2985 * Delayed timer is cancelled and the pending work is queued for
2986 * immediate execution. Like flush_work(), this function only
2987 * considers the last queueing instance of @dwork.
2989 * Return:
2990 * %true if flush_work() waited for the work to finish execution,
2991 * %false if it was already idle.
2993 bool flush_delayed_work(struct delayed_work *dwork)
2995 local_irq_disable();
2996 if (del_timer_sync(&dwork->timer))
2997 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2998 local_irq_enable();
2999 return flush_work(&dwork->work);
3001 EXPORT_SYMBOL(flush_delayed_work);
3004 * cancel_delayed_work - cancel a delayed work
3005 * @dwork: delayed_work to cancel
3007 * Kill off a pending delayed_work.
3009 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3010 * pending.
3012 * Note:
3013 * The work callback function may still be running on return, unless
3014 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3015 * use cancel_delayed_work_sync() to wait on it.
3017 * This function is safe to call from any context including IRQ handler.
3019 bool cancel_delayed_work(struct delayed_work *dwork)
3021 unsigned long flags;
3022 int ret;
3024 do {
3025 ret = try_to_grab_pending(&dwork->work, true, &flags);
3026 } while (unlikely(ret == -EAGAIN));
3028 if (unlikely(ret < 0))
3029 return false;
3031 set_work_pool_and_clear_pending(&dwork->work,
3032 get_work_pool_id(&dwork->work));
3033 local_irq_restore(flags);
3034 return ret;
3036 EXPORT_SYMBOL(cancel_delayed_work);
3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040 * @dwork: the delayed work cancel
3042 * This is cancel_work_sync() for delayed works.
3044 * Return:
3045 * %true if @dwork was pending, %false otherwise.
3047 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3049 return __cancel_work_timer(&dwork->work, true);
3051 EXPORT_SYMBOL(cancel_delayed_work_sync);
3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055 * @func: the function to call
3057 * schedule_on_each_cpu() executes @func on each online CPU using the
3058 * system workqueue and blocks until all CPUs have completed.
3059 * schedule_on_each_cpu() is very slow.
3061 * Return:
3062 * 0 on success, -errno on failure.
3064 int schedule_on_each_cpu(work_func_t func)
3066 int cpu;
3067 struct work_struct __percpu *works;
3069 works = alloc_percpu(struct work_struct);
3070 if (!works)
3071 return -ENOMEM;
3073 get_online_cpus();
3075 for_each_online_cpu(cpu) {
3076 struct work_struct *work = per_cpu_ptr(works, cpu);
3078 INIT_WORK(work, func);
3079 schedule_work_on(cpu, work);
3082 for_each_online_cpu(cpu)
3083 flush_work(per_cpu_ptr(works, cpu));
3085 put_online_cpus();
3086 free_percpu(works);
3087 return 0;
3091 * execute_in_process_context - reliably execute the routine with user context
3092 * @fn: the function to execute
3093 * @ew: guaranteed storage for the execute work structure (must
3094 * be available when the work executes)
3096 * Executes the function immediately if process context is available,
3097 * otherwise schedules the function for delayed execution.
3099 * Return: 0 - function was executed
3100 * 1 - function was scheduled for execution
3102 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3104 if (!in_interrupt()) {
3105 fn(&ew->work);
3106 return 0;
3109 INIT_WORK(&ew->work, fn);
3110 schedule_work(&ew->work);
3112 return 1;
3114 EXPORT_SYMBOL_GPL(execute_in_process_context);
3117 * free_workqueue_attrs - free a workqueue_attrs
3118 * @attrs: workqueue_attrs to free
3120 * Undo alloc_workqueue_attrs().
3122 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3124 if (attrs) {
3125 free_cpumask_var(attrs->cpumask);
3126 kfree(attrs);
3131 * alloc_workqueue_attrs - allocate a workqueue_attrs
3132 * @gfp_mask: allocation mask to use
3134 * Allocate a new workqueue_attrs, initialize with default settings and
3135 * return it.
3137 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3139 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3141 struct workqueue_attrs *attrs;
3143 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144 if (!attrs)
3145 goto fail;
3146 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147 goto fail;
3149 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150 return attrs;
3151 fail:
3152 free_workqueue_attrs(attrs);
3153 return NULL;
3156 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157 const struct workqueue_attrs *from)
3159 to->nice = from->nice;
3160 cpumask_copy(to->cpumask, from->cpumask);
3162 * Unlike hash and equality test, this function doesn't ignore
3163 * ->no_numa as it is used for both pool and wq attrs. Instead,
3164 * get_unbound_pool() explicitly clears ->no_numa after copying.
3166 to->no_numa = from->no_numa;
3169 /* hash value of the content of @attr */
3170 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3172 u32 hash = 0;
3174 hash = jhash_1word(attrs->nice, hash);
3175 hash = jhash(cpumask_bits(attrs->cpumask),
3176 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177 return hash;
3180 /* content equality test */
3181 static bool wqattrs_equal(const struct workqueue_attrs *a,
3182 const struct workqueue_attrs *b)
3184 if (a->nice != b->nice)
3185 return false;
3186 if (!cpumask_equal(a->cpumask, b->cpumask))
3187 return false;
3188 return true;
3192 * init_worker_pool - initialize a newly zalloc'd worker_pool
3193 * @pool: worker_pool to initialize
3195 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3197 * Return: 0 on success, -errno on failure. Even on failure, all fields
3198 * inside @pool proper are initialized and put_unbound_pool() can be called
3199 * on @pool safely to release it.
3201 static int init_worker_pool(struct worker_pool *pool)
3203 spin_lock_init(&pool->lock);
3204 pool->id = -1;
3205 pool->cpu = -1;
3206 pool->node = NUMA_NO_NODE;
3207 pool->flags |= POOL_DISASSOCIATED;
3208 pool->watchdog_ts = jiffies;
3209 INIT_LIST_HEAD(&pool->worklist);
3210 INIT_LIST_HEAD(&pool->idle_list);
3211 hash_init(pool->busy_hash);
3213 init_timer_deferrable(&pool->idle_timer);
3214 pool->idle_timer.function = idle_worker_timeout;
3215 pool->idle_timer.data = (unsigned long)pool;
3217 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218 (unsigned long)pool);
3220 mutex_init(&pool->manager_arb);
3221 mutex_init(&pool->attach_mutex);
3222 INIT_LIST_HEAD(&pool->workers);
3224 ida_init(&pool->worker_ida);
3225 INIT_HLIST_NODE(&pool->hash_node);
3226 pool->refcnt = 1;
3228 /* shouldn't fail above this point */
3229 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230 if (!pool->attrs)
3231 return -ENOMEM;
3232 return 0;
3235 static void rcu_free_wq(struct rcu_head *rcu)
3237 struct workqueue_struct *wq =
3238 container_of(rcu, struct workqueue_struct, rcu);
3240 if (!(wq->flags & WQ_UNBOUND))
3241 free_percpu(wq->cpu_pwqs);
3242 else
3243 free_workqueue_attrs(wq->unbound_attrs);
3245 kfree(wq->rescuer);
3246 kfree(wq);
3249 static void rcu_free_pool(struct rcu_head *rcu)
3251 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3253 ida_destroy(&pool->worker_ida);
3254 free_workqueue_attrs(pool->attrs);
3255 kfree(pool);
3259 * put_unbound_pool - put a worker_pool
3260 * @pool: worker_pool to put
3262 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3263 * safe manner. get_unbound_pool() calls this function on its failure path
3264 * and this function should be able to release pools which went through,
3265 * successfully or not, init_worker_pool().
3267 * Should be called with wq_pool_mutex held.
3269 static void put_unbound_pool(struct worker_pool *pool)
3271 DECLARE_COMPLETION_ONSTACK(detach_completion);
3272 struct worker *worker;
3274 lockdep_assert_held(&wq_pool_mutex);
3276 if (--pool->refcnt)
3277 return;
3279 /* sanity checks */
3280 if (WARN_ON(!(pool->cpu < 0)) ||
3281 WARN_ON(!list_empty(&pool->worklist)))
3282 return;
3284 /* release id and unhash */
3285 if (pool->id >= 0)
3286 idr_remove(&worker_pool_idr, pool->id);
3287 hash_del(&pool->hash_node);
3290 * Become the manager and destroy all workers. Grabbing
3291 * manager_arb prevents @pool's workers from blocking on
3292 * attach_mutex.
3294 mutex_lock(&pool->manager_arb);
3296 spin_lock_irq(&pool->lock);
3297 while ((worker = first_idle_worker(pool)))
3298 destroy_worker(worker);
3299 WARN_ON(pool->nr_workers || pool->nr_idle);
3300 spin_unlock_irq(&pool->lock);
3302 mutex_lock(&pool->attach_mutex);
3303 if (!list_empty(&pool->workers))
3304 pool->detach_completion = &detach_completion;
3305 mutex_unlock(&pool->attach_mutex);
3307 if (pool->detach_completion)
3308 wait_for_completion(pool->detach_completion);
3310 mutex_unlock(&pool->manager_arb);
3312 /* shut down the timers */
3313 del_timer_sync(&pool->idle_timer);
3314 del_timer_sync(&pool->mayday_timer);
3316 /* sched-RCU protected to allow dereferences from get_work_pool() */
3317 call_rcu_sched(&pool->rcu, rcu_free_pool);
3321 * get_unbound_pool - get a worker_pool with the specified attributes
3322 * @attrs: the attributes of the worker_pool to get
3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325 * reference count and return it. If there already is a matching
3326 * worker_pool, it will be used; otherwise, this function attempts to
3327 * create a new one.
3329 * Should be called with wq_pool_mutex held.
3331 * Return: On success, a worker_pool with the same attributes as @attrs.
3332 * On failure, %NULL.
3334 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3336 u32 hash = wqattrs_hash(attrs);
3337 struct worker_pool *pool;
3338 int node;
3339 int target_node = NUMA_NO_NODE;
3341 lockdep_assert_held(&wq_pool_mutex);
3343 /* do we already have a matching pool? */
3344 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345 if (wqattrs_equal(pool->attrs, attrs)) {
3346 pool->refcnt++;
3347 return pool;
3351 /* if cpumask is contained inside a NUMA node, we belong to that node */
3352 if (wq_numa_enabled) {
3353 for_each_node(node) {
3354 if (cpumask_subset(attrs->cpumask,
3355 wq_numa_possible_cpumask[node])) {
3356 target_node = node;
3357 break;
3362 /* nope, create a new one */
3363 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364 if (!pool || init_worker_pool(pool) < 0)
3365 goto fail;
3367 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3368 copy_workqueue_attrs(pool->attrs, attrs);
3369 pool->node = target_node;
3372 * no_numa isn't a worker_pool attribute, always clear it. See
3373 * 'struct workqueue_attrs' comments for detail.
3375 pool->attrs->no_numa = false;
3377 if (worker_pool_assign_id(pool) < 0)
3378 goto fail;
3380 /* create and start the initial worker */
3381 if (!create_worker(pool))
3382 goto fail;
3384 /* install */
3385 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3387 return pool;
3388 fail:
3389 if (pool)
3390 put_unbound_pool(pool);
3391 return NULL;
3394 static void rcu_free_pwq(struct rcu_head *rcu)
3396 kmem_cache_free(pwq_cache,
3397 container_of(rcu, struct pool_workqueue, rcu));
3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402 * and needs to be destroyed.
3404 static void pwq_unbound_release_workfn(struct work_struct *work)
3406 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407 unbound_release_work);
3408 struct workqueue_struct *wq = pwq->wq;
3409 struct worker_pool *pool = pwq->pool;
3410 bool is_last;
3412 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413 return;
3415 mutex_lock(&wq->mutex);
3416 list_del_rcu(&pwq->pwqs_node);
3417 is_last = list_empty(&wq->pwqs);
3418 mutex_unlock(&wq->mutex);
3420 mutex_lock(&wq_pool_mutex);
3421 put_unbound_pool(pool);
3422 mutex_unlock(&wq_pool_mutex);
3424 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3427 * If we're the last pwq going away, @wq is already dead and no one
3428 * is gonna access it anymore. Schedule RCU free.
3430 if (is_last)
3431 call_rcu_sched(&wq->rcu, rcu_free_wq);
3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436 * @pwq: target pool_workqueue
3438 * If @pwq isn't freezing, set @pwq->max_active to the associated
3439 * workqueue's saved_max_active and activate delayed work items
3440 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3442 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3444 struct workqueue_struct *wq = pwq->wq;
3445 bool freezable = wq->flags & WQ_FREEZABLE;
3447 /* for @wq->saved_max_active */
3448 lockdep_assert_held(&wq->mutex);
3450 /* fast exit for non-freezable wqs */
3451 if (!freezable && pwq->max_active == wq->saved_max_active)
3452 return;
3454 spin_lock_irq(&pwq->pool->lock);
3457 * During [un]freezing, the caller is responsible for ensuring that
3458 * this function is called at least once after @workqueue_freezing
3459 * is updated and visible.
3461 if (!freezable || !workqueue_freezing) {
3462 pwq->max_active = wq->saved_max_active;
3464 while (!list_empty(&pwq->delayed_works) &&
3465 pwq->nr_active < pwq->max_active)
3466 pwq_activate_first_delayed(pwq);
3469 * Need to kick a worker after thawed or an unbound wq's
3470 * max_active is bumped. It's a slow path. Do it always.
3472 wake_up_worker(pwq->pool);
3473 } else {
3474 pwq->max_active = 0;
3477 spin_unlock_irq(&pwq->pool->lock);
3480 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3481 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3482 struct worker_pool *pool)
3484 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3486 memset(pwq, 0, sizeof(*pwq));
3488 pwq->pool = pool;
3489 pwq->wq = wq;
3490 pwq->flush_color = -1;
3491 pwq->refcnt = 1;
3492 INIT_LIST_HEAD(&pwq->delayed_works);
3493 INIT_LIST_HEAD(&pwq->pwqs_node);
3494 INIT_LIST_HEAD(&pwq->mayday_node);
3495 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3498 /* sync @pwq with the current state of its associated wq and link it */
3499 static void link_pwq(struct pool_workqueue *pwq)
3501 struct workqueue_struct *wq = pwq->wq;
3503 lockdep_assert_held(&wq->mutex);
3505 /* may be called multiple times, ignore if already linked */
3506 if (!list_empty(&pwq->pwqs_node))
3507 return;
3509 /* set the matching work_color */
3510 pwq->work_color = wq->work_color;
3512 /* sync max_active to the current setting */
3513 pwq_adjust_max_active(pwq);
3515 /* link in @pwq */
3516 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3519 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3520 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3521 const struct workqueue_attrs *attrs)
3523 struct worker_pool *pool;
3524 struct pool_workqueue *pwq;
3526 lockdep_assert_held(&wq_pool_mutex);
3528 pool = get_unbound_pool(attrs);
3529 if (!pool)
3530 return NULL;
3532 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3533 if (!pwq) {
3534 put_unbound_pool(pool);
3535 return NULL;
3538 init_pwq(pwq, wq, pool);
3539 return pwq;
3543 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3544 * @attrs: the wq_attrs of the default pwq of the target workqueue
3545 * @node: the target NUMA node
3546 * @cpu_going_down: if >= 0, the CPU to consider as offline
3547 * @cpumask: outarg, the resulting cpumask
3549 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3550 * @cpu_going_down is >= 0, that cpu is considered offline during
3551 * calculation. The result is stored in @cpumask.
3553 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3554 * enabled and @node has online CPUs requested by @attrs, the returned
3555 * cpumask is the intersection of the possible CPUs of @node and
3556 * @attrs->cpumask.
3558 * The caller is responsible for ensuring that the cpumask of @node stays
3559 * stable.
3561 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3562 * %false if equal.
3564 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3565 int cpu_going_down, cpumask_t *cpumask)
3567 if (!wq_numa_enabled || attrs->no_numa)
3568 goto use_dfl;
3570 /* does @node have any online CPUs @attrs wants? */
3571 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3572 if (cpu_going_down >= 0)
3573 cpumask_clear_cpu(cpu_going_down, cpumask);
3575 if (cpumask_empty(cpumask))
3576 goto use_dfl;
3578 /* yeap, return possible CPUs in @node that @attrs wants */
3579 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3580 return !cpumask_equal(cpumask, attrs->cpumask);
3582 use_dfl:
3583 cpumask_copy(cpumask, attrs->cpumask);
3584 return false;
3587 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3588 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3589 int node,
3590 struct pool_workqueue *pwq)
3592 struct pool_workqueue *old_pwq;
3594 lockdep_assert_held(&wq_pool_mutex);
3595 lockdep_assert_held(&wq->mutex);
3597 /* link_pwq() can handle duplicate calls */
3598 link_pwq(pwq);
3600 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3601 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3602 return old_pwq;
3605 /* context to store the prepared attrs & pwqs before applying */
3606 struct apply_wqattrs_ctx {
3607 struct workqueue_struct *wq; /* target workqueue */
3608 struct workqueue_attrs *attrs; /* attrs to apply */
3609 struct list_head list; /* queued for batching commit */
3610 struct pool_workqueue *dfl_pwq;
3611 struct pool_workqueue *pwq_tbl[];
3614 /* free the resources after success or abort */
3615 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3617 if (ctx) {
3618 int node;
3620 for_each_node(node)
3621 put_pwq_unlocked(ctx->pwq_tbl[node]);
3622 put_pwq_unlocked(ctx->dfl_pwq);
3624 free_workqueue_attrs(ctx->attrs);
3626 kfree(ctx);
3630 /* allocate the attrs and pwqs for later installation */
3631 static struct apply_wqattrs_ctx *
3632 apply_wqattrs_prepare(struct workqueue_struct *wq,
3633 const struct workqueue_attrs *attrs)
3635 struct apply_wqattrs_ctx *ctx;
3636 struct workqueue_attrs *new_attrs, *tmp_attrs;
3637 int node;
3639 lockdep_assert_held(&wq_pool_mutex);
3641 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3642 GFP_KERNEL);
3644 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3645 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3646 if (!ctx || !new_attrs || !tmp_attrs)
3647 goto out_free;
3650 * Calculate the attrs of the default pwq.
3651 * If the user configured cpumask doesn't overlap with the
3652 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3654 copy_workqueue_attrs(new_attrs, attrs);
3655 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3656 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3657 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3660 * We may create multiple pwqs with differing cpumasks. Make a
3661 * copy of @new_attrs which will be modified and used to obtain
3662 * pools.
3664 copy_workqueue_attrs(tmp_attrs, new_attrs);
3667 * If something goes wrong during CPU up/down, we'll fall back to
3668 * the default pwq covering whole @attrs->cpumask. Always create
3669 * it even if we don't use it immediately.
3671 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3672 if (!ctx->dfl_pwq)
3673 goto out_free;
3675 for_each_node(node) {
3676 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3677 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3678 if (!ctx->pwq_tbl[node])
3679 goto out_free;
3680 } else {
3681 ctx->dfl_pwq->refcnt++;
3682 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3686 /* save the user configured attrs and sanitize it. */
3687 copy_workqueue_attrs(new_attrs, attrs);
3688 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3689 ctx->attrs = new_attrs;
3691 ctx->wq = wq;
3692 free_workqueue_attrs(tmp_attrs);
3693 return ctx;
3695 out_free:
3696 free_workqueue_attrs(tmp_attrs);
3697 free_workqueue_attrs(new_attrs);
3698 apply_wqattrs_cleanup(ctx);
3699 return NULL;
3702 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3703 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3705 int node;
3707 /* all pwqs have been created successfully, let's install'em */
3708 mutex_lock(&ctx->wq->mutex);
3710 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3712 /* save the previous pwq and install the new one */
3713 for_each_node(node)
3714 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3715 ctx->pwq_tbl[node]);
3717 /* @dfl_pwq might not have been used, ensure it's linked */
3718 link_pwq(ctx->dfl_pwq);
3719 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3721 mutex_unlock(&ctx->wq->mutex);
3724 static void apply_wqattrs_lock(void)
3726 /* CPUs should stay stable across pwq creations and installations */
3727 get_online_cpus();
3728 mutex_lock(&wq_pool_mutex);
3731 static void apply_wqattrs_unlock(void)
3733 mutex_unlock(&wq_pool_mutex);
3734 put_online_cpus();
3737 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3738 const struct workqueue_attrs *attrs)
3740 struct apply_wqattrs_ctx *ctx;
3742 /* only unbound workqueues can change attributes */
3743 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3744 return -EINVAL;
3746 /* creating multiple pwqs breaks ordering guarantee */
3747 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3748 return -EINVAL;
3750 ctx = apply_wqattrs_prepare(wq, attrs);
3751 if (!ctx)
3752 return -ENOMEM;
3754 /* the ctx has been prepared successfully, let's commit it */
3755 apply_wqattrs_commit(ctx);
3756 apply_wqattrs_cleanup(ctx);
3758 return 0;
3762 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3763 * @wq: the target workqueue
3764 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3766 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3767 * machines, this function maps a separate pwq to each NUMA node with
3768 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3769 * NUMA node it was issued on. Older pwqs are released as in-flight work
3770 * items finish. Note that a work item which repeatedly requeues itself
3771 * back-to-back will stay on its current pwq.
3773 * Performs GFP_KERNEL allocations.
3775 * Return: 0 on success and -errno on failure.
3777 int apply_workqueue_attrs(struct workqueue_struct *wq,
3778 const struct workqueue_attrs *attrs)
3780 int ret;
3782 apply_wqattrs_lock();
3783 ret = apply_workqueue_attrs_locked(wq, attrs);
3784 apply_wqattrs_unlock();
3786 return ret;
3790 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3791 * @wq: the target workqueue
3792 * @cpu: the CPU coming up or going down
3793 * @online: whether @cpu is coming up or going down
3795 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3796 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3797 * @wq accordingly.
3799 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3800 * falls back to @wq->dfl_pwq which may not be optimal but is always
3801 * correct.
3803 * Note that when the last allowed CPU of a NUMA node goes offline for a
3804 * workqueue with a cpumask spanning multiple nodes, the workers which were
3805 * already executing the work items for the workqueue will lose their CPU
3806 * affinity and may execute on any CPU. This is similar to how per-cpu
3807 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3808 * affinity, it's the user's responsibility to flush the work item from
3809 * CPU_DOWN_PREPARE.
3811 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3812 bool online)
3814 int node = cpu_to_node(cpu);
3815 int cpu_off = online ? -1 : cpu;
3816 struct pool_workqueue *old_pwq = NULL, *pwq;
3817 struct workqueue_attrs *target_attrs;
3818 cpumask_t *cpumask;
3820 lockdep_assert_held(&wq_pool_mutex);
3822 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3823 wq->unbound_attrs->no_numa)
3824 return;
3827 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3828 * Let's use a preallocated one. The following buf is protected by
3829 * CPU hotplug exclusion.
3831 target_attrs = wq_update_unbound_numa_attrs_buf;
3832 cpumask = target_attrs->cpumask;
3834 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3835 pwq = unbound_pwq_by_node(wq, node);
3838 * Let's determine what needs to be done. If the target cpumask is
3839 * different from the default pwq's, we need to compare it to @pwq's
3840 * and create a new one if they don't match. If the target cpumask
3841 * equals the default pwq's, the default pwq should be used.
3843 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3844 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3845 return;
3846 } else {
3847 goto use_dfl_pwq;
3850 /* create a new pwq */
3851 pwq = alloc_unbound_pwq(wq, target_attrs);
3852 if (!pwq) {
3853 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3854 wq->name);
3855 goto use_dfl_pwq;
3858 /* Install the new pwq. */
3859 mutex_lock(&wq->mutex);
3860 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3861 goto out_unlock;
3863 use_dfl_pwq:
3864 mutex_lock(&wq->mutex);
3865 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3866 get_pwq(wq->dfl_pwq);
3867 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3868 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3869 out_unlock:
3870 mutex_unlock(&wq->mutex);
3871 put_pwq_unlocked(old_pwq);
3874 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3876 bool highpri = wq->flags & WQ_HIGHPRI;
3877 int cpu, ret;
3879 if (!(wq->flags & WQ_UNBOUND)) {
3880 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3881 if (!wq->cpu_pwqs)
3882 return -ENOMEM;
3884 for_each_possible_cpu(cpu) {
3885 struct pool_workqueue *pwq =
3886 per_cpu_ptr(wq->cpu_pwqs, cpu);
3887 struct worker_pool *cpu_pools =
3888 per_cpu(cpu_worker_pools, cpu);
3890 init_pwq(pwq, wq, &cpu_pools[highpri]);
3892 mutex_lock(&wq->mutex);
3893 link_pwq(pwq);
3894 mutex_unlock(&wq->mutex);
3896 return 0;
3897 } else if (wq->flags & __WQ_ORDERED) {
3898 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3899 /* there should only be single pwq for ordering guarantee */
3900 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3901 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3902 "ordering guarantee broken for workqueue %s\n", wq->name);
3903 return ret;
3904 } else {
3905 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3909 static int wq_clamp_max_active(int max_active, unsigned int flags,
3910 const char *name)
3912 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3914 if (max_active < 1 || max_active > lim)
3915 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3916 max_active, name, 1, lim);
3918 return clamp_val(max_active, 1, lim);
3921 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3922 unsigned int flags,
3923 int max_active,
3924 struct lock_class_key *key,
3925 const char *lock_name, ...)
3927 size_t tbl_size = 0;
3928 va_list args;
3929 struct workqueue_struct *wq;
3930 struct pool_workqueue *pwq;
3932 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3933 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3934 flags |= WQ_UNBOUND;
3936 /* allocate wq and format name */
3937 if (flags & WQ_UNBOUND)
3938 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3940 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3941 if (!wq)
3942 return NULL;
3944 if (flags & WQ_UNBOUND) {
3945 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3946 if (!wq->unbound_attrs)
3947 goto err_free_wq;
3950 va_start(args, lock_name);
3951 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3952 va_end(args);
3954 max_active = max_active ?: WQ_DFL_ACTIVE;
3955 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3957 /* init wq */
3958 wq->flags = flags;
3959 wq->saved_max_active = max_active;
3960 mutex_init(&wq->mutex);
3961 atomic_set(&wq->nr_pwqs_to_flush, 0);
3962 INIT_LIST_HEAD(&wq->pwqs);
3963 INIT_LIST_HEAD(&wq->flusher_queue);
3964 INIT_LIST_HEAD(&wq->flusher_overflow);
3965 INIT_LIST_HEAD(&wq->maydays);
3967 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3968 INIT_LIST_HEAD(&wq->list);
3970 if (alloc_and_link_pwqs(wq) < 0)
3971 goto err_free_wq;
3974 * Workqueues which may be used during memory reclaim should
3975 * have a rescuer to guarantee forward progress.
3977 if (flags & WQ_MEM_RECLAIM) {
3978 struct worker *rescuer;
3980 rescuer = alloc_worker(NUMA_NO_NODE);
3981 if (!rescuer)
3982 goto err_destroy;
3984 rescuer->rescue_wq = wq;
3985 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3986 wq->name);
3987 if (IS_ERR(rescuer->task)) {
3988 kfree(rescuer);
3989 goto err_destroy;
3992 wq->rescuer = rescuer;
3993 kthread_bind_mask(rescuer->task, cpu_possible_mask);
3994 wake_up_process(rescuer->task);
3997 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3998 goto err_destroy;
4001 * wq_pool_mutex protects global freeze state and workqueues list.
4002 * Grab it, adjust max_active and add the new @wq to workqueues
4003 * list.
4005 mutex_lock(&wq_pool_mutex);
4007 mutex_lock(&wq->mutex);
4008 for_each_pwq(pwq, wq)
4009 pwq_adjust_max_active(pwq);
4010 mutex_unlock(&wq->mutex);
4012 list_add_tail_rcu(&wq->list, &workqueues);
4014 mutex_unlock(&wq_pool_mutex);
4016 return wq;
4018 err_free_wq:
4019 free_workqueue_attrs(wq->unbound_attrs);
4020 kfree(wq);
4021 return NULL;
4022 err_destroy:
4023 destroy_workqueue(wq);
4024 return NULL;
4026 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4029 * destroy_workqueue - safely terminate a workqueue
4030 * @wq: target workqueue
4032 * Safely destroy a workqueue. All work currently pending will be done first.
4034 void destroy_workqueue(struct workqueue_struct *wq)
4036 struct pool_workqueue *pwq;
4037 int node;
4039 /* drain it before proceeding with destruction */
4040 drain_workqueue(wq);
4042 /* sanity checks */
4043 mutex_lock(&wq->mutex);
4044 for_each_pwq(pwq, wq) {
4045 int i;
4047 for (i = 0; i < WORK_NR_COLORS; i++) {
4048 if (WARN_ON(pwq->nr_in_flight[i])) {
4049 mutex_unlock(&wq->mutex);
4050 return;
4054 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4055 WARN_ON(pwq->nr_active) ||
4056 WARN_ON(!list_empty(&pwq->delayed_works))) {
4057 mutex_unlock(&wq->mutex);
4058 return;
4061 mutex_unlock(&wq->mutex);
4064 * wq list is used to freeze wq, remove from list after
4065 * flushing is complete in case freeze races us.
4067 mutex_lock(&wq_pool_mutex);
4068 list_del_rcu(&wq->list);
4069 mutex_unlock(&wq_pool_mutex);
4071 workqueue_sysfs_unregister(wq);
4073 if (wq->rescuer)
4074 kthread_stop(wq->rescuer->task);
4076 if (!(wq->flags & WQ_UNBOUND)) {
4078 * The base ref is never dropped on per-cpu pwqs. Directly
4079 * schedule RCU free.
4081 call_rcu_sched(&wq->rcu, rcu_free_wq);
4082 } else {
4084 * We're the sole accessor of @wq at this point. Directly
4085 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4086 * @wq will be freed when the last pwq is released.
4088 for_each_node(node) {
4089 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4090 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4091 put_pwq_unlocked(pwq);
4095 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4096 * put. Don't access it afterwards.
4098 pwq = wq->dfl_pwq;
4099 wq->dfl_pwq = NULL;
4100 put_pwq_unlocked(pwq);
4103 EXPORT_SYMBOL_GPL(destroy_workqueue);
4106 * workqueue_set_max_active - adjust max_active of a workqueue
4107 * @wq: target workqueue
4108 * @max_active: new max_active value.
4110 * Set max_active of @wq to @max_active.
4112 * CONTEXT:
4113 * Don't call from IRQ context.
4115 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4117 struct pool_workqueue *pwq;
4119 /* disallow meddling with max_active for ordered workqueues */
4120 if (WARN_ON(wq->flags & __WQ_ORDERED))
4121 return;
4123 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4125 mutex_lock(&wq->mutex);
4127 wq->saved_max_active = max_active;
4129 for_each_pwq(pwq, wq)
4130 pwq_adjust_max_active(pwq);
4132 mutex_unlock(&wq->mutex);
4134 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4137 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4139 * Determine whether %current is a workqueue rescuer. Can be used from
4140 * work functions to determine whether it's being run off the rescuer task.
4142 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4144 bool current_is_workqueue_rescuer(void)
4146 struct worker *worker = current_wq_worker();
4148 return worker && worker->rescue_wq;
4152 * workqueue_congested - test whether a workqueue is congested
4153 * @cpu: CPU in question
4154 * @wq: target workqueue
4156 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4157 * no synchronization around this function and the test result is
4158 * unreliable and only useful as advisory hints or for debugging.
4160 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4161 * Note that both per-cpu and unbound workqueues may be associated with
4162 * multiple pool_workqueues which have separate congested states. A
4163 * workqueue being congested on one CPU doesn't mean the workqueue is also
4164 * contested on other CPUs / NUMA nodes.
4166 * Return:
4167 * %true if congested, %false otherwise.
4169 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4171 struct pool_workqueue *pwq;
4172 bool ret;
4174 rcu_read_lock_sched();
4176 if (cpu == WORK_CPU_UNBOUND)
4177 cpu = smp_processor_id();
4179 if (!(wq->flags & WQ_UNBOUND))
4180 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4181 else
4182 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4184 ret = !list_empty(&pwq->delayed_works);
4185 rcu_read_unlock_sched();
4187 return ret;
4189 EXPORT_SYMBOL_GPL(workqueue_congested);
4192 * work_busy - test whether a work is currently pending or running
4193 * @work: the work to be tested
4195 * Test whether @work is currently pending or running. There is no
4196 * synchronization around this function and the test result is
4197 * unreliable and only useful as advisory hints or for debugging.
4199 * Return:
4200 * OR'd bitmask of WORK_BUSY_* bits.
4202 unsigned int work_busy(struct work_struct *work)
4204 struct worker_pool *pool;
4205 unsigned long flags;
4206 unsigned int ret = 0;
4208 if (work_pending(work))
4209 ret |= WORK_BUSY_PENDING;
4211 local_irq_save(flags);
4212 pool = get_work_pool(work);
4213 if (pool) {
4214 spin_lock(&pool->lock);
4215 if (find_worker_executing_work(pool, work))
4216 ret |= WORK_BUSY_RUNNING;
4217 spin_unlock(&pool->lock);
4219 local_irq_restore(flags);
4221 return ret;
4223 EXPORT_SYMBOL_GPL(work_busy);
4226 * set_worker_desc - set description for the current work item
4227 * @fmt: printf-style format string
4228 * @...: arguments for the format string
4230 * This function can be called by a running work function to describe what
4231 * the work item is about. If the worker task gets dumped, this
4232 * information will be printed out together to help debugging. The
4233 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4235 void set_worker_desc(const char *fmt, ...)
4237 struct worker *worker = current_wq_worker();
4238 va_list args;
4240 if (worker) {
4241 va_start(args, fmt);
4242 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4243 va_end(args);
4244 worker->desc_valid = true;
4249 * print_worker_info - print out worker information and description
4250 * @log_lvl: the log level to use when printing
4251 * @task: target task
4253 * If @task is a worker and currently executing a work item, print out the
4254 * name of the workqueue being serviced and worker description set with
4255 * set_worker_desc() by the currently executing work item.
4257 * This function can be safely called on any task as long as the
4258 * task_struct itself is accessible. While safe, this function isn't
4259 * synchronized and may print out mixups or garbages of limited length.
4261 void print_worker_info(const char *log_lvl, struct task_struct *task)
4263 work_func_t *fn = NULL;
4264 char name[WQ_NAME_LEN] = { };
4265 char desc[WORKER_DESC_LEN] = { };
4266 struct pool_workqueue *pwq = NULL;
4267 struct workqueue_struct *wq = NULL;
4268 bool desc_valid = false;
4269 struct worker *worker;
4271 if (!(task->flags & PF_WQ_WORKER))
4272 return;
4275 * This function is called without any synchronization and @task
4276 * could be in any state. Be careful with dereferences.
4278 worker = probe_kthread_data(task);
4281 * Carefully copy the associated workqueue's workfn and name. Keep
4282 * the original last '\0' in case the original contains garbage.
4284 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4285 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4286 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4287 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4289 /* copy worker description */
4290 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4291 if (desc_valid)
4292 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4294 if (fn || name[0] || desc[0]) {
4295 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4296 if (desc[0])
4297 pr_cont(" (%s)", desc);
4298 pr_cont("\n");
4302 static void pr_cont_pool_info(struct worker_pool *pool)
4304 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4305 if (pool->node != NUMA_NO_NODE)
4306 pr_cont(" node=%d", pool->node);
4307 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4310 static void pr_cont_work(bool comma, struct work_struct *work)
4312 if (work->func == wq_barrier_func) {
4313 struct wq_barrier *barr;
4315 barr = container_of(work, struct wq_barrier, work);
4317 pr_cont("%s BAR(%d)", comma ? "," : "",
4318 task_pid_nr(barr->task));
4319 } else {
4320 pr_cont("%s %pf", comma ? "," : "", work->func);
4324 static void show_pwq(struct pool_workqueue *pwq)
4326 struct worker_pool *pool = pwq->pool;
4327 struct work_struct *work;
4328 struct worker *worker;
4329 bool has_in_flight = false, has_pending = false;
4330 int bkt;
4332 pr_info(" pwq %d:", pool->id);
4333 pr_cont_pool_info(pool);
4335 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4336 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4338 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4339 if (worker->current_pwq == pwq) {
4340 has_in_flight = true;
4341 break;
4344 if (has_in_flight) {
4345 bool comma = false;
4347 pr_info(" in-flight:");
4348 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4349 if (worker->current_pwq != pwq)
4350 continue;
4352 pr_cont("%s %d%s:%pf", comma ? "," : "",
4353 task_pid_nr(worker->task),
4354 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4355 worker->current_func);
4356 list_for_each_entry(work, &worker->scheduled, entry)
4357 pr_cont_work(false, work);
4358 comma = true;
4360 pr_cont("\n");
4363 list_for_each_entry(work, &pool->worklist, entry) {
4364 if (get_work_pwq(work) == pwq) {
4365 has_pending = true;
4366 break;
4369 if (has_pending) {
4370 bool comma = false;
4372 pr_info(" pending:");
4373 list_for_each_entry(work, &pool->worklist, entry) {
4374 if (get_work_pwq(work) != pwq)
4375 continue;
4377 pr_cont_work(comma, work);
4378 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4380 pr_cont("\n");
4383 if (!list_empty(&pwq->delayed_works)) {
4384 bool comma = false;
4386 pr_info(" delayed:");
4387 list_for_each_entry(work, &pwq->delayed_works, entry) {
4388 pr_cont_work(comma, work);
4389 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4391 pr_cont("\n");
4396 * show_workqueue_state - dump workqueue state
4398 * Called from a sysrq handler and prints out all busy workqueues and
4399 * pools.
4401 void show_workqueue_state(void)
4403 struct workqueue_struct *wq;
4404 struct worker_pool *pool;
4405 unsigned long flags;
4406 int pi;
4408 rcu_read_lock_sched();
4410 pr_info("Showing busy workqueues and worker pools:\n");
4412 list_for_each_entry_rcu(wq, &workqueues, list) {
4413 struct pool_workqueue *pwq;
4414 bool idle = true;
4416 for_each_pwq(pwq, wq) {
4417 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4418 idle = false;
4419 break;
4422 if (idle)
4423 continue;
4425 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4427 for_each_pwq(pwq, wq) {
4428 spin_lock_irqsave(&pwq->pool->lock, flags);
4429 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4430 show_pwq(pwq);
4431 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4435 for_each_pool(pool, pi) {
4436 struct worker *worker;
4437 bool first = true;
4439 spin_lock_irqsave(&pool->lock, flags);
4440 if (pool->nr_workers == pool->nr_idle)
4441 goto next_pool;
4443 pr_info("pool %d:", pool->id);
4444 pr_cont_pool_info(pool);
4445 pr_cont(" hung=%us workers=%d",
4446 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4447 pool->nr_workers);
4448 if (pool->manager)
4449 pr_cont(" manager: %d",
4450 task_pid_nr(pool->manager->task));
4451 list_for_each_entry(worker, &pool->idle_list, entry) {
4452 pr_cont(" %s%d", first ? "idle: " : "",
4453 task_pid_nr(worker->task));
4454 first = false;
4456 pr_cont("\n");
4457 next_pool:
4458 spin_unlock_irqrestore(&pool->lock, flags);
4461 rcu_read_unlock_sched();
4465 * CPU hotplug.
4467 * There are two challenges in supporting CPU hotplug. Firstly, there
4468 * are a lot of assumptions on strong associations among work, pwq and
4469 * pool which make migrating pending and scheduled works very
4470 * difficult to implement without impacting hot paths. Secondly,
4471 * worker pools serve mix of short, long and very long running works making
4472 * blocked draining impractical.
4474 * This is solved by allowing the pools to be disassociated from the CPU
4475 * running as an unbound one and allowing it to be reattached later if the
4476 * cpu comes back online.
4479 static void wq_unbind_fn(struct work_struct *work)
4481 int cpu = smp_processor_id();
4482 struct worker_pool *pool;
4483 struct worker *worker;
4485 for_each_cpu_worker_pool(pool, cpu) {
4486 mutex_lock(&pool->attach_mutex);
4487 spin_lock_irq(&pool->lock);
4490 * We've blocked all attach/detach operations. Make all workers
4491 * unbound and set DISASSOCIATED. Before this, all workers
4492 * except for the ones which are still executing works from
4493 * before the last CPU down must be on the cpu. After
4494 * this, they may become diasporas.
4496 for_each_pool_worker(worker, pool)
4497 worker->flags |= WORKER_UNBOUND;
4499 pool->flags |= POOL_DISASSOCIATED;
4501 spin_unlock_irq(&pool->lock);
4502 mutex_unlock(&pool->attach_mutex);
4505 * Call schedule() so that we cross rq->lock and thus can
4506 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4507 * This is necessary as scheduler callbacks may be invoked
4508 * from other cpus.
4510 schedule();
4513 * Sched callbacks are disabled now. Zap nr_running.
4514 * After this, nr_running stays zero and need_more_worker()
4515 * and keep_working() are always true as long as the
4516 * worklist is not empty. This pool now behaves as an
4517 * unbound (in terms of concurrency management) pool which
4518 * are served by workers tied to the pool.
4520 atomic_set(&pool->nr_running, 0);
4523 * With concurrency management just turned off, a busy
4524 * worker blocking could lead to lengthy stalls. Kick off
4525 * unbound chain execution of currently pending work items.
4527 spin_lock_irq(&pool->lock);
4528 wake_up_worker(pool);
4529 spin_unlock_irq(&pool->lock);
4534 * rebind_workers - rebind all workers of a pool to the associated CPU
4535 * @pool: pool of interest
4537 * @pool->cpu is coming online. Rebind all workers to the CPU.
4539 static void rebind_workers(struct worker_pool *pool)
4541 struct worker *worker;
4543 lockdep_assert_held(&pool->attach_mutex);
4546 * Restore CPU affinity of all workers. As all idle workers should
4547 * be on the run-queue of the associated CPU before any local
4548 * wake-ups for concurrency management happen, restore CPU affinity
4549 * of all workers first and then clear UNBOUND. As we're called
4550 * from CPU_ONLINE, the following shouldn't fail.
4552 for_each_pool_worker(worker, pool)
4553 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4554 pool->attrs->cpumask) < 0);
4556 spin_lock_irq(&pool->lock);
4557 pool->flags &= ~POOL_DISASSOCIATED;
4559 for_each_pool_worker(worker, pool) {
4560 unsigned int worker_flags = worker->flags;
4563 * A bound idle worker should actually be on the runqueue
4564 * of the associated CPU for local wake-ups targeting it to
4565 * work. Kick all idle workers so that they migrate to the
4566 * associated CPU. Doing this in the same loop as
4567 * replacing UNBOUND with REBOUND is safe as no worker will
4568 * be bound before @pool->lock is released.
4570 if (worker_flags & WORKER_IDLE)
4571 wake_up_process(worker->task);
4574 * We want to clear UNBOUND but can't directly call
4575 * worker_clr_flags() or adjust nr_running. Atomically
4576 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4577 * @worker will clear REBOUND using worker_clr_flags() when
4578 * it initiates the next execution cycle thus restoring
4579 * concurrency management. Note that when or whether
4580 * @worker clears REBOUND doesn't affect correctness.
4582 * ACCESS_ONCE() is necessary because @worker->flags may be
4583 * tested without holding any lock in
4584 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4585 * fail incorrectly leading to premature concurrency
4586 * management operations.
4588 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4589 worker_flags |= WORKER_REBOUND;
4590 worker_flags &= ~WORKER_UNBOUND;
4591 ACCESS_ONCE(worker->flags) = worker_flags;
4594 spin_unlock_irq(&pool->lock);
4598 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4599 * @pool: unbound pool of interest
4600 * @cpu: the CPU which is coming up
4602 * An unbound pool may end up with a cpumask which doesn't have any online
4603 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4604 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4605 * online CPU before, cpus_allowed of all its workers should be restored.
4607 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4609 static cpumask_t cpumask;
4610 struct worker *worker;
4612 lockdep_assert_held(&pool->attach_mutex);
4614 /* is @cpu allowed for @pool? */
4615 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4616 return;
4618 /* is @cpu the only online CPU? */
4619 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4620 if (cpumask_weight(&cpumask) != 1)
4621 return;
4623 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4624 for_each_pool_worker(worker, pool)
4625 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4626 pool->attrs->cpumask) < 0);
4630 * Workqueues should be brought up before normal priority CPU notifiers.
4631 * This will be registered high priority CPU notifier.
4633 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4634 unsigned long action,
4635 void *hcpu)
4637 int cpu = (unsigned long)hcpu;
4638 struct worker_pool *pool;
4639 struct workqueue_struct *wq;
4640 int pi;
4642 switch (action & ~CPU_TASKS_FROZEN) {
4643 case CPU_UP_PREPARE:
4644 for_each_cpu_worker_pool(pool, cpu) {
4645 if (pool->nr_workers)
4646 continue;
4647 if (!create_worker(pool))
4648 return NOTIFY_BAD;
4650 break;
4652 case CPU_DOWN_FAILED:
4653 case CPU_ONLINE:
4654 mutex_lock(&wq_pool_mutex);
4656 for_each_pool(pool, pi) {
4657 mutex_lock(&pool->attach_mutex);
4659 if (pool->cpu == cpu)
4660 rebind_workers(pool);
4661 else if (pool->cpu < 0)
4662 restore_unbound_workers_cpumask(pool, cpu);
4664 mutex_unlock(&pool->attach_mutex);
4667 /* update NUMA affinity of unbound workqueues */
4668 list_for_each_entry(wq, &workqueues, list)
4669 wq_update_unbound_numa(wq, cpu, true);
4671 mutex_unlock(&wq_pool_mutex);
4672 break;
4674 return NOTIFY_OK;
4678 * Workqueues should be brought down after normal priority CPU notifiers.
4679 * This will be registered as low priority CPU notifier.
4681 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4682 unsigned long action,
4683 void *hcpu)
4685 int cpu = (unsigned long)hcpu;
4686 struct work_struct unbind_work;
4687 struct workqueue_struct *wq;
4689 switch (action & ~CPU_TASKS_FROZEN) {
4690 case CPU_DOWN_PREPARE:
4691 /* unbinding per-cpu workers should happen on the local CPU */
4692 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4693 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4695 /* update NUMA affinity of unbound workqueues */
4696 mutex_lock(&wq_pool_mutex);
4697 list_for_each_entry(wq, &workqueues, list)
4698 wq_update_unbound_numa(wq, cpu, false);
4699 mutex_unlock(&wq_pool_mutex);
4701 /* wait for per-cpu unbinding to finish */
4702 flush_work(&unbind_work);
4703 destroy_work_on_stack(&unbind_work);
4704 break;
4706 return NOTIFY_OK;
4709 #ifdef CONFIG_SMP
4711 struct work_for_cpu {
4712 struct work_struct work;
4713 long (*fn)(void *);
4714 void *arg;
4715 long ret;
4718 static void work_for_cpu_fn(struct work_struct *work)
4720 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4722 wfc->ret = wfc->fn(wfc->arg);
4726 * work_on_cpu - run a function in thread context on a particular cpu
4727 * @cpu: the cpu to run on
4728 * @fn: the function to run
4729 * @arg: the function arg
4731 * It is up to the caller to ensure that the cpu doesn't go offline.
4732 * The caller must not hold any locks which would prevent @fn from completing.
4734 * Return: The value @fn returns.
4736 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4738 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4740 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4741 schedule_work_on(cpu, &wfc.work);
4742 flush_work(&wfc.work);
4743 destroy_work_on_stack(&wfc.work);
4744 return wfc.ret;
4746 EXPORT_SYMBOL_GPL(work_on_cpu);
4747 #endif /* CONFIG_SMP */
4749 #ifdef CONFIG_FREEZER
4752 * freeze_workqueues_begin - begin freezing workqueues
4754 * Start freezing workqueues. After this function returns, all freezable
4755 * workqueues will queue new works to their delayed_works list instead of
4756 * pool->worklist.
4758 * CONTEXT:
4759 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4761 void freeze_workqueues_begin(void)
4763 struct workqueue_struct *wq;
4764 struct pool_workqueue *pwq;
4766 mutex_lock(&wq_pool_mutex);
4768 WARN_ON_ONCE(workqueue_freezing);
4769 workqueue_freezing = true;
4771 list_for_each_entry(wq, &workqueues, list) {
4772 mutex_lock(&wq->mutex);
4773 for_each_pwq(pwq, wq)
4774 pwq_adjust_max_active(pwq);
4775 mutex_unlock(&wq->mutex);
4778 mutex_unlock(&wq_pool_mutex);
4782 * freeze_workqueues_busy - are freezable workqueues still busy?
4784 * Check whether freezing is complete. This function must be called
4785 * between freeze_workqueues_begin() and thaw_workqueues().
4787 * CONTEXT:
4788 * Grabs and releases wq_pool_mutex.
4790 * Return:
4791 * %true if some freezable workqueues are still busy. %false if freezing
4792 * is complete.
4794 bool freeze_workqueues_busy(void)
4796 bool busy = false;
4797 struct workqueue_struct *wq;
4798 struct pool_workqueue *pwq;
4800 mutex_lock(&wq_pool_mutex);
4802 WARN_ON_ONCE(!workqueue_freezing);
4804 list_for_each_entry(wq, &workqueues, list) {
4805 if (!(wq->flags & WQ_FREEZABLE))
4806 continue;
4808 * nr_active is monotonically decreasing. It's safe
4809 * to peek without lock.
4811 rcu_read_lock_sched();
4812 for_each_pwq(pwq, wq) {
4813 WARN_ON_ONCE(pwq->nr_active < 0);
4814 if (pwq->nr_active) {
4815 busy = true;
4816 rcu_read_unlock_sched();
4817 goto out_unlock;
4820 rcu_read_unlock_sched();
4822 out_unlock:
4823 mutex_unlock(&wq_pool_mutex);
4824 return busy;
4828 * thaw_workqueues - thaw workqueues
4830 * Thaw workqueues. Normal queueing is restored and all collected
4831 * frozen works are transferred to their respective pool worklists.
4833 * CONTEXT:
4834 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4836 void thaw_workqueues(void)
4838 struct workqueue_struct *wq;
4839 struct pool_workqueue *pwq;
4841 mutex_lock(&wq_pool_mutex);
4843 if (!workqueue_freezing)
4844 goto out_unlock;
4846 workqueue_freezing = false;
4848 /* restore max_active and repopulate worklist */
4849 list_for_each_entry(wq, &workqueues, list) {
4850 mutex_lock(&wq->mutex);
4851 for_each_pwq(pwq, wq)
4852 pwq_adjust_max_active(pwq);
4853 mutex_unlock(&wq->mutex);
4856 out_unlock:
4857 mutex_unlock(&wq_pool_mutex);
4859 #endif /* CONFIG_FREEZER */
4861 static int workqueue_apply_unbound_cpumask(void)
4863 LIST_HEAD(ctxs);
4864 int ret = 0;
4865 struct workqueue_struct *wq;
4866 struct apply_wqattrs_ctx *ctx, *n;
4868 lockdep_assert_held(&wq_pool_mutex);
4870 list_for_each_entry(wq, &workqueues, list) {
4871 if (!(wq->flags & WQ_UNBOUND))
4872 continue;
4873 /* creating multiple pwqs breaks ordering guarantee */
4874 if (wq->flags & __WQ_ORDERED)
4875 continue;
4877 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4878 if (!ctx) {
4879 ret = -ENOMEM;
4880 break;
4883 list_add_tail(&ctx->list, &ctxs);
4886 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4887 if (!ret)
4888 apply_wqattrs_commit(ctx);
4889 apply_wqattrs_cleanup(ctx);
4892 return ret;
4896 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4897 * @cpumask: the cpumask to set
4899 * The low-level workqueues cpumask is a global cpumask that limits
4900 * the affinity of all unbound workqueues. This function check the @cpumask
4901 * and apply it to all unbound workqueues and updates all pwqs of them.
4903 * Retun: 0 - Success
4904 * -EINVAL - Invalid @cpumask
4905 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4907 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4909 int ret = -EINVAL;
4910 cpumask_var_t saved_cpumask;
4912 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4913 return -ENOMEM;
4915 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4916 if (!cpumask_empty(cpumask)) {
4917 apply_wqattrs_lock();
4919 /* save the old wq_unbound_cpumask. */
4920 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4922 /* update wq_unbound_cpumask at first and apply it to wqs. */
4923 cpumask_copy(wq_unbound_cpumask, cpumask);
4924 ret = workqueue_apply_unbound_cpumask();
4926 /* restore the wq_unbound_cpumask when failed. */
4927 if (ret < 0)
4928 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4930 apply_wqattrs_unlock();
4933 free_cpumask_var(saved_cpumask);
4934 return ret;
4937 #ifdef CONFIG_SYSFS
4939 * Workqueues with WQ_SYSFS flag set is visible to userland via
4940 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4941 * following attributes.
4943 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4944 * max_active RW int : maximum number of in-flight work items
4946 * Unbound workqueues have the following extra attributes.
4948 * id RO int : the associated pool ID
4949 * nice RW int : nice value of the workers
4950 * cpumask RW mask : bitmask of allowed CPUs for the workers
4952 struct wq_device {
4953 struct workqueue_struct *wq;
4954 struct device dev;
4957 static struct workqueue_struct *dev_to_wq(struct device *dev)
4959 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4961 return wq_dev->wq;
4964 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4965 char *buf)
4967 struct workqueue_struct *wq = dev_to_wq(dev);
4969 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4971 static DEVICE_ATTR_RO(per_cpu);
4973 static ssize_t max_active_show(struct device *dev,
4974 struct device_attribute *attr, char *buf)
4976 struct workqueue_struct *wq = dev_to_wq(dev);
4978 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4981 static ssize_t max_active_store(struct device *dev,
4982 struct device_attribute *attr, const char *buf,
4983 size_t count)
4985 struct workqueue_struct *wq = dev_to_wq(dev);
4986 int val;
4988 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4989 return -EINVAL;
4991 workqueue_set_max_active(wq, val);
4992 return count;
4994 static DEVICE_ATTR_RW(max_active);
4996 static struct attribute *wq_sysfs_attrs[] = {
4997 &dev_attr_per_cpu.attr,
4998 &dev_attr_max_active.attr,
4999 NULL,
5001 ATTRIBUTE_GROUPS(wq_sysfs);
5003 static ssize_t wq_pool_ids_show(struct device *dev,
5004 struct device_attribute *attr, char *buf)
5006 struct workqueue_struct *wq = dev_to_wq(dev);
5007 const char *delim = "";
5008 int node, written = 0;
5010 rcu_read_lock_sched();
5011 for_each_node(node) {
5012 written += scnprintf(buf + written, PAGE_SIZE - written,
5013 "%s%d:%d", delim, node,
5014 unbound_pwq_by_node(wq, node)->pool->id);
5015 delim = " ";
5017 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5018 rcu_read_unlock_sched();
5020 return written;
5023 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5024 char *buf)
5026 struct workqueue_struct *wq = dev_to_wq(dev);
5027 int written;
5029 mutex_lock(&wq->mutex);
5030 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5031 mutex_unlock(&wq->mutex);
5033 return written;
5036 /* prepare workqueue_attrs for sysfs store operations */
5037 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5039 struct workqueue_attrs *attrs;
5041 lockdep_assert_held(&wq_pool_mutex);
5043 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5044 if (!attrs)
5045 return NULL;
5047 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5048 return attrs;
5051 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5052 const char *buf, size_t count)
5054 struct workqueue_struct *wq = dev_to_wq(dev);
5055 struct workqueue_attrs *attrs;
5056 int ret = -ENOMEM;
5058 apply_wqattrs_lock();
5060 attrs = wq_sysfs_prep_attrs(wq);
5061 if (!attrs)
5062 goto out_unlock;
5064 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5065 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5066 ret = apply_workqueue_attrs_locked(wq, attrs);
5067 else
5068 ret = -EINVAL;
5070 out_unlock:
5071 apply_wqattrs_unlock();
5072 free_workqueue_attrs(attrs);
5073 return ret ?: count;
5076 static ssize_t wq_cpumask_show(struct device *dev,
5077 struct device_attribute *attr, char *buf)
5079 struct workqueue_struct *wq = dev_to_wq(dev);
5080 int written;
5082 mutex_lock(&wq->mutex);
5083 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5084 cpumask_pr_args(wq->unbound_attrs->cpumask));
5085 mutex_unlock(&wq->mutex);
5086 return written;
5089 static ssize_t wq_cpumask_store(struct device *dev,
5090 struct device_attribute *attr,
5091 const char *buf, size_t count)
5093 struct workqueue_struct *wq = dev_to_wq(dev);
5094 struct workqueue_attrs *attrs;
5095 int ret = -ENOMEM;
5097 apply_wqattrs_lock();
5099 attrs = wq_sysfs_prep_attrs(wq);
5100 if (!attrs)
5101 goto out_unlock;
5103 ret = cpumask_parse(buf, attrs->cpumask);
5104 if (!ret)
5105 ret = apply_workqueue_attrs_locked(wq, attrs);
5107 out_unlock:
5108 apply_wqattrs_unlock();
5109 free_workqueue_attrs(attrs);
5110 return ret ?: count;
5113 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5114 char *buf)
5116 struct workqueue_struct *wq = dev_to_wq(dev);
5117 int written;
5119 mutex_lock(&wq->mutex);
5120 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5121 !wq->unbound_attrs->no_numa);
5122 mutex_unlock(&wq->mutex);
5124 return written;
5127 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5128 const char *buf, size_t count)
5130 struct workqueue_struct *wq = dev_to_wq(dev);
5131 struct workqueue_attrs *attrs;
5132 int v, ret = -ENOMEM;
5134 apply_wqattrs_lock();
5136 attrs = wq_sysfs_prep_attrs(wq);
5137 if (!attrs)
5138 goto out_unlock;
5140 ret = -EINVAL;
5141 if (sscanf(buf, "%d", &v) == 1) {
5142 attrs->no_numa = !v;
5143 ret = apply_workqueue_attrs_locked(wq, attrs);
5146 out_unlock:
5147 apply_wqattrs_unlock();
5148 free_workqueue_attrs(attrs);
5149 return ret ?: count;
5152 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5153 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5154 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5155 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5156 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5157 __ATTR_NULL,
5160 static struct bus_type wq_subsys = {
5161 .name = "workqueue",
5162 .dev_groups = wq_sysfs_groups,
5165 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5166 struct device_attribute *attr, char *buf)
5168 int written;
5170 mutex_lock(&wq_pool_mutex);
5171 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5172 cpumask_pr_args(wq_unbound_cpumask));
5173 mutex_unlock(&wq_pool_mutex);
5175 return written;
5178 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5179 struct device_attribute *attr, const char *buf, size_t count)
5181 cpumask_var_t cpumask;
5182 int ret;
5184 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5185 return -ENOMEM;
5187 ret = cpumask_parse(buf, cpumask);
5188 if (!ret)
5189 ret = workqueue_set_unbound_cpumask(cpumask);
5191 free_cpumask_var(cpumask);
5192 return ret ? ret : count;
5195 static struct device_attribute wq_sysfs_cpumask_attr =
5196 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5197 wq_unbound_cpumask_store);
5199 static int __init wq_sysfs_init(void)
5201 int err;
5203 err = subsys_virtual_register(&wq_subsys, NULL);
5204 if (err)
5205 return err;
5207 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5209 core_initcall(wq_sysfs_init);
5211 static void wq_device_release(struct device *dev)
5213 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5215 kfree(wq_dev);
5219 * workqueue_sysfs_register - make a workqueue visible in sysfs
5220 * @wq: the workqueue to register
5222 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5223 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5224 * which is the preferred method.
5226 * Workqueue user should use this function directly iff it wants to apply
5227 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5228 * apply_workqueue_attrs() may race against userland updating the
5229 * attributes.
5231 * Return: 0 on success, -errno on failure.
5233 int workqueue_sysfs_register(struct workqueue_struct *wq)
5235 struct wq_device *wq_dev;
5236 int ret;
5239 * Adjusting max_active or creating new pwqs by applying
5240 * attributes breaks ordering guarantee. Disallow exposing ordered
5241 * workqueues.
5243 if (WARN_ON(wq->flags & __WQ_ORDERED))
5244 return -EINVAL;
5246 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5247 if (!wq_dev)
5248 return -ENOMEM;
5250 wq_dev->wq = wq;
5251 wq_dev->dev.bus = &wq_subsys;
5252 wq_dev->dev.release = wq_device_release;
5253 dev_set_name(&wq_dev->dev, "%s", wq->name);
5256 * unbound_attrs are created separately. Suppress uevent until
5257 * everything is ready.
5259 dev_set_uevent_suppress(&wq_dev->dev, true);
5261 ret = device_register(&wq_dev->dev);
5262 if (ret) {
5263 kfree(wq_dev);
5264 wq->wq_dev = NULL;
5265 return ret;
5268 if (wq->flags & WQ_UNBOUND) {
5269 struct device_attribute *attr;
5271 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5272 ret = device_create_file(&wq_dev->dev, attr);
5273 if (ret) {
5274 device_unregister(&wq_dev->dev);
5275 wq->wq_dev = NULL;
5276 return ret;
5281 dev_set_uevent_suppress(&wq_dev->dev, false);
5282 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5283 return 0;
5287 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5288 * @wq: the workqueue to unregister
5290 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5292 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5294 struct wq_device *wq_dev = wq->wq_dev;
5296 if (!wq->wq_dev)
5297 return;
5299 wq->wq_dev = NULL;
5300 device_unregister(&wq_dev->dev);
5302 #else /* CONFIG_SYSFS */
5303 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5304 #endif /* CONFIG_SYSFS */
5307 * Workqueue watchdog.
5309 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5310 * flush dependency, a concurrency managed work item which stays RUNNING
5311 * indefinitely. Workqueue stalls can be very difficult to debug as the
5312 * usual warning mechanisms don't trigger and internal workqueue state is
5313 * largely opaque.
5315 * Workqueue watchdog monitors all worker pools periodically and dumps
5316 * state if some pools failed to make forward progress for a while where
5317 * forward progress is defined as the first item on ->worklist changing.
5319 * This mechanism is controlled through the kernel parameter
5320 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5321 * corresponding sysfs parameter file.
5323 #ifdef CONFIG_WQ_WATCHDOG
5325 static void wq_watchdog_timer_fn(unsigned long data);
5327 static unsigned long wq_watchdog_thresh = 30;
5328 static struct timer_list wq_watchdog_timer =
5329 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5331 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5332 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5334 static void wq_watchdog_reset_touched(void)
5336 int cpu;
5338 wq_watchdog_touched = jiffies;
5339 for_each_possible_cpu(cpu)
5340 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5343 static void wq_watchdog_timer_fn(unsigned long data)
5345 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5346 bool lockup_detected = false;
5347 struct worker_pool *pool;
5348 int pi;
5350 if (!thresh)
5351 return;
5353 rcu_read_lock();
5355 for_each_pool(pool, pi) {
5356 unsigned long pool_ts, touched, ts;
5358 if (list_empty(&pool->worklist))
5359 continue;
5361 /* get the latest of pool and touched timestamps */
5362 pool_ts = READ_ONCE(pool->watchdog_ts);
5363 touched = READ_ONCE(wq_watchdog_touched);
5365 if (time_after(pool_ts, touched))
5366 ts = pool_ts;
5367 else
5368 ts = touched;
5370 if (pool->cpu >= 0) {
5371 unsigned long cpu_touched =
5372 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5373 pool->cpu));
5374 if (time_after(cpu_touched, ts))
5375 ts = cpu_touched;
5378 /* did we stall? */
5379 if (time_after(jiffies, ts + thresh)) {
5380 lockup_detected = true;
5381 pr_emerg("BUG: workqueue lockup - pool");
5382 pr_cont_pool_info(pool);
5383 pr_cont(" stuck for %us!\n",
5384 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5388 rcu_read_unlock();
5390 if (lockup_detected)
5391 show_workqueue_state();
5393 wq_watchdog_reset_touched();
5394 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5397 void wq_watchdog_touch(int cpu)
5399 if (cpu >= 0)
5400 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5401 else
5402 wq_watchdog_touched = jiffies;
5405 static void wq_watchdog_set_thresh(unsigned long thresh)
5407 wq_watchdog_thresh = 0;
5408 del_timer_sync(&wq_watchdog_timer);
5410 if (thresh) {
5411 wq_watchdog_thresh = thresh;
5412 wq_watchdog_reset_touched();
5413 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5417 static int wq_watchdog_param_set_thresh(const char *val,
5418 const struct kernel_param *kp)
5420 unsigned long thresh;
5421 int ret;
5423 ret = kstrtoul(val, 0, &thresh);
5424 if (ret)
5425 return ret;
5427 if (system_wq)
5428 wq_watchdog_set_thresh(thresh);
5429 else
5430 wq_watchdog_thresh = thresh;
5432 return 0;
5435 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5436 .set = wq_watchdog_param_set_thresh,
5437 .get = param_get_ulong,
5440 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5441 0644);
5443 static void wq_watchdog_init(void)
5445 wq_watchdog_set_thresh(wq_watchdog_thresh);
5448 #else /* CONFIG_WQ_WATCHDOG */
5450 static inline void wq_watchdog_init(void) { }
5452 #endif /* CONFIG_WQ_WATCHDOG */
5454 static void __init wq_numa_init(void)
5456 cpumask_var_t *tbl;
5457 int node, cpu;
5459 if (num_possible_nodes() <= 1)
5460 return;
5462 if (wq_disable_numa) {
5463 pr_info("workqueue: NUMA affinity support disabled\n");
5464 return;
5467 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5468 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5471 * We want masks of possible CPUs of each node which isn't readily
5472 * available. Build one from cpu_to_node() which should have been
5473 * fully initialized by now.
5475 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5476 BUG_ON(!tbl);
5478 for_each_node(node)
5479 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5480 node_online(node) ? node : NUMA_NO_NODE));
5482 for_each_possible_cpu(cpu) {
5483 node = cpu_to_node(cpu);
5484 if (WARN_ON(node == NUMA_NO_NODE)) {
5485 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5486 /* happens iff arch is bonkers, let's just proceed */
5487 return;
5489 cpumask_set_cpu(cpu, tbl[node]);
5492 wq_numa_possible_cpumask = tbl;
5493 wq_numa_enabled = true;
5496 static int __init init_workqueues(void)
5498 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5499 int i, cpu;
5501 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5503 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5504 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5506 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5508 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5509 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5511 wq_numa_init();
5513 /* initialize CPU pools */
5514 for_each_possible_cpu(cpu) {
5515 struct worker_pool *pool;
5517 i = 0;
5518 for_each_cpu_worker_pool(pool, cpu) {
5519 BUG_ON(init_worker_pool(pool));
5520 pool->cpu = cpu;
5521 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5522 pool->attrs->nice = std_nice[i++];
5523 pool->node = cpu_to_node(cpu);
5525 /* alloc pool ID */
5526 mutex_lock(&wq_pool_mutex);
5527 BUG_ON(worker_pool_assign_id(pool));
5528 mutex_unlock(&wq_pool_mutex);
5532 /* create the initial worker */
5533 for_each_online_cpu(cpu) {
5534 struct worker_pool *pool;
5536 for_each_cpu_worker_pool(pool, cpu) {
5537 pool->flags &= ~POOL_DISASSOCIATED;
5538 BUG_ON(!create_worker(pool));
5542 /* create default unbound and ordered wq attrs */
5543 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5544 struct workqueue_attrs *attrs;
5546 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5547 attrs->nice = std_nice[i];
5548 unbound_std_wq_attrs[i] = attrs;
5551 * An ordered wq should have only one pwq as ordering is
5552 * guaranteed by max_active which is enforced by pwqs.
5553 * Turn off NUMA so that dfl_pwq is used for all nodes.
5555 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5556 attrs->nice = std_nice[i];
5557 attrs->no_numa = true;
5558 ordered_wq_attrs[i] = attrs;
5561 system_wq = alloc_workqueue("events", 0, 0);
5562 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5563 system_long_wq = alloc_workqueue("events_long", 0, 0);
5564 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5565 WQ_UNBOUND_MAX_ACTIVE);
5566 system_freezable_wq = alloc_workqueue("events_freezable",
5567 WQ_FREEZABLE, 0);
5568 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5569 WQ_POWER_EFFICIENT, 0);
5570 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5571 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5573 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5574 !system_unbound_wq || !system_freezable_wq ||
5575 !system_power_efficient_wq ||
5576 !system_freezable_power_efficient_wq);
5578 wq_watchdog_init();
5580 return 0;
5582 early_initcall(init_workqueues);