Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / lib / rbtree.c
blob1356454e36de9f1c083b2c84f297ba4878498c0a
1 /*
2 Red Black Trees
3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5 (C) 2012 Michel Lespinasse <walken@google.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 linux/lib/rbtree.c
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
28 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
30 * 1) A node is either red or black
31 * 2) The root is black
32 * 3) All leaves (NULL) are black
33 * 4) Both children of every red node are black
34 * 5) Every simple path from root to leaves contains the same number
35 * of black nodes.
37 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38 * consecutive red nodes in a path and every red node is therefore followed by
39 * a black. So if B is the number of black nodes on every simple path (as per
40 * 5), then the longest possible path due to 4 is 2B.
42 * We shall indicate color with case, where black nodes are uppercase and red
43 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
44 * parentheses and have some accompanying text comment.
48 * Notes on lockless lookups:
50 * All stores to the tree structure (rb_left and rb_right) must be done using
51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52 * tree structure as seen in program order.
54 * These two requirements will allow lockless iteration of the tree -- not
55 * correct iteration mind you, tree rotations are not atomic so a lookup might
56 * miss entire subtrees.
58 * But they do guarantee that any such traversal will only see valid elements
59 * and that it will indeed complete -- does not get stuck in a loop.
61 * It also guarantees that if the lookup returns an element it is the 'correct'
62 * one. But not returning an element does _NOT_ mean it's not present.
64 * NOTE:
66 * Stores to __rb_parent_color are not important for simple lookups so those
67 * are left undone as of now. Nor did I check for loops involving parent
68 * pointers.
71 static inline void rb_set_black(struct rb_node *rb)
73 rb->__rb_parent_color |= RB_BLACK;
76 static inline struct rb_node *rb_red_parent(struct rb_node *red)
78 return (struct rb_node *)red->__rb_parent_color;
82 * Helper function for rotations:
83 * - old's parent and color get assigned to new
84 * - old gets assigned new as a parent and 'color' as a color.
86 static inline void
87 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
88 struct rb_root *root, int color)
90 struct rb_node *parent = rb_parent(old);
91 new->__rb_parent_color = old->__rb_parent_color;
92 rb_set_parent_color(old, new, color);
93 __rb_change_child(old, new, parent, root);
96 static __always_inline void
97 __rb_insert(struct rb_node *node, struct rb_root *root,
98 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
100 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
102 while (true) {
104 * Loop invariant: node is red
106 * If there is a black parent, we are done.
107 * Otherwise, take some corrective action as we don't
108 * want a red root or two consecutive red nodes.
110 if (!parent) {
111 rb_set_parent_color(node, NULL, RB_BLACK);
112 break;
113 } else if (rb_is_black(parent))
114 break;
116 gparent = rb_red_parent(parent);
118 tmp = gparent->rb_right;
119 if (parent != tmp) { /* parent == gparent->rb_left */
120 if (tmp && rb_is_red(tmp)) {
122 * Case 1 - color flips
124 * G g
125 * / \ / \
126 * p u --> P U
127 * / /
128 * n n
130 * However, since g's parent might be red, and
131 * 4) does not allow this, we need to recurse
132 * at g.
134 rb_set_parent_color(tmp, gparent, RB_BLACK);
135 rb_set_parent_color(parent, gparent, RB_BLACK);
136 node = gparent;
137 parent = rb_parent(node);
138 rb_set_parent_color(node, parent, RB_RED);
139 continue;
142 tmp = parent->rb_right;
143 if (node == tmp) {
145 * Case 2 - left rotate at parent
147 * G G
148 * / \ / \
149 * p U --> n U
150 * \ /
151 * n p
153 * This still leaves us in violation of 4), the
154 * continuation into Case 3 will fix that.
156 tmp = node->rb_left;
157 WRITE_ONCE(parent->rb_right, tmp);
158 WRITE_ONCE(node->rb_left, parent);
159 if (tmp)
160 rb_set_parent_color(tmp, parent,
161 RB_BLACK);
162 rb_set_parent_color(parent, node, RB_RED);
163 augment_rotate(parent, node);
164 parent = node;
165 tmp = node->rb_right;
169 * Case 3 - right rotate at gparent
171 * G P
172 * / \ / \
173 * p U --> n g
174 * / \
175 * n U
177 WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
178 WRITE_ONCE(parent->rb_right, gparent);
179 if (tmp)
180 rb_set_parent_color(tmp, gparent, RB_BLACK);
181 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
182 augment_rotate(gparent, parent);
183 break;
184 } else {
185 tmp = gparent->rb_left;
186 if (tmp && rb_is_red(tmp)) {
187 /* Case 1 - color flips */
188 rb_set_parent_color(tmp, gparent, RB_BLACK);
189 rb_set_parent_color(parent, gparent, RB_BLACK);
190 node = gparent;
191 parent = rb_parent(node);
192 rb_set_parent_color(node, parent, RB_RED);
193 continue;
196 tmp = parent->rb_left;
197 if (node == tmp) {
198 /* Case 2 - right rotate at parent */
199 tmp = node->rb_right;
200 WRITE_ONCE(parent->rb_left, tmp);
201 WRITE_ONCE(node->rb_right, parent);
202 if (tmp)
203 rb_set_parent_color(tmp, parent,
204 RB_BLACK);
205 rb_set_parent_color(parent, node, RB_RED);
206 augment_rotate(parent, node);
207 parent = node;
208 tmp = node->rb_left;
211 /* Case 3 - left rotate at gparent */
212 WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
213 WRITE_ONCE(parent->rb_left, gparent);
214 if (tmp)
215 rb_set_parent_color(tmp, gparent, RB_BLACK);
216 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
217 augment_rotate(gparent, parent);
218 break;
224 * Inline version for rb_erase() use - we want to be able to inline
225 * and eliminate the dummy_rotate callback there
227 static __always_inline void
228 ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
229 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
231 struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
233 while (true) {
235 * Loop invariants:
236 * - node is black (or NULL on first iteration)
237 * - node is not the root (parent is not NULL)
238 * - All leaf paths going through parent and node have a
239 * black node count that is 1 lower than other leaf paths.
241 sibling = parent->rb_right;
242 if (node != sibling) { /* node == parent->rb_left */
243 if (rb_is_red(sibling)) {
245 * Case 1 - left rotate at parent
247 * P S
248 * / \ / \
249 * N s --> p Sr
250 * / \ / \
251 * Sl Sr N Sl
253 tmp1 = sibling->rb_left;
254 WRITE_ONCE(parent->rb_right, tmp1);
255 WRITE_ONCE(sibling->rb_left, parent);
256 rb_set_parent_color(tmp1, parent, RB_BLACK);
257 __rb_rotate_set_parents(parent, sibling, root,
258 RB_RED);
259 augment_rotate(parent, sibling);
260 sibling = tmp1;
262 tmp1 = sibling->rb_right;
263 if (!tmp1 || rb_is_black(tmp1)) {
264 tmp2 = sibling->rb_left;
265 if (!tmp2 || rb_is_black(tmp2)) {
267 * Case 2 - sibling color flip
268 * (p could be either color here)
270 * (p) (p)
271 * / \ / \
272 * N S --> N s
273 * / \ / \
274 * Sl Sr Sl Sr
276 * This leaves us violating 5) which
277 * can be fixed by flipping p to black
278 * if it was red, or by recursing at p.
279 * p is red when coming from Case 1.
281 rb_set_parent_color(sibling, parent,
282 RB_RED);
283 if (rb_is_red(parent))
284 rb_set_black(parent);
285 else {
286 node = parent;
287 parent = rb_parent(node);
288 if (parent)
289 continue;
291 break;
294 * Case 3 - right rotate at sibling
295 * (p could be either color here)
297 * (p) (p)
298 * / \ / \
299 * N S --> N Sl
300 * / \ \
301 * sl Sr s
303 * Sr
305 tmp1 = tmp2->rb_right;
306 WRITE_ONCE(sibling->rb_left, tmp1);
307 WRITE_ONCE(tmp2->rb_right, sibling);
308 WRITE_ONCE(parent->rb_right, tmp2);
309 if (tmp1)
310 rb_set_parent_color(tmp1, sibling,
311 RB_BLACK);
312 augment_rotate(sibling, tmp2);
313 tmp1 = sibling;
314 sibling = tmp2;
317 * Case 4 - left rotate at parent + color flips
318 * (p and sl could be either color here.
319 * After rotation, p becomes black, s acquires
320 * p's color, and sl keeps its color)
322 * (p) (s)
323 * / \ / \
324 * N S --> P Sr
325 * / \ / \
326 * (sl) sr N (sl)
328 tmp2 = sibling->rb_left;
329 WRITE_ONCE(parent->rb_right, tmp2);
330 WRITE_ONCE(sibling->rb_left, parent);
331 rb_set_parent_color(tmp1, sibling, RB_BLACK);
332 if (tmp2)
333 rb_set_parent(tmp2, parent);
334 __rb_rotate_set_parents(parent, sibling, root,
335 RB_BLACK);
336 augment_rotate(parent, sibling);
337 break;
338 } else {
339 sibling = parent->rb_left;
340 if (rb_is_red(sibling)) {
341 /* Case 1 - right rotate at parent */
342 tmp1 = sibling->rb_right;
343 WRITE_ONCE(parent->rb_left, tmp1);
344 WRITE_ONCE(sibling->rb_right, parent);
345 rb_set_parent_color(tmp1, parent, RB_BLACK);
346 __rb_rotate_set_parents(parent, sibling, root,
347 RB_RED);
348 augment_rotate(parent, sibling);
349 sibling = tmp1;
351 tmp1 = sibling->rb_left;
352 if (!tmp1 || rb_is_black(tmp1)) {
353 tmp2 = sibling->rb_right;
354 if (!tmp2 || rb_is_black(tmp2)) {
355 /* Case 2 - sibling color flip */
356 rb_set_parent_color(sibling, parent,
357 RB_RED);
358 if (rb_is_red(parent))
359 rb_set_black(parent);
360 else {
361 node = parent;
362 parent = rb_parent(node);
363 if (parent)
364 continue;
366 break;
368 /* Case 3 - right rotate at sibling */
369 tmp1 = tmp2->rb_left;
370 WRITE_ONCE(sibling->rb_right, tmp1);
371 WRITE_ONCE(tmp2->rb_left, sibling);
372 WRITE_ONCE(parent->rb_left, tmp2);
373 if (tmp1)
374 rb_set_parent_color(tmp1, sibling,
375 RB_BLACK);
376 augment_rotate(sibling, tmp2);
377 tmp1 = sibling;
378 sibling = tmp2;
380 /* Case 4 - left rotate at parent + color flips */
381 tmp2 = sibling->rb_right;
382 WRITE_ONCE(parent->rb_left, tmp2);
383 WRITE_ONCE(sibling->rb_right, parent);
384 rb_set_parent_color(tmp1, sibling, RB_BLACK);
385 if (tmp2)
386 rb_set_parent(tmp2, parent);
387 __rb_rotate_set_parents(parent, sibling, root,
388 RB_BLACK);
389 augment_rotate(parent, sibling);
390 break;
395 /* Non-inline version for rb_erase_augmented() use */
396 void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
397 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
399 ____rb_erase_color(parent, root, augment_rotate);
401 EXPORT_SYMBOL(__rb_erase_color);
404 * Non-augmented rbtree manipulation functions.
406 * We use dummy augmented callbacks here, and have the compiler optimize them
407 * out of the rb_insert_color() and rb_erase() function definitions.
410 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
411 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
412 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
414 static const struct rb_augment_callbacks dummy_callbacks = {
415 dummy_propagate, dummy_copy, dummy_rotate
418 void rb_insert_color(struct rb_node *node, struct rb_root *root)
420 __rb_insert(node, root, dummy_rotate);
422 EXPORT_SYMBOL(rb_insert_color);
424 void rb_erase(struct rb_node *node, struct rb_root *root)
426 struct rb_node *rebalance;
427 rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
428 if (rebalance)
429 ____rb_erase_color(rebalance, root, dummy_rotate);
431 EXPORT_SYMBOL(rb_erase);
434 * Augmented rbtree manipulation functions.
436 * This instantiates the same __always_inline functions as in the non-augmented
437 * case, but this time with user-defined callbacks.
440 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
441 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
443 __rb_insert(node, root, augment_rotate);
445 EXPORT_SYMBOL(__rb_insert_augmented);
448 * This function returns the first node (in sort order) of the tree.
450 struct rb_node *rb_first(const struct rb_root *root)
452 struct rb_node *n;
454 n = root->rb_node;
455 if (!n)
456 return NULL;
457 while (n->rb_left)
458 n = n->rb_left;
459 return n;
461 EXPORT_SYMBOL(rb_first);
463 struct rb_node *rb_last(const struct rb_root *root)
465 struct rb_node *n;
467 n = root->rb_node;
468 if (!n)
469 return NULL;
470 while (n->rb_right)
471 n = n->rb_right;
472 return n;
474 EXPORT_SYMBOL(rb_last);
476 struct rb_node *rb_next(const struct rb_node *node)
478 struct rb_node *parent;
480 if (RB_EMPTY_NODE(node))
481 return NULL;
484 * If we have a right-hand child, go down and then left as far
485 * as we can.
487 if (node->rb_right) {
488 node = node->rb_right;
489 while (node->rb_left)
490 node=node->rb_left;
491 return (struct rb_node *)node;
495 * No right-hand children. Everything down and left is smaller than us,
496 * so any 'next' node must be in the general direction of our parent.
497 * Go up the tree; any time the ancestor is a right-hand child of its
498 * parent, keep going up. First time it's a left-hand child of its
499 * parent, said parent is our 'next' node.
501 while ((parent = rb_parent(node)) && node == parent->rb_right)
502 node = parent;
504 return parent;
506 EXPORT_SYMBOL(rb_next);
508 struct rb_node *rb_prev(const struct rb_node *node)
510 struct rb_node *parent;
512 if (RB_EMPTY_NODE(node))
513 return NULL;
516 * If we have a left-hand child, go down and then right as far
517 * as we can.
519 if (node->rb_left) {
520 node = node->rb_left;
521 while (node->rb_right)
522 node=node->rb_right;
523 return (struct rb_node *)node;
527 * No left-hand children. Go up till we find an ancestor which
528 * is a right-hand child of its parent.
530 while ((parent = rb_parent(node)) && node == parent->rb_left)
531 node = parent;
533 return parent;
535 EXPORT_SYMBOL(rb_prev);
537 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
538 struct rb_root *root)
540 struct rb_node *parent = rb_parent(victim);
542 /* Set the surrounding nodes to point to the replacement */
543 __rb_change_child(victim, new, parent, root);
544 if (victim->rb_left)
545 rb_set_parent(victim->rb_left, new);
546 if (victim->rb_right)
547 rb_set_parent(victim->rb_right, new);
549 /* Copy the pointers/colour from the victim to the replacement */
550 *new = *victim;
552 EXPORT_SYMBOL(rb_replace_node);
554 static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
556 for (;;) {
557 if (node->rb_left)
558 node = node->rb_left;
559 else if (node->rb_right)
560 node = node->rb_right;
561 else
562 return (struct rb_node *)node;
566 struct rb_node *rb_next_postorder(const struct rb_node *node)
568 const struct rb_node *parent;
569 if (!node)
570 return NULL;
571 parent = rb_parent(node);
573 /* If we're sitting on node, we've already seen our children */
574 if (parent && node == parent->rb_left && parent->rb_right) {
575 /* If we are the parent's left node, go to the parent's right
576 * node then all the way down to the left */
577 return rb_left_deepest_node(parent->rb_right);
578 } else
579 /* Otherwise we are the parent's right node, and the parent
580 * should be next */
581 return (struct rb_node *)parent;
583 EXPORT_SYMBOL(rb_next_postorder);
585 struct rb_node *rb_first_postorder(const struct rb_root *root)
587 if (!root->rb_node)
588 return NULL;
590 return rb_left_deepest_node(root->rb_node);
592 EXPORT_SYMBOL(rb_first_postorder);