Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / security / selinux / ss / conditional.c
blob456e1a9bcfde14e594789de0b1055c63f8dd549e
1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2 * Frank Mayer <mayerf@tresys.com>
4 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, version 2.
8 */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
16 #include "security.h"
17 #include "conditional.h"
18 #include "services.h"
21 * cond_evaluate_expr evaluates a conditional expr
22 * in reverse polish notation. It returns true (1), false (0),
23 * or undefined (-1). Undefined occurs when the expression
24 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
26 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
29 struct cond_expr *cur;
30 int s[COND_EXPR_MAXDEPTH];
31 int sp = -1;
33 for (cur = expr; cur; cur = cur->next) {
34 switch (cur->expr_type) {
35 case COND_BOOL:
36 if (sp == (COND_EXPR_MAXDEPTH - 1))
37 return -1;
38 sp++;
39 s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
40 break;
41 case COND_NOT:
42 if (sp < 0)
43 return -1;
44 s[sp] = !s[sp];
45 break;
46 case COND_OR:
47 if (sp < 1)
48 return -1;
49 sp--;
50 s[sp] |= s[sp + 1];
51 break;
52 case COND_AND:
53 if (sp < 1)
54 return -1;
55 sp--;
56 s[sp] &= s[sp + 1];
57 break;
58 case COND_XOR:
59 if (sp < 1)
60 return -1;
61 sp--;
62 s[sp] ^= s[sp + 1];
63 break;
64 case COND_EQ:
65 if (sp < 1)
66 return -1;
67 sp--;
68 s[sp] = (s[sp] == s[sp + 1]);
69 break;
70 case COND_NEQ:
71 if (sp < 1)
72 return -1;
73 sp--;
74 s[sp] = (s[sp] != s[sp + 1]);
75 break;
76 default:
77 return -1;
80 return s[0];
84 * evaluate_cond_node evaluates the conditional stored in
85 * a struct cond_node and if the result is different than the
86 * current state of the node it sets the rules in the true/false
87 * list appropriately. If the result of the expression is undefined
88 * all of the rules are disabled for safety.
90 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
92 int new_state;
93 struct cond_av_list *cur;
95 new_state = cond_evaluate_expr(p, node->expr);
96 if (new_state != node->cur_state) {
97 node->cur_state = new_state;
98 if (new_state == -1)
99 printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
100 /* turn the rules on or off */
101 for (cur = node->true_list; cur; cur = cur->next) {
102 if (new_state <= 0)
103 cur->node->key.specified &= ~AVTAB_ENABLED;
104 else
105 cur->node->key.specified |= AVTAB_ENABLED;
108 for (cur = node->false_list; cur; cur = cur->next) {
109 /* -1 or 1 */
110 if (new_state)
111 cur->node->key.specified &= ~AVTAB_ENABLED;
112 else
113 cur->node->key.specified |= AVTAB_ENABLED;
116 return 0;
119 int cond_policydb_init(struct policydb *p)
121 int rc;
123 p->bool_val_to_struct = NULL;
124 p->cond_list = NULL;
126 rc = avtab_init(&p->te_cond_avtab);
127 if (rc)
128 return rc;
130 return 0;
133 static void cond_av_list_destroy(struct cond_av_list *list)
135 struct cond_av_list *cur, *next;
136 for (cur = list; cur; cur = next) {
137 next = cur->next;
138 /* the avtab_ptr_t node is destroy by the avtab */
139 kfree(cur);
143 static void cond_node_destroy(struct cond_node *node)
145 struct cond_expr *cur_expr, *next_expr;
147 for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
148 next_expr = cur_expr->next;
149 kfree(cur_expr);
151 cond_av_list_destroy(node->true_list);
152 cond_av_list_destroy(node->false_list);
153 kfree(node);
156 static void cond_list_destroy(struct cond_node *list)
158 struct cond_node *next, *cur;
160 if (list == NULL)
161 return;
163 for (cur = list; cur; cur = next) {
164 next = cur->next;
165 cond_node_destroy(cur);
169 void cond_policydb_destroy(struct policydb *p)
171 kfree(p->bool_val_to_struct);
172 avtab_destroy(&p->te_cond_avtab);
173 cond_list_destroy(p->cond_list);
176 int cond_init_bool_indexes(struct policydb *p)
178 kfree(p->bool_val_to_struct);
179 p->bool_val_to_struct =
180 kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
181 if (!p->bool_val_to_struct)
182 return -ENOMEM;
183 return 0;
186 int cond_destroy_bool(void *key, void *datum, void *p)
188 kfree(key);
189 kfree(datum);
190 return 0;
193 int cond_index_bool(void *key, void *datum, void *datap)
195 struct policydb *p;
196 struct cond_bool_datum *booldatum;
197 struct flex_array *fa;
199 booldatum = datum;
200 p = datap;
202 if (!booldatum->value || booldatum->value > p->p_bools.nprim)
203 return -EINVAL;
205 fa = p->sym_val_to_name[SYM_BOOLS];
206 if (flex_array_put_ptr(fa, booldatum->value - 1, key,
207 GFP_KERNEL | __GFP_ZERO))
208 BUG();
209 p->bool_val_to_struct[booldatum->value - 1] = booldatum;
211 return 0;
214 static int bool_isvalid(struct cond_bool_datum *b)
216 if (!(b->state == 0 || b->state == 1))
217 return 0;
218 return 1;
221 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
223 char *key = NULL;
224 struct cond_bool_datum *booldatum;
225 __le32 buf[3];
226 u32 len;
227 int rc;
229 booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
230 if (!booldatum)
231 return -ENOMEM;
233 rc = next_entry(buf, fp, sizeof buf);
234 if (rc)
235 goto err;
237 booldatum->value = le32_to_cpu(buf[0]);
238 booldatum->state = le32_to_cpu(buf[1]);
240 rc = -EINVAL;
241 if (!bool_isvalid(booldatum))
242 goto err;
244 len = le32_to_cpu(buf[2]);
246 rc = -ENOMEM;
247 key = kmalloc(len + 1, GFP_KERNEL);
248 if (!key)
249 goto err;
250 rc = next_entry(key, fp, len);
251 if (rc)
252 goto err;
253 key[len] = '\0';
254 rc = hashtab_insert(h, key, booldatum);
255 if (rc)
256 goto err;
258 return 0;
259 err:
260 cond_destroy_bool(key, booldatum, NULL);
261 return rc;
264 struct cond_insertf_data {
265 struct policydb *p;
266 struct cond_av_list *other;
267 struct cond_av_list *head;
268 struct cond_av_list *tail;
271 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
273 struct cond_insertf_data *data = ptr;
274 struct policydb *p = data->p;
275 struct cond_av_list *other = data->other, *list, *cur;
276 struct avtab_node *node_ptr;
277 u8 found;
278 int rc = -EINVAL;
281 * For type rules we have to make certain there aren't any
282 * conflicting rules by searching the te_avtab and the
283 * cond_te_avtab.
285 if (k->specified & AVTAB_TYPE) {
286 if (avtab_search(&p->te_avtab, k)) {
287 printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
288 goto err;
291 * If we are reading the false list other will be a pointer to
292 * the true list. We can have duplicate entries if there is only
293 * 1 other entry and it is in our true list.
295 * If we are reading the true list (other == NULL) there shouldn't
296 * be any other entries.
298 if (other) {
299 node_ptr = avtab_search_node(&p->te_cond_avtab, k);
300 if (node_ptr) {
301 if (avtab_search_node_next(node_ptr, k->specified)) {
302 printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
303 goto err;
305 found = 0;
306 for (cur = other; cur; cur = cur->next) {
307 if (cur->node == node_ptr) {
308 found = 1;
309 break;
312 if (!found) {
313 printk(KERN_ERR "SELinux: conflicting type rules.\n");
314 goto err;
317 } else {
318 if (avtab_search(&p->te_cond_avtab, k)) {
319 printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
320 goto err;
325 node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
326 if (!node_ptr) {
327 printk(KERN_ERR "SELinux: could not insert rule.\n");
328 rc = -ENOMEM;
329 goto err;
332 list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
333 if (!list) {
334 rc = -ENOMEM;
335 goto err;
338 list->node = node_ptr;
339 if (!data->head)
340 data->head = list;
341 else
342 data->tail->next = list;
343 data->tail = list;
344 return 0;
346 err:
347 cond_av_list_destroy(data->head);
348 data->head = NULL;
349 return rc;
352 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
354 int i, rc;
355 __le32 buf[1];
356 u32 len;
357 struct cond_insertf_data data;
359 *ret_list = NULL;
361 len = 0;
362 rc = next_entry(buf, fp, sizeof(u32));
363 if (rc)
364 return rc;
366 len = le32_to_cpu(buf[0]);
367 if (len == 0)
368 return 0;
370 data.p = p;
371 data.other = other;
372 data.head = NULL;
373 data.tail = NULL;
374 for (i = 0; i < len; i++) {
375 rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
376 &data);
377 if (rc)
378 return rc;
381 *ret_list = data.head;
382 return 0;
385 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
387 if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
388 printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
389 return 0;
392 if (expr->bool > p->p_bools.nprim) {
393 printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
394 return 0;
396 return 1;
399 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
401 __le32 buf[2];
402 u32 len, i;
403 int rc;
404 struct cond_expr *expr = NULL, *last = NULL;
406 rc = next_entry(buf, fp, sizeof(u32) * 2);
407 if (rc)
408 goto err;
410 node->cur_state = le32_to_cpu(buf[0]);
412 /* expr */
413 len = le32_to_cpu(buf[1]);
415 for (i = 0; i < len; i++) {
416 rc = next_entry(buf, fp, sizeof(u32) * 2);
417 if (rc)
418 goto err;
420 rc = -ENOMEM;
421 expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
422 if (!expr)
423 goto err;
425 expr->expr_type = le32_to_cpu(buf[0]);
426 expr->bool = le32_to_cpu(buf[1]);
428 if (!expr_isvalid(p, expr)) {
429 rc = -EINVAL;
430 kfree(expr);
431 goto err;
434 if (i == 0)
435 node->expr = expr;
436 else
437 last->next = expr;
438 last = expr;
441 rc = cond_read_av_list(p, fp, &node->true_list, NULL);
442 if (rc)
443 goto err;
444 rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
445 if (rc)
446 goto err;
447 return 0;
448 err:
449 cond_node_destroy(node);
450 return rc;
453 int cond_read_list(struct policydb *p, void *fp)
455 struct cond_node *node, *last = NULL;
456 __le32 buf[1];
457 u32 i, len;
458 int rc;
460 rc = next_entry(buf, fp, sizeof buf);
461 if (rc)
462 return rc;
464 len = le32_to_cpu(buf[0]);
466 rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
467 if (rc)
468 goto err;
470 for (i = 0; i < len; i++) {
471 rc = -ENOMEM;
472 node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
473 if (!node)
474 goto err;
476 rc = cond_read_node(p, node, fp);
477 if (rc)
478 goto err;
480 if (i == 0)
481 p->cond_list = node;
482 else
483 last->next = node;
484 last = node;
486 return 0;
487 err:
488 cond_list_destroy(p->cond_list);
489 p->cond_list = NULL;
490 return rc;
493 int cond_write_bool(void *vkey, void *datum, void *ptr)
495 char *key = vkey;
496 struct cond_bool_datum *booldatum = datum;
497 struct policy_data *pd = ptr;
498 void *fp = pd->fp;
499 __le32 buf[3];
500 u32 len;
501 int rc;
503 len = strlen(key);
504 buf[0] = cpu_to_le32(booldatum->value);
505 buf[1] = cpu_to_le32(booldatum->state);
506 buf[2] = cpu_to_le32(len);
507 rc = put_entry(buf, sizeof(u32), 3, fp);
508 if (rc)
509 return rc;
510 rc = put_entry(key, 1, len, fp);
511 if (rc)
512 return rc;
513 return 0;
517 * cond_write_cond_av_list doesn't write out the av_list nodes.
518 * Instead it writes out the key/value pairs from the avtab. This
519 * is necessary because there is no way to uniquely identifying rules
520 * in the avtab so it is not possible to associate individual rules
521 * in the avtab with a conditional without saving them as part of
522 * the conditional. This means that the avtab with the conditional
523 * rules will not be saved but will be rebuilt on policy load.
525 static int cond_write_av_list(struct policydb *p,
526 struct cond_av_list *list, struct policy_file *fp)
528 __le32 buf[1];
529 struct cond_av_list *cur_list;
530 u32 len;
531 int rc;
533 len = 0;
534 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
535 len++;
537 buf[0] = cpu_to_le32(len);
538 rc = put_entry(buf, sizeof(u32), 1, fp);
539 if (rc)
540 return rc;
542 if (len == 0)
543 return 0;
545 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
546 rc = avtab_write_item(p, cur_list->node, fp);
547 if (rc)
548 return rc;
551 return 0;
554 static int cond_write_node(struct policydb *p, struct cond_node *node,
555 struct policy_file *fp)
557 struct cond_expr *cur_expr;
558 __le32 buf[2];
559 int rc;
560 u32 len = 0;
562 buf[0] = cpu_to_le32(node->cur_state);
563 rc = put_entry(buf, sizeof(u32), 1, fp);
564 if (rc)
565 return rc;
567 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
568 len++;
570 buf[0] = cpu_to_le32(len);
571 rc = put_entry(buf, sizeof(u32), 1, fp);
572 if (rc)
573 return rc;
575 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
576 buf[0] = cpu_to_le32(cur_expr->expr_type);
577 buf[1] = cpu_to_le32(cur_expr->bool);
578 rc = put_entry(buf, sizeof(u32), 2, fp);
579 if (rc)
580 return rc;
583 rc = cond_write_av_list(p, node->true_list, fp);
584 if (rc)
585 return rc;
586 rc = cond_write_av_list(p, node->false_list, fp);
587 if (rc)
588 return rc;
590 return 0;
593 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
595 struct cond_node *cur;
596 u32 len;
597 __le32 buf[1];
598 int rc;
600 len = 0;
601 for (cur = list; cur != NULL; cur = cur->next)
602 len++;
603 buf[0] = cpu_to_le32(len);
604 rc = put_entry(buf, sizeof(u32), 1, fp);
605 if (rc)
606 return rc;
608 for (cur = list; cur != NULL; cur = cur->next) {
609 rc = cond_write_node(p, cur, fp);
610 if (rc)
611 return rc;
614 return 0;
617 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
618 struct extended_perms_decision *xpermd)
620 struct avtab_node *node;
622 if (!ctab || !key || !xpermd)
623 return;
625 for (node = avtab_search_node(ctab, key); node;
626 node = avtab_search_node_next(node, key->specified)) {
627 if (node->key.specified & AVTAB_ENABLED)
628 services_compute_xperms_decision(xpermd, node);
630 return;
633 /* Determine whether additional permissions are granted by the conditional
634 * av table, and if so, add them to the result
636 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
637 struct av_decision *avd, struct extended_perms *xperms)
639 struct avtab_node *node;
641 if (!ctab || !key || !avd)
642 return;
644 for (node = avtab_search_node(ctab, key); node;
645 node = avtab_search_node_next(node, key->specified)) {
646 if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
647 (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
648 avd->allowed |= node->datum.u.data;
649 if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
650 (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
651 /* Since a '0' in an auditdeny mask represents a
652 * permission we do NOT want to audit (dontaudit), we use
653 * the '&' operand to ensure that all '0's in the mask
654 * are retained (much unlike the allow and auditallow cases).
656 avd->auditdeny &= node->datum.u.data;
657 if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
658 (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
659 avd->auditallow |= node->datum.u.data;
660 if (xperms && (node->key.specified & AVTAB_ENABLED) &&
661 (node->key.specified & AVTAB_XPERMS))
662 services_compute_xperms_drivers(xperms, node);
664 return;