usb: add HAS_IOMEM dependency to USB_PXA25X
[linux/fpc-iii.git] / mm / rmap.c
blob79f3bf047f38497bdcdae741c2941370353a3ea7
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/rcupdate.h>
57 #include <linux/export.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/backing-dev.h>
63 #include <linux/page_idle.h>
65 #include <asm/tlbflush.h>
67 #include <trace/events/tlb.h>
69 #include "internal.h"
71 static struct kmem_cache *anon_vma_cachep;
72 static struct kmem_cache *anon_vma_chain_cachep;
74 static inline struct anon_vma *anon_vma_alloc(void)
76 struct anon_vma *anon_vma;
78 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 if (anon_vma) {
80 atomic_set(&anon_vma->refcount, 1);
81 anon_vma->degree = 1; /* Reference for first vma */
82 anon_vma->parent = anon_vma;
84 * Initialise the anon_vma root to point to itself. If called
85 * from fork, the root will be reset to the parents anon_vma.
87 anon_vma->root = anon_vma;
90 return anon_vma;
93 static inline void anon_vma_free(struct anon_vma *anon_vma)
95 VM_BUG_ON(atomic_read(&anon_vma->refcount));
98 * Synchronize against page_lock_anon_vma_read() such that
99 * we can safely hold the lock without the anon_vma getting
100 * freed.
102 * Relies on the full mb implied by the atomic_dec_and_test() from
103 * put_anon_vma() against the acquire barrier implied by
104 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
106 * page_lock_anon_vma_read() VS put_anon_vma()
107 * down_read_trylock() atomic_dec_and_test()
108 * LOCK MB
109 * atomic_read() rwsem_is_locked()
111 * LOCK should suffice since the actual taking of the lock must
112 * happen _before_ what follows.
114 might_sleep();
115 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
116 anon_vma_lock_write(anon_vma);
117 anon_vma_unlock_write(anon_vma);
120 kmem_cache_free(anon_vma_cachep, anon_vma);
123 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
125 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
130 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 static void anon_vma_chain_link(struct vm_area_struct *vma,
134 struct anon_vma_chain *avc,
135 struct anon_vma *anon_vma)
137 avc->vma = vma;
138 avc->anon_vma = anon_vma;
139 list_add(&avc->same_vma, &vma->anon_vma_chain);
140 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
144 * anon_vma_prepare - attach an anon_vma to a memory region
145 * @vma: the memory region in question
147 * This makes sure the memory mapping described by 'vma' has
148 * an 'anon_vma' attached to it, so that we can associate the
149 * anonymous pages mapped into it with that anon_vma.
151 * The common case will be that we already have one, but if
152 * not we either need to find an adjacent mapping that we
153 * can re-use the anon_vma from (very common when the only
154 * reason for splitting a vma has been mprotect()), or we
155 * allocate a new one.
157 * Anon-vma allocations are very subtle, because we may have
158 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
159 * and that may actually touch the spinlock even in the newly
160 * allocated vma (it depends on RCU to make sure that the
161 * anon_vma isn't actually destroyed).
163 * As a result, we need to do proper anon_vma locking even
164 * for the new allocation. At the same time, we do not want
165 * to do any locking for the common case of already having
166 * an anon_vma.
168 * This must be called with the mmap_sem held for reading.
170 int anon_vma_prepare(struct vm_area_struct *vma)
172 struct anon_vma *anon_vma = vma->anon_vma;
173 struct anon_vma_chain *avc;
175 might_sleep();
176 if (unlikely(!anon_vma)) {
177 struct mm_struct *mm = vma->vm_mm;
178 struct anon_vma *allocated;
180 avc = anon_vma_chain_alloc(GFP_KERNEL);
181 if (!avc)
182 goto out_enomem;
184 anon_vma = find_mergeable_anon_vma(vma);
185 allocated = NULL;
186 if (!anon_vma) {
187 anon_vma = anon_vma_alloc();
188 if (unlikely(!anon_vma))
189 goto out_enomem_free_avc;
190 allocated = anon_vma;
193 anon_vma_lock_write(anon_vma);
194 /* page_table_lock to protect against threads */
195 spin_lock(&mm->page_table_lock);
196 if (likely(!vma->anon_vma)) {
197 vma->anon_vma = anon_vma;
198 anon_vma_chain_link(vma, avc, anon_vma);
199 /* vma reference or self-parent link for new root */
200 anon_vma->degree++;
201 allocated = NULL;
202 avc = NULL;
204 spin_unlock(&mm->page_table_lock);
205 anon_vma_unlock_write(anon_vma);
207 if (unlikely(allocated))
208 put_anon_vma(allocated);
209 if (unlikely(avc))
210 anon_vma_chain_free(avc);
212 return 0;
214 out_enomem_free_avc:
215 anon_vma_chain_free(avc);
216 out_enomem:
217 return -ENOMEM;
221 * This is a useful helper function for locking the anon_vma root as
222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223 * have the same vma.
225 * Such anon_vma's should have the same root, so you'd expect to see
226 * just a single mutex_lock for the whole traversal.
228 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 struct anon_vma *new_root = anon_vma->root;
231 if (new_root != root) {
232 if (WARN_ON_ONCE(root))
233 up_write(&root->rwsem);
234 root = new_root;
235 down_write(&root->rwsem);
237 return root;
240 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 if (root)
243 up_write(&root->rwsem);
247 * Attach the anon_vmas from src to dst.
248 * Returns 0 on success, -ENOMEM on failure.
250 * If dst->anon_vma is NULL this function tries to find and reuse existing
251 * anon_vma which has no vmas and only one child anon_vma. This prevents
252 * degradation of anon_vma hierarchy to endless linear chain in case of
253 * constantly forking task. On the other hand, an anon_vma with more than one
254 * child isn't reused even if there was no alive vma, thus rmap walker has a
255 * good chance of avoiding scanning the whole hierarchy when it searches where
256 * page is mapped.
258 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 struct anon_vma_chain *avc, *pavc;
261 struct anon_vma *root = NULL;
263 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
264 struct anon_vma *anon_vma;
266 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 if (unlikely(!avc)) {
268 unlock_anon_vma_root(root);
269 root = NULL;
270 avc = anon_vma_chain_alloc(GFP_KERNEL);
271 if (!avc)
272 goto enomem_failure;
274 anon_vma = pavc->anon_vma;
275 root = lock_anon_vma_root(root, anon_vma);
276 anon_vma_chain_link(dst, avc, anon_vma);
279 * Reuse existing anon_vma if its degree lower than two,
280 * that means it has no vma and only one anon_vma child.
282 * Do not chose parent anon_vma, otherwise first child
283 * will always reuse it. Root anon_vma is never reused:
284 * it has self-parent reference and at least one child.
286 if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 anon_vma->degree < 2)
288 dst->anon_vma = anon_vma;
290 if (dst->anon_vma)
291 dst->anon_vma->degree++;
292 unlock_anon_vma_root(root);
293 return 0;
295 enomem_failure:
297 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 * decremented in unlink_anon_vmas().
299 * We can safely do this because callers of anon_vma_clone() don't care
300 * about dst->anon_vma if anon_vma_clone() failed.
302 dst->anon_vma = NULL;
303 unlink_anon_vmas(dst);
304 return -ENOMEM;
308 * Attach vma to its own anon_vma, as well as to the anon_vmas that
309 * the corresponding VMA in the parent process is attached to.
310 * Returns 0 on success, non-zero on failure.
312 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 struct anon_vma_chain *avc;
315 struct anon_vma *anon_vma;
316 int error;
318 /* Don't bother if the parent process has no anon_vma here. */
319 if (!pvma->anon_vma)
320 return 0;
322 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 vma->anon_vma = NULL;
326 * First, attach the new VMA to the parent VMA's anon_vmas,
327 * so rmap can find non-COWed pages in child processes.
329 error = anon_vma_clone(vma, pvma);
330 if (error)
331 return error;
333 /* An existing anon_vma has been reused, all done then. */
334 if (vma->anon_vma)
335 return 0;
337 /* Then add our own anon_vma. */
338 anon_vma = anon_vma_alloc();
339 if (!anon_vma)
340 goto out_error;
341 avc = anon_vma_chain_alloc(GFP_KERNEL);
342 if (!avc)
343 goto out_error_free_anon_vma;
346 * The root anon_vma's spinlock is the lock actually used when we
347 * lock any of the anon_vmas in this anon_vma tree.
349 anon_vma->root = pvma->anon_vma->root;
350 anon_vma->parent = pvma->anon_vma;
352 * With refcounts, an anon_vma can stay around longer than the
353 * process it belongs to. The root anon_vma needs to be pinned until
354 * this anon_vma is freed, because the lock lives in the root.
356 get_anon_vma(anon_vma->root);
357 /* Mark this anon_vma as the one where our new (COWed) pages go. */
358 vma->anon_vma = anon_vma;
359 anon_vma_lock_write(anon_vma);
360 anon_vma_chain_link(vma, avc, anon_vma);
361 anon_vma->parent->degree++;
362 anon_vma_unlock_write(anon_vma);
364 return 0;
366 out_error_free_anon_vma:
367 put_anon_vma(anon_vma);
368 out_error:
369 unlink_anon_vmas(vma);
370 return -ENOMEM;
373 void unlink_anon_vmas(struct vm_area_struct *vma)
375 struct anon_vma_chain *avc, *next;
376 struct anon_vma *root = NULL;
379 * Unlink each anon_vma chained to the VMA. This list is ordered
380 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
383 struct anon_vma *anon_vma = avc->anon_vma;
385 root = lock_anon_vma_root(root, anon_vma);
386 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
389 * Leave empty anon_vmas on the list - we'll need
390 * to free them outside the lock.
392 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 anon_vma->parent->degree--;
394 continue;
397 list_del(&avc->same_vma);
398 anon_vma_chain_free(avc);
400 if (vma->anon_vma)
401 vma->anon_vma->degree--;
402 unlock_anon_vma_root(root);
405 * Iterate the list once more, it now only contains empty and unlinked
406 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
407 * needing to write-acquire the anon_vma->root->rwsem.
409 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 struct anon_vma *anon_vma = avc->anon_vma;
412 BUG_ON(anon_vma->degree);
413 put_anon_vma(anon_vma);
415 list_del(&avc->same_vma);
416 anon_vma_chain_free(avc);
420 static void anon_vma_ctor(void *data)
422 struct anon_vma *anon_vma = data;
424 init_rwsem(&anon_vma->rwsem);
425 atomic_set(&anon_vma->refcount, 0);
426 anon_vma->rb_root = RB_ROOT;
429 void __init anon_vma_init(void)
431 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
432 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 anon_vma_ctor);
434 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 SLAB_PANIC|SLAB_ACCOUNT);
439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441 * Since there is no serialization what so ever against page_remove_rmap()
442 * the best this function can do is return a locked anon_vma that might
443 * have been relevant to this page.
445 * The page might have been remapped to a different anon_vma or the anon_vma
446 * returned may already be freed (and even reused).
448 * In case it was remapped to a different anon_vma, the new anon_vma will be a
449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450 * ensure that any anon_vma obtained from the page will still be valid for as
451 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453 * All users of this function must be very careful when walking the anon_vma
454 * chain and verify that the page in question is indeed mapped in it
455 * [ something equivalent to page_mapped_in_vma() ].
457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458 * that the anon_vma pointer from page->mapping is valid if there is a
459 * mapcount, we can dereference the anon_vma after observing those.
461 struct anon_vma *page_get_anon_vma(struct page *page)
463 struct anon_vma *anon_vma = NULL;
464 unsigned long anon_mapping;
466 rcu_read_lock();
467 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
468 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
469 goto out;
470 if (!page_mapped(page))
471 goto out;
473 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
480 * If this page is still mapped, then its anon_vma cannot have been
481 * freed. But if it has been unmapped, we have no security against the
482 * anon_vma structure being freed and reused (for another anon_vma:
483 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 * above cannot corrupt).
486 if (!page_mapped(page)) {
487 rcu_read_unlock();
488 put_anon_vma(anon_vma);
489 return NULL;
491 out:
492 rcu_read_unlock();
494 return anon_vma;
498 * Similar to page_get_anon_vma() except it locks the anon_vma.
500 * Its a little more complex as it tries to keep the fast path to a single
501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502 * reference like with page_get_anon_vma() and then block on the mutex.
504 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 struct anon_vma *anon_vma = NULL;
507 struct anon_vma *root_anon_vma;
508 unsigned long anon_mapping;
510 rcu_read_lock();
511 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
512 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 goto out;
514 if (!page_mapped(page))
515 goto out;
517 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
518 root_anon_vma = READ_ONCE(anon_vma->root);
519 if (down_read_trylock(&root_anon_vma->rwsem)) {
521 * If the page is still mapped, then this anon_vma is still
522 * its anon_vma, and holding the mutex ensures that it will
523 * not go away, see anon_vma_free().
525 if (!page_mapped(page)) {
526 up_read(&root_anon_vma->rwsem);
527 anon_vma = NULL;
529 goto out;
532 /* trylock failed, we got to sleep */
533 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 anon_vma = NULL;
535 goto out;
538 if (!page_mapped(page)) {
539 rcu_read_unlock();
540 put_anon_vma(anon_vma);
541 return NULL;
544 /* we pinned the anon_vma, its safe to sleep */
545 rcu_read_unlock();
546 anon_vma_lock_read(anon_vma);
548 if (atomic_dec_and_test(&anon_vma->refcount)) {
550 * Oops, we held the last refcount, release the lock
551 * and bail -- can't simply use put_anon_vma() because
552 * we'll deadlock on the anon_vma_lock_write() recursion.
554 anon_vma_unlock_read(anon_vma);
555 __put_anon_vma(anon_vma);
556 anon_vma = NULL;
559 return anon_vma;
561 out:
562 rcu_read_unlock();
563 return anon_vma;
566 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 anon_vma_unlock_read(anon_vma);
571 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
572 static void percpu_flush_tlb_batch_pages(void *data)
575 * All TLB entries are flushed on the assumption that it is
576 * cheaper to flush all TLBs and let them be refilled than
577 * flushing individual PFNs. Note that we do not track mm's
578 * to flush as that might simply be multiple full TLB flushes
579 * for no gain.
581 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
582 flush_tlb_local();
586 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
587 * important if a PTE was dirty when it was unmapped that it's flushed
588 * before any IO is initiated on the page to prevent lost writes. Similarly,
589 * it must be flushed before freeing to prevent data leakage.
591 void try_to_unmap_flush(void)
593 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
594 int cpu;
596 if (!tlb_ubc->flush_required)
597 return;
599 cpu = get_cpu();
601 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
603 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
604 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
606 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
607 smp_call_function_many(&tlb_ubc->cpumask,
608 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
610 cpumask_clear(&tlb_ubc->cpumask);
611 tlb_ubc->flush_required = false;
612 tlb_ubc->writable = false;
613 put_cpu();
616 /* Flush iff there are potentially writable TLB entries that can race with IO */
617 void try_to_unmap_flush_dirty(void)
619 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
621 if (tlb_ubc->writable)
622 try_to_unmap_flush();
625 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
626 struct page *page, bool writable)
628 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
631 tlb_ubc->flush_required = true;
634 * If the PTE was dirty then it's best to assume it's writable. The
635 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
636 * before the page is queued for IO.
638 if (writable)
639 tlb_ubc->writable = true;
643 * Returns true if the TLB flush should be deferred to the end of a batch of
644 * unmap operations to reduce IPIs.
646 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
648 bool should_defer = false;
650 if (!(flags & TTU_BATCH_FLUSH))
651 return false;
653 /* If remote CPUs need to be flushed then defer batch the flush */
654 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
655 should_defer = true;
656 put_cpu();
658 return should_defer;
660 #else
661 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
662 struct page *page, bool writable)
666 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
668 return false;
670 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
673 * At what user virtual address is page expected in vma?
674 * Caller should check the page is actually part of the vma.
676 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
678 unsigned long address;
679 if (PageAnon(page)) {
680 struct anon_vma *page__anon_vma = page_anon_vma(page);
682 * Note: swapoff's unuse_vma() is more efficient with this
683 * check, and needs it to match anon_vma when KSM is active.
685 if (!vma->anon_vma || !page__anon_vma ||
686 vma->anon_vma->root != page__anon_vma->root)
687 return -EFAULT;
688 } else if (page->mapping) {
689 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
690 return -EFAULT;
691 } else
692 return -EFAULT;
693 address = __vma_address(page, vma);
694 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
695 return -EFAULT;
696 return address;
699 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
701 pgd_t *pgd;
702 pud_t *pud;
703 pmd_t *pmd = NULL;
704 pmd_t pmde;
706 pgd = pgd_offset(mm, address);
707 if (!pgd_present(*pgd))
708 goto out;
710 pud = pud_offset(pgd, address);
711 if (!pud_present(*pud))
712 goto out;
714 pmd = pmd_offset(pud, address);
716 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
717 * without holding anon_vma lock for write. So when looking for a
718 * genuine pmde (in which to find pte), test present and !THP together.
720 pmde = *pmd;
721 barrier();
722 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
723 pmd = NULL;
724 out:
725 return pmd;
729 * Check that @page is mapped at @address into @mm.
731 * If @sync is false, page_check_address may perform a racy check to avoid
732 * the page table lock when the pte is not present (helpful when reclaiming
733 * highly shared pages).
735 * On success returns with pte mapped and locked.
737 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
738 unsigned long address, spinlock_t **ptlp, int sync)
740 pmd_t *pmd;
741 pte_t *pte;
742 spinlock_t *ptl;
744 if (unlikely(PageHuge(page))) {
745 /* when pud is not present, pte will be NULL */
746 pte = huge_pte_offset(mm, address);
747 if (!pte)
748 return NULL;
750 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
751 goto check;
754 pmd = mm_find_pmd(mm, address);
755 if (!pmd)
756 return NULL;
758 pte = pte_offset_map(pmd, address);
759 /* Make a quick check before getting the lock */
760 if (!sync && !pte_present(*pte)) {
761 pte_unmap(pte);
762 return NULL;
765 ptl = pte_lockptr(mm, pmd);
766 check:
767 spin_lock(ptl);
768 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
769 *ptlp = ptl;
770 return pte;
772 pte_unmap_unlock(pte, ptl);
773 return NULL;
777 * page_mapped_in_vma - check whether a page is really mapped in a VMA
778 * @page: the page to test
779 * @vma: the VMA to test
781 * Returns 1 if the page is mapped into the page tables of the VMA, 0
782 * if the page is not mapped into the page tables of this VMA. Only
783 * valid for normal file or anonymous VMAs.
785 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
787 unsigned long address;
788 pte_t *pte;
789 spinlock_t *ptl;
791 address = __vma_address(page, vma);
792 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
793 return 0;
794 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
795 if (!pte) /* the page is not in this mm */
796 return 0;
797 pte_unmap_unlock(pte, ptl);
799 return 1;
802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
804 * Check that @page is mapped at @address into @mm. In contrast to
805 * page_check_address(), this function can handle transparent huge pages.
807 * On success returns true with pte mapped and locked. For PMD-mapped
808 * transparent huge pages *@ptep is set to NULL.
810 bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
811 unsigned long address, pmd_t **pmdp,
812 pte_t **ptep, spinlock_t **ptlp)
814 pgd_t *pgd;
815 pud_t *pud;
816 pmd_t *pmd;
817 pte_t *pte;
818 spinlock_t *ptl;
820 if (unlikely(PageHuge(page))) {
821 /* when pud is not present, pte will be NULL */
822 pte = huge_pte_offset(mm, address);
823 if (!pte)
824 return false;
826 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
827 pmd = NULL;
828 goto check_pte;
831 pgd = pgd_offset(mm, address);
832 if (!pgd_present(*pgd))
833 return false;
834 pud = pud_offset(pgd, address);
835 if (!pud_present(*pud))
836 return false;
837 pmd = pmd_offset(pud, address);
839 if (pmd_trans_huge(*pmd)) {
840 ptl = pmd_lock(mm, pmd);
841 if (!pmd_present(*pmd))
842 goto unlock_pmd;
843 if (unlikely(!pmd_trans_huge(*pmd))) {
844 spin_unlock(ptl);
845 goto map_pte;
848 if (pmd_page(*pmd) != page)
849 goto unlock_pmd;
851 pte = NULL;
852 goto found;
853 unlock_pmd:
854 spin_unlock(ptl);
855 return false;
856 } else {
857 pmd_t pmde = *pmd;
859 barrier();
860 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
861 return false;
863 map_pte:
864 pte = pte_offset_map(pmd, address);
865 if (!pte_present(*pte)) {
866 pte_unmap(pte);
867 return false;
870 ptl = pte_lockptr(mm, pmd);
871 check_pte:
872 spin_lock(ptl);
874 if (!pte_present(*pte)) {
875 pte_unmap_unlock(pte, ptl);
876 return false;
879 /* THP can be referenced by any subpage */
880 if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
881 pte_unmap_unlock(pte, ptl);
882 return false;
884 found:
885 *ptep = pte;
886 *pmdp = pmd;
887 *ptlp = ptl;
888 return true;
890 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
892 struct page_referenced_arg {
893 int mapcount;
894 int referenced;
895 unsigned long vm_flags;
896 struct mem_cgroup *memcg;
899 * arg: page_referenced_arg will be passed
901 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
902 unsigned long address, void *arg)
904 struct mm_struct *mm = vma->vm_mm;
905 struct page_referenced_arg *pra = arg;
906 pmd_t *pmd;
907 pte_t *pte;
908 spinlock_t *ptl;
909 int referenced = 0;
911 if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
912 return SWAP_AGAIN;
914 if (vma->vm_flags & VM_LOCKED) {
915 if (pte)
916 pte_unmap(pte);
917 spin_unlock(ptl);
918 pra->vm_flags |= VM_LOCKED;
919 return SWAP_FAIL; /* To break the loop */
922 if (pte) {
923 if (ptep_clear_flush_young_notify(vma, address, pte)) {
925 * Don't treat a reference through a sequentially read
926 * mapping as such. If the page has been used in
927 * another mapping, we will catch it; if this other
928 * mapping is already gone, the unmap path will have
929 * set PG_referenced or activated the page.
931 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
932 referenced++;
934 pte_unmap(pte);
935 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
936 if (pmdp_clear_flush_young_notify(vma, address, pmd))
937 referenced++;
938 } else {
939 /* unexpected pmd-mapped page? */
940 WARN_ON_ONCE(1);
942 spin_unlock(ptl);
944 if (referenced)
945 clear_page_idle(page);
946 if (test_and_clear_page_young(page))
947 referenced++;
949 if (referenced) {
950 pra->referenced++;
951 pra->vm_flags |= vma->vm_flags;
954 pra->mapcount--;
955 if (!pra->mapcount)
956 return SWAP_SUCCESS; /* To break the loop */
958 return SWAP_AGAIN;
961 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
963 struct page_referenced_arg *pra = arg;
964 struct mem_cgroup *memcg = pra->memcg;
966 if (!mm_match_cgroup(vma->vm_mm, memcg))
967 return true;
969 return false;
973 * page_referenced - test if the page was referenced
974 * @page: the page to test
975 * @is_locked: caller holds lock on the page
976 * @memcg: target memory cgroup
977 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
979 * Quick test_and_clear_referenced for all mappings to a page,
980 * returns the number of ptes which referenced the page.
982 int page_referenced(struct page *page,
983 int is_locked,
984 struct mem_cgroup *memcg,
985 unsigned long *vm_flags)
987 int ret;
988 int we_locked = 0;
989 struct page_referenced_arg pra = {
990 .mapcount = total_mapcount(page),
991 .memcg = memcg,
993 struct rmap_walk_control rwc = {
994 .rmap_one = page_referenced_one,
995 .arg = (void *)&pra,
996 .anon_lock = page_lock_anon_vma_read,
999 *vm_flags = 0;
1000 if (!page_mapped(page))
1001 return 0;
1003 if (!page_rmapping(page))
1004 return 0;
1006 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
1007 we_locked = trylock_page(page);
1008 if (!we_locked)
1009 return 1;
1013 * If we are reclaiming on behalf of a cgroup, skip
1014 * counting on behalf of references from different
1015 * cgroups
1017 if (memcg) {
1018 rwc.invalid_vma = invalid_page_referenced_vma;
1021 ret = rmap_walk(page, &rwc);
1022 *vm_flags = pra.vm_flags;
1024 if (we_locked)
1025 unlock_page(page);
1027 return pra.referenced;
1030 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1031 unsigned long address, void *arg)
1033 struct mm_struct *mm = vma->vm_mm;
1034 pte_t *pte;
1035 spinlock_t *ptl;
1036 int ret = 0;
1037 int *cleaned = arg;
1039 pte = page_check_address(page, mm, address, &ptl, 1);
1040 if (!pte)
1041 goto out;
1043 if (pte_dirty(*pte) || pte_write(*pte)) {
1044 pte_t entry;
1046 flush_cache_page(vma, address, pte_pfn(*pte));
1047 entry = ptep_clear_flush(vma, address, pte);
1048 entry = pte_wrprotect(entry);
1049 entry = pte_mkclean(entry);
1050 set_pte_at(mm, address, pte, entry);
1051 ret = 1;
1054 pte_unmap_unlock(pte, ptl);
1056 if (ret) {
1057 mmu_notifier_invalidate_page(mm, address);
1058 (*cleaned)++;
1060 out:
1061 return SWAP_AGAIN;
1064 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1066 if (vma->vm_flags & VM_SHARED)
1067 return false;
1069 return true;
1072 int page_mkclean(struct page *page)
1074 int cleaned = 0;
1075 struct address_space *mapping;
1076 struct rmap_walk_control rwc = {
1077 .arg = (void *)&cleaned,
1078 .rmap_one = page_mkclean_one,
1079 .invalid_vma = invalid_mkclean_vma,
1082 BUG_ON(!PageLocked(page));
1084 if (!page_mapped(page))
1085 return 0;
1087 mapping = page_mapping(page);
1088 if (!mapping)
1089 return 0;
1091 rmap_walk(page, &rwc);
1093 return cleaned;
1095 EXPORT_SYMBOL_GPL(page_mkclean);
1098 * page_move_anon_rmap - move a page to our anon_vma
1099 * @page: the page to move to our anon_vma
1100 * @vma: the vma the page belongs to
1101 * @address: the user virtual address mapped
1103 * When a page belongs exclusively to one process after a COW event,
1104 * that page can be moved into the anon_vma that belongs to just that
1105 * process, so the rmap code will not search the parent or sibling
1106 * processes.
1108 void page_move_anon_rmap(struct page *page,
1109 struct vm_area_struct *vma, unsigned long address)
1111 struct anon_vma *anon_vma = vma->anon_vma;
1113 VM_BUG_ON_PAGE(!PageLocked(page), page);
1114 VM_BUG_ON_VMA(!anon_vma, vma);
1115 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1117 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1119 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1120 * simultaneously, so a concurrent reader (eg page_referenced()'s
1121 * PageAnon()) will not see one without the other.
1123 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1127 * __page_set_anon_rmap - set up new anonymous rmap
1128 * @page: Page to add to rmap
1129 * @vma: VM area to add page to.
1130 * @address: User virtual address of the mapping
1131 * @exclusive: the page is exclusively owned by the current process
1133 static void __page_set_anon_rmap(struct page *page,
1134 struct vm_area_struct *vma, unsigned long address, int exclusive)
1136 struct anon_vma *anon_vma = vma->anon_vma;
1138 BUG_ON(!anon_vma);
1140 if (PageAnon(page))
1141 return;
1144 * If the page isn't exclusively mapped into this vma,
1145 * we must use the _oldest_ possible anon_vma for the
1146 * page mapping!
1148 if (!exclusive)
1149 anon_vma = anon_vma->root;
1151 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1152 page->mapping = (struct address_space *) anon_vma;
1153 page->index = linear_page_index(vma, address);
1157 * __page_check_anon_rmap - sanity check anonymous rmap addition
1158 * @page: the page to add the mapping to
1159 * @vma: the vm area in which the mapping is added
1160 * @address: the user virtual address mapped
1162 static void __page_check_anon_rmap(struct page *page,
1163 struct vm_area_struct *vma, unsigned long address)
1165 #ifdef CONFIG_DEBUG_VM
1167 * The page's anon-rmap details (mapping and index) are guaranteed to
1168 * be set up correctly at this point.
1170 * We have exclusion against page_add_anon_rmap because the caller
1171 * always holds the page locked, except if called from page_dup_rmap,
1172 * in which case the page is already known to be setup.
1174 * We have exclusion against page_add_new_anon_rmap because those pages
1175 * are initially only visible via the pagetables, and the pte is locked
1176 * over the call to page_add_new_anon_rmap.
1178 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1179 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1180 #endif
1184 * page_add_anon_rmap - add pte mapping to an anonymous page
1185 * @page: the page to add the mapping to
1186 * @vma: the vm area in which the mapping is added
1187 * @address: the user virtual address mapped
1188 * @compound: charge the page as compound or small page
1190 * The caller needs to hold the pte lock, and the page must be locked in
1191 * the anon_vma case: to serialize mapping,index checking after setting,
1192 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1193 * (but PageKsm is never downgraded to PageAnon).
1195 void page_add_anon_rmap(struct page *page,
1196 struct vm_area_struct *vma, unsigned long address, bool compound)
1198 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1202 * Special version of the above for do_swap_page, which often runs
1203 * into pages that are exclusively owned by the current process.
1204 * Everybody else should continue to use page_add_anon_rmap above.
1206 void do_page_add_anon_rmap(struct page *page,
1207 struct vm_area_struct *vma, unsigned long address, int flags)
1209 bool compound = flags & RMAP_COMPOUND;
1210 bool first;
1212 if (compound) {
1213 atomic_t *mapcount;
1214 VM_BUG_ON_PAGE(!PageLocked(page), page);
1215 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1216 mapcount = compound_mapcount_ptr(page);
1217 first = atomic_inc_and_test(mapcount);
1218 } else {
1219 first = atomic_inc_and_test(&page->_mapcount);
1222 if (first) {
1223 int nr = compound ? hpage_nr_pages(page) : 1;
1225 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1226 * these counters are not modified in interrupt context, and
1227 * pte lock(a spinlock) is held, which implies preemption
1228 * disabled.
1230 if (compound) {
1231 __inc_zone_page_state(page,
1232 NR_ANON_TRANSPARENT_HUGEPAGES);
1234 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1236 if (unlikely(PageKsm(page)))
1237 return;
1239 VM_BUG_ON_PAGE(!PageLocked(page), page);
1241 /* address might be in next vma when migration races vma_adjust */
1242 if (first)
1243 __page_set_anon_rmap(page, vma, address,
1244 flags & RMAP_EXCLUSIVE);
1245 else
1246 __page_check_anon_rmap(page, vma, address);
1250 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1251 * @page: the page to add the mapping to
1252 * @vma: the vm area in which the mapping is added
1253 * @address: the user virtual address mapped
1254 * @compound: charge the page as compound or small page
1256 * Same as page_add_anon_rmap but must only be called on *new* pages.
1257 * This means the inc-and-test can be bypassed.
1258 * Page does not have to be locked.
1260 void page_add_new_anon_rmap(struct page *page,
1261 struct vm_area_struct *vma, unsigned long address, bool compound)
1263 int nr = compound ? hpage_nr_pages(page) : 1;
1265 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1266 SetPageSwapBacked(page);
1267 if (compound) {
1268 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1269 /* increment count (starts at -1) */
1270 atomic_set(compound_mapcount_ptr(page), 0);
1271 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1272 } else {
1273 /* Anon THP always mapped first with PMD */
1274 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1275 /* increment count (starts at -1) */
1276 atomic_set(&page->_mapcount, 0);
1278 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1279 __page_set_anon_rmap(page, vma, address, 1);
1283 * page_add_file_rmap - add pte mapping to a file page
1284 * @page: the page to add the mapping to
1286 * The caller needs to hold the pte lock.
1288 void page_add_file_rmap(struct page *page)
1290 struct mem_cgroup *memcg;
1292 memcg = mem_cgroup_begin_page_stat(page);
1293 if (atomic_inc_and_test(&page->_mapcount)) {
1294 __inc_zone_page_state(page, NR_FILE_MAPPED);
1295 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1297 mem_cgroup_end_page_stat(memcg);
1300 static void page_remove_file_rmap(struct page *page)
1302 struct mem_cgroup *memcg;
1304 memcg = mem_cgroup_begin_page_stat(page);
1306 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1307 if (unlikely(PageHuge(page))) {
1308 /* hugetlb pages are always mapped with pmds */
1309 atomic_dec(compound_mapcount_ptr(page));
1310 goto out;
1313 /* page still mapped by someone else? */
1314 if (!atomic_add_negative(-1, &page->_mapcount))
1315 goto out;
1318 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1319 * these counters are not modified in interrupt context, and
1320 * pte lock(a spinlock) is held, which implies preemption disabled.
1322 __dec_zone_page_state(page, NR_FILE_MAPPED);
1323 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1325 if (unlikely(PageMlocked(page)))
1326 clear_page_mlock(page);
1327 out:
1328 mem_cgroup_end_page_stat(memcg);
1331 static void page_remove_anon_compound_rmap(struct page *page)
1333 int i, nr;
1335 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1336 return;
1338 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1339 if (unlikely(PageHuge(page)))
1340 return;
1342 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1343 return;
1345 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1347 if (TestClearPageDoubleMap(page)) {
1349 * Subpages can be mapped with PTEs too. Check how many of
1350 * themi are still mapped.
1352 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1353 if (atomic_add_negative(-1, &page[i]._mapcount))
1354 nr++;
1356 } else {
1357 nr = HPAGE_PMD_NR;
1360 if (unlikely(PageMlocked(page)))
1361 clear_page_mlock(page);
1363 if (nr) {
1364 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
1365 deferred_split_huge_page(page);
1370 * page_remove_rmap - take down pte mapping from a page
1371 * @page: page to remove mapping from
1372 * @compound: uncharge the page as compound or small page
1374 * The caller needs to hold the pte lock.
1376 void page_remove_rmap(struct page *page, bool compound)
1378 if (!PageAnon(page)) {
1379 VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
1380 page_remove_file_rmap(page);
1381 return;
1384 if (compound)
1385 return page_remove_anon_compound_rmap(page);
1387 /* page still mapped by someone else? */
1388 if (!atomic_add_negative(-1, &page->_mapcount))
1389 return;
1392 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1393 * these counters are not modified in interrupt context, and
1394 * pte lock(a spinlock) is held, which implies preemption disabled.
1396 __dec_zone_page_state(page, NR_ANON_PAGES);
1398 if (unlikely(PageMlocked(page)))
1399 clear_page_mlock(page);
1401 if (PageTransCompound(page))
1402 deferred_split_huge_page(compound_head(page));
1405 * It would be tidy to reset the PageAnon mapping here,
1406 * but that might overwrite a racing page_add_anon_rmap
1407 * which increments mapcount after us but sets mapping
1408 * before us: so leave the reset to free_hot_cold_page,
1409 * and remember that it's only reliable while mapped.
1410 * Leaving it set also helps swapoff to reinstate ptes
1411 * faster for those pages still in swapcache.
1415 struct rmap_private {
1416 enum ttu_flags flags;
1417 int lazyfreed;
1421 * @arg: enum ttu_flags will be passed to this argument
1423 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1424 unsigned long address, void *arg)
1426 struct mm_struct *mm = vma->vm_mm;
1427 pte_t *pte;
1428 pte_t pteval;
1429 spinlock_t *ptl;
1430 int ret = SWAP_AGAIN;
1431 struct rmap_private *rp = arg;
1432 enum ttu_flags flags = rp->flags;
1434 /* munlock has nothing to gain from examining un-locked vmas */
1435 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1436 goto out;
1438 pte = page_check_address(page, mm, address, &ptl, 0);
1439 if (!pte)
1440 goto out;
1443 * If the page is mlock()d, we cannot swap it out.
1444 * If it's recently referenced (perhaps page_referenced
1445 * skipped over this mm) then we should reactivate it.
1447 if (!(flags & TTU_IGNORE_MLOCK)) {
1448 if (vma->vm_flags & VM_LOCKED) {
1449 /* Holding pte lock, we do *not* need mmap_sem here */
1450 mlock_vma_page(page);
1451 ret = SWAP_MLOCK;
1452 goto out_unmap;
1454 if (flags & TTU_MUNLOCK)
1455 goto out_unmap;
1457 if (!(flags & TTU_IGNORE_ACCESS)) {
1458 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1459 ret = SWAP_FAIL;
1460 goto out_unmap;
1464 /* Nuke the page table entry. */
1465 flush_cache_page(vma, address, page_to_pfn(page));
1466 if (should_defer_flush(mm, flags)) {
1468 * We clear the PTE but do not flush so potentially a remote
1469 * CPU could still be writing to the page. If the entry was
1470 * previously clean then the architecture must guarantee that
1471 * a clear->dirty transition on a cached TLB entry is written
1472 * through and traps if the PTE is unmapped.
1474 pteval = ptep_get_and_clear(mm, address, pte);
1476 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1477 } else {
1478 pteval = ptep_clear_flush(vma, address, pte);
1481 /* Move the dirty bit to the physical page now the pte is gone. */
1482 if (pte_dirty(pteval))
1483 set_page_dirty(page);
1485 /* Update high watermark before we lower rss */
1486 update_hiwater_rss(mm);
1488 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1489 if (PageHuge(page)) {
1490 hugetlb_count_sub(1 << compound_order(page), mm);
1491 } else {
1492 dec_mm_counter(mm, mm_counter(page));
1494 set_pte_at(mm, address, pte,
1495 swp_entry_to_pte(make_hwpoison_entry(page)));
1496 } else if (pte_unused(pteval)) {
1498 * The guest indicated that the page content is of no
1499 * interest anymore. Simply discard the pte, vmscan
1500 * will take care of the rest.
1502 dec_mm_counter(mm, mm_counter(page));
1503 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1504 swp_entry_t entry;
1505 pte_t swp_pte;
1507 * Store the pfn of the page in a special migration
1508 * pte. do_swap_page() will wait until the migration
1509 * pte is removed and then restart fault handling.
1511 entry = make_migration_entry(page, pte_write(pteval));
1512 swp_pte = swp_entry_to_pte(entry);
1513 if (pte_soft_dirty(pteval))
1514 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1515 set_pte_at(mm, address, pte, swp_pte);
1516 } else if (PageAnon(page)) {
1517 swp_entry_t entry = { .val = page_private(page) };
1518 pte_t swp_pte;
1520 * Store the swap location in the pte.
1521 * See handle_pte_fault() ...
1523 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1525 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1526 /* It's a freeable page by MADV_FREE */
1527 dec_mm_counter(mm, MM_ANONPAGES);
1528 rp->lazyfreed++;
1529 goto discard;
1532 if (swap_duplicate(entry) < 0) {
1533 set_pte_at(mm, address, pte, pteval);
1534 ret = SWAP_FAIL;
1535 goto out_unmap;
1537 if (list_empty(&mm->mmlist)) {
1538 spin_lock(&mmlist_lock);
1539 if (list_empty(&mm->mmlist))
1540 list_add(&mm->mmlist, &init_mm.mmlist);
1541 spin_unlock(&mmlist_lock);
1543 dec_mm_counter(mm, MM_ANONPAGES);
1544 inc_mm_counter(mm, MM_SWAPENTS);
1545 swp_pte = swp_entry_to_pte(entry);
1546 if (pte_soft_dirty(pteval))
1547 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1548 set_pte_at(mm, address, pte, swp_pte);
1549 } else
1550 dec_mm_counter(mm, mm_counter_file(page));
1552 discard:
1553 page_remove_rmap(page, PageHuge(page));
1554 page_cache_release(page);
1556 out_unmap:
1557 pte_unmap_unlock(pte, ptl);
1558 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1559 mmu_notifier_invalidate_page(mm, address);
1560 out:
1561 return ret;
1564 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1566 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1568 if (!maybe_stack)
1569 return false;
1571 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1572 VM_STACK_INCOMPLETE_SETUP)
1573 return true;
1575 return false;
1578 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1580 return is_vma_temporary_stack(vma);
1583 static int page_not_mapped(struct page *page)
1585 return !page_mapped(page);
1589 * try_to_unmap - try to remove all page table mappings to a page
1590 * @page: the page to get unmapped
1591 * @flags: action and flags
1593 * Tries to remove all the page table entries which are mapping this
1594 * page, used in the pageout path. Caller must hold the page lock.
1595 * Return values are:
1597 * SWAP_SUCCESS - we succeeded in removing all mappings
1598 * SWAP_AGAIN - we missed a mapping, try again later
1599 * SWAP_FAIL - the page is unswappable
1600 * SWAP_MLOCK - page is mlocked.
1602 int try_to_unmap(struct page *page, enum ttu_flags flags)
1604 int ret;
1605 struct rmap_private rp = {
1606 .flags = flags,
1607 .lazyfreed = 0,
1610 struct rmap_walk_control rwc = {
1611 .rmap_one = try_to_unmap_one,
1612 .arg = &rp,
1613 .done = page_not_mapped,
1614 .anon_lock = page_lock_anon_vma_read,
1617 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1620 * During exec, a temporary VMA is setup and later moved.
1621 * The VMA is moved under the anon_vma lock but not the
1622 * page tables leading to a race where migration cannot
1623 * find the migration ptes. Rather than increasing the
1624 * locking requirements of exec(), migration skips
1625 * temporary VMAs until after exec() completes.
1627 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1628 rwc.invalid_vma = invalid_migration_vma;
1630 ret = rmap_walk(page, &rwc);
1632 if (ret != SWAP_MLOCK && !page_mapped(page)) {
1633 ret = SWAP_SUCCESS;
1634 if (rp.lazyfreed && !PageDirty(page))
1635 ret = SWAP_LZFREE;
1637 return ret;
1641 * try_to_munlock - try to munlock a page
1642 * @page: the page to be munlocked
1644 * Called from munlock code. Checks all of the VMAs mapping the page
1645 * to make sure nobody else has this page mlocked. The page will be
1646 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1648 * Return values are:
1650 * SWAP_AGAIN - no vma is holding page mlocked, or,
1651 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1652 * SWAP_FAIL - page cannot be located at present
1653 * SWAP_MLOCK - page is now mlocked.
1655 int try_to_munlock(struct page *page)
1657 int ret;
1658 struct rmap_private rp = {
1659 .flags = TTU_MUNLOCK,
1660 .lazyfreed = 0,
1663 struct rmap_walk_control rwc = {
1664 .rmap_one = try_to_unmap_one,
1665 .arg = &rp,
1666 .done = page_not_mapped,
1667 .anon_lock = page_lock_anon_vma_read,
1671 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1673 ret = rmap_walk(page, &rwc);
1674 return ret;
1677 void __put_anon_vma(struct anon_vma *anon_vma)
1679 struct anon_vma *root = anon_vma->root;
1681 anon_vma_free(anon_vma);
1682 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1683 anon_vma_free(root);
1686 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1687 struct rmap_walk_control *rwc)
1689 struct anon_vma *anon_vma;
1691 if (rwc->anon_lock)
1692 return rwc->anon_lock(page);
1695 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1696 * because that depends on page_mapped(); but not all its usages
1697 * are holding mmap_sem. Users without mmap_sem are required to
1698 * take a reference count to prevent the anon_vma disappearing
1700 anon_vma = page_anon_vma(page);
1701 if (!anon_vma)
1702 return NULL;
1704 anon_vma_lock_read(anon_vma);
1705 return anon_vma;
1709 * rmap_walk_anon - do something to anonymous page using the object-based
1710 * rmap method
1711 * @page: the page to be handled
1712 * @rwc: control variable according to each walk type
1714 * Find all the mappings of a page using the mapping pointer and the vma chains
1715 * contained in the anon_vma struct it points to.
1717 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1718 * where the page was found will be held for write. So, we won't recheck
1719 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1720 * LOCKED.
1722 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1724 struct anon_vma *anon_vma;
1725 pgoff_t pgoff;
1726 struct anon_vma_chain *avc;
1727 int ret = SWAP_AGAIN;
1729 anon_vma = rmap_walk_anon_lock(page, rwc);
1730 if (!anon_vma)
1731 return ret;
1733 pgoff = page_to_pgoff(page);
1734 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1735 struct vm_area_struct *vma = avc->vma;
1736 unsigned long address = vma_address(page, vma);
1738 cond_resched();
1740 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1741 continue;
1743 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1744 if (ret != SWAP_AGAIN)
1745 break;
1746 if (rwc->done && rwc->done(page))
1747 break;
1749 anon_vma_unlock_read(anon_vma);
1750 return ret;
1754 * rmap_walk_file - do something to file page using the object-based rmap method
1755 * @page: the page to be handled
1756 * @rwc: control variable according to each walk type
1758 * Find all the mappings of a page using the mapping pointer and the vma chains
1759 * contained in the address_space struct it points to.
1761 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1762 * where the page was found will be held for write. So, we won't recheck
1763 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1764 * LOCKED.
1766 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1768 struct address_space *mapping = page->mapping;
1769 pgoff_t pgoff;
1770 struct vm_area_struct *vma;
1771 int ret = SWAP_AGAIN;
1774 * The page lock not only makes sure that page->mapping cannot
1775 * suddenly be NULLified by truncation, it makes sure that the
1776 * structure at mapping cannot be freed and reused yet,
1777 * so we can safely take mapping->i_mmap_rwsem.
1779 VM_BUG_ON_PAGE(!PageLocked(page), page);
1781 if (!mapping)
1782 return ret;
1784 pgoff = page_to_pgoff(page);
1785 i_mmap_lock_read(mapping);
1786 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1787 unsigned long address = vma_address(page, vma);
1789 cond_resched();
1791 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1792 continue;
1794 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1795 if (ret != SWAP_AGAIN)
1796 goto done;
1797 if (rwc->done && rwc->done(page))
1798 goto done;
1801 done:
1802 i_mmap_unlock_read(mapping);
1803 return ret;
1806 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1808 if (unlikely(PageKsm(page)))
1809 return rmap_walk_ksm(page, rwc);
1810 else if (PageAnon(page))
1811 return rmap_walk_anon(page, rwc);
1812 else
1813 return rmap_walk_file(page, rwc);
1816 #ifdef CONFIG_HUGETLB_PAGE
1818 * The following three functions are for anonymous (private mapped) hugepages.
1819 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1820 * and no lru code, because we handle hugepages differently from common pages.
1822 static void __hugepage_set_anon_rmap(struct page *page,
1823 struct vm_area_struct *vma, unsigned long address, int exclusive)
1825 struct anon_vma *anon_vma = vma->anon_vma;
1827 BUG_ON(!anon_vma);
1829 if (PageAnon(page))
1830 return;
1831 if (!exclusive)
1832 anon_vma = anon_vma->root;
1834 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1835 page->mapping = (struct address_space *) anon_vma;
1836 page->index = linear_page_index(vma, address);
1839 void hugepage_add_anon_rmap(struct page *page,
1840 struct vm_area_struct *vma, unsigned long address)
1842 struct anon_vma *anon_vma = vma->anon_vma;
1843 int first;
1845 BUG_ON(!PageLocked(page));
1846 BUG_ON(!anon_vma);
1847 /* address might be in next vma when migration races vma_adjust */
1848 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1849 if (first)
1850 __hugepage_set_anon_rmap(page, vma, address, 0);
1853 void hugepage_add_new_anon_rmap(struct page *page,
1854 struct vm_area_struct *vma, unsigned long address)
1856 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1857 atomic_set(compound_mapcount_ptr(page), 0);
1858 __hugepage_set_anon_rmap(page, vma, address, 1);
1860 #endif /* CONFIG_HUGETLB_PAGE */