2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
19 * $Id: diskonchip.c,v 1.55 2005/11/07 11:14:30 gleixner Exp $
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
42 static unsigned long __initdata doc_locations
[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
59 #elif defined(CONFIG_MOMENCO_OCELOT)
62 #elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
65 #warning Unknown architecture for DiskOnChip. No default probe locations defined
69 static struct mtd_info
*doclist
= NULL
;
72 void __iomem
*virtadr
;
73 unsigned long physadr
;
76 int chips_per_floor
; /* The number of chips detected on each floor */
81 struct mtd_info
*nextdoc
;
84 /* This is the syndrome computed by the HW ecc generator upon reading an empty
85 page, one with all 0xff for data and stored ecc code. */
86 static u_char empty_read_syndrome
[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
88 /* This is the ecc value computed by the HW ecc generator upon writing an empty
89 page, one with all 0xff for data. */
90 static u_char empty_write_ecc
[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
92 #define INFTL_BBT_RESERVED_BLOCKS 4
94 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
95 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
96 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
98 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
99 unsigned int bitmask
);
100 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
);
102 static int debug
= 0;
103 module_param(debug
, int, 0);
105 static int try_dword
= 1;
106 module_param(try_dword
, int, 0);
108 static int no_ecc_failures
= 0;
109 module_param(no_ecc_failures
, int, 0);
111 static int no_autopart
= 0;
112 module_param(no_autopart
, int, 0);
114 static int show_firmware_partition
= 0;
115 module_param(show_firmware_partition
, int, 0);
117 #ifdef MTD_NAND_DISKONCHIP_BBTWRITE
118 static int inftl_bbt_write
= 1;
120 static int inftl_bbt_write
= 0;
122 module_param(inftl_bbt_write
, int, 0);
124 static unsigned long doc_config_location
= CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
;
125 module_param(doc_config_location
, ulong
, 0);
126 MODULE_PARM_DESC(doc_config_location
, "Physical memory address at which to probe for DiskOnChip");
128 /* Sector size for HW ECC */
129 #define SECTOR_SIZE 512
130 /* The sector bytes are packed into NB_DATA 10 bit words */
131 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
132 /* Number of roots */
134 /* First consective root */
136 /* Number of symbols */
139 /* the Reed Solomon control structure */
140 static struct rs_control
*rs_decoder
;
143 * The HW decoder in the DoC ASIC's provides us a error syndrome,
144 * which we must convert to a standard syndrom usable by the generic
145 * Reed-Solomon library code.
147 * Fabrice Bellard figured this out in the old docecc code. I added
148 * some comments, improved a minor bit and converted it to make use
149 * of the generic Reed-Solomon libary. tglx
151 static int doc_ecc_decode(struct rs_control
*rs
, uint8_t *data
, uint8_t *ecc
)
153 int i
, j
, nerr
, errpos
[8];
155 uint16_t ds
[4], s
[5], tmp
, errval
[8], syn
[4];
157 /* Convert the ecc bytes into words */
158 ds
[0] = ((ecc
[4] & 0xff) >> 0) | ((ecc
[5] & 0x03) << 8);
159 ds
[1] = ((ecc
[5] & 0xfc) >> 2) | ((ecc
[2] & 0x0f) << 6);
160 ds
[2] = ((ecc
[2] & 0xf0) >> 4) | ((ecc
[3] & 0x3f) << 4);
161 ds
[3] = ((ecc
[3] & 0xc0) >> 6) | ((ecc
[0] & 0xff) << 2);
164 /* Initialize the syndrom buffer */
165 for (i
= 0; i
< NROOTS
; i
++)
169 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
170 * where x = alpha^(FCR + i)
172 for (j
= 1; j
< NROOTS
; j
++) {
175 tmp
= rs
->index_of
[ds
[j
]];
176 for (i
= 0; i
< NROOTS
; i
++)
177 s
[i
] ^= rs
->alpha_to
[rs_modnn(rs
, tmp
+ (FCR
+ i
) * j
)];
180 /* Calc s[i] = s[i] / alpha^(v + i) */
181 for (i
= 0; i
< NROOTS
; i
++) {
183 syn
[i
] = rs_modnn(rs
, rs
->index_of
[s
[i
]] + (NN
- FCR
- i
));
185 /* Call the decoder library */
186 nerr
= decode_rs16(rs
, NULL
, NULL
, 1019, syn
, 0, errpos
, 0, errval
);
188 /* Incorrectable errors ? */
193 * Correct the errors. The bitpositions are a bit of magic,
194 * but they are given by the design of the de/encoder circuit
197 for (i
= 0; i
< nerr
; i
++) {
198 int index
, bitpos
, pos
= 1015 - errpos
[i
];
200 if (pos
>= NB_DATA
&& pos
< 1019)
203 /* extract bit position (MSB first) */
204 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
205 /* now correct the following 10 bits. At most two bytes
206 can be modified since pos is even */
207 index
= (pos
>> 3) ^ 1;
209 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
210 val
= (uint8_t) (errval
[i
] >> (2 + bitpos
));
212 if (index
< SECTOR_SIZE
)
215 index
= ((pos
>> 3) + 1) ^ 1;
216 bitpos
= (bitpos
+ 10) & 7;
219 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
220 val
= (uint8_t) (errval
[i
] << (8 - bitpos
));
222 if (index
< SECTOR_SIZE
)
227 /* If the parity is wrong, no rescue possible */
228 return parity
? -1 : nerr
;
231 static void DoC_Delay(struct doc_priv
*doc
, unsigned short cycles
)
236 for (i
= 0; i
< cycles
; i
++) {
237 if (DoC_is_Millennium(doc
))
238 dummy
= ReadDOC(doc
->virtadr
, NOP
);
239 else if (DoC_is_MillenniumPlus(doc
))
240 dummy
= ReadDOC(doc
->virtadr
, Mplus_NOP
);
242 dummy
= ReadDOC(doc
->virtadr
, DOCStatus
);
247 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
249 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
250 static int _DoC_WaitReady(struct doc_priv
*doc
)
252 void __iomem
*docptr
= doc
->virtadr
;
253 unsigned long timeo
= jiffies
+ (HZ
* 10);
256 printk("_DoC_WaitReady...\n");
257 /* Out-of-line routine to wait for chip response */
258 if (DoC_is_MillenniumPlus(doc
)) {
259 while ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
260 if (time_after(jiffies
, timeo
)) {
261 printk("_DoC_WaitReady timed out.\n");
268 while (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
269 if (time_after(jiffies
, timeo
)) {
270 printk("_DoC_WaitReady timed out.\n");
281 static inline int DoC_WaitReady(struct doc_priv
*doc
)
283 void __iomem
*docptr
= doc
->virtadr
;
286 if (DoC_is_MillenniumPlus(doc
)) {
289 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
)
290 /* Call the out-of-line routine to wait */
291 ret
= _DoC_WaitReady(doc
);
295 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
))
296 /* Call the out-of-line routine to wait */
297 ret
= _DoC_WaitReady(doc
);
302 printk("DoC_WaitReady OK\n");
306 static void doc2000_write_byte(struct mtd_info
*mtd
, u_char datum
)
308 struct nand_chip
*this = mtd
->priv
;
309 struct doc_priv
*doc
= this->priv
;
310 void __iomem
*docptr
= doc
->virtadr
;
313 printk("write_byte %02x\n", datum
);
314 WriteDOC(datum
, docptr
, CDSNSlowIO
);
315 WriteDOC(datum
, docptr
, 2k_CDSN_IO
);
318 static u_char
doc2000_read_byte(struct mtd_info
*mtd
)
320 struct nand_chip
*this = mtd
->priv
;
321 struct doc_priv
*doc
= this->priv
;
322 void __iomem
*docptr
= doc
->virtadr
;
325 ReadDOC(docptr
, CDSNSlowIO
);
327 ret
= ReadDOC(docptr
, 2k_CDSN_IO
);
329 printk("read_byte returns %02x\n", ret
);
333 static void doc2000_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
335 struct nand_chip
*this = mtd
->priv
;
336 struct doc_priv
*doc
= this->priv
;
337 void __iomem
*docptr
= doc
->virtadr
;
340 printk("writebuf of %d bytes: ", len
);
341 for (i
= 0; i
< len
; i
++) {
342 WriteDOC_(buf
[i
], docptr
, DoC_2k_CDSN_IO
+ i
);
344 printk("%02x ", buf
[i
]);
350 static void doc2000_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
352 struct nand_chip
*this = mtd
->priv
;
353 struct doc_priv
*doc
= this->priv
;
354 void __iomem
*docptr
= doc
->virtadr
;
358 printk("readbuf of %d bytes: ", len
);
360 for (i
= 0; i
< len
; i
++) {
361 buf
[i
] = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
365 static void doc2000_readbuf_dword(struct mtd_info
*mtd
, u_char
*buf
, int len
)
367 struct nand_chip
*this = mtd
->priv
;
368 struct doc_priv
*doc
= this->priv
;
369 void __iomem
*docptr
= doc
->virtadr
;
373 printk("readbuf_dword of %d bytes: ", len
);
375 if (unlikely((((unsigned long)buf
) | len
) & 3)) {
376 for (i
= 0; i
< len
; i
++) {
377 *(uint8_t *) (&buf
[i
]) = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
380 for (i
= 0; i
< len
; i
+= 4) {
381 *(uint32_t *) (&buf
[i
]) = readl(docptr
+ DoC_2k_CDSN_IO
+ i
);
386 static int doc2000_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
388 struct nand_chip
*this = mtd
->priv
;
389 struct doc_priv
*doc
= this->priv
;
390 void __iomem
*docptr
= doc
->virtadr
;
393 for (i
= 0; i
< len
; i
++)
394 if (buf
[i
] != ReadDOC(docptr
, 2k_CDSN_IO
))
399 static uint16_t __init
doc200x_ident_chip(struct mtd_info
*mtd
, int nr
)
401 struct nand_chip
*this = mtd
->priv
;
402 struct doc_priv
*doc
= this->priv
;
405 doc200x_select_chip(mtd
, nr
);
406 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
407 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
408 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
409 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
411 /* We cant' use dev_ready here, but at least we wait for the
412 * command to complete
416 ret
= this->read_byte(mtd
) << 8;
417 ret
|= this->read_byte(mtd
);
419 if (doc
->ChipID
== DOC_ChipID_Doc2k
&& try_dword
&& !nr
) {
420 /* First chip probe. See if we get same results by 32-bit access */
425 void __iomem
*docptr
= doc
->virtadr
;
427 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
428 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
429 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
430 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
,
431 NAND_NCE
| NAND_CTRL_CHANGE
);
435 ident
.dword
= readl(docptr
+ DoC_2k_CDSN_IO
);
436 if (((ident
.byte
[0] << 8) | ident
.byte
[1]) == ret
) {
437 printk(KERN_INFO
"DiskOnChip 2000 responds to DWORD access\n");
438 this->read_buf
= &doc2000_readbuf_dword
;
445 static void __init
doc2000_count_chips(struct mtd_info
*mtd
)
447 struct nand_chip
*this = mtd
->priv
;
448 struct doc_priv
*doc
= this->priv
;
452 /* Max 4 chips per floor on DiskOnChip 2000 */
453 doc
->chips_per_floor
= 4;
455 /* Find out what the first chip is */
456 mfrid
= doc200x_ident_chip(mtd
, 0);
458 /* Find how many chips in each floor. */
459 for (i
= 1; i
< 4; i
++) {
460 if (doc200x_ident_chip(mtd
, i
) != mfrid
)
463 doc
->chips_per_floor
= i
;
464 printk(KERN_DEBUG
"Detected %d chips per floor.\n", i
);
467 static int doc200x_wait(struct mtd_info
*mtd
, struct nand_chip
*this)
469 struct doc_priv
*doc
= this->priv
;
474 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
476 status
= (int)this->read_byte(mtd
);
481 static void doc2001_write_byte(struct mtd_info
*mtd
, u_char datum
)
483 struct nand_chip
*this = mtd
->priv
;
484 struct doc_priv
*doc
= this->priv
;
485 void __iomem
*docptr
= doc
->virtadr
;
487 WriteDOC(datum
, docptr
, CDSNSlowIO
);
488 WriteDOC(datum
, docptr
, Mil_CDSN_IO
);
489 WriteDOC(datum
, docptr
, WritePipeTerm
);
492 static u_char
doc2001_read_byte(struct mtd_info
*mtd
)
494 struct nand_chip
*this = mtd
->priv
;
495 struct doc_priv
*doc
= this->priv
;
496 void __iomem
*docptr
= doc
->virtadr
;
498 //ReadDOC(docptr, CDSNSlowIO);
499 /* 11.4.5 -- delay twice to allow extended length cycle */
501 ReadDOC(docptr
, ReadPipeInit
);
502 //return ReadDOC(docptr, Mil_CDSN_IO);
503 return ReadDOC(docptr
, LastDataRead
);
506 static void doc2001_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
508 struct nand_chip
*this = mtd
->priv
;
509 struct doc_priv
*doc
= this->priv
;
510 void __iomem
*docptr
= doc
->virtadr
;
513 for (i
= 0; i
< len
; i
++)
514 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
515 /* Terminate write pipeline */
516 WriteDOC(0x00, docptr
, WritePipeTerm
);
519 static void doc2001_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
521 struct nand_chip
*this = mtd
->priv
;
522 struct doc_priv
*doc
= this->priv
;
523 void __iomem
*docptr
= doc
->virtadr
;
526 /* Start read pipeline */
527 ReadDOC(docptr
, ReadPipeInit
);
529 for (i
= 0; i
< len
- 1; i
++)
530 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
+ (i
& 0xff));
532 /* Terminate read pipeline */
533 buf
[i
] = ReadDOC(docptr
, LastDataRead
);
536 static int doc2001_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
538 struct nand_chip
*this = mtd
->priv
;
539 struct doc_priv
*doc
= this->priv
;
540 void __iomem
*docptr
= doc
->virtadr
;
543 /* Start read pipeline */
544 ReadDOC(docptr
, ReadPipeInit
);
546 for (i
= 0; i
< len
- 1; i
++)
547 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
548 ReadDOC(docptr
, LastDataRead
);
551 if (buf
[i
] != ReadDOC(docptr
, LastDataRead
))
556 static u_char
doc2001plus_read_byte(struct mtd_info
*mtd
)
558 struct nand_chip
*this = mtd
->priv
;
559 struct doc_priv
*doc
= this->priv
;
560 void __iomem
*docptr
= doc
->virtadr
;
563 ReadDOC(docptr
, Mplus_ReadPipeInit
);
564 ReadDOC(docptr
, Mplus_ReadPipeInit
);
565 ret
= ReadDOC(docptr
, Mplus_LastDataRead
);
567 printk("read_byte returns %02x\n", ret
);
571 static void doc2001plus_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
573 struct nand_chip
*this = mtd
->priv
;
574 struct doc_priv
*doc
= this->priv
;
575 void __iomem
*docptr
= doc
->virtadr
;
579 printk("writebuf of %d bytes: ", len
);
580 for (i
= 0; i
< len
; i
++) {
581 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
583 printk("%02x ", buf
[i
]);
589 static void doc2001plus_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
591 struct nand_chip
*this = mtd
->priv
;
592 struct doc_priv
*doc
= this->priv
;
593 void __iomem
*docptr
= doc
->virtadr
;
597 printk("readbuf of %d bytes: ", len
);
599 /* Start read pipeline */
600 ReadDOC(docptr
, Mplus_ReadPipeInit
);
601 ReadDOC(docptr
, Mplus_ReadPipeInit
);
603 for (i
= 0; i
< len
- 2; i
++) {
604 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
);
606 printk("%02x ", buf
[i
]);
609 /* Terminate read pipeline */
610 buf
[len
- 2] = ReadDOC(docptr
, Mplus_LastDataRead
);
612 printk("%02x ", buf
[len
- 2]);
613 buf
[len
- 1] = ReadDOC(docptr
, Mplus_LastDataRead
);
615 printk("%02x ", buf
[len
- 1]);
620 static int doc2001plus_verifybuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
622 struct nand_chip
*this = mtd
->priv
;
623 struct doc_priv
*doc
= this->priv
;
624 void __iomem
*docptr
= doc
->virtadr
;
628 printk("verifybuf of %d bytes: ", len
);
630 /* Start read pipeline */
631 ReadDOC(docptr
, Mplus_ReadPipeInit
);
632 ReadDOC(docptr
, Mplus_ReadPipeInit
);
634 for (i
= 0; i
< len
- 2; i
++)
635 if (buf
[i
] != ReadDOC(docptr
, Mil_CDSN_IO
)) {
636 ReadDOC(docptr
, Mplus_LastDataRead
);
637 ReadDOC(docptr
, Mplus_LastDataRead
);
640 if (buf
[len
- 2] != ReadDOC(docptr
, Mplus_LastDataRead
))
642 if (buf
[len
- 1] != ReadDOC(docptr
, Mplus_LastDataRead
))
647 static void doc2001plus_select_chip(struct mtd_info
*mtd
, int chip
)
649 struct nand_chip
*this = mtd
->priv
;
650 struct doc_priv
*doc
= this->priv
;
651 void __iomem
*docptr
= doc
->virtadr
;
655 printk("select chip (%d)\n", chip
);
658 /* Disable flash internally */
659 WriteDOC(0, docptr
, Mplus_FlashSelect
);
663 floor
= chip
/ doc
->chips_per_floor
;
664 chip
-= (floor
* doc
->chips_per_floor
);
666 /* Assert ChipEnable and deassert WriteProtect */
667 WriteDOC((DOC_FLASH_CE
), docptr
, Mplus_FlashSelect
);
668 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
671 doc
->curfloor
= floor
;
674 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
)
676 struct nand_chip
*this = mtd
->priv
;
677 struct doc_priv
*doc
= this->priv
;
678 void __iomem
*docptr
= doc
->virtadr
;
682 printk("select chip (%d)\n", chip
);
687 floor
= chip
/ doc
->chips_per_floor
;
688 chip
-= (floor
* doc
->chips_per_floor
);
690 /* 11.4.4 -- deassert CE before changing chip */
691 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
693 WriteDOC(floor
, docptr
, FloorSelect
);
694 WriteDOC(chip
, docptr
, CDSNDeviceSelect
);
696 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
699 doc
->curfloor
= floor
;
702 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
704 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
707 struct nand_chip
*this = mtd
->priv
;
708 struct doc_priv
*doc
= this->priv
;
709 void __iomem
*docptr
= doc
->virtadr
;
711 if (ctrl
& NAND_CTRL_CHANGE
) {
712 doc
->CDSNControl
&= ~CDSN_CTRL_MSK
;
713 doc
->CDSNControl
|= ctrl
& CDSN_CTRL_MSK
;
715 printk("hwcontrol(%d): %02x\n", cmd
, doc
->CDSNControl
);
716 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
717 /* 11.4.3 -- 4 NOPs after CSDNControl write */
720 if (cmd
!= NAND_CMD_NONE
) {
721 if (DoC_is_2000(doc
))
722 doc2000_write_byte(mtd
, cmd
);
724 doc2001_write_byte(mtd
, cmd
);
728 static void doc2001plus_command(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
730 struct nand_chip
*this = mtd
->priv
;
731 struct doc_priv
*doc
= this->priv
;
732 void __iomem
*docptr
= doc
->virtadr
;
735 * Must terminate write pipeline before sending any commands
738 if (command
== NAND_CMD_PAGEPROG
) {
739 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
740 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
744 * Write out the command to the device.
746 if (command
== NAND_CMD_SEQIN
) {
749 if (column
>= mtd
->writesize
) {
751 column
-= mtd
->writesize
;
752 readcmd
= NAND_CMD_READOOB
;
753 } else if (column
< 256) {
754 /* First 256 bytes --> READ0 */
755 readcmd
= NAND_CMD_READ0
;
758 readcmd
= NAND_CMD_READ1
;
760 WriteDOC(readcmd
, docptr
, Mplus_FlashCmd
);
762 WriteDOC(command
, docptr
, Mplus_FlashCmd
);
763 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
764 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
766 if (column
!= -1 || page_addr
!= -1) {
767 /* Serially input address */
769 /* Adjust columns for 16 bit buswidth */
770 if (this->options
& NAND_BUSWIDTH_16
)
772 WriteDOC(column
, docptr
, Mplus_FlashAddress
);
774 if (page_addr
!= -1) {
775 WriteDOC((unsigned char)(page_addr
& 0xff), docptr
, Mplus_FlashAddress
);
776 WriteDOC((unsigned char)((page_addr
>> 8) & 0xff), docptr
, Mplus_FlashAddress
);
777 /* One more address cycle for higher density devices */
778 if (this->chipsize
& 0x0c000000) {
779 WriteDOC((unsigned char)((page_addr
>> 16) & 0x0f), docptr
, Mplus_FlashAddress
);
780 printk("high density\n");
783 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
784 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
786 if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
787 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_READID
)
788 WriteDOC(0, docptr
, Mplus_FlashControl
);
792 * program and erase have their own busy handlers
793 * status and sequential in needs no delay
797 case NAND_CMD_PAGEPROG
:
798 case NAND_CMD_ERASE1
:
799 case NAND_CMD_ERASE2
:
801 case NAND_CMD_STATUS
:
807 udelay(this->chip_delay
);
808 WriteDOC(NAND_CMD_STATUS
, docptr
, Mplus_FlashCmd
);
809 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
810 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
811 while (!(this->read_byte(mtd
) & 0x40)) ;
814 /* This applies to read commands */
817 * If we don't have access to the busy pin, we apply the given
820 if (!this->dev_ready
) {
821 udelay(this->chip_delay
);
826 /* Apply this short delay always to ensure that we do wait tWB in
827 * any case on any machine. */
829 /* wait until command is processed */
830 while (!this->dev_ready(mtd
)) ;
833 static int doc200x_dev_ready(struct mtd_info
*mtd
)
835 struct nand_chip
*this = mtd
->priv
;
836 struct doc_priv
*doc
= this->priv
;
837 void __iomem
*docptr
= doc
->virtadr
;
839 if (DoC_is_MillenniumPlus(doc
)) {
840 /* 11.4.2 -- must NOP four times before checking FR/B# */
842 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
844 printk("not ready\n");
848 printk("was ready\n");
851 /* 11.4.2 -- must NOP four times before checking FR/B# */
853 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
855 printk("not ready\n");
858 /* 11.4.2 -- Must NOP twice if it's ready */
861 printk("was ready\n");
866 static int doc200x_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
868 /* This is our last resort if we couldn't find or create a BBT. Just
869 pretend all blocks are good. */
873 static void doc200x_enable_hwecc(struct mtd_info
*mtd
, int mode
)
875 struct nand_chip
*this = mtd
->priv
;
876 struct doc_priv
*doc
= this->priv
;
877 void __iomem
*docptr
= doc
->virtadr
;
879 /* Prime the ECC engine */
882 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
883 WriteDOC(DOC_ECC_EN
, docptr
, ECCConf
);
886 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
887 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, ECCConf
);
892 static void doc2001plus_enable_hwecc(struct mtd_info
*mtd
, int mode
)
894 struct nand_chip
*this = mtd
->priv
;
895 struct doc_priv
*doc
= this->priv
;
896 void __iomem
*docptr
= doc
->virtadr
;
898 /* Prime the ECC engine */
901 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
902 WriteDOC(DOC_ECC_EN
, docptr
, Mplus_ECCConf
);
905 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
906 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, Mplus_ECCConf
);
911 /* This code is only called on write */
912 static int doc200x_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, unsigned char *ecc_code
)
914 struct nand_chip
*this = mtd
->priv
;
915 struct doc_priv
*doc
= this->priv
;
916 void __iomem
*docptr
= doc
->virtadr
;
920 /* flush the pipeline */
921 if (DoC_is_2000(doc
)) {
922 WriteDOC(doc
->CDSNControl
& ~CDSN_CTRL_FLASH_IO
, docptr
, CDSNControl
);
923 WriteDOC(0, docptr
, 2k_CDSN_IO
);
924 WriteDOC(0, docptr
, 2k_CDSN_IO
);
925 WriteDOC(0, docptr
, 2k_CDSN_IO
);
926 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
927 } else if (DoC_is_MillenniumPlus(doc
)) {
928 WriteDOC(0, docptr
, Mplus_NOP
);
929 WriteDOC(0, docptr
, Mplus_NOP
);
930 WriteDOC(0, docptr
, Mplus_NOP
);
932 WriteDOC(0, docptr
, NOP
);
933 WriteDOC(0, docptr
, NOP
);
934 WriteDOC(0, docptr
, NOP
);
937 for (i
= 0; i
< 6; i
++) {
938 if (DoC_is_MillenniumPlus(doc
))
939 ecc_code
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
941 ecc_code
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
942 if (ecc_code
[i
] != empty_write_ecc
[i
])
945 if (DoC_is_MillenniumPlus(doc
))
946 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
948 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
950 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
952 /* Note: this somewhat expensive test should not be triggered
953 often. It could be optimized away by examining the data in
954 the writebuf routine, and remembering the result. */
955 for (i
= 0; i
< 512; i
++) {
962 /* If emptymatch still =1, we do have an all-0xff data buffer.
963 Return all-0xff ecc value instead of the computed one, so
964 it'll look just like a freshly-erased page. */
966 memset(ecc_code
, 0xff, 6);
971 static int doc200x_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
972 u_char
*read_ecc
, u_char
*isnull
)
975 struct nand_chip
*this = mtd
->priv
;
976 struct doc_priv
*doc
= this->priv
;
977 void __iomem
*docptr
= doc
->virtadr
;
979 volatile u_char dummy
;
982 /* flush the pipeline */
983 if (DoC_is_2000(doc
)) {
984 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
985 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
986 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
987 } else if (DoC_is_MillenniumPlus(doc
)) {
988 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
989 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
990 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
992 dummy
= ReadDOC(docptr
, ECCConf
);
993 dummy
= ReadDOC(docptr
, ECCConf
);
994 dummy
= ReadDOC(docptr
, ECCConf
);
997 /* Error occured ? */
999 for (i
= 0; i
< 6; i
++) {
1000 if (DoC_is_MillenniumPlus(doc
))
1001 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
1003 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
1004 if (calc_ecc
[i
] != empty_read_syndrome
[i
])
1007 /* If emptymatch=1, the read syndrome is consistent with an
1008 all-0xff data and stored ecc block. Check the stored ecc. */
1010 for (i
= 0; i
< 6; i
++) {
1011 if (read_ecc
[i
] == 0xff)
1017 /* If emptymatch still =1, check the data block. */
1019 /* Note: this somewhat expensive test should not be triggered
1020 often. It could be optimized away by examining the data in
1021 the readbuf routine, and remembering the result. */
1022 for (i
= 0; i
< 512; i
++) {
1029 /* If emptymatch still =1, this is almost certainly a freshly-
1030 erased block, in which case the ECC will not come out right.
1031 We'll suppress the error and tell the caller everything's
1032 OK. Because it is. */
1034 ret
= doc_ecc_decode(rs_decoder
, dat
, calc_ecc
);
1036 printk(KERN_ERR
"doc200x_correct_data corrected %d errors\n", ret
);
1038 if (DoC_is_MillenniumPlus(doc
))
1039 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
1041 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
1042 if (no_ecc_failures
&& (ret
== -1)) {
1043 printk(KERN_ERR
"suppressing ECC failure\n");
1049 //u_char mydatabuf[528];
1051 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1052 * attempt to retain compatibility. It used to read:
1053 * .oobfree = { {8, 8} }
1054 * Since that leaves two bytes unusable, it was changed. But the following
1055 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1056 * .oobfree = { {6, 10} }
1057 * jffs2 seems to handle the above gracefully, but the current scheme seems
1058 * safer. The only problem with it is that any code that parses oobfree must
1059 * be able to handle out-of-order segments.
1061 static struct nand_ecclayout doc200x_oobinfo
= {
1063 .eccpos
= {0, 1, 2, 3, 4, 5},
1064 .oobfree
= {{8, 8}, {6, 2}}
1067 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1068 On sucessful return, buf will contain a copy of the media header for
1069 further processing. id is the string to scan for, and will presumably be
1070 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1071 header. The page #s of the found media headers are placed in mh0_page and
1072 mh1_page in the DOC private structure. */
1073 static int __init
find_media_headers(struct mtd_info
*mtd
, u_char
*buf
, const char *id
, int findmirror
)
1075 struct nand_chip
*this = mtd
->priv
;
1076 struct doc_priv
*doc
= this->priv
;
1081 for (offs
= 0; offs
< mtd
->size
; offs
+= mtd
->erasesize
) {
1082 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1083 if (retlen
!= mtd
->writesize
)
1086 printk(KERN_WARNING
"ECC error scanning DOC at 0x%x\n", offs
);
1088 if (memcmp(buf
, id
, 6))
1090 printk(KERN_INFO
"Found DiskOnChip %s Media Header at 0x%x\n", id
, offs
);
1091 if (doc
->mh0_page
== -1) {
1092 doc
->mh0_page
= offs
>> this->page_shift
;
1097 doc
->mh1_page
= offs
>> this->page_shift
;
1100 if (doc
->mh0_page
== -1) {
1101 printk(KERN_WARNING
"DiskOnChip %s Media Header not found.\n", id
);
1104 /* Only one mediaheader was found. We want buf to contain a
1105 mediaheader on return, so we'll have to re-read the one we found. */
1106 offs
= doc
->mh0_page
<< this->page_shift
;
1107 ret
= mtd
->read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1108 if (retlen
!= mtd
->writesize
) {
1109 /* Insanity. Give up. */
1110 printk(KERN_ERR
"Read DiskOnChip Media Header once, but can't reread it???\n");
1116 static inline int __init
nftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1118 struct nand_chip
*this = mtd
->priv
;
1119 struct doc_priv
*doc
= this->priv
;
1122 struct NFTLMediaHeader
*mh
;
1123 const unsigned psize
= 1 << this->page_shift
;
1125 unsigned blocks
, maxblocks
;
1126 int offs
, numheaders
;
1128 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1130 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1133 if (!(numheaders
= find_media_headers(mtd
, buf
, "ANAND", 1)))
1135 mh
= (struct NFTLMediaHeader
*)buf
;
1137 mh
->NumEraseUnits
= le16_to_cpu(mh
->NumEraseUnits
);
1138 mh
->FirstPhysicalEUN
= le16_to_cpu(mh
->FirstPhysicalEUN
);
1139 mh
->FormattedSize
= le32_to_cpu(mh
->FormattedSize
);
1141 printk(KERN_INFO
" DataOrgID = %s\n"
1142 " NumEraseUnits = %d\n"
1143 " FirstPhysicalEUN = %d\n"
1144 " FormattedSize = %d\n"
1145 " UnitSizeFactor = %d\n",
1146 mh
->DataOrgID
, mh
->NumEraseUnits
,
1147 mh
->FirstPhysicalEUN
, mh
->FormattedSize
,
1148 mh
->UnitSizeFactor
);
1150 blocks
= mtd
->size
>> this->phys_erase_shift
;
1151 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1153 if (mh
->UnitSizeFactor
== 0x00) {
1154 /* Auto-determine UnitSizeFactor. The constraints are:
1155 - There can be at most 32768 virtual blocks.
1156 - There can be at most (virtual block size - page size)
1157 virtual blocks (because MediaHeader+BBT must fit in 1).
1159 mh
->UnitSizeFactor
= 0xff;
1160 while (blocks
> maxblocks
) {
1162 maxblocks
= min(32768U, (maxblocks
<< 1) + psize
);
1163 mh
->UnitSizeFactor
--;
1165 printk(KERN_WARNING
"UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh
->UnitSizeFactor
);
1168 /* NOTE: The lines below modify internal variables of the NAND and MTD
1169 layers; variables with have already been configured by nand_scan.
1170 Unfortunately, we didn't know before this point what these values
1171 should be. Thus, this code is somewhat dependant on the exact
1172 implementation of the NAND layer. */
1173 if (mh
->UnitSizeFactor
!= 0xff) {
1174 this->bbt_erase_shift
+= (0xff - mh
->UnitSizeFactor
);
1175 mtd
->erasesize
<<= (0xff - mh
->UnitSizeFactor
);
1176 printk(KERN_INFO
"Setting virtual erase size to %d\n", mtd
->erasesize
);
1177 blocks
= mtd
->size
>> this->bbt_erase_shift
;
1178 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1181 if (blocks
> maxblocks
) {
1182 printk(KERN_ERR
"UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh
->UnitSizeFactor
);
1186 /* Skip past the media headers. */
1187 offs
= max(doc
->mh0_page
, doc
->mh1_page
);
1188 offs
<<= this->page_shift
;
1189 offs
+= mtd
->erasesize
;
1191 if (show_firmware_partition
== 1) {
1192 parts
[0].name
= " DiskOnChip Firmware / Media Header partition";
1193 parts
[0].offset
= 0;
1194 parts
[0].size
= offs
;
1198 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1199 parts
[numparts
].offset
= offs
;
1200 parts
[numparts
].size
= (mh
->NumEraseUnits
- numheaders
) << this->bbt_erase_shift
;
1202 offs
+= parts
[numparts
].size
;
1205 if (offs
< mtd
->size
) {
1206 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1207 parts
[numparts
].offset
= offs
;
1208 parts
[numparts
].size
= mtd
->size
- offs
;
1218 /* This is a stripped-down copy of the code in inftlmount.c */
1219 static inline int __init
inftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1221 struct nand_chip
*this = mtd
->priv
;
1222 struct doc_priv
*doc
= this->priv
;
1225 struct INFTLMediaHeader
*mh
;
1226 struct INFTLPartition
*ip
;
1229 int vshift
, lastvunit
= 0;
1231 int end
= mtd
->size
;
1233 if (inftl_bbt_write
)
1234 end
-= (INFTL_BBT_RESERVED_BLOCKS
<< this->phys_erase_shift
);
1236 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1238 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1242 if (!find_media_headers(mtd
, buf
, "BNAND", 0))
1244 doc
->mh1_page
= doc
->mh0_page
+ (4096 >> this->page_shift
);
1245 mh
= (struct INFTLMediaHeader
*)buf
;
1247 mh
->NoOfBootImageBlocks
= le32_to_cpu(mh
->NoOfBootImageBlocks
);
1248 mh
->NoOfBinaryPartitions
= le32_to_cpu(mh
->NoOfBinaryPartitions
);
1249 mh
->NoOfBDTLPartitions
= le32_to_cpu(mh
->NoOfBDTLPartitions
);
1250 mh
->BlockMultiplierBits
= le32_to_cpu(mh
->BlockMultiplierBits
);
1251 mh
->FormatFlags
= le32_to_cpu(mh
->FormatFlags
);
1252 mh
->PercentUsed
= le32_to_cpu(mh
->PercentUsed
);
1254 printk(KERN_INFO
" bootRecordID = %s\n"
1255 " NoOfBootImageBlocks = %d\n"
1256 " NoOfBinaryPartitions = %d\n"
1257 " NoOfBDTLPartitions = %d\n"
1258 " BlockMultiplerBits = %d\n"
1259 " FormatFlgs = %d\n"
1260 " OsakVersion = %d.%d.%d.%d\n"
1261 " PercentUsed = %d\n",
1262 mh
->bootRecordID
, mh
->NoOfBootImageBlocks
,
1263 mh
->NoOfBinaryPartitions
,
1264 mh
->NoOfBDTLPartitions
,
1265 mh
->BlockMultiplierBits
, mh
->FormatFlags
,
1266 ((unsigned char *) &mh
->OsakVersion
)[0] & 0xf,
1267 ((unsigned char *) &mh
->OsakVersion
)[1] & 0xf,
1268 ((unsigned char *) &mh
->OsakVersion
)[2] & 0xf,
1269 ((unsigned char *) &mh
->OsakVersion
)[3] & 0xf,
1272 vshift
= this->phys_erase_shift
+ mh
->BlockMultiplierBits
;
1274 blocks
= mtd
->size
>> vshift
;
1275 if (blocks
> 32768) {
1276 printk(KERN_ERR
"BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh
->BlockMultiplierBits
);
1280 blocks
= doc
->chips_per_floor
<< (this->chip_shift
- this->phys_erase_shift
);
1281 if (inftl_bbt_write
&& (blocks
> mtd
->erasesize
)) {
1282 printk(KERN_ERR
"Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1286 /* Scan the partitions */
1287 for (i
= 0; (i
< 4); i
++) {
1288 ip
= &(mh
->Partitions
[i
]);
1289 ip
->virtualUnits
= le32_to_cpu(ip
->virtualUnits
);
1290 ip
->firstUnit
= le32_to_cpu(ip
->firstUnit
);
1291 ip
->lastUnit
= le32_to_cpu(ip
->lastUnit
);
1292 ip
->flags
= le32_to_cpu(ip
->flags
);
1293 ip
->spareUnits
= le32_to_cpu(ip
->spareUnits
);
1294 ip
->Reserved0
= le32_to_cpu(ip
->Reserved0
);
1296 printk(KERN_INFO
" PARTITION[%d] ->\n"
1297 " virtualUnits = %d\n"
1301 " spareUnits = %d\n",
1302 i
, ip
->virtualUnits
, ip
->firstUnit
,
1303 ip
->lastUnit
, ip
->flags
,
1306 if ((show_firmware_partition
== 1) &&
1307 (i
== 0) && (ip
->firstUnit
> 0)) {
1308 parts
[0].name
= " DiskOnChip IPL / Media Header partition";
1309 parts
[0].offset
= 0;
1310 parts
[0].size
= mtd
->erasesize
* ip
->firstUnit
;
1314 if (ip
->flags
& INFTL_BINARY
)
1315 parts
[numparts
].name
= " DiskOnChip BDK partition";
1317 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1318 parts
[numparts
].offset
= ip
->firstUnit
<< vshift
;
1319 parts
[numparts
].size
= (1 + ip
->lastUnit
- ip
->firstUnit
) << vshift
;
1321 if (ip
->lastUnit
> lastvunit
)
1322 lastvunit
= ip
->lastUnit
;
1323 if (ip
->flags
& INFTL_LAST
)
1327 if ((lastvunit
<< vshift
) < end
) {
1328 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1329 parts
[numparts
].offset
= lastvunit
<< vshift
;
1330 parts
[numparts
].size
= end
- parts
[numparts
].offset
;
1339 static int __init
nftl_scan_bbt(struct mtd_info
*mtd
)
1342 struct nand_chip
*this = mtd
->priv
;
1343 struct doc_priv
*doc
= this->priv
;
1344 struct mtd_partition parts
[2];
1346 memset((char *)parts
, 0, sizeof(parts
));
1347 /* On NFTL, we have to find the media headers before we can read the
1348 BBTs, since they're stored in the media header eraseblocks. */
1349 numparts
= nftl_partscan(mtd
, parts
);
1352 this->bbt_td
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1353 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1355 this->bbt_td
->veroffs
= 7;
1356 this->bbt_td
->pages
[0] = doc
->mh0_page
+ 1;
1357 if (doc
->mh1_page
!= -1) {
1358 this->bbt_md
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1359 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1361 this->bbt_md
->veroffs
= 7;
1362 this->bbt_md
->pages
[0] = doc
->mh1_page
+ 1;
1364 this->bbt_md
= NULL
;
1367 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1368 At least as nand_bbt.c is currently written. */
1369 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1371 add_mtd_device(mtd
);
1372 #ifdef CONFIG_MTD_PARTITIONS
1374 add_mtd_partitions(mtd
, parts
, numparts
);
1379 static int __init
inftl_scan_bbt(struct mtd_info
*mtd
)
1382 struct nand_chip
*this = mtd
->priv
;
1383 struct doc_priv
*doc
= this->priv
;
1384 struct mtd_partition parts
[5];
1386 if (this->numchips
> doc
->chips_per_floor
) {
1387 printk(KERN_ERR
"Multi-floor INFTL devices not yet supported.\n");
1391 if (DoC_is_MillenniumPlus(doc
)) {
1392 this->bbt_td
->options
= NAND_BBT_2BIT
| NAND_BBT_ABSPAGE
;
1393 if (inftl_bbt_write
)
1394 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1395 this->bbt_td
->pages
[0] = 2;
1396 this->bbt_md
= NULL
;
1398 this->bbt_td
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1399 if (inftl_bbt_write
)
1400 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1401 this->bbt_td
->offs
= 8;
1402 this->bbt_td
->len
= 8;
1403 this->bbt_td
->veroffs
= 7;
1404 this->bbt_td
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1405 this->bbt_td
->reserved_block_code
= 0x01;
1406 this->bbt_td
->pattern
= "MSYS_BBT";
1408 this->bbt_md
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1409 if (inftl_bbt_write
)
1410 this->bbt_md
->options
|= NAND_BBT_WRITE
;
1411 this->bbt_md
->offs
= 8;
1412 this->bbt_md
->len
= 8;
1413 this->bbt_md
->veroffs
= 7;
1414 this->bbt_md
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1415 this->bbt_md
->reserved_block_code
= 0x01;
1416 this->bbt_md
->pattern
= "TBB_SYSM";
1419 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1420 At least as nand_bbt.c is currently written. */
1421 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1423 memset((char *)parts
, 0, sizeof(parts
));
1424 numparts
= inftl_partscan(mtd
, parts
);
1425 /* At least for now, require the INFTL Media Header. We could probably
1426 do without it for non-INFTL use, since all it gives us is
1427 autopartitioning, but I want to give it more thought. */
1430 add_mtd_device(mtd
);
1431 #ifdef CONFIG_MTD_PARTITIONS
1433 add_mtd_partitions(mtd
, parts
, numparts
);
1438 static inline int __init
doc2000_init(struct mtd_info
*mtd
)
1440 struct nand_chip
*this = mtd
->priv
;
1441 struct doc_priv
*doc
= this->priv
;
1443 this->read_byte
= doc2000_read_byte
;
1444 this->write_buf
= doc2000_writebuf
;
1445 this->read_buf
= doc2000_readbuf
;
1446 this->verify_buf
= doc2000_verifybuf
;
1447 this->scan_bbt
= nftl_scan_bbt
;
1449 doc
->CDSNControl
= CDSN_CTRL_FLASH_IO
| CDSN_CTRL_ECC_IO
;
1450 doc2000_count_chips(mtd
);
1451 mtd
->name
= "DiskOnChip 2000 (NFTL Model)";
1452 return (4 * doc
->chips_per_floor
);
1455 static inline int __init
doc2001_init(struct mtd_info
*mtd
)
1457 struct nand_chip
*this = mtd
->priv
;
1458 struct doc_priv
*doc
= this->priv
;
1460 this->read_byte
= doc2001_read_byte
;
1461 this->write_buf
= doc2001_writebuf
;
1462 this->read_buf
= doc2001_readbuf
;
1463 this->verify_buf
= doc2001_verifybuf
;
1465 ReadDOC(doc
->virtadr
, ChipID
);
1466 ReadDOC(doc
->virtadr
, ChipID
);
1467 ReadDOC(doc
->virtadr
, ChipID
);
1468 if (ReadDOC(doc
->virtadr
, ChipID
) != DOC_ChipID_DocMil
) {
1469 /* It's not a Millennium; it's one of the newer
1470 DiskOnChip 2000 units with a similar ASIC.
1471 Treat it like a Millennium, except that it
1472 can have multiple chips. */
1473 doc2000_count_chips(mtd
);
1474 mtd
->name
= "DiskOnChip 2000 (INFTL Model)";
1475 this->scan_bbt
= inftl_scan_bbt
;
1476 return (4 * doc
->chips_per_floor
);
1478 /* Bog-standard Millennium */
1479 doc
->chips_per_floor
= 1;
1480 mtd
->name
= "DiskOnChip Millennium";
1481 this->scan_bbt
= nftl_scan_bbt
;
1486 static inline int __init
doc2001plus_init(struct mtd_info
*mtd
)
1488 struct nand_chip
*this = mtd
->priv
;
1489 struct doc_priv
*doc
= this->priv
;
1491 this->read_byte
= doc2001plus_read_byte
;
1492 this->write_buf
= doc2001plus_writebuf
;
1493 this->read_buf
= doc2001plus_readbuf
;
1494 this->verify_buf
= doc2001plus_verifybuf
;
1495 this->scan_bbt
= inftl_scan_bbt
;
1496 this->cmd_ctrl
= NULL
;
1497 this->select_chip
= doc2001plus_select_chip
;
1498 this->cmdfunc
= doc2001plus_command
;
1499 this->ecc
.hwctl
= doc2001plus_enable_hwecc
;
1501 doc
->chips_per_floor
= 1;
1502 mtd
->name
= "DiskOnChip Millennium Plus";
1507 static int __init
doc_probe(unsigned long physadr
)
1509 unsigned char ChipID
;
1510 struct mtd_info
*mtd
;
1511 struct nand_chip
*nand
;
1512 struct doc_priv
*doc
;
1513 void __iomem
*virtadr
;
1514 unsigned char save_control
;
1515 unsigned char tmp
, tmpb
, tmpc
;
1516 int reg
, len
, numchips
;
1519 virtadr
= ioremap(physadr
, DOC_IOREMAP_LEN
);
1521 printk(KERN_ERR
"Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN
, physadr
);
1525 /* It's not possible to cleanly detect the DiskOnChip - the
1526 * bootup procedure will put the device into reset mode, and
1527 * it's not possible to talk to it without actually writing
1528 * to the DOCControl register. So we store the current contents
1529 * of the DOCControl register's location, in case we later decide
1530 * that it's not a DiskOnChip, and want to put it back how we
1533 save_control
= ReadDOC(virtadr
, DOCControl
);
1535 /* Reset the DiskOnChip ASIC */
1536 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1537 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1539 /* Enable the DiskOnChip ASIC */
1540 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1541 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1543 ChipID
= ReadDOC(virtadr
, ChipID
);
1546 case DOC_ChipID_Doc2k
:
1547 reg
= DoC_2k_ECCStatus
;
1549 case DOC_ChipID_DocMil
:
1552 case DOC_ChipID_DocMilPlus16
:
1553 case DOC_ChipID_DocMilPlus32
:
1555 /* Possible Millennium Plus, need to do more checks */
1556 /* Possibly release from power down mode */
1557 for (tmp
= 0; (tmp
< 4); tmp
++)
1558 ReadDOC(virtadr
, Mplus_Power
);
1560 /* Reset the Millennium Plus ASIC */
1561 tmp
= DOC_MODE_RESET
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1562 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1563 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1566 /* Enable the Millennium Plus ASIC */
1567 tmp
= DOC_MODE_NORMAL
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1568 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1569 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1572 ChipID
= ReadDOC(virtadr
, ChipID
);
1575 case DOC_ChipID_DocMilPlus16
:
1576 reg
= DoC_Mplus_Toggle
;
1578 case DOC_ChipID_DocMilPlus32
:
1579 printk(KERN_ERR
"DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1590 /* Check the TOGGLE bit in the ECC register */
1591 tmp
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1592 tmpb
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1593 tmpc
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1594 if ((tmp
== tmpb
) || (tmp
!= tmpc
)) {
1595 printk(KERN_WARNING
"Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr
);
1600 for (mtd
= doclist
; mtd
; mtd
= doc
->nextdoc
) {
1601 unsigned char oldval
;
1602 unsigned char newval
;
1605 /* Use the alias resolution register to determine if this is
1606 in fact the same DOC aliased to a new address. If writes
1607 to one chip's alias resolution register change the value on
1608 the other chip, they're the same chip. */
1609 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1610 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1611 newval
= ReadDOC(virtadr
, Mplus_AliasResolution
);
1613 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1614 newval
= ReadDOC(virtadr
, AliasResolution
);
1616 if (oldval
!= newval
)
1618 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1619 WriteDOC(~newval
, virtadr
, Mplus_AliasResolution
);
1620 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1621 WriteDOC(newval
, virtadr
, Mplus_AliasResolution
); // restore it
1623 WriteDOC(~newval
, virtadr
, AliasResolution
);
1624 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1625 WriteDOC(newval
, virtadr
, AliasResolution
); // restore it
1628 if (oldval
== newval
) {
1629 printk(KERN_DEBUG
"Found alias of DOC at 0x%lx to 0x%lx\n", doc
->physadr
, physadr
);
1634 printk(KERN_NOTICE
"DiskOnChip found at 0x%lx\n", physadr
);
1636 len
= sizeof(struct mtd_info
) +
1637 sizeof(struct nand_chip
) + sizeof(struct doc_priv
) + (2 * sizeof(struct nand_bbt_descr
));
1638 mtd
= kzalloc(len
, GFP_KERNEL
);
1640 printk(KERN_ERR
"DiskOnChip kmalloc (%d bytes) failed!\n", len
);
1645 nand
= (struct nand_chip
*) (mtd
+ 1);
1646 doc
= (struct doc_priv
*) (nand
+ 1);
1647 nand
->bbt_td
= (struct nand_bbt_descr
*) (doc
+ 1);
1648 nand
->bbt_md
= nand
->bbt_td
+ 1;
1651 mtd
->owner
= THIS_MODULE
;
1654 nand
->select_chip
= doc200x_select_chip
;
1655 nand
->cmd_ctrl
= doc200x_hwcontrol
;
1656 nand
->dev_ready
= doc200x_dev_ready
;
1657 nand
->waitfunc
= doc200x_wait
;
1658 nand
->block_bad
= doc200x_block_bad
;
1659 nand
->ecc
.hwctl
= doc200x_enable_hwecc
;
1660 nand
->ecc
.calculate
= doc200x_calculate_ecc
;
1661 nand
->ecc
.correct
= doc200x_correct_data
;
1663 nand
->ecc
.layout
= &doc200x_oobinfo
;
1664 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1665 nand
->ecc
.size
= 512;
1666 nand
->ecc
.bytes
= 6;
1667 nand
->options
= NAND_USE_FLASH_BBT
;
1669 doc
->physadr
= physadr
;
1670 doc
->virtadr
= virtadr
;
1671 doc
->ChipID
= ChipID
;
1676 doc
->nextdoc
= doclist
;
1678 if (ChipID
== DOC_ChipID_Doc2k
)
1679 numchips
= doc2000_init(mtd
);
1680 else if (ChipID
== DOC_ChipID_DocMilPlus16
)
1681 numchips
= doc2001plus_init(mtd
);
1683 numchips
= doc2001_init(mtd
);
1685 if ((ret
= nand_scan(mtd
, numchips
))) {
1686 /* DBB note: i believe nand_release is necessary here, as
1687 buffers may have been allocated in nand_base. Check with
1689 /* nand_release will call del_mtd_device, but we haven't yet
1690 added it. This is handled without incident by
1691 del_mtd_device, as far as I can tell. */
1702 /* Put back the contents of the DOCControl register, in case it's not
1703 actually a DiskOnChip. */
1704 WriteDOC(save_control
, virtadr
, DOCControl
);
1710 static void release_nanddoc(void)
1712 struct mtd_info
*mtd
, *nextmtd
;
1713 struct nand_chip
*nand
;
1714 struct doc_priv
*doc
;
1716 for (mtd
= doclist
; mtd
; mtd
= nextmtd
) {
1720 nextmtd
= doc
->nextdoc
;
1722 iounmap(doc
->virtadr
);
1727 static int __init
init_nanddoc(void)
1731 /* We could create the decoder on demand, if memory is a concern.
1732 * This way we have it handy, if an error happens
1734 * Symbolsize is 10 (bits)
1735 * Primitve polynomial is x^10+x^3+1
1736 * first consecutive root is 510
1737 * primitve element to generate roots = 1
1738 * generator polinomial degree = 4
1740 rs_decoder
= init_rs(10, 0x409, FCR
, 1, NROOTS
);
1742 printk(KERN_ERR
"DiskOnChip: Could not create a RS decoder\n");
1746 if (doc_config_location
) {
1747 printk(KERN_INFO
"Using configured DiskOnChip probe address 0x%lx\n", doc_config_location
);
1748 ret
= doc_probe(doc_config_location
);
1752 for (i
= 0; (doc_locations
[i
] != 0xffffffff); i
++) {
1753 doc_probe(doc_locations
[i
]);
1756 /* No banner message any more. Print a message if no DiskOnChip
1757 found, so the user knows we at least tried. */
1759 printk(KERN_INFO
"No valid DiskOnChip devices found\n");
1765 free_rs(rs_decoder
);
1769 static void __exit
cleanup_nanddoc(void)
1771 /* Cleanup the nand/DoC resources */
1774 /* Free the reed solomon resources */
1776 free_rs(rs_decoder
);
1780 module_init(init_nanddoc
);
1781 module_exit(cleanup_nanddoc
);
1783 MODULE_LICENSE("GPL");
1784 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1785 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");