serial core: fix new kernel-doc warnings
[linux/fpc-iii.git] / Documentation / lguest / lguest.c
blobba9373f82ab5fa9fe62276cc27333447a22475ba
1 /*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6 :*/
7 #define _LARGEFILE64_SOURCE
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <err.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <elf.h>
16 #include <sys/mman.h>
17 #include <sys/param.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <sys/wait.h>
21 #include <sys/eventfd.h>
22 #include <fcntl.h>
23 #include <stdbool.h>
24 #include <errno.h>
25 #include <ctype.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
28 #include <sys/time.h>
29 #include <time.h>
30 #include <netinet/in.h>
31 #include <net/if.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
34 #include <sys/uio.h>
35 #include <termios.h>
36 #include <getopt.h>
37 #include <zlib.h>
38 #include <assert.h>
39 #include <sched.h>
40 #include <limits.h>
41 #include <stddef.h>
42 #include <signal.h>
43 #include "linux/lguest_launcher.h"
44 #include "linux/virtio_config.h"
45 #include <linux/virtio_ids.h>
46 #include "linux/virtio_net.h"
47 #include "linux/virtio_blk.h"
48 #include "linux/virtio_console.h"
49 #include "linux/virtio_rng.h"
50 #include "linux/virtio_ring.h"
51 #include "asm/bootparam.h"
52 /*L:110
53 * We can ignore the 42 include files we need for this program, but I do want
54 * to draw attention to the use of kernel-style types.
56 * As Linus said, "C is a Spartan language, and so should your naming be." I
57 * like these abbreviations, so we define them here. Note that u64 is always
58 * unsigned long long, which works on all Linux systems: this means that we can
59 * use %llu in printf for any u64.
61 typedef unsigned long long u64;
62 typedef uint32_t u32;
63 typedef uint16_t u16;
64 typedef uint8_t u8;
65 /*:*/
67 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
68 #define BRIDGE_PFX "bridge:"
69 #ifndef SIOCBRADDIF
70 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
71 #endif
72 /* We can have up to 256 pages for devices. */
73 #define DEVICE_PAGES 256
74 /* This will occupy 3 pages: it must be a power of 2. */
75 #define VIRTQUEUE_NUM 256
77 /*L:120
78 * verbose is both a global flag and a macro. The C preprocessor allows
79 * this, and although I wouldn't recommend it, it works quite nicely here.
81 static bool verbose;
82 #define verbose(args...) \
83 do { if (verbose) printf(args); } while(0)
84 /*:*/
86 /* The pointer to the start of guest memory. */
87 static void *guest_base;
88 /* The maximum guest physical address allowed, and maximum possible. */
89 static unsigned long guest_limit, guest_max;
90 /* The /dev/lguest file descriptor. */
91 static int lguest_fd;
93 /* a per-cpu variable indicating whose vcpu is currently running */
94 static unsigned int __thread cpu_id;
96 /* This is our list of devices. */
97 struct device_list {
98 /* Counter to assign interrupt numbers. */
99 unsigned int next_irq;
101 /* Counter to print out convenient device numbers. */
102 unsigned int device_num;
104 /* The descriptor page for the devices. */
105 u8 *descpage;
107 /* A single linked list of devices. */
108 struct device *dev;
109 /* And a pointer to the last device for easy append. */
110 struct device *lastdev;
113 /* The list of Guest devices, based on command line arguments. */
114 static struct device_list devices;
116 /* The device structure describes a single device. */
117 struct device {
118 /* The linked-list pointer. */
119 struct device *next;
121 /* The device's descriptor, as mapped into the Guest. */
122 struct lguest_device_desc *desc;
124 /* We can't trust desc values once Guest has booted: we use these. */
125 unsigned int feature_len;
126 unsigned int num_vq;
128 /* The name of this device, for --verbose. */
129 const char *name;
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
134 /* Is it operational */
135 bool running;
137 /* Does Guest want an intrrupt on empty? */
138 bool irq_on_empty;
140 /* Device-specific data. */
141 void *priv;
144 /* The virtqueue structure describes a queue attached to a device. */
145 struct virtqueue {
146 struct virtqueue *next;
148 /* Which device owns me. */
149 struct device *dev;
151 /* The configuration for this queue. */
152 struct lguest_vqconfig config;
154 /* The actual ring of buffers. */
155 struct vring vring;
157 /* Last available index we saw. */
158 u16 last_avail_idx;
160 /* How many are used since we sent last irq? */
161 unsigned int pending_used;
163 /* Eventfd where Guest notifications arrive. */
164 int eventfd;
166 /* Function for the thread which is servicing this virtqueue. */
167 void (*service)(struct virtqueue *vq);
168 pid_t thread;
171 /* Remember the arguments to the program so we can "reboot" */
172 static char **main_args;
174 /* The original tty settings to restore on exit. */
175 static struct termios orig_term;
178 * We have to be careful with barriers: our devices are all run in separate
179 * threads and so we need to make sure that changes visible to the Guest happen
180 * in precise order.
182 #define wmb() __asm__ __volatile__("" : : : "memory")
183 #define mb() __asm__ __volatile__("" : : : "memory")
186 * Convert an iovec element to the given type.
188 * This is a fairly ugly trick: we need to know the size of the type and
189 * alignment requirement to check the pointer is kosher. It's also nice to
190 * have the name of the type in case we report failure.
192 * Typing those three things all the time is cumbersome and error prone, so we
193 * have a macro which sets them all up and passes to the real function.
195 #define convert(iov, type) \
196 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
198 static void *_convert(struct iovec *iov, size_t size, size_t align,
199 const char *name)
201 if (iov->iov_len != size)
202 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
203 if ((unsigned long)iov->iov_base % align != 0)
204 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
205 return iov->iov_base;
208 /* Wrapper for the last available index. Makes it easier to change. */
209 #define lg_last_avail(vq) ((vq)->last_avail_idx)
212 * The virtio configuration space is defined to be little-endian. x86 is
213 * little-endian too, but it's nice to be explicit so we have these helpers.
215 #define cpu_to_le16(v16) (v16)
216 #define cpu_to_le32(v32) (v32)
217 #define cpu_to_le64(v64) (v64)
218 #define le16_to_cpu(v16) (v16)
219 #define le32_to_cpu(v32) (v32)
220 #define le64_to_cpu(v64) (v64)
222 /* Is this iovec empty? */
223 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
225 unsigned int i;
227 for (i = 0; i < num_iov; i++)
228 if (iov[i].iov_len)
229 return false;
230 return true;
233 /* Take len bytes from the front of this iovec. */
234 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
236 unsigned int i;
238 for (i = 0; i < num_iov; i++) {
239 unsigned int used;
241 used = iov[i].iov_len < len ? iov[i].iov_len : len;
242 iov[i].iov_base += used;
243 iov[i].iov_len -= used;
244 len -= used;
246 assert(len == 0);
249 /* The device virtqueue descriptors are followed by feature bitmasks. */
250 static u8 *get_feature_bits(struct device *dev)
252 return (u8 *)(dev->desc + 1)
253 + dev->num_vq * sizeof(struct lguest_vqconfig);
256 /*L:100
257 * The Launcher code itself takes us out into userspace, that scary place where
258 * pointers run wild and free! Unfortunately, like most userspace programs,
259 * it's quite boring (which is why everyone likes to hack on the kernel!).
260 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
261 * you through this section. Or, maybe not.
263 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
264 * memory and stores it in "guest_base". In other words, Guest physical ==
265 * Launcher virtual with an offset.
267 * This can be tough to get your head around, but usually it just means that we
268 * use these trivial conversion functions when the Guest gives us it's
269 * "physical" addresses:
271 static void *from_guest_phys(unsigned long addr)
273 return guest_base + addr;
276 static unsigned long to_guest_phys(const void *addr)
278 return (addr - guest_base);
281 /*L:130
282 * Loading the Kernel.
284 * We start with couple of simple helper routines. open_or_die() avoids
285 * error-checking code cluttering the callers:
287 static int open_or_die(const char *name, int flags)
289 int fd = open(name, flags);
290 if (fd < 0)
291 err(1, "Failed to open %s", name);
292 return fd;
295 /* map_zeroed_pages() takes a number of pages. */
296 static void *map_zeroed_pages(unsigned int num)
298 int fd = open_or_die("/dev/zero", O_RDONLY);
299 void *addr;
302 * We use a private mapping (ie. if we write to the page, it will be
303 * copied).
305 addr = mmap(NULL, getpagesize() * num,
306 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
307 if (addr == MAP_FAILED)
308 err(1, "Mmaping %u pages of /dev/zero", num);
311 * One neat mmap feature is that you can close the fd, and it
312 * stays mapped.
314 close(fd);
316 return addr;
319 /* Get some more pages for a device. */
320 static void *get_pages(unsigned int num)
322 void *addr = from_guest_phys(guest_limit);
324 guest_limit += num * getpagesize();
325 if (guest_limit > guest_max)
326 errx(1, "Not enough memory for devices");
327 return addr;
331 * This routine is used to load the kernel or initrd. It tries mmap, but if
332 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
333 * it falls back to reading the memory in.
335 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
337 ssize_t r;
340 * We map writable even though for some segments are marked read-only.
341 * The kernel really wants to be writable: it patches its own
342 * instructions.
344 * MAP_PRIVATE means that the page won't be copied until a write is
345 * done to it. This allows us to share untouched memory between
346 * Guests.
348 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
349 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
350 return;
352 /* pread does a seek and a read in one shot: saves a few lines. */
353 r = pread(fd, addr, len, offset);
354 if (r != len)
355 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
359 * This routine takes an open vmlinux image, which is in ELF, and maps it into
360 * the Guest memory. ELF = Embedded Linking Format, which is the format used
361 * by all modern binaries on Linux including the kernel.
363 * The ELF headers give *two* addresses: a physical address, and a virtual
364 * address. We use the physical address; the Guest will map itself to the
365 * virtual address.
367 * We return the starting address.
369 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
371 Elf32_Phdr phdr[ehdr->e_phnum];
372 unsigned int i;
375 * Sanity checks on the main ELF header: an x86 executable with a
376 * reasonable number of correctly-sized program headers.
378 if (ehdr->e_type != ET_EXEC
379 || ehdr->e_machine != EM_386
380 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
381 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
382 errx(1, "Malformed elf header");
385 * An ELF executable contains an ELF header and a number of "program"
386 * headers which indicate which parts ("segments") of the program to
387 * load where.
390 /* We read in all the program headers at once: */
391 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
392 err(1, "Seeking to program headers");
393 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
394 err(1, "Reading program headers");
397 * Try all the headers: there are usually only three. A read-only one,
398 * a read-write one, and a "note" section which we don't load.
400 for (i = 0; i < ehdr->e_phnum; i++) {
401 /* If this isn't a loadable segment, we ignore it */
402 if (phdr[i].p_type != PT_LOAD)
403 continue;
405 verbose("Section %i: size %i addr %p\n",
406 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
408 /* We map this section of the file at its physical address. */
409 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
410 phdr[i].p_offset, phdr[i].p_filesz);
413 /* The entry point is given in the ELF header. */
414 return ehdr->e_entry;
417 /*L:150
418 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
419 * to jump into it and it will unpack itself. We used to have to perform some
420 * hairy magic because the unpacking code scared me.
422 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
423 * a small patch to jump over the tricky bits in the Guest, so now we just read
424 * the funky header so we know where in the file to load, and away we go!
426 static unsigned long load_bzimage(int fd)
428 struct boot_params boot;
429 int r;
430 /* Modern bzImages get loaded at 1M. */
431 void *p = from_guest_phys(0x100000);
434 * Go back to the start of the file and read the header. It should be
435 * a Linux boot header (see Documentation/x86/i386/boot.txt)
437 lseek(fd, 0, SEEK_SET);
438 read(fd, &boot, sizeof(boot));
440 /* Inside the setup_hdr, we expect the magic "HdrS" */
441 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
442 errx(1, "This doesn't look like a bzImage to me");
444 /* Skip over the extra sectors of the header. */
445 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
447 /* Now read everything into memory. in nice big chunks. */
448 while ((r = read(fd, p, 65536)) > 0)
449 p += r;
451 /* Finally, code32_start tells us where to enter the kernel. */
452 return boot.hdr.code32_start;
455 /*L:140
456 * Loading the kernel is easy when it's a "vmlinux", but most kernels
457 * come wrapped up in the self-decompressing "bzImage" format. With a little
458 * work, we can load those, too.
460 static unsigned long load_kernel(int fd)
462 Elf32_Ehdr hdr;
464 /* Read in the first few bytes. */
465 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
466 err(1, "Reading kernel");
468 /* If it's an ELF file, it starts with "\177ELF" */
469 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
470 return map_elf(fd, &hdr);
472 /* Otherwise we assume it's a bzImage, and try to load it. */
473 return load_bzimage(fd);
477 * This is a trivial little helper to align pages. Andi Kleen hated it because
478 * it calls getpagesize() twice: "it's dumb code."
480 * Kernel guys get really het up about optimization, even when it's not
481 * necessary. I leave this code as a reaction against that.
483 static inline unsigned long page_align(unsigned long addr)
485 /* Add upwards and truncate downwards. */
486 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
489 /*L:180
490 * An "initial ram disk" is a disk image loaded into memory along with the
491 * kernel which the kernel can use to boot from without needing any drivers.
492 * Most distributions now use this as standard: the initrd contains the code to
493 * load the appropriate driver modules for the current machine.
495 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
496 * kernels. He sent me this (and tells me when I break it).
498 static unsigned long load_initrd(const char *name, unsigned long mem)
500 int ifd;
501 struct stat st;
502 unsigned long len;
504 ifd = open_or_die(name, O_RDONLY);
505 /* fstat() is needed to get the file size. */
506 if (fstat(ifd, &st) < 0)
507 err(1, "fstat() on initrd '%s'", name);
510 * We map the initrd at the top of memory, but mmap wants it to be
511 * page-aligned, so we round the size up for that.
513 len = page_align(st.st_size);
514 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
516 * Once a file is mapped, you can close the file descriptor. It's a
517 * little odd, but quite useful.
519 close(ifd);
520 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
522 /* We return the initrd size. */
523 return len;
525 /*:*/
528 * Simple routine to roll all the commandline arguments together with spaces
529 * between them.
531 static void concat(char *dst, char *args[])
533 unsigned int i, len = 0;
535 for (i = 0; args[i]; i++) {
536 if (i) {
537 strcat(dst+len, " ");
538 len++;
540 strcpy(dst+len, args[i]);
541 len += strlen(args[i]);
543 /* In case it's empty. */
544 dst[len] = '\0';
547 /*L:185
548 * This is where we actually tell the kernel to initialize the Guest. We
549 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
550 * the base of Guest "physical" memory, the top physical page to allow and the
551 * entry point for the Guest.
553 static void tell_kernel(unsigned long start)
555 unsigned long args[] = { LHREQ_INITIALIZE,
556 (unsigned long)guest_base,
557 guest_limit / getpagesize(), start };
558 verbose("Guest: %p - %p (%#lx)\n",
559 guest_base, guest_base + guest_limit, guest_limit);
560 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
561 if (write(lguest_fd, args, sizeof(args)) < 0)
562 err(1, "Writing to /dev/lguest");
564 /*:*/
566 /*L:200
567 * Device Handling.
569 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
570 * We need to make sure it's not trying to reach into the Launcher itself, so
571 * we have a convenient routine which checks it and exits with an error message
572 * if something funny is going on:
574 static void *_check_pointer(unsigned long addr, unsigned int size,
575 unsigned int line)
578 * We have to separately check addr and addr+size, because size could
579 * be huge and addr + size might wrap around.
581 if (addr >= guest_limit || addr + size >= guest_limit)
582 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
584 * We return a pointer for the caller's convenience, now we know it's
585 * safe to use.
587 return from_guest_phys(addr);
589 /* A macro which transparently hands the line number to the real function. */
590 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
593 * Each buffer in the virtqueues is actually a chain of descriptors. This
594 * function returns the next descriptor in the chain, or vq->vring.num if we're
595 * at the end.
597 static unsigned next_desc(struct vring_desc *desc,
598 unsigned int i, unsigned int max)
600 unsigned int next;
602 /* If this descriptor says it doesn't chain, we're done. */
603 if (!(desc[i].flags & VRING_DESC_F_NEXT))
604 return max;
606 /* Check they're not leading us off end of descriptors. */
607 next = desc[i].next;
608 /* Make sure compiler knows to grab that: we don't want it changing! */
609 wmb();
611 if (next >= max)
612 errx(1, "Desc next is %u", next);
614 return next;
618 * This actually sends the interrupt for this virtqueue, if we've used a
619 * buffer.
621 static void trigger_irq(struct virtqueue *vq)
623 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
625 /* Don't inform them if nothing used. */
626 if (!vq->pending_used)
627 return;
628 vq->pending_used = 0;
630 /* If they don't want an interrupt, don't send one... */
631 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
632 /* ... unless they've asked us to force one on empty. */
633 if (!vq->dev->irq_on_empty
634 || lg_last_avail(vq) != vq->vring.avail->idx)
635 return;
638 /* Send the Guest an interrupt tell them we used something up. */
639 if (write(lguest_fd, buf, sizeof(buf)) != 0)
640 err(1, "Triggering irq %i", vq->config.irq);
644 * This looks in the virtqueue for the first available buffer, and converts
645 * it to an iovec for convenient access. Since descriptors consist of some
646 * number of output then some number of input descriptors, it's actually two
647 * iovecs, but we pack them into one and note how many of each there were.
649 * This function waits if necessary, and returns the descriptor number found.
651 static unsigned wait_for_vq_desc(struct virtqueue *vq,
652 struct iovec iov[],
653 unsigned int *out_num, unsigned int *in_num)
655 unsigned int i, head, max;
656 struct vring_desc *desc;
657 u16 last_avail = lg_last_avail(vq);
659 /* There's nothing available? */
660 while (last_avail == vq->vring.avail->idx) {
661 u64 event;
664 * Since we're about to sleep, now is a good time to tell the
665 * Guest about what we've used up to now.
667 trigger_irq(vq);
669 /* OK, now we need to know about added descriptors. */
670 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
673 * They could have slipped one in as we were doing that: make
674 * sure it's written, then check again.
676 mb();
677 if (last_avail != vq->vring.avail->idx) {
678 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
679 break;
682 /* Nothing new? Wait for eventfd to tell us they refilled. */
683 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
684 errx(1, "Event read failed?");
686 /* We don't need to be notified again. */
687 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
690 /* Check it isn't doing very strange things with descriptor numbers. */
691 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
692 errx(1, "Guest moved used index from %u to %u",
693 last_avail, vq->vring.avail->idx);
696 * Grab the next descriptor number they're advertising, and increment
697 * the index we've seen.
699 head = vq->vring.avail->ring[last_avail % vq->vring.num];
700 lg_last_avail(vq)++;
702 /* If their number is silly, that's a fatal mistake. */
703 if (head >= vq->vring.num)
704 errx(1, "Guest says index %u is available", head);
706 /* When we start there are none of either input nor output. */
707 *out_num = *in_num = 0;
709 max = vq->vring.num;
710 desc = vq->vring.desc;
711 i = head;
714 * If this is an indirect entry, then this buffer contains a descriptor
715 * table which we handle as if it's any normal descriptor chain.
717 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
718 if (desc[i].len % sizeof(struct vring_desc))
719 errx(1, "Invalid size for indirect buffer table");
721 max = desc[i].len / sizeof(struct vring_desc);
722 desc = check_pointer(desc[i].addr, desc[i].len);
723 i = 0;
726 do {
727 /* Grab the first descriptor, and check it's OK. */
728 iov[*out_num + *in_num].iov_len = desc[i].len;
729 iov[*out_num + *in_num].iov_base
730 = check_pointer(desc[i].addr, desc[i].len);
731 /* If this is an input descriptor, increment that count. */
732 if (desc[i].flags & VRING_DESC_F_WRITE)
733 (*in_num)++;
734 else {
736 * If it's an output descriptor, they're all supposed
737 * to come before any input descriptors.
739 if (*in_num)
740 errx(1, "Descriptor has out after in");
741 (*out_num)++;
744 /* If we've got too many, that implies a descriptor loop. */
745 if (*out_num + *in_num > max)
746 errx(1, "Looped descriptor");
747 } while ((i = next_desc(desc, i, max)) != max);
749 return head;
753 * After we've used one of their buffers, we tell the Guest about it. Sometime
754 * later we'll want to send them an interrupt using trigger_irq(); note that
755 * wait_for_vq_desc() does that for us if it has to wait.
757 static void add_used(struct virtqueue *vq, unsigned int head, int len)
759 struct vring_used_elem *used;
762 * The virtqueue contains a ring of used buffers. Get a pointer to the
763 * next entry in that used ring.
765 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
766 used->id = head;
767 used->len = len;
768 /* Make sure buffer is written before we update index. */
769 wmb();
770 vq->vring.used->idx++;
771 vq->pending_used++;
774 /* And here's the combo meal deal. Supersize me! */
775 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
777 add_used(vq, head, len);
778 trigger_irq(vq);
782 * The Console
784 * We associate some data with the console for our exit hack.
786 struct console_abort {
787 /* How many times have they hit ^C? */
788 int count;
789 /* When did they start? */
790 struct timeval start;
793 /* This is the routine which handles console input (ie. stdin). */
794 static void console_input(struct virtqueue *vq)
796 int len;
797 unsigned int head, in_num, out_num;
798 struct console_abort *abort = vq->dev->priv;
799 struct iovec iov[vq->vring.num];
801 /* Make sure there's a descriptor available. */
802 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
803 if (out_num)
804 errx(1, "Output buffers in console in queue?");
806 /* Read into it. This is where we usually wait. */
807 len = readv(STDIN_FILENO, iov, in_num);
808 if (len <= 0) {
809 /* Ran out of input? */
810 warnx("Failed to get console input, ignoring console.");
812 * For simplicity, dying threads kill the whole Launcher. So
813 * just nap here.
815 for (;;)
816 pause();
819 /* Tell the Guest we used a buffer. */
820 add_used_and_trigger(vq, head, len);
823 * Three ^C within one second? Exit.
825 * This is such a hack, but works surprisingly well. Each ^C has to
826 * be in a buffer by itself, so they can't be too fast. But we check
827 * that we get three within about a second, so they can't be too
828 * slow.
830 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
831 abort->count = 0;
832 return;
835 abort->count++;
836 if (abort->count == 1)
837 gettimeofday(&abort->start, NULL);
838 else if (abort->count == 3) {
839 struct timeval now;
840 gettimeofday(&now, NULL);
841 /* Kill all Launcher processes with SIGINT, like normal ^C */
842 if (now.tv_sec <= abort->start.tv_sec+1)
843 kill(0, SIGINT);
844 abort->count = 0;
848 /* This is the routine which handles console output (ie. stdout). */
849 static void console_output(struct virtqueue *vq)
851 unsigned int head, out, in;
852 struct iovec iov[vq->vring.num];
854 /* We usually wait in here, for the Guest to give us something. */
855 head = wait_for_vq_desc(vq, iov, &out, &in);
856 if (in)
857 errx(1, "Input buffers in console output queue?");
859 /* writev can return a partial write, so we loop here. */
860 while (!iov_empty(iov, out)) {
861 int len = writev(STDOUT_FILENO, iov, out);
862 if (len <= 0)
863 err(1, "Write to stdout gave %i", len);
864 iov_consume(iov, out, len);
868 * We're finished with that buffer: if we're going to sleep,
869 * wait_for_vq_desc() will prod the Guest with an interrupt.
871 add_used(vq, head, 0);
875 * The Network
877 * Handling output for network is also simple: we get all the output buffers
878 * and write them to /dev/net/tun.
880 struct net_info {
881 int tunfd;
884 static void net_output(struct virtqueue *vq)
886 struct net_info *net_info = vq->dev->priv;
887 unsigned int head, out, in;
888 struct iovec iov[vq->vring.num];
890 /* We usually wait in here for the Guest to give us a packet. */
891 head = wait_for_vq_desc(vq, iov, &out, &in);
892 if (in)
893 errx(1, "Input buffers in net output queue?");
895 * Send the whole thing through to /dev/net/tun. It expects the exact
896 * same format: what a coincidence!
898 if (writev(net_info->tunfd, iov, out) < 0)
899 errx(1, "Write to tun failed?");
902 * Done with that one; wait_for_vq_desc() will send the interrupt if
903 * all packets are processed.
905 add_used(vq, head, 0);
909 * Handling network input is a bit trickier, because I've tried to optimize it.
911 * First we have a helper routine which tells is if from this file descriptor
912 * (ie. the /dev/net/tun device) will block:
914 static bool will_block(int fd)
916 fd_set fdset;
917 struct timeval zero = { 0, 0 };
918 FD_ZERO(&fdset);
919 FD_SET(fd, &fdset);
920 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
924 * This handles packets coming in from the tun device to our Guest. Like all
925 * service routines, it gets called again as soon as it returns, so you don't
926 * see a while(1) loop here.
928 static void net_input(struct virtqueue *vq)
930 int len;
931 unsigned int head, out, in;
932 struct iovec iov[vq->vring.num];
933 struct net_info *net_info = vq->dev->priv;
936 * Get a descriptor to write an incoming packet into. This will also
937 * send an interrupt if they're out of descriptors.
939 head = wait_for_vq_desc(vq, iov, &out, &in);
940 if (out)
941 errx(1, "Output buffers in net input queue?");
944 * If it looks like we'll block reading from the tun device, send them
945 * an interrupt.
947 if (vq->pending_used && will_block(net_info->tunfd))
948 trigger_irq(vq);
951 * Read in the packet. This is where we normally wait (when there's no
952 * incoming network traffic).
954 len = readv(net_info->tunfd, iov, in);
955 if (len <= 0)
956 err(1, "Failed to read from tun.");
959 * Mark that packet buffer as used, but don't interrupt here. We want
960 * to wait until we've done as much work as we can.
962 add_used(vq, head, len);
964 /*:*/
966 /* This is the helper to create threads: run the service routine in a loop. */
967 static int do_thread(void *_vq)
969 struct virtqueue *vq = _vq;
971 for (;;)
972 vq->service(vq);
973 return 0;
977 * When a child dies, we kill our entire process group with SIGTERM. This
978 * also has the side effect that the shell restores the console for us!
980 static void kill_launcher(int signal)
982 kill(0, SIGTERM);
985 static void reset_device(struct device *dev)
987 struct virtqueue *vq;
989 verbose("Resetting device %s\n", dev->name);
991 /* Clear any features they've acked. */
992 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
994 /* We're going to be explicitly killing threads, so ignore them. */
995 signal(SIGCHLD, SIG_IGN);
997 /* Zero out the virtqueues, get rid of their threads */
998 for (vq = dev->vq; vq; vq = vq->next) {
999 if (vq->thread != (pid_t)-1) {
1000 kill(vq->thread, SIGTERM);
1001 waitpid(vq->thread, NULL, 0);
1002 vq->thread = (pid_t)-1;
1004 memset(vq->vring.desc, 0,
1005 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1006 lg_last_avail(vq) = 0;
1008 dev->running = false;
1010 /* Now we care if threads die. */
1011 signal(SIGCHLD, (void *)kill_launcher);
1014 /*L:216
1015 * This actually creates the thread which services the virtqueue for a device.
1017 static void create_thread(struct virtqueue *vq)
1020 * Create stack for thread. Since the stack grows upwards, we point
1021 * the stack pointer to the end of this region.
1023 char *stack = malloc(32768);
1024 unsigned long args[] = { LHREQ_EVENTFD,
1025 vq->config.pfn*getpagesize(), 0 };
1027 /* Create a zero-initialized eventfd. */
1028 vq->eventfd = eventfd(0, 0);
1029 if (vq->eventfd < 0)
1030 err(1, "Creating eventfd");
1031 args[2] = vq->eventfd;
1034 * Attach an eventfd to this virtqueue: it will go off when the Guest
1035 * does an LHCALL_NOTIFY for this vq.
1037 if (write(lguest_fd, &args, sizeof(args)) != 0)
1038 err(1, "Attaching eventfd");
1041 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1042 * we get a signal if it dies.
1044 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1045 if (vq->thread == (pid_t)-1)
1046 err(1, "Creating clone");
1048 /* We close our local copy now the child has it. */
1049 close(vq->eventfd);
1052 static bool accepted_feature(struct device *dev, unsigned int bit)
1054 const u8 *features = get_feature_bits(dev) + dev->feature_len;
1056 if (dev->feature_len < bit / CHAR_BIT)
1057 return false;
1058 return features[bit / CHAR_BIT] & (1 << (bit % CHAR_BIT));
1061 static void start_device(struct device *dev)
1063 unsigned int i;
1064 struct virtqueue *vq;
1066 verbose("Device %s OK: offered", dev->name);
1067 for (i = 0; i < dev->feature_len; i++)
1068 verbose(" %02x", get_feature_bits(dev)[i]);
1069 verbose(", accepted");
1070 for (i = 0; i < dev->feature_len; i++)
1071 verbose(" %02x", get_feature_bits(dev)
1072 [dev->feature_len+i]);
1074 dev->irq_on_empty = accepted_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1076 for (vq = dev->vq; vq; vq = vq->next) {
1077 if (vq->service)
1078 create_thread(vq);
1080 dev->running = true;
1083 static void cleanup_devices(void)
1085 struct device *dev;
1087 for (dev = devices.dev; dev; dev = dev->next)
1088 reset_device(dev);
1090 /* If we saved off the original terminal settings, restore them now. */
1091 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1092 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1095 /* When the Guest tells us they updated the status field, we handle it. */
1096 static void update_device_status(struct device *dev)
1098 /* A zero status is a reset, otherwise it's a set of flags. */
1099 if (dev->desc->status == 0)
1100 reset_device(dev);
1101 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1102 warnx("Device %s configuration FAILED", dev->name);
1103 if (dev->running)
1104 reset_device(dev);
1105 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
1106 if (!dev->running)
1107 start_device(dev);
1111 /*L:215
1112 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
1113 * particular, it's used to notify us of device status changes during boot.
1115 static void handle_output(unsigned long addr)
1117 struct device *i;
1119 /* Check each device. */
1120 for (i = devices.dev; i; i = i->next) {
1121 struct virtqueue *vq;
1124 * Notifications to device descriptors mean they updated the
1125 * device status.
1127 if (from_guest_phys(addr) == i->desc) {
1128 update_device_status(i);
1129 return;
1133 * Devices *can* be used before status is set to DRIVER_OK.
1134 * The original plan was that they would never do this: they
1135 * would always finish setting up their status bits before
1136 * actually touching the virtqueues. In practice, we allowed
1137 * them to, and they do (eg. the disk probes for partition
1138 * tables as part of initialization).
1140 * If we see this, we start the device: once it's running, we
1141 * expect the device to catch all the notifications.
1143 for (vq = i->vq; vq; vq = vq->next) {
1144 if (addr != vq->config.pfn*getpagesize())
1145 continue;
1146 if (i->running)
1147 errx(1, "Notification on running %s", i->name);
1148 /* This just calls create_thread() for each virtqueue */
1149 start_device(i);
1150 return;
1155 * Early console write is done using notify on a nul-terminated string
1156 * in Guest memory. It's also great for hacking debugging messages
1157 * into a Guest.
1159 if (addr >= guest_limit)
1160 errx(1, "Bad NOTIFY %#lx", addr);
1162 write(STDOUT_FILENO, from_guest_phys(addr),
1163 strnlen(from_guest_phys(addr), guest_limit - addr));
1166 /*L:190
1167 * Device Setup
1169 * All devices need a descriptor so the Guest knows it exists, and a "struct
1170 * device" so the Launcher can keep track of it. We have common helper
1171 * routines to allocate and manage them.
1175 * The layout of the device page is a "struct lguest_device_desc" followed by a
1176 * number of virtqueue descriptors, then two sets of feature bits, then an
1177 * array of configuration bytes. This routine returns the configuration
1178 * pointer.
1180 static u8 *device_config(const struct device *dev)
1182 return (void *)(dev->desc + 1)
1183 + dev->num_vq * sizeof(struct lguest_vqconfig)
1184 + dev->feature_len * 2;
1188 * This routine allocates a new "struct lguest_device_desc" from descriptor
1189 * table page just above the Guest's normal memory. It returns a pointer to
1190 * that descriptor.
1192 static struct lguest_device_desc *new_dev_desc(u16 type)
1194 struct lguest_device_desc d = { .type = type };
1195 void *p;
1197 /* Figure out where the next device config is, based on the last one. */
1198 if (devices.lastdev)
1199 p = device_config(devices.lastdev)
1200 + devices.lastdev->desc->config_len;
1201 else
1202 p = devices.descpage;
1204 /* We only have one page for all the descriptors. */
1205 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1206 errx(1, "Too many devices");
1208 /* p might not be aligned, so we memcpy in. */
1209 return memcpy(p, &d, sizeof(d));
1213 * Each device descriptor is followed by the description of its virtqueues. We
1214 * specify how many descriptors the virtqueue is to have.
1216 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1217 void (*service)(struct virtqueue *))
1219 unsigned int pages;
1220 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1221 void *p;
1223 /* First we need some memory for this virtqueue. */
1224 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1225 / getpagesize();
1226 p = get_pages(pages);
1228 /* Initialize the virtqueue */
1229 vq->next = NULL;
1230 vq->last_avail_idx = 0;
1231 vq->dev = dev;
1234 * This is the routine the service thread will run, and its Process ID
1235 * once it's running.
1237 vq->service = service;
1238 vq->thread = (pid_t)-1;
1240 /* Initialize the configuration. */
1241 vq->config.num = num_descs;
1242 vq->config.irq = devices.next_irq++;
1243 vq->config.pfn = to_guest_phys(p) / getpagesize();
1245 /* Initialize the vring. */
1246 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1249 * Append virtqueue to this device's descriptor. We use
1250 * device_config() to get the end of the device's current virtqueues;
1251 * we check that we haven't added any config or feature information
1252 * yet, otherwise we'd be overwriting them.
1254 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1255 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1256 dev->num_vq++;
1257 dev->desc->num_vq++;
1259 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1262 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1263 * second.
1265 for (i = &dev->vq; *i; i = &(*i)->next);
1266 *i = vq;
1270 * The first half of the feature bitmask is for us to advertise features. The
1271 * second half is for the Guest to accept features.
1273 static void add_feature(struct device *dev, unsigned bit)
1275 u8 *features = get_feature_bits(dev);
1277 /* We can't extend the feature bits once we've added config bytes */
1278 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1279 assert(dev->desc->config_len == 0);
1280 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1283 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1287 * This routine sets the configuration fields for an existing device's
1288 * descriptor. It only works for the last device, but that's OK because that's
1289 * how we use it.
1291 static void set_config(struct device *dev, unsigned len, const void *conf)
1293 /* Check we haven't overflowed our single page. */
1294 if (device_config(dev) + len > devices.descpage + getpagesize())
1295 errx(1, "Too many devices");
1297 /* Copy in the config information, and store the length. */
1298 memcpy(device_config(dev), conf, len);
1299 dev->desc->config_len = len;
1301 /* Size must fit in config_len field (8 bits)! */
1302 assert(dev->desc->config_len == len);
1306 * This routine does all the creation and setup of a new device, including
1307 * calling new_dev_desc() to allocate the descriptor and device memory. We
1308 * don't actually start the service threads until later.
1310 * See what I mean about userspace being boring?
1312 static struct device *new_device(const char *name, u16 type)
1314 struct device *dev = malloc(sizeof(*dev));
1316 /* Now we populate the fields one at a time. */
1317 dev->desc = new_dev_desc(type);
1318 dev->name = name;
1319 dev->vq = NULL;
1320 dev->feature_len = 0;
1321 dev->num_vq = 0;
1322 dev->running = false;
1325 * Append to device list. Prepending to a single-linked list is
1326 * easier, but the user expects the devices to be arranged on the bus
1327 * in command-line order. The first network device on the command line
1328 * is eth0, the first block device /dev/vda, etc.
1330 if (devices.lastdev)
1331 devices.lastdev->next = dev;
1332 else
1333 devices.dev = dev;
1334 devices.lastdev = dev;
1336 return dev;
1340 * Our first setup routine is the console. It's a fairly simple device, but
1341 * UNIX tty handling makes it uglier than it could be.
1343 static void setup_console(void)
1345 struct device *dev;
1347 /* If we can save the initial standard input settings... */
1348 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1349 struct termios term = orig_term;
1351 * Then we turn off echo, line buffering and ^C etc: We want a
1352 * raw input stream to the Guest.
1354 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1355 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1358 dev = new_device("console", VIRTIO_ID_CONSOLE);
1360 /* We store the console state in dev->priv, and initialize it. */
1361 dev->priv = malloc(sizeof(struct console_abort));
1362 ((struct console_abort *)dev->priv)->count = 0;
1365 * The console needs two virtqueues: the input then the output. When
1366 * they put something the input queue, we make sure we're listening to
1367 * stdin. When they put something in the output queue, we write it to
1368 * stdout.
1370 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1371 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1373 verbose("device %u: console\n", ++devices.device_num);
1375 /*:*/
1377 /*M:010
1378 * Inter-guest networking is an interesting area. Simplest is to have a
1379 * --sharenet=<name> option which opens or creates a named pipe. This can be
1380 * used to send packets to another guest in a 1:1 manner.
1382 * More sopisticated is to use one of the tools developed for project like UML
1383 * to do networking.
1385 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1386 * completely generic ("here's my vring, attach to your vring") and would work
1387 * for any traffic. Of course, namespace and permissions issues need to be
1388 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1389 * multiple inter-guest channels behind one interface, although it would
1390 * require some manner of hotplugging new virtio channels.
1392 * Finally, we could implement a virtio network switch in the kernel.
1395 static u32 str2ip(const char *ipaddr)
1397 unsigned int b[4];
1399 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1400 errx(1, "Failed to parse IP address '%s'", ipaddr);
1401 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1404 static void str2mac(const char *macaddr, unsigned char mac[6])
1406 unsigned int m[6];
1407 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1408 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1409 errx(1, "Failed to parse mac address '%s'", macaddr);
1410 mac[0] = m[0];
1411 mac[1] = m[1];
1412 mac[2] = m[2];
1413 mac[3] = m[3];
1414 mac[4] = m[4];
1415 mac[5] = m[5];
1419 * This code is "adapted" from libbridge: it attaches the Host end of the
1420 * network device to the bridge device specified by the command line.
1422 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1423 * dislike bridging), and I just try not to break it.
1425 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1427 int ifidx;
1428 struct ifreq ifr;
1430 if (!*br_name)
1431 errx(1, "must specify bridge name");
1433 ifidx = if_nametoindex(if_name);
1434 if (!ifidx)
1435 errx(1, "interface %s does not exist!", if_name);
1437 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1438 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1439 ifr.ifr_ifindex = ifidx;
1440 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1441 err(1, "can't add %s to bridge %s", if_name, br_name);
1445 * This sets up the Host end of the network device with an IP address, brings
1446 * it up so packets will flow, the copies the MAC address into the hwaddr
1447 * pointer.
1449 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1451 struct ifreq ifr;
1452 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1454 memset(&ifr, 0, sizeof(ifr));
1455 strcpy(ifr.ifr_name, tapif);
1457 /* Don't read these incantations. Just cut & paste them like I did! */
1458 sin->sin_family = AF_INET;
1459 sin->sin_addr.s_addr = htonl(ipaddr);
1460 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1461 err(1, "Setting %s interface address", tapif);
1462 ifr.ifr_flags = IFF_UP;
1463 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1464 err(1, "Bringing interface %s up", tapif);
1467 static int get_tun_device(char tapif[IFNAMSIZ])
1469 struct ifreq ifr;
1470 int netfd;
1472 /* Start with this zeroed. Messy but sure. */
1473 memset(&ifr, 0, sizeof(ifr));
1476 * We open the /dev/net/tun device and tell it we want a tap device. A
1477 * tap device is like a tun device, only somehow different. To tell
1478 * the truth, I completely blundered my way through this code, but it
1479 * works now!
1481 netfd = open_or_die("/dev/net/tun", O_RDWR);
1482 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1483 strcpy(ifr.ifr_name, "tap%d");
1484 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1485 err(1, "configuring /dev/net/tun");
1487 if (ioctl(netfd, TUNSETOFFLOAD,
1488 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1489 err(1, "Could not set features for tun device");
1492 * We don't need checksums calculated for packets coming in this
1493 * device: trust us!
1495 ioctl(netfd, TUNSETNOCSUM, 1);
1497 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1498 return netfd;
1501 /*L:195
1502 * Our network is a Host<->Guest network. This can either use bridging or
1503 * routing, but the principle is the same: it uses the "tun" device to inject
1504 * packets into the Host as if they came in from a normal network card. We
1505 * just shunt packets between the Guest and the tun device.
1507 static void setup_tun_net(char *arg)
1509 struct device *dev;
1510 struct net_info *net_info = malloc(sizeof(*net_info));
1511 int ipfd;
1512 u32 ip = INADDR_ANY;
1513 bool bridging = false;
1514 char tapif[IFNAMSIZ], *p;
1515 struct virtio_net_config conf;
1517 net_info->tunfd = get_tun_device(tapif);
1519 /* First we create a new network device. */
1520 dev = new_device("net", VIRTIO_ID_NET);
1521 dev->priv = net_info;
1523 /* Network devices need a recv and a send queue, just like console. */
1524 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1525 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1528 * We need a socket to perform the magic network ioctls to bring up the
1529 * tap interface, connect to the bridge etc. Any socket will do!
1531 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1532 if (ipfd < 0)
1533 err(1, "opening IP socket");
1535 /* If the command line was --tunnet=bridge:<name> do bridging. */
1536 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1537 arg += strlen(BRIDGE_PFX);
1538 bridging = true;
1541 /* A mac address may follow the bridge name or IP address */
1542 p = strchr(arg, ':');
1543 if (p) {
1544 str2mac(p+1, conf.mac);
1545 add_feature(dev, VIRTIO_NET_F_MAC);
1546 *p = '\0';
1549 /* arg is now either an IP address or a bridge name */
1550 if (bridging)
1551 add_to_bridge(ipfd, tapif, arg);
1552 else
1553 ip = str2ip(arg);
1555 /* Set up the tun device. */
1556 configure_device(ipfd, tapif, ip);
1558 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1559 /* Expect Guest to handle everything except UFO */
1560 add_feature(dev, VIRTIO_NET_F_CSUM);
1561 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1562 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1563 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1564 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1565 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1566 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1567 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1568 /* We handle indirect ring entries */
1569 add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1570 set_config(dev, sizeof(conf), &conf);
1572 /* We don't need the socket any more; setup is done. */
1573 close(ipfd);
1575 devices.device_num++;
1577 if (bridging)
1578 verbose("device %u: tun %s attached to bridge: %s\n",
1579 devices.device_num, tapif, arg);
1580 else
1581 verbose("device %u: tun %s: %s\n",
1582 devices.device_num, tapif, arg);
1584 /*:*/
1586 /* This hangs off device->priv. */
1587 struct vblk_info {
1588 /* The size of the file. */
1589 off64_t len;
1591 /* The file descriptor for the file. */
1592 int fd;
1596 /*L:210
1597 * The Disk
1599 * The disk only has one virtqueue, so it only has one thread. It is really
1600 * simple: the Guest asks for a block number and we read or write that position
1601 * in the file.
1603 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1604 * slow: the Guest waits until the read is finished before running anything
1605 * else, even if it could have been doing useful work.
1607 * We could have used async I/O, except it's reputed to suck so hard that
1608 * characters actually go missing from your code when you try to use it.
1610 static void blk_request(struct virtqueue *vq)
1612 struct vblk_info *vblk = vq->dev->priv;
1613 unsigned int head, out_num, in_num, wlen;
1614 int ret;
1615 u8 *in;
1616 struct virtio_blk_outhdr *out;
1617 struct iovec iov[vq->vring.num];
1618 off64_t off;
1621 * Get the next request, where we normally wait. It triggers the
1622 * interrupt to acknowledge previously serviced requests (if any).
1624 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1627 * Every block request should contain at least one output buffer
1628 * (detailing the location on disk and the type of request) and one
1629 * input buffer (to hold the result).
1631 if (out_num == 0 || in_num == 0)
1632 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1633 head, out_num, in_num);
1635 out = convert(&iov[0], struct virtio_blk_outhdr);
1636 in = convert(&iov[out_num+in_num-1], u8);
1638 * For historical reasons, block operations are expressed in 512 byte
1639 * "sectors".
1641 off = out->sector * 512;
1644 * The block device implements "barriers", where the Guest indicates
1645 * that it wants all previous writes to occur before this write. We
1646 * don't have a way of asking our kernel to do a barrier, so we just
1647 * synchronize all the data in the file. Pretty poor, no?
1649 if (out->type & VIRTIO_BLK_T_BARRIER)
1650 fdatasync(vblk->fd);
1653 * In general the virtio block driver is allowed to try SCSI commands.
1654 * It'd be nice if we supported eject, for example, but we don't.
1656 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1657 fprintf(stderr, "Scsi commands unsupported\n");
1658 *in = VIRTIO_BLK_S_UNSUPP;
1659 wlen = sizeof(*in);
1660 } else if (out->type & VIRTIO_BLK_T_OUT) {
1662 * Write
1664 * Move to the right location in the block file. This can fail
1665 * if they try to write past end.
1667 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1668 err(1, "Bad seek to sector %llu", out->sector);
1670 ret = writev(vblk->fd, iov+1, out_num-1);
1671 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1674 * Grr... Now we know how long the descriptor they sent was, we
1675 * make sure they didn't try to write over the end of the block
1676 * file (possibly extending it).
1678 if (ret > 0 && off + ret > vblk->len) {
1679 /* Trim it back to the correct length */
1680 ftruncate64(vblk->fd, vblk->len);
1681 /* Die, bad Guest, die. */
1682 errx(1, "Write past end %llu+%u", off, ret);
1684 wlen = sizeof(*in);
1685 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1686 } else {
1688 * Read
1690 * Move to the right location in the block file. This can fail
1691 * if they try to read past end.
1693 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1694 err(1, "Bad seek to sector %llu", out->sector);
1696 ret = readv(vblk->fd, iov+1, in_num-1);
1697 verbose("READ from sector %llu: %i\n", out->sector, ret);
1698 if (ret >= 0) {
1699 wlen = sizeof(*in) + ret;
1700 *in = VIRTIO_BLK_S_OK;
1701 } else {
1702 wlen = sizeof(*in);
1703 *in = VIRTIO_BLK_S_IOERR;
1708 * OK, so we noted that it was pretty poor to use an fdatasync as a
1709 * barrier. But Christoph Hellwig points out that we need a sync
1710 * *afterwards* as well: "Barriers specify no reordering to the front
1711 * or the back." And Jens Axboe confirmed it, so here we are:
1713 if (out->type & VIRTIO_BLK_T_BARRIER)
1714 fdatasync(vblk->fd);
1716 /* Finished that request. */
1717 add_used(vq, head, wlen);
1720 /*L:198 This actually sets up a virtual block device. */
1721 static void setup_block_file(const char *filename)
1723 struct device *dev;
1724 struct vblk_info *vblk;
1725 struct virtio_blk_config conf;
1727 /* Creat the device. */
1728 dev = new_device("block", VIRTIO_ID_BLOCK);
1730 /* The device has one virtqueue, where the Guest places requests. */
1731 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1733 /* Allocate the room for our own bookkeeping */
1734 vblk = dev->priv = malloc(sizeof(*vblk));
1736 /* First we open the file and store the length. */
1737 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1738 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1740 /* We support barriers. */
1741 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1743 /* Tell Guest how many sectors this device has. */
1744 conf.capacity = cpu_to_le64(vblk->len / 512);
1747 * Tell Guest not to put in too many descriptors at once: two are used
1748 * for the in and out elements.
1750 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1751 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1753 /* Don't try to put whole struct: we have 8 bit limit. */
1754 set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1756 verbose("device %u: virtblock %llu sectors\n",
1757 ++devices.device_num, le64_to_cpu(conf.capacity));
1760 /*L:211
1761 * Our random number generator device reads from /dev/random into the Guest's
1762 * input buffers. The usual case is that the Guest doesn't want random numbers
1763 * and so has no buffers although /dev/random is still readable, whereas
1764 * console is the reverse.
1766 * The same logic applies, however.
1768 struct rng_info {
1769 int rfd;
1772 static void rng_input(struct virtqueue *vq)
1774 int len;
1775 unsigned int head, in_num, out_num, totlen = 0;
1776 struct rng_info *rng_info = vq->dev->priv;
1777 struct iovec iov[vq->vring.num];
1779 /* First we need a buffer from the Guests's virtqueue. */
1780 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1781 if (out_num)
1782 errx(1, "Output buffers in rng?");
1785 * Just like the console write, we loop to cover the whole iovec.
1786 * In this case, short reads actually happen quite a bit.
1788 while (!iov_empty(iov, in_num)) {
1789 len = readv(rng_info->rfd, iov, in_num);
1790 if (len <= 0)
1791 err(1, "Read from /dev/random gave %i", len);
1792 iov_consume(iov, in_num, len);
1793 totlen += len;
1796 /* Tell the Guest about the new input. */
1797 add_used(vq, head, totlen);
1800 /*L:199
1801 * This creates a "hardware" random number device for the Guest.
1803 static void setup_rng(void)
1805 struct device *dev;
1806 struct rng_info *rng_info = malloc(sizeof(*rng_info));
1808 /* Our device's privat info simply contains the /dev/random fd. */
1809 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1811 /* Create the new device. */
1812 dev = new_device("rng", VIRTIO_ID_RNG);
1813 dev->priv = rng_info;
1815 /* The device has one virtqueue, where the Guest places inbufs. */
1816 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1818 verbose("device %u: rng\n", devices.device_num++);
1820 /* That's the end of device setup. */
1822 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1823 static void __attribute__((noreturn)) restart_guest(void)
1825 unsigned int i;
1828 * Since we don't track all open fds, we simply close everything beyond
1829 * stderr.
1831 for (i = 3; i < FD_SETSIZE; i++)
1832 close(i);
1834 /* Reset all the devices (kills all threads). */
1835 cleanup_devices();
1837 execv(main_args[0], main_args);
1838 err(1, "Could not exec %s", main_args[0]);
1841 /*L:220
1842 * Finally we reach the core of the Launcher which runs the Guest, serves
1843 * its input and output, and finally, lays it to rest.
1845 static void __attribute__((noreturn)) run_guest(void)
1847 for (;;) {
1848 unsigned long notify_addr;
1849 int readval;
1851 /* We read from the /dev/lguest device to run the Guest. */
1852 readval = pread(lguest_fd, &notify_addr,
1853 sizeof(notify_addr), cpu_id);
1855 /* One unsigned long means the Guest did HCALL_NOTIFY */
1856 if (readval == sizeof(notify_addr)) {
1857 verbose("Notify on address %#lx\n", notify_addr);
1858 handle_output(notify_addr);
1859 /* ENOENT means the Guest died. Reading tells us why. */
1860 } else if (errno == ENOENT) {
1861 char reason[1024] = { 0 };
1862 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1863 errx(1, "%s", reason);
1864 /* ERESTART means that we need to reboot the guest */
1865 } else if (errno == ERESTART) {
1866 restart_guest();
1867 /* Anything else means a bug or incompatible change. */
1868 } else
1869 err(1, "Running guest failed");
1872 /*L:240
1873 * This is the end of the Launcher. The good news: we are over halfway
1874 * through! The bad news: the most fiendish part of the code still lies ahead
1875 * of us.
1877 * Are you ready? Take a deep breath and join me in the core of the Host, in
1878 * "make Host".
1881 static struct option opts[] = {
1882 { "verbose", 0, NULL, 'v' },
1883 { "tunnet", 1, NULL, 't' },
1884 { "block", 1, NULL, 'b' },
1885 { "rng", 0, NULL, 'r' },
1886 { "initrd", 1, NULL, 'i' },
1887 { NULL },
1889 static void usage(void)
1891 errx(1, "Usage: lguest [--verbose] "
1892 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1893 "|--block=<filename>|--initrd=<filename>]...\n"
1894 "<mem-in-mb> vmlinux [args...]");
1897 /*L:105 The main routine is where the real work begins: */
1898 int main(int argc, char *argv[])
1900 /* Memory, code startpoint and size of the (optional) initrd. */
1901 unsigned long mem = 0, start, initrd_size = 0;
1902 /* Two temporaries. */
1903 int i, c;
1904 /* The boot information for the Guest. */
1905 struct boot_params *boot;
1906 /* If they specify an initrd file to load. */
1907 const char *initrd_name = NULL;
1909 /* Save the args: we "reboot" by execing ourselves again. */
1910 main_args = argv;
1913 * First we initialize the device list. We keep a pointer to the last
1914 * device, and the next interrupt number to use for devices (1:
1915 * remember that 0 is used by the timer).
1917 devices.lastdev = NULL;
1918 devices.next_irq = 1;
1920 /* We're CPU 0. In fact, that's the only CPU possible right now. */
1921 cpu_id = 0;
1924 * We need to know how much memory so we can set up the device
1925 * descriptor and memory pages for the devices as we parse the command
1926 * line. So we quickly look through the arguments to find the amount
1927 * of memory now.
1929 for (i = 1; i < argc; i++) {
1930 if (argv[i][0] != '-') {
1931 mem = atoi(argv[i]) * 1024 * 1024;
1933 * We start by mapping anonymous pages over all of
1934 * guest-physical memory range. This fills it with 0,
1935 * and ensures that the Guest won't be killed when it
1936 * tries to access it.
1938 guest_base = map_zeroed_pages(mem / getpagesize()
1939 + DEVICE_PAGES);
1940 guest_limit = mem;
1941 guest_max = mem + DEVICE_PAGES*getpagesize();
1942 devices.descpage = get_pages(1);
1943 break;
1947 /* The options are fairly straight-forward */
1948 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1949 switch (c) {
1950 case 'v':
1951 verbose = true;
1952 break;
1953 case 't':
1954 setup_tun_net(optarg);
1955 break;
1956 case 'b':
1957 setup_block_file(optarg);
1958 break;
1959 case 'r':
1960 setup_rng();
1961 break;
1962 case 'i':
1963 initrd_name = optarg;
1964 break;
1965 default:
1966 warnx("Unknown argument %s", argv[optind]);
1967 usage();
1971 * After the other arguments we expect memory and kernel image name,
1972 * followed by command line arguments for the kernel.
1974 if (optind + 2 > argc)
1975 usage();
1977 verbose("Guest base is at %p\n", guest_base);
1979 /* We always have a console device */
1980 setup_console();
1982 /* Now we load the kernel */
1983 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1985 /* Boot information is stashed at physical address 0 */
1986 boot = from_guest_phys(0);
1988 /* Map the initrd image if requested (at top of physical memory) */
1989 if (initrd_name) {
1990 initrd_size = load_initrd(initrd_name, mem);
1992 * These are the location in the Linux boot header where the
1993 * start and size of the initrd are expected to be found.
1995 boot->hdr.ramdisk_image = mem - initrd_size;
1996 boot->hdr.ramdisk_size = initrd_size;
1997 /* The bootloader type 0xFF means "unknown"; that's OK. */
1998 boot->hdr.type_of_loader = 0xFF;
2002 * The Linux boot header contains an "E820" memory map: ours is a
2003 * simple, single region.
2005 boot->e820_entries = 1;
2006 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2008 * The boot header contains a command line pointer: we put the command
2009 * line after the boot header.
2011 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2012 /* We use a simple helper to copy the arguments separated by spaces. */
2013 concat((char *)(boot + 1), argv+optind+2);
2015 /* Boot protocol version: 2.07 supports the fields for lguest. */
2016 boot->hdr.version = 0x207;
2018 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2019 boot->hdr.hardware_subarch = 1;
2021 /* Tell the entry path not to try to reload segment registers. */
2022 boot->hdr.loadflags |= KEEP_SEGMENTS;
2025 * We tell the kernel to initialize the Guest: this returns the open
2026 * /dev/lguest file descriptor.
2028 tell_kernel(start);
2030 /* Ensure that we terminate if a device-servicing child dies. */
2031 signal(SIGCHLD, kill_launcher);
2033 /* If we exit via err(), this kills all the threads, restores tty. */
2034 atexit(cleanup_devices);
2036 /* Finally, run the Guest. This doesn't return. */
2037 run_guest();
2039 /*:*/
2041 /*M:999
2042 * Mastery is done: you now know everything I do.
2044 * But surely you have seen code, features and bugs in your wanderings which
2045 * you now yearn to attack? That is the real game, and I look forward to you
2046 * patching and forking lguest into the Your-Name-Here-visor.
2048 * Farewell, and good coding!
2049 * Rusty Russell.