serial core: fix new kernel-doc warnings
[linux/fpc-iii.git] / drivers / dma / fsldma.c
blobef87a89841450e0f35f1a35f4753b0207abc0300
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA contorller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/interrupt.h>
31 #include <linux/dmaengine.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmapool.h>
35 #include <linux/of_platform.h>
37 #include "fsldma.h"
39 static void dma_init(struct fsl_dma_chan *fsl_chan)
41 /* Reset the channel */
42 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
44 switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
45 case FSL_DMA_IP_85XX:
46 /* Set the channel to below modes:
47 * EIE - Error interrupt enable
48 * EOSIE - End of segments interrupt enable (basic mode)
49 * EOLNIE - End of links interrupt enable
51 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
52 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
53 break;
54 case FSL_DMA_IP_83XX:
55 /* Set the channel to below modes:
56 * EOTIE - End-of-transfer interrupt enable
57 * PRC_RM - PCI read multiple
59 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE
60 | FSL_DMA_MR_PRC_RM, 32);
61 break;
66 static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val)
68 DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
71 static u32 get_sr(struct fsl_dma_chan *fsl_chan)
73 return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
76 static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
77 struct fsl_dma_ld_hw *hw, u32 count)
79 hw->count = CPU_TO_DMA(fsl_chan, count, 32);
82 static void set_desc_src(struct fsl_dma_chan *fsl_chan,
83 struct fsl_dma_ld_hw *hw, dma_addr_t src)
85 u64 snoop_bits;
87 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
88 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
89 hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
92 static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
93 struct fsl_dma_ld_hw *hw, dma_addr_t dest)
95 u64 snoop_bits;
97 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
98 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
99 hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
102 static void set_desc_next(struct fsl_dma_chan *fsl_chan,
103 struct fsl_dma_ld_hw *hw, dma_addr_t next)
105 u64 snoop_bits;
107 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
108 ? FSL_DMA_SNEN : 0;
109 hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
112 static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
114 DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
117 static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
119 return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
122 static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
124 DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
127 static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
129 return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
132 static u32 get_bcr(struct fsl_dma_chan *fsl_chan)
134 return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32);
137 static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
139 u32 sr = get_sr(fsl_chan);
140 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
143 static void dma_start(struct fsl_dma_chan *fsl_chan)
145 u32 mr_set = 0;
147 if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
148 DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
149 mr_set |= FSL_DMA_MR_EMP_EN;
150 } else if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
151 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
152 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
153 & ~FSL_DMA_MR_EMP_EN, 32);
156 if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
157 mr_set |= FSL_DMA_MR_EMS_EN;
158 else
159 mr_set |= FSL_DMA_MR_CS;
161 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
162 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
163 | mr_set, 32);
166 static void dma_halt(struct fsl_dma_chan *fsl_chan)
168 int i;
170 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
171 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA,
172 32);
173 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
174 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS
175 | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32);
177 for (i = 0; i < 100; i++) {
178 if (dma_is_idle(fsl_chan))
179 break;
180 udelay(10);
182 if (i >= 100 && !dma_is_idle(fsl_chan))
183 dev_err(fsl_chan->dev, "DMA halt timeout!\n");
186 static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
187 struct fsl_desc_sw *desc)
189 u64 snoop_bits;
191 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
192 ? FSL_DMA_SNEN : 0;
194 desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
195 DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
196 | snoop_bits, 64);
199 static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
200 struct fsl_desc_sw *new_desc)
202 struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
204 if (list_empty(&fsl_chan->ld_queue))
205 return;
207 /* Link to the new descriptor physical address and
208 * Enable End-of-segment interrupt for
209 * the last link descriptor.
210 * (the previous node's next link descriptor)
212 * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
214 queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
215 new_desc->async_tx.phys | FSL_DMA_EOSIE |
216 (((fsl_chan->feature & FSL_DMA_IP_MASK)
217 == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
221 * fsl_chan_set_src_loop_size - Set source address hold transfer size
222 * @fsl_chan : Freescale DMA channel
223 * @size : Address loop size, 0 for disable loop
225 * The set source address hold transfer size. The source
226 * address hold or loop transfer size is when the DMA transfer
227 * data from source address (SA), if the loop size is 4, the DMA will
228 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
229 * SA + 1 ... and so on.
231 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
233 switch (size) {
234 case 0:
235 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
236 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
237 (~FSL_DMA_MR_SAHE), 32);
238 break;
239 case 1:
240 case 2:
241 case 4:
242 case 8:
243 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
244 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
245 FSL_DMA_MR_SAHE | (__ilog2(size) << 14),
246 32);
247 break;
252 * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
253 * @fsl_chan : Freescale DMA channel
254 * @size : Address loop size, 0 for disable loop
256 * The set destination address hold transfer size. The destination
257 * address hold or loop transfer size is when the DMA transfer
258 * data to destination address (TA), if the loop size is 4, the DMA will
259 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
260 * TA + 1 ... and so on.
262 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
264 switch (size) {
265 case 0:
266 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
267 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
268 (~FSL_DMA_MR_DAHE), 32);
269 break;
270 case 1:
271 case 2:
272 case 4:
273 case 8:
274 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
275 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
276 FSL_DMA_MR_DAHE | (__ilog2(size) << 16),
277 32);
278 break;
283 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
284 * @fsl_chan : Freescale DMA channel
285 * @size : Pause control size, 0 for disable external pause control.
286 * The maximum is 1024.
288 * The Freescale DMA channel can be controlled by the external
289 * signal DREQ#. The pause control size is how many bytes are allowed
290 * to transfer before pausing the channel, after which a new assertion
291 * of DREQ# resumes channel operation.
293 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size)
295 if (size > 1024)
296 return;
298 if (size) {
299 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
300 DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
301 | ((__ilog2(size) << 24) & 0x0f000000),
302 32);
303 fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
304 } else
305 fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
309 * fsl_chan_toggle_ext_start - Toggle channel external start status
310 * @fsl_chan : Freescale DMA channel
311 * @enable : 0 is disabled, 1 is enabled.
313 * If enable the external start, the channel can be started by an
314 * external DMA start pin. So the dma_start() does not start the
315 * transfer immediately. The DMA channel will wait for the
316 * control pin asserted.
318 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
320 if (enable)
321 fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
322 else
323 fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
326 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
328 struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
329 struct fsl_desc_sw *desc;
330 unsigned long flags;
331 dma_cookie_t cookie;
333 /* cookie increment and adding to ld_queue must be atomic */
334 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
336 cookie = fsl_chan->common.cookie;
337 list_for_each_entry(desc, &tx->tx_list, node) {
338 cookie++;
339 if (cookie < 0)
340 cookie = 1;
342 desc->async_tx.cookie = cookie;
345 fsl_chan->common.cookie = cookie;
346 append_ld_queue(fsl_chan, tx_to_fsl_desc(tx));
347 list_splice_init(&tx->tx_list, fsl_chan->ld_queue.prev);
349 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
351 return cookie;
355 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
356 * @fsl_chan : Freescale DMA channel
358 * Return - The descriptor allocated. NULL for failed.
360 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
361 struct fsl_dma_chan *fsl_chan)
363 dma_addr_t pdesc;
364 struct fsl_desc_sw *desc_sw;
366 desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
367 if (desc_sw) {
368 memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
369 dma_async_tx_descriptor_init(&desc_sw->async_tx,
370 &fsl_chan->common);
371 desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
372 desc_sw->async_tx.phys = pdesc;
375 return desc_sw;
380 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
381 * @fsl_chan : Freescale DMA channel
383 * This function will create a dma pool for descriptor allocation.
385 * Return - The number of descriptors allocated.
387 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
389 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
391 /* Has this channel already been allocated? */
392 if (fsl_chan->desc_pool)
393 return 1;
395 /* We need the descriptor to be aligned to 32bytes
396 * for meeting FSL DMA specification requirement.
398 fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
399 fsl_chan->dev, sizeof(struct fsl_desc_sw),
400 32, 0);
401 if (!fsl_chan->desc_pool) {
402 dev_err(fsl_chan->dev, "No memory for channel %d "
403 "descriptor dma pool.\n", fsl_chan->id);
404 return 0;
407 return 1;
411 * fsl_dma_free_chan_resources - Free all resources of the channel.
412 * @fsl_chan : Freescale DMA channel
414 static void fsl_dma_free_chan_resources(struct dma_chan *chan)
416 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
417 struct fsl_desc_sw *desc, *_desc;
418 unsigned long flags;
420 dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
421 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
422 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
423 #ifdef FSL_DMA_LD_DEBUG
424 dev_dbg(fsl_chan->dev,
425 "LD %p will be released.\n", desc);
426 #endif
427 list_del(&desc->node);
428 /* free link descriptor */
429 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
431 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
432 dma_pool_destroy(fsl_chan->desc_pool);
434 fsl_chan->desc_pool = NULL;
437 static struct dma_async_tx_descriptor *
438 fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
440 struct fsl_dma_chan *fsl_chan;
441 struct fsl_desc_sw *new;
443 if (!chan)
444 return NULL;
446 fsl_chan = to_fsl_chan(chan);
448 new = fsl_dma_alloc_descriptor(fsl_chan);
449 if (!new) {
450 dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
451 return NULL;
454 new->async_tx.cookie = -EBUSY;
455 new->async_tx.flags = flags;
457 /* Insert the link descriptor to the LD ring */
458 list_add_tail(&new->node, &new->async_tx.tx_list);
460 /* Set End-of-link to the last link descriptor of new list*/
461 set_ld_eol(fsl_chan, new);
463 return &new->async_tx;
466 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
467 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
468 size_t len, unsigned long flags)
470 struct fsl_dma_chan *fsl_chan;
471 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
472 struct list_head *list;
473 size_t copy;
475 if (!chan)
476 return NULL;
478 if (!len)
479 return NULL;
481 fsl_chan = to_fsl_chan(chan);
483 do {
485 /* Allocate the link descriptor from DMA pool */
486 new = fsl_dma_alloc_descriptor(fsl_chan);
487 if (!new) {
488 dev_err(fsl_chan->dev,
489 "No free memory for link descriptor\n");
490 goto fail;
492 #ifdef FSL_DMA_LD_DEBUG
493 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
494 #endif
496 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
498 set_desc_cnt(fsl_chan, &new->hw, copy);
499 set_desc_src(fsl_chan, &new->hw, dma_src);
500 set_desc_dest(fsl_chan, &new->hw, dma_dest);
502 if (!first)
503 first = new;
504 else
505 set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
507 new->async_tx.cookie = 0;
508 async_tx_ack(&new->async_tx);
510 prev = new;
511 len -= copy;
512 dma_src += copy;
513 dma_dest += copy;
515 /* Insert the link descriptor to the LD ring */
516 list_add_tail(&new->node, &first->async_tx.tx_list);
517 } while (len);
519 new->async_tx.flags = flags; /* client is in control of this ack */
520 new->async_tx.cookie = -EBUSY;
522 /* Set End-of-link to the last link descriptor of new list*/
523 set_ld_eol(fsl_chan, new);
525 return &first->async_tx;
527 fail:
528 if (!first)
529 return NULL;
531 list = &first->async_tx.tx_list;
532 list_for_each_entry_safe_reverse(new, prev, list, node) {
533 list_del(&new->node);
534 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
537 return NULL;
541 * fsl_dma_update_completed_cookie - Update the completed cookie.
542 * @fsl_chan : Freescale DMA channel
544 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
546 struct fsl_desc_sw *cur_desc, *desc;
547 dma_addr_t ld_phy;
549 ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
551 if (ld_phy) {
552 cur_desc = NULL;
553 list_for_each_entry(desc, &fsl_chan->ld_queue, node)
554 if (desc->async_tx.phys == ld_phy) {
555 cur_desc = desc;
556 break;
559 if (cur_desc && cur_desc->async_tx.cookie) {
560 if (dma_is_idle(fsl_chan))
561 fsl_chan->completed_cookie =
562 cur_desc->async_tx.cookie;
563 else
564 fsl_chan->completed_cookie =
565 cur_desc->async_tx.cookie - 1;
571 * fsl_chan_ld_cleanup - Clean up link descriptors
572 * @fsl_chan : Freescale DMA channel
574 * This function clean up the ld_queue of DMA channel.
575 * If 'in_intr' is set, the function will move the link descriptor to
576 * the recycle list. Otherwise, free it directly.
578 static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
580 struct fsl_desc_sw *desc, *_desc;
581 unsigned long flags;
583 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
585 dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
586 fsl_chan->completed_cookie);
587 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
588 dma_async_tx_callback callback;
589 void *callback_param;
591 if (dma_async_is_complete(desc->async_tx.cookie,
592 fsl_chan->completed_cookie, fsl_chan->common.cookie)
593 == DMA_IN_PROGRESS)
594 break;
596 callback = desc->async_tx.callback;
597 callback_param = desc->async_tx.callback_param;
599 /* Remove from ld_queue list */
600 list_del(&desc->node);
602 dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
603 desc);
604 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
606 /* Run the link descriptor callback function */
607 if (callback) {
608 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
609 dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
610 desc);
611 callback(callback_param);
612 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
615 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
619 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
620 * @fsl_chan : Freescale DMA channel
622 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
624 struct list_head *ld_node;
625 dma_addr_t next_dest_addr;
626 unsigned long flags;
628 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
630 if (!dma_is_idle(fsl_chan))
631 goto out_unlock;
633 dma_halt(fsl_chan);
635 /* If there are some link descriptors
636 * not transfered in queue. We need to start it.
639 /* Find the first un-transfer desciptor */
640 for (ld_node = fsl_chan->ld_queue.next;
641 (ld_node != &fsl_chan->ld_queue)
642 && (dma_async_is_complete(
643 to_fsl_desc(ld_node)->async_tx.cookie,
644 fsl_chan->completed_cookie,
645 fsl_chan->common.cookie) == DMA_SUCCESS);
646 ld_node = ld_node->next);
648 if (ld_node != &fsl_chan->ld_queue) {
649 /* Get the ld start address from ld_queue */
650 next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
651 dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n",
652 (unsigned long long)next_dest_addr);
653 set_cdar(fsl_chan, next_dest_addr);
654 dma_start(fsl_chan);
655 } else {
656 set_cdar(fsl_chan, 0);
657 set_ndar(fsl_chan, 0);
660 out_unlock:
661 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
665 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
666 * @fsl_chan : Freescale DMA channel
668 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
670 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
672 #ifdef FSL_DMA_LD_DEBUG
673 struct fsl_desc_sw *ld;
674 unsigned long flags;
676 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
677 if (list_empty(&fsl_chan->ld_queue)) {
678 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
679 return;
682 dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
683 list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
684 int i;
685 dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
686 fsl_chan->id, ld->async_tx.phys);
687 for (i = 0; i < 8; i++)
688 dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
689 i, *(((u32 *)&ld->hw) + i));
691 dev_dbg(fsl_chan->dev, "----------------\n");
692 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
693 #endif
695 fsl_chan_xfer_ld_queue(fsl_chan);
699 * fsl_dma_is_complete - Determine the DMA status
700 * @fsl_chan : Freescale DMA channel
702 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
703 dma_cookie_t cookie,
704 dma_cookie_t *done,
705 dma_cookie_t *used)
707 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
708 dma_cookie_t last_used;
709 dma_cookie_t last_complete;
711 fsl_chan_ld_cleanup(fsl_chan);
713 last_used = chan->cookie;
714 last_complete = fsl_chan->completed_cookie;
716 if (done)
717 *done = last_complete;
719 if (used)
720 *used = last_used;
722 return dma_async_is_complete(cookie, last_complete, last_used);
725 static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
727 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
728 u32 stat;
729 int update_cookie = 0;
730 int xfer_ld_q = 0;
732 stat = get_sr(fsl_chan);
733 dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
734 fsl_chan->id, stat);
735 set_sr(fsl_chan, stat); /* Clear the event register */
737 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
738 if (!stat)
739 return IRQ_NONE;
741 if (stat & FSL_DMA_SR_TE)
742 dev_err(fsl_chan->dev, "Transfer Error!\n");
744 /* Programming Error
745 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
746 * triger a PE interrupt.
748 if (stat & FSL_DMA_SR_PE) {
749 dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
750 if (get_bcr(fsl_chan) == 0) {
751 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
752 * Now, update the completed cookie, and continue the
753 * next uncompleted transfer.
755 update_cookie = 1;
756 xfer_ld_q = 1;
758 stat &= ~FSL_DMA_SR_PE;
761 /* If the link descriptor segment transfer finishes,
762 * we will recycle the used descriptor.
764 if (stat & FSL_DMA_SR_EOSI) {
765 dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
766 dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n",
767 (unsigned long long)get_cdar(fsl_chan),
768 (unsigned long long)get_ndar(fsl_chan));
769 stat &= ~FSL_DMA_SR_EOSI;
770 update_cookie = 1;
773 /* For MPC8349, EOCDI event need to update cookie
774 * and start the next transfer if it exist.
776 if (stat & FSL_DMA_SR_EOCDI) {
777 dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n");
778 stat &= ~FSL_DMA_SR_EOCDI;
779 update_cookie = 1;
780 xfer_ld_q = 1;
783 /* If it current transfer is the end-of-transfer,
784 * we should clear the Channel Start bit for
785 * prepare next transfer.
787 if (stat & FSL_DMA_SR_EOLNI) {
788 dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
789 stat &= ~FSL_DMA_SR_EOLNI;
790 xfer_ld_q = 1;
793 if (update_cookie)
794 fsl_dma_update_completed_cookie(fsl_chan);
795 if (xfer_ld_q)
796 fsl_chan_xfer_ld_queue(fsl_chan);
797 if (stat)
798 dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
799 stat);
801 dev_dbg(fsl_chan->dev, "event: Exit\n");
802 tasklet_schedule(&fsl_chan->tasklet);
803 return IRQ_HANDLED;
806 static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
808 struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
809 u32 gsr;
810 int ch_nr;
812 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
813 : in_le32(fdev->reg_base);
814 ch_nr = (32 - ffs(gsr)) / 8;
816 return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
817 fdev->chan[ch_nr]) : IRQ_NONE;
820 static void dma_do_tasklet(unsigned long data)
822 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
823 fsl_chan_ld_cleanup(fsl_chan);
826 static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev,
827 struct device_node *node, u32 feature, const char *compatible)
829 struct fsl_dma_chan *new_fsl_chan;
830 int err;
832 /* alloc channel */
833 new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
834 if (!new_fsl_chan) {
835 dev_err(fdev->dev, "No free memory for allocating "
836 "dma channels!\n");
837 return -ENOMEM;
840 /* get dma channel register base */
841 err = of_address_to_resource(node, 0, &new_fsl_chan->reg);
842 if (err) {
843 dev_err(fdev->dev, "Can't get %s property 'reg'\n",
844 node->full_name);
845 goto err_no_reg;
848 new_fsl_chan->feature = feature;
850 if (!fdev->feature)
851 fdev->feature = new_fsl_chan->feature;
853 /* If the DMA device's feature is different than its channels',
854 * report the bug.
856 WARN_ON(fdev->feature != new_fsl_chan->feature);
858 new_fsl_chan->dev = fdev->dev;
859 new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
860 new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
862 new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
863 if (new_fsl_chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
864 dev_err(fdev->dev, "There is no %d channel!\n",
865 new_fsl_chan->id);
866 err = -EINVAL;
867 goto err_no_chan;
869 fdev->chan[new_fsl_chan->id] = new_fsl_chan;
870 tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
871 (unsigned long)new_fsl_chan);
873 /* Init the channel */
874 dma_init(new_fsl_chan);
876 /* Clear cdar registers */
877 set_cdar(new_fsl_chan, 0);
879 switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
880 case FSL_DMA_IP_85XX:
881 new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
882 case FSL_DMA_IP_83XX:
883 new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
884 new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
885 new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
888 spin_lock_init(&new_fsl_chan->desc_lock);
889 INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
891 new_fsl_chan->common.device = &fdev->common;
893 /* Add the channel to DMA device channel list */
894 list_add_tail(&new_fsl_chan->common.device_node,
895 &fdev->common.channels);
896 fdev->common.chancnt++;
898 new_fsl_chan->irq = irq_of_parse_and_map(node, 0);
899 if (new_fsl_chan->irq != NO_IRQ) {
900 err = request_irq(new_fsl_chan->irq,
901 &fsl_dma_chan_do_interrupt, IRQF_SHARED,
902 "fsldma-channel", new_fsl_chan);
903 if (err) {
904 dev_err(fdev->dev, "DMA channel %s request_irq error "
905 "with return %d\n", node->full_name, err);
906 goto err_no_irq;
910 dev_info(fdev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
911 compatible,
912 new_fsl_chan->irq != NO_IRQ ? new_fsl_chan->irq : fdev->irq);
914 return 0;
916 err_no_irq:
917 list_del(&new_fsl_chan->common.device_node);
918 err_no_chan:
919 iounmap(new_fsl_chan->reg_base);
920 err_no_reg:
921 kfree(new_fsl_chan);
922 return err;
925 static void fsl_dma_chan_remove(struct fsl_dma_chan *fchan)
927 if (fchan->irq != NO_IRQ)
928 free_irq(fchan->irq, fchan);
929 list_del(&fchan->common.device_node);
930 iounmap(fchan->reg_base);
931 kfree(fchan);
934 static int __devinit of_fsl_dma_probe(struct of_device *dev,
935 const struct of_device_id *match)
937 int err;
938 struct fsl_dma_device *fdev;
939 struct device_node *child;
941 fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
942 if (!fdev) {
943 dev_err(&dev->dev, "No enough memory for 'priv'\n");
944 return -ENOMEM;
946 fdev->dev = &dev->dev;
947 INIT_LIST_HEAD(&fdev->common.channels);
949 /* get DMA controller register base */
950 err = of_address_to_resource(dev->node, 0, &fdev->reg);
951 if (err) {
952 dev_err(&dev->dev, "Can't get %s property 'reg'\n",
953 dev->node->full_name);
954 goto err_no_reg;
957 dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
958 "controller at 0x%llx...\n",
959 match->compatible, (unsigned long long)fdev->reg.start);
960 fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
961 - fdev->reg.start + 1);
963 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
964 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
965 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
966 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
967 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
968 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
969 fdev->common.device_is_tx_complete = fsl_dma_is_complete;
970 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
971 fdev->common.dev = &dev->dev;
973 fdev->irq = irq_of_parse_and_map(dev->node, 0);
974 if (fdev->irq != NO_IRQ) {
975 err = request_irq(fdev->irq, &fsl_dma_do_interrupt, IRQF_SHARED,
976 "fsldma-device", fdev);
977 if (err) {
978 dev_err(&dev->dev, "DMA device request_irq error "
979 "with return %d\n", err);
980 goto err;
984 dev_set_drvdata(&(dev->dev), fdev);
986 /* We cannot use of_platform_bus_probe() because there is no
987 * of_platform_bus_remove. Instead, we manually instantiate every DMA
988 * channel object.
990 for_each_child_of_node(dev->node, child) {
991 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel"))
992 fsl_dma_chan_probe(fdev, child,
993 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
994 "fsl,eloplus-dma-channel");
995 if (of_device_is_compatible(child, "fsl,elo-dma-channel"))
996 fsl_dma_chan_probe(fdev, child,
997 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
998 "fsl,elo-dma-channel");
1001 dma_async_device_register(&fdev->common);
1002 return 0;
1004 err:
1005 iounmap(fdev->reg_base);
1006 err_no_reg:
1007 kfree(fdev);
1008 return err;
1011 static int of_fsl_dma_remove(struct of_device *of_dev)
1013 struct fsl_dma_device *fdev;
1014 unsigned int i;
1016 fdev = dev_get_drvdata(&of_dev->dev);
1018 dma_async_device_unregister(&fdev->common);
1020 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++)
1021 if (fdev->chan[i])
1022 fsl_dma_chan_remove(fdev->chan[i]);
1024 if (fdev->irq != NO_IRQ)
1025 free_irq(fdev->irq, fdev);
1027 iounmap(fdev->reg_base);
1029 kfree(fdev);
1030 dev_set_drvdata(&of_dev->dev, NULL);
1032 return 0;
1035 static struct of_device_id of_fsl_dma_ids[] = {
1036 { .compatible = "fsl,eloplus-dma", },
1037 { .compatible = "fsl,elo-dma", },
1041 static struct of_platform_driver of_fsl_dma_driver = {
1042 .name = "fsl-elo-dma",
1043 .match_table = of_fsl_dma_ids,
1044 .probe = of_fsl_dma_probe,
1045 .remove = of_fsl_dma_remove,
1048 static __init int of_fsl_dma_init(void)
1050 int ret;
1052 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1054 ret = of_register_platform_driver(&of_fsl_dma_driver);
1055 if (ret)
1056 pr_err("fsldma: failed to register platform driver\n");
1058 return ret;
1061 static void __exit of_fsl_dma_exit(void)
1063 of_unregister_platform_driver(&of_fsl_dma_driver);
1066 subsys_initcall(of_fsl_dma_init);
1067 module_exit(of_fsl_dma_exit);
1069 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1070 MODULE_LICENSE("GPL");