2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
59 #define NR_STRIPES 256
60 #define STRIPE_SIZE PAGE_SIZE
61 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD 1
64 #define BYPASS_THRESHOLD 1
65 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK (NR_HASH - 1)
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap. There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 * The following can be used to debug the driver
83 #define RAID5_PARANOIA 1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 # define CHECK_DEVLOCK()
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 static inline int raid5_bi_phys_segments(struct bio
*bio
)
103 return bio
->bi_phys_segments
& 0xffff;
106 static inline int raid5_bi_hw_segments(struct bio
*bio
)
108 return (bio
->bi_phys_segments
>> 16) & 0xffff;
111 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
113 --bio
->bi_phys_segments
;
114 return raid5_bi_phys_segments(bio
);
117 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
119 unsigned short val
= raid5_bi_hw_segments(bio
);
122 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
126 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
128 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head
*sh
)
135 /* ddf always start from first device */
137 /* md starts just after Q block */
138 if (sh
->qd_idx
== sh
->disks
- 1)
141 return sh
->qd_idx
+ 1;
143 static inline int raid6_next_disk(int disk
, int raid_disks
)
146 return (disk
< raid_disks
) ? disk
: 0;
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
154 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
155 int *count
, int syndrome_disks
)
159 if (idx
== sh
->pd_idx
)
160 return syndrome_disks
;
161 if (idx
== sh
->qd_idx
)
162 return syndrome_disks
+ 1;
167 static void return_io(struct bio
*return_bi
)
169 struct bio
*bi
= return_bi
;
172 return_bi
= bi
->bi_next
;
180 static void print_raid5_conf (raid5_conf_t
*conf
);
182 static int stripe_operations_active(struct stripe_head
*sh
)
184 return sh
->check_state
|| sh
->reconstruct_state
||
185 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
186 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
189 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
191 if (atomic_dec_and_test(&sh
->count
)) {
192 BUG_ON(!list_empty(&sh
->lru
));
193 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
194 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
195 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
196 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
197 blk_plug_device(conf
->mddev
->queue
);
198 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
199 sh
->bm_seq
- conf
->seq_write
> 0) {
200 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
201 blk_plug_device(conf
->mddev
->queue
);
203 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
204 list_add_tail(&sh
->lru
, &conf
->handle_list
);
206 md_wakeup_thread(conf
->mddev
->thread
);
208 BUG_ON(stripe_operations_active(sh
));
209 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
210 atomic_dec(&conf
->preread_active_stripes
);
211 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
212 md_wakeup_thread(conf
->mddev
->thread
);
214 atomic_dec(&conf
->active_stripes
);
215 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
216 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
217 wake_up(&conf
->wait_for_stripe
);
218 if (conf
->retry_read_aligned
)
219 md_wakeup_thread(conf
->mddev
->thread
);
225 static void release_stripe(struct stripe_head
*sh
)
227 raid5_conf_t
*conf
= sh
->raid_conf
;
230 spin_lock_irqsave(&conf
->device_lock
, flags
);
231 __release_stripe(conf
, sh
);
232 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
235 static inline void remove_hash(struct stripe_head
*sh
)
237 pr_debug("remove_hash(), stripe %llu\n",
238 (unsigned long long)sh
->sector
);
240 hlist_del_init(&sh
->hash
);
243 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
245 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
247 pr_debug("insert_hash(), stripe %llu\n",
248 (unsigned long long)sh
->sector
);
251 hlist_add_head(&sh
->hash
, hp
);
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
258 struct stripe_head
*sh
= NULL
;
259 struct list_head
*first
;
262 if (list_empty(&conf
->inactive_list
))
264 first
= conf
->inactive_list
.next
;
265 sh
= list_entry(first
, struct stripe_head
, lru
);
266 list_del_init(first
);
268 atomic_inc(&conf
->active_stripes
);
273 static void shrink_buffers(struct stripe_head
*sh
, int num
)
278 for (i
=0; i
<num
; i
++) {
282 sh
->dev
[i
].page
= NULL
;
287 static int grow_buffers(struct stripe_head
*sh
, int num
)
291 for (i
=0; i
<num
; i
++) {
294 if (!(page
= alloc_page(GFP_KERNEL
))) {
297 sh
->dev
[i
].page
= page
;
302 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
303 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
304 struct stripe_head
*sh
);
306 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
308 raid5_conf_t
*conf
= sh
->raid_conf
;
311 BUG_ON(atomic_read(&sh
->count
) != 0);
312 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
313 BUG_ON(stripe_operations_active(sh
));
316 pr_debug("init_stripe called, stripe %llu\n",
317 (unsigned long long)sh
->sector
);
321 sh
->generation
= conf
->generation
- previous
;
322 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
324 stripe_set_idx(sector
, conf
, previous
, sh
);
328 for (i
= sh
->disks
; i
--; ) {
329 struct r5dev
*dev
= &sh
->dev
[i
];
331 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
332 test_bit(R5_LOCKED
, &dev
->flags
)) {
333 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
334 (unsigned long long)sh
->sector
, i
, dev
->toread
,
335 dev
->read
, dev
->towrite
, dev
->written
,
336 test_bit(R5_LOCKED
, &dev
->flags
));
340 raid5_build_block(sh
, i
, previous
);
342 insert_hash(conf
, sh
);
345 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
,
348 struct stripe_head
*sh
;
349 struct hlist_node
*hn
;
352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
353 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
354 if (sh
->sector
== sector
&& sh
->generation
== generation
)
356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
360 static void unplug_slaves(mddev_t
*mddev
);
361 static void raid5_unplug_device(struct request_queue
*q
);
363 static struct stripe_head
*
364 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
365 int previous
, int noblock
, int noquiesce
)
367 struct stripe_head
*sh
;
369 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
371 spin_lock_irq(&conf
->device_lock
);
374 wait_event_lock_irq(conf
->wait_for_stripe
,
375 conf
->quiesce
== 0 || noquiesce
,
376 conf
->device_lock
, /* nothing */);
377 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
379 if (!conf
->inactive_blocked
)
380 sh
= get_free_stripe(conf
);
381 if (noblock
&& sh
== NULL
)
384 conf
->inactive_blocked
= 1;
385 wait_event_lock_irq(conf
->wait_for_stripe
,
386 !list_empty(&conf
->inactive_list
) &&
387 (atomic_read(&conf
->active_stripes
)
388 < (conf
->max_nr_stripes
*3/4)
389 || !conf
->inactive_blocked
),
391 raid5_unplug_device(conf
->mddev
->queue
)
393 conf
->inactive_blocked
= 0;
395 init_stripe(sh
, sector
, previous
);
397 if (atomic_read(&sh
->count
)) {
398 BUG_ON(!list_empty(&sh
->lru
)
399 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
401 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
402 atomic_inc(&conf
->active_stripes
);
403 if (list_empty(&sh
->lru
) &&
404 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
406 list_del_init(&sh
->lru
);
409 } while (sh
== NULL
);
412 atomic_inc(&sh
->count
);
414 spin_unlock_irq(&conf
->device_lock
);
419 raid5_end_read_request(struct bio
*bi
, int error
);
421 raid5_end_write_request(struct bio
*bi
, int error
);
423 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
425 raid5_conf_t
*conf
= sh
->raid_conf
;
426 int i
, disks
= sh
->disks
;
430 for (i
= disks
; i
--; ) {
434 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
436 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
441 bi
= &sh
->dev
[i
].req
;
445 bi
->bi_end_io
= raid5_end_write_request
;
447 bi
->bi_end_io
= raid5_end_read_request
;
450 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
451 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
454 atomic_inc(&rdev
->nr_pending
);
458 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
459 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
461 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
463 bi
->bi_bdev
= rdev
->bdev
;
464 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
465 __func__
, (unsigned long long)sh
->sector
,
467 atomic_inc(&sh
->count
);
468 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
469 bi
->bi_flags
= 1 << BIO_UPTODATE
;
473 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
474 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
475 bi
->bi_io_vec
[0].bv_offset
= 0;
476 bi
->bi_size
= STRIPE_SIZE
;
479 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
480 atomic_add(STRIPE_SECTORS
,
481 &rdev
->corrected_errors
);
482 generic_make_request(bi
);
485 set_bit(STRIPE_DEGRADED
, &sh
->state
);
486 pr_debug("skip op %ld on disc %d for sector %llu\n",
487 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
488 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
489 set_bit(STRIPE_HANDLE
, &sh
->state
);
494 static struct dma_async_tx_descriptor
*
495 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
496 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
499 struct page
*bio_page
;
503 if (bio
->bi_sector
>= sector
)
504 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
506 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
507 bio_for_each_segment(bvl
, bio
, i
) {
508 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
512 if (page_offset
< 0) {
513 b_offset
= -page_offset
;
514 page_offset
+= b_offset
;
518 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
519 clen
= STRIPE_SIZE
- page_offset
;
524 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
525 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
527 tx
= async_memcpy(page
, bio_page
, page_offset
,
532 tx
= async_memcpy(bio_page
, page
, b_offset
,
537 if (clen
< len
) /* hit end of page */
545 static void ops_complete_biofill(void *stripe_head_ref
)
547 struct stripe_head
*sh
= stripe_head_ref
;
548 struct bio
*return_bi
= NULL
;
549 raid5_conf_t
*conf
= sh
->raid_conf
;
552 pr_debug("%s: stripe %llu\n", __func__
,
553 (unsigned long long)sh
->sector
);
555 /* clear completed biofills */
556 spin_lock_irq(&conf
->device_lock
);
557 for (i
= sh
->disks
; i
--; ) {
558 struct r5dev
*dev
= &sh
->dev
[i
];
560 /* acknowledge completion of a biofill operation */
561 /* and check if we need to reply to a read request,
562 * new R5_Wantfill requests are held off until
563 * !STRIPE_BIOFILL_RUN
565 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
566 struct bio
*rbi
, *rbi2
;
571 while (rbi
&& rbi
->bi_sector
<
572 dev
->sector
+ STRIPE_SECTORS
) {
573 rbi2
= r5_next_bio(rbi
, dev
->sector
);
574 if (!raid5_dec_bi_phys_segments(rbi
)) {
575 rbi
->bi_next
= return_bi
;
582 spin_unlock_irq(&conf
->device_lock
);
583 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
585 return_io(return_bi
);
587 set_bit(STRIPE_HANDLE
, &sh
->state
);
591 static void ops_run_biofill(struct stripe_head
*sh
)
593 struct dma_async_tx_descriptor
*tx
= NULL
;
594 raid5_conf_t
*conf
= sh
->raid_conf
;
597 pr_debug("%s: stripe %llu\n", __func__
,
598 (unsigned long long)sh
->sector
);
600 for (i
= sh
->disks
; i
--; ) {
601 struct r5dev
*dev
= &sh
->dev
[i
];
602 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
604 spin_lock_irq(&conf
->device_lock
);
605 dev
->read
= rbi
= dev
->toread
;
607 spin_unlock_irq(&conf
->device_lock
);
608 while (rbi
&& rbi
->bi_sector
<
609 dev
->sector
+ STRIPE_SECTORS
) {
610 tx
= async_copy_data(0, rbi
, dev
->page
,
612 rbi
= r5_next_bio(rbi
, dev
->sector
);
617 atomic_inc(&sh
->count
);
618 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
619 ops_complete_biofill
, sh
);
622 static void ops_complete_compute5(void *stripe_head_ref
)
624 struct stripe_head
*sh
= stripe_head_ref
;
625 int target
= sh
->ops
.target
;
626 struct r5dev
*tgt
= &sh
->dev
[target
];
628 pr_debug("%s: stripe %llu\n", __func__
,
629 (unsigned long long)sh
->sector
);
631 set_bit(R5_UPTODATE
, &tgt
->flags
);
632 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
633 clear_bit(R5_Wantcompute
, &tgt
->flags
);
634 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
635 if (sh
->check_state
== check_state_compute_run
)
636 sh
->check_state
= check_state_compute_result
;
637 set_bit(STRIPE_HANDLE
, &sh
->state
);
641 static struct dma_async_tx_descriptor
*ops_run_compute5(struct stripe_head
*sh
)
643 /* kernel stack size limits the total number of disks */
644 int disks
= sh
->disks
;
645 struct page
*xor_srcs
[disks
];
646 int target
= sh
->ops
.target
;
647 struct r5dev
*tgt
= &sh
->dev
[target
];
648 struct page
*xor_dest
= tgt
->page
;
650 struct dma_async_tx_descriptor
*tx
;
653 pr_debug("%s: stripe %llu block: %d\n",
654 __func__
, (unsigned long long)sh
->sector
, target
);
655 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
657 for (i
= disks
; i
--; )
659 xor_srcs
[count
++] = sh
->dev
[i
].page
;
661 atomic_inc(&sh
->count
);
663 if (unlikely(count
== 1))
664 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
665 0, NULL
, ops_complete_compute5
, sh
);
667 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
668 ASYNC_TX_XOR_ZERO_DST
, NULL
,
669 ops_complete_compute5
, sh
);
674 static void ops_complete_prexor(void *stripe_head_ref
)
676 struct stripe_head
*sh
= stripe_head_ref
;
678 pr_debug("%s: stripe %llu\n", __func__
,
679 (unsigned long long)sh
->sector
);
682 static struct dma_async_tx_descriptor
*
683 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
685 /* kernel stack size limits the total number of disks */
686 int disks
= sh
->disks
;
687 struct page
*xor_srcs
[disks
];
688 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
690 /* existing parity data subtracted */
691 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
693 pr_debug("%s: stripe %llu\n", __func__
,
694 (unsigned long long)sh
->sector
);
696 for (i
= disks
; i
--; ) {
697 struct r5dev
*dev
= &sh
->dev
[i
];
698 /* Only process blocks that are known to be uptodate */
699 if (test_bit(R5_Wantdrain
, &dev
->flags
))
700 xor_srcs
[count
++] = dev
->page
;
703 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
704 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
705 ops_complete_prexor
, sh
);
710 static struct dma_async_tx_descriptor
*
711 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
713 int disks
= sh
->disks
;
716 pr_debug("%s: stripe %llu\n", __func__
,
717 (unsigned long long)sh
->sector
);
719 for (i
= disks
; i
--; ) {
720 struct r5dev
*dev
= &sh
->dev
[i
];
723 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
726 spin_lock(&sh
->lock
);
727 chosen
= dev
->towrite
;
729 BUG_ON(dev
->written
);
730 wbi
= dev
->written
= chosen
;
731 spin_unlock(&sh
->lock
);
733 while (wbi
&& wbi
->bi_sector
<
734 dev
->sector
+ STRIPE_SECTORS
) {
735 tx
= async_copy_data(1, wbi
, dev
->page
,
737 wbi
= r5_next_bio(wbi
, dev
->sector
);
745 static void ops_complete_postxor(void *stripe_head_ref
)
747 struct stripe_head
*sh
= stripe_head_ref
;
748 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
750 pr_debug("%s: stripe %llu\n", __func__
,
751 (unsigned long long)sh
->sector
);
753 for (i
= disks
; i
--; ) {
754 struct r5dev
*dev
= &sh
->dev
[i
];
755 if (dev
->written
|| i
== pd_idx
)
756 set_bit(R5_UPTODATE
, &dev
->flags
);
759 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
760 sh
->reconstruct_state
= reconstruct_state_drain_result
;
761 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
762 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
764 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
765 sh
->reconstruct_state
= reconstruct_state_result
;
768 set_bit(STRIPE_HANDLE
, &sh
->state
);
773 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
775 /* kernel stack size limits the total number of disks */
776 int disks
= sh
->disks
;
777 struct page
*xor_srcs
[disks
];
779 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
780 struct page
*xor_dest
;
784 pr_debug("%s: stripe %llu\n", __func__
,
785 (unsigned long long)sh
->sector
);
787 /* check if prexor is active which means only process blocks
788 * that are part of a read-modify-write (written)
790 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
792 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
793 for (i
= disks
; i
--; ) {
794 struct r5dev
*dev
= &sh
->dev
[i
];
796 xor_srcs
[count
++] = dev
->page
;
799 xor_dest
= sh
->dev
[pd_idx
].page
;
800 for (i
= disks
; i
--; ) {
801 struct r5dev
*dev
= &sh
->dev
[i
];
803 xor_srcs
[count
++] = dev
->page
;
807 /* 1/ if we prexor'd then the dest is reused as a source
808 * 2/ if we did not prexor then we are redoing the parity
809 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
810 * for the synchronous xor case
812 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
813 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
815 atomic_inc(&sh
->count
);
817 if (unlikely(count
== 1)) {
818 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
819 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
820 flags
, tx
, ops_complete_postxor
, sh
);
822 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
823 flags
, tx
, ops_complete_postxor
, sh
);
826 static void ops_complete_check(void *stripe_head_ref
)
828 struct stripe_head
*sh
= stripe_head_ref
;
830 pr_debug("%s: stripe %llu\n", __func__
,
831 (unsigned long long)sh
->sector
);
833 sh
->check_state
= check_state_check_result
;
834 set_bit(STRIPE_HANDLE
, &sh
->state
);
838 static void ops_run_check(struct stripe_head
*sh
)
840 /* kernel stack size limits the total number of disks */
841 int disks
= sh
->disks
;
842 struct page
*xor_srcs
[disks
];
843 struct dma_async_tx_descriptor
*tx
;
845 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
846 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
848 pr_debug("%s: stripe %llu\n", __func__
,
849 (unsigned long long)sh
->sector
);
851 for (i
= disks
; i
--; ) {
852 struct r5dev
*dev
= &sh
->dev
[i
];
854 xor_srcs
[count
++] = dev
->page
;
857 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
858 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
860 atomic_inc(&sh
->count
);
861 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
862 ops_complete_check
, sh
);
865 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
867 int overlap_clear
= 0, i
, disks
= sh
->disks
;
868 struct dma_async_tx_descriptor
*tx
= NULL
;
870 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
875 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
876 tx
= ops_run_compute5(sh
);
877 /* terminate the chain if postxor is not set to be run */
878 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
882 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
883 tx
= ops_run_prexor(sh
, tx
);
885 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
886 tx
= ops_run_biodrain(sh
, tx
);
890 if (test_bit(STRIPE_OP_POSTXOR
, &ops_request
))
891 ops_run_postxor(sh
, tx
);
893 if (test_bit(STRIPE_OP_CHECK
, &ops_request
))
897 for (i
= disks
; i
--; ) {
898 struct r5dev
*dev
= &sh
->dev
[i
];
899 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
900 wake_up(&sh
->raid_conf
->wait_for_overlap
);
904 static int grow_one_stripe(raid5_conf_t
*conf
)
906 struct stripe_head
*sh
;
907 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
910 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
911 sh
->raid_conf
= conf
;
912 spin_lock_init(&sh
->lock
);
914 if (grow_buffers(sh
, conf
->raid_disks
)) {
915 shrink_buffers(sh
, conf
->raid_disks
);
916 kmem_cache_free(conf
->slab_cache
, sh
);
919 sh
->disks
= conf
->raid_disks
;
920 /* we just created an active stripe so... */
921 atomic_set(&sh
->count
, 1);
922 atomic_inc(&conf
->active_stripes
);
923 INIT_LIST_HEAD(&sh
->lru
);
928 static int grow_stripes(raid5_conf_t
*conf
, int num
)
930 struct kmem_cache
*sc
;
931 int devs
= conf
->raid_disks
;
933 sprintf(conf
->cache_name
[0],
934 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
935 sprintf(conf
->cache_name
[1],
936 "raid%d-%s-alt", conf
->level
, mdname(conf
->mddev
));
937 conf
->active_name
= 0;
938 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
939 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
943 conf
->slab_cache
= sc
;
944 conf
->pool_size
= devs
;
946 if (!grow_one_stripe(conf
))
951 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
953 /* Make all the stripes able to hold 'newsize' devices.
954 * New slots in each stripe get 'page' set to a new page.
956 * This happens in stages:
957 * 1/ create a new kmem_cache and allocate the required number of
959 * 2/ gather all the old stripe_heads and tranfer the pages across
960 * to the new stripe_heads. This will have the side effect of
961 * freezing the array as once all stripe_heads have been collected,
962 * no IO will be possible. Old stripe heads are freed once their
963 * pages have been transferred over, and the old kmem_cache is
964 * freed when all stripes are done.
965 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
966 * we simple return a failre status - no need to clean anything up.
967 * 4/ allocate new pages for the new slots in the new stripe_heads.
968 * If this fails, we don't bother trying the shrink the
969 * stripe_heads down again, we just leave them as they are.
970 * As each stripe_head is processed the new one is released into
973 * Once step2 is started, we cannot afford to wait for a write,
974 * so we use GFP_NOIO allocations.
976 struct stripe_head
*osh
, *nsh
;
977 LIST_HEAD(newstripes
);
978 struct disk_info
*ndisks
;
980 struct kmem_cache
*sc
;
983 if (newsize
<= conf
->pool_size
)
984 return 0; /* never bother to shrink */
986 err
= md_allow_write(conf
->mddev
);
991 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
992 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
997 for (i
= conf
->max_nr_stripes
; i
; i
--) {
998 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1002 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1004 nsh
->raid_conf
= conf
;
1005 spin_lock_init(&nsh
->lock
);
1007 list_add(&nsh
->lru
, &newstripes
);
1010 /* didn't get enough, give up */
1011 while (!list_empty(&newstripes
)) {
1012 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1013 list_del(&nsh
->lru
);
1014 kmem_cache_free(sc
, nsh
);
1016 kmem_cache_destroy(sc
);
1019 /* Step 2 - Must use GFP_NOIO now.
1020 * OK, we have enough stripes, start collecting inactive
1021 * stripes and copying them over
1023 list_for_each_entry(nsh
, &newstripes
, lru
) {
1024 spin_lock_irq(&conf
->device_lock
);
1025 wait_event_lock_irq(conf
->wait_for_stripe
,
1026 !list_empty(&conf
->inactive_list
),
1028 unplug_slaves(conf
->mddev
)
1030 osh
= get_free_stripe(conf
);
1031 spin_unlock_irq(&conf
->device_lock
);
1032 atomic_set(&nsh
->count
, 1);
1033 for(i
=0; i
<conf
->pool_size
; i
++)
1034 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1035 for( ; i
<newsize
; i
++)
1036 nsh
->dev
[i
].page
= NULL
;
1037 kmem_cache_free(conf
->slab_cache
, osh
);
1039 kmem_cache_destroy(conf
->slab_cache
);
1042 * At this point, we are holding all the stripes so the array
1043 * is completely stalled, so now is a good time to resize
1046 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1048 for (i
=0; i
<conf
->raid_disks
; i
++)
1049 ndisks
[i
] = conf
->disks
[i
];
1051 conf
->disks
= ndisks
;
1055 /* Step 4, return new stripes to service */
1056 while(!list_empty(&newstripes
)) {
1057 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1058 list_del_init(&nsh
->lru
);
1059 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1060 if (nsh
->dev
[i
].page
== NULL
) {
1061 struct page
*p
= alloc_page(GFP_NOIO
);
1062 nsh
->dev
[i
].page
= p
;
1066 release_stripe(nsh
);
1068 /* critical section pass, GFP_NOIO no longer needed */
1070 conf
->slab_cache
= sc
;
1071 conf
->active_name
= 1-conf
->active_name
;
1072 conf
->pool_size
= newsize
;
1076 static int drop_one_stripe(raid5_conf_t
*conf
)
1078 struct stripe_head
*sh
;
1080 spin_lock_irq(&conf
->device_lock
);
1081 sh
= get_free_stripe(conf
);
1082 spin_unlock_irq(&conf
->device_lock
);
1085 BUG_ON(atomic_read(&sh
->count
));
1086 shrink_buffers(sh
, conf
->pool_size
);
1087 kmem_cache_free(conf
->slab_cache
, sh
);
1088 atomic_dec(&conf
->active_stripes
);
1092 static void shrink_stripes(raid5_conf_t
*conf
)
1094 while (drop_one_stripe(conf
))
1097 if (conf
->slab_cache
)
1098 kmem_cache_destroy(conf
->slab_cache
);
1099 conf
->slab_cache
= NULL
;
1102 static void raid5_end_read_request(struct bio
* bi
, int error
)
1104 struct stripe_head
*sh
= bi
->bi_private
;
1105 raid5_conf_t
*conf
= sh
->raid_conf
;
1106 int disks
= sh
->disks
, i
;
1107 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1108 char b
[BDEVNAME_SIZE
];
1112 for (i
=0 ; i
<disks
; i
++)
1113 if (bi
== &sh
->dev
[i
].req
)
1116 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1117 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1125 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1126 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1127 rdev
= conf
->disks
[i
].rdev
;
1128 printk_rl(KERN_INFO
"raid5:%s: read error corrected"
1129 " (%lu sectors at %llu on %s)\n",
1130 mdname(conf
->mddev
), STRIPE_SECTORS
,
1131 (unsigned long long)(sh
->sector
1132 + rdev
->data_offset
),
1133 bdevname(rdev
->bdev
, b
));
1134 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1135 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1137 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1138 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1140 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1142 rdev
= conf
->disks
[i
].rdev
;
1144 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1145 atomic_inc(&rdev
->read_errors
);
1146 if (conf
->mddev
->degraded
)
1147 printk_rl(KERN_WARNING
1148 "raid5:%s: read error not correctable "
1149 "(sector %llu on %s).\n",
1150 mdname(conf
->mddev
),
1151 (unsigned long long)(sh
->sector
1152 + rdev
->data_offset
),
1154 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1156 printk_rl(KERN_WARNING
1157 "raid5:%s: read error NOT corrected!! "
1158 "(sector %llu on %s).\n",
1159 mdname(conf
->mddev
),
1160 (unsigned long long)(sh
->sector
1161 + rdev
->data_offset
),
1163 else if (atomic_read(&rdev
->read_errors
)
1164 > conf
->max_nr_stripes
)
1166 "raid5:%s: Too many read errors, failing device %s.\n",
1167 mdname(conf
->mddev
), bdn
);
1171 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1173 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1174 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1175 md_error(conf
->mddev
, rdev
);
1178 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1179 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1180 set_bit(STRIPE_HANDLE
, &sh
->state
);
1184 static void raid5_end_write_request(struct bio
*bi
, int error
)
1186 struct stripe_head
*sh
= bi
->bi_private
;
1187 raid5_conf_t
*conf
= sh
->raid_conf
;
1188 int disks
= sh
->disks
, i
;
1189 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1191 for (i
=0 ; i
<disks
; i
++)
1192 if (bi
== &sh
->dev
[i
].req
)
1195 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1196 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1204 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1206 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1208 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1209 set_bit(STRIPE_HANDLE
, &sh
->state
);
1214 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1216 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1218 struct r5dev
*dev
= &sh
->dev
[i
];
1220 bio_init(&dev
->req
);
1221 dev
->req
.bi_io_vec
= &dev
->vec
;
1223 dev
->req
.bi_max_vecs
++;
1224 dev
->vec
.bv_page
= dev
->page
;
1225 dev
->vec
.bv_len
= STRIPE_SIZE
;
1226 dev
->vec
.bv_offset
= 0;
1228 dev
->req
.bi_sector
= sh
->sector
;
1229 dev
->req
.bi_private
= sh
;
1232 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1235 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1237 char b
[BDEVNAME_SIZE
];
1238 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1239 pr_debug("raid5: error called\n");
1241 if (!test_bit(Faulty
, &rdev
->flags
)) {
1242 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1243 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1244 unsigned long flags
;
1245 spin_lock_irqsave(&conf
->device_lock
, flags
);
1247 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1249 * if recovery was running, make sure it aborts.
1251 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1253 set_bit(Faulty
, &rdev
->flags
);
1255 "raid5: Disk failure on %s, disabling device.\n"
1256 "raid5: Operation continuing on %d devices.\n",
1257 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1262 * Input: a 'big' sector number,
1263 * Output: index of the data and parity disk, and the sector # in them.
1265 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1266 int previous
, int *dd_idx
,
1267 struct stripe_head
*sh
)
1270 unsigned long chunk_number
;
1271 unsigned int chunk_offset
;
1274 sector_t new_sector
;
1275 int algorithm
= previous
? conf
->prev_algo
1277 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1278 : conf
->chunk_sectors
;
1279 int raid_disks
= previous
? conf
->previous_raid_disks
1281 int data_disks
= raid_disks
- conf
->max_degraded
;
1283 /* First compute the information on this sector */
1286 * Compute the chunk number and the sector offset inside the chunk
1288 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1289 chunk_number
= r_sector
;
1290 BUG_ON(r_sector
!= chunk_number
);
1293 * Compute the stripe number
1295 stripe
= chunk_number
/ data_disks
;
1298 * Compute the data disk and parity disk indexes inside the stripe
1300 *dd_idx
= chunk_number
% data_disks
;
1303 * Select the parity disk based on the user selected algorithm.
1305 pd_idx
= qd_idx
= ~0;
1306 switch(conf
->level
) {
1308 pd_idx
= data_disks
;
1311 switch (algorithm
) {
1312 case ALGORITHM_LEFT_ASYMMETRIC
:
1313 pd_idx
= data_disks
- stripe
% raid_disks
;
1314 if (*dd_idx
>= pd_idx
)
1317 case ALGORITHM_RIGHT_ASYMMETRIC
:
1318 pd_idx
= stripe
% raid_disks
;
1319 if (*dd_idx
>= pd_idx
)
1322 case ALGORITHM_LEFT_SYMMETRIC
:
1323 pd_idx
= data_disks
- stripe
% raid_disks
;
1324 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1326 case ALGORITHM_RIGHT_SYMMETRIC
:
1327 pd_idx
= stripe
% raid_disks
;
1328 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1330 case ALGORITHM_PARITY_0
:
1334 case ALGORITHM_PARITY_N
:
1335 pd_idx
= data_disks
;
1338 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1345 switch (algorithm
) {
1346 case ALGORITHM_LEFT_ASYMMETRIC
:
1347 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1348 qd_idx
= pd_idx
+ 1;
1349 if (pd_idx
== raid_disks
-1) {
1350 (*dd_idx
)++; /* Q D D D P */
1352 } else if (*dd_idx
>= pd_idx
)
1353 (*dd_idx
) += 2; /* D D P Q D */
1355 case ALGORITHM_RIGHT_ASYMMETRIC
:
1356 pd_idx
= stripe
% raid_disks
;
1357 qd_idx
= pd_idx
+ 1;
1358 if (pd_idx
== raid_disks
-1) {
1359 (*dd_idx
)++; /* Q D D D P */
1361 } else if (*dd_idx
>= pd_idx
)
1362 (*dd_idx
) += 2; /* D D P Q D */
1364 case ALGORITHM_LEFT_SYMMETRIC
:
1365 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1366 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1367 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1369 case ALGORITHM_RIGHT_SYMMETRIC
:
1370 pd_idx
= stripe
% raid_disks
;
1371 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1372 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1375 case ALGORITHM_PARITY_0
:
1380 case ALGORITHM_PARITY_N
:
1381 pd_idx
= data_disks
;
1382 qd_idx
= data_disks
+ 1;
1385 case ALGORITHM_ROTATING_ZERO_RESTART
:
1386 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1387 * of blocks for computing Q is different.
1389 pd_idx
= stripe
% raid_disks
;
1390 qd_idx
= pd_idx
+ 1;
1391 if (pd_idx
== raid_disks
-1) {
1392 (*dd_idx
)++; /* Q D D D P */
1394 } else if (*dd_idx
>= pd_idx
)
1395 (*dd_idx
) += 2; /* D D P Q D */
1399 case ALGORITHM_ROTATING_N_RESTART
:
1400 /* Same a left_asymmetric, by first stripe is
1401 * D D D P Q rather than
1404 pd_idx
= raid_disks
- 1 - ((stripe
+ 1) % raid_disks
);
1405 qd_idx
= pd_idx
+ 1;
1406 if (pd_idx
== raid_disks
-1) {
1407 (*dd_idx
)++; /* Q D D D P */
1409 } else if (*dd_idx
>= pd_idx
)
1410 (*dd_idx
) += 2; /* D D P Q D */
1414 case ALGORITHM_ROTATING_N_CONTINUE
:
1415 /* Same as left_symmetric but Q is before P */
1416 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1417 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1418 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1422 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1423 /* RAID5 left_asymmetric, with Q on last device */
1424 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1425 if (*dd_idx
>= pd_idx
)
1427 qd_idx
= raid_disks
- 1;
1430 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1431 pd_idx
= stripe
% (raid_disks
-1);
1432 if (*dd_idx
>= pd_idx
)
1434 qd_idx
= raid_disks
- 1;
1437 case ALGORITHM_LEFT_SYMMETRIC_6
:
1438 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1439 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1440 qd_idx
= raid_disks
- 1;
1443 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1444 pd_idx
= stripe
% (raid_disks
-1);
1445 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1446 qd_idx
= raid_disks
- 1;
1449 case ALGORITHM_PARITY_0_6
:
1452 qd_idx
= raid_disks
- 1;
1457 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1465 sh
->pd_idx
= pd_idx
;
1466 sh
->qd_idx
= qd_idx
;
1467 sh
->ddf_layout
= ddf_layout
;
1470 * Finally, compute the new sector number
1472 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1477 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1479 raid5_conf_t
*conf
= sh
->raid_conf
;
1480 int raid_disks
= sh
->disks
;
1481 int data_disks
= raid_disks
- conf
->max_degraded
;
1482 sector_t new_sector
= sh
->sector
, check
;
1483 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1484 : conf
->chunk_sectors
;
1485 int algorithm
= previous
? conf
->prev_algo
1489 int chunk_number
, dummy1
, dd_idx
= i
;
1491 struct stripe_head sh2
;
1494 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1495 stripe
= new_sector
;
1496 BUG_ON(new_sector
!= stripe
);
1498 if (i
== sh
->pd_idx
)
1500 switch(conf
->level
) {
1503 switch (algorithm
) {
1504 case ALGORITHM_LEFT_ASYMMETRIC
:
1505 case ALGORITHM_RIGHT_ASYMMETRIC
:
1509 case ALGORITHM_LEFT_SYMMETRIC
:
1510 case ALGORITHM_RIGHT_SYMMETRIC
:
1513 i
-= (sh
->pd_idx
+ 1);
1515 case ALGORITHM_PARITY_0
:
1518 case ALGORITHM_PARITY_N
:
1521 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1527 if (i
== sh
->qd_idx
)
1528 return 0; /* It is the Q disk */
1529 switch (algorithm
) {
1530 case ALGORITHM_LEFT_ASYMMETRIC
:
1531 case ALGORITHM_RIGHT_ASYMMETRIC
:
1532 case ALGORITHM_ROTATING_ZERO_RESTART
:
1533 case ALGORITHM_ROTATING_N_RESTART
:
1534 if (sh
->pd_idx
== raid_disks
-1)
1535 i
--; /* Q D D D P */
1536 else if (i
> sh
->pd_idx
)
1537 i
-= 2; /* D D P Q D */
1539 case ALGORITHM_LEFT_SYMMETRIC
:
1540 case ALGORITHM_RIGHT_SYMMETRIC
:
1541 if (sh
->pd_idx
== raid_disks
-1)
1542 i
--; /* Q D D D P */
1547 i
-= (sh
->pd_idx
+ 2);
1550 case ALGORITHM_PARITY_0
:
1553 case ALGORITHM_PARITY_N
:
1555 case ALGORITHM_ROTATING_N_CONTINUE
:
1556 if (sh
->pd_idx
== 0)
1557 i
--; /* P D D D Q */
1558 else if (i
> sh
->pd_idx
)
1559 i
-= 2; /* D D Q P D */
1561 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1562 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1566 case ALGORITHM_LEFT_SYMMETRIC_6
:
1567 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1569 i
+= data_disks
+ 1;
1570 i
-= (sh
->pd_idx
+ 1);
1572 case ALGORITHM_PARITY_0_6
:
1576 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1583 chunk_number
= stripe
* data_disks
+ i
;
1584 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1586 check
= raid5_compute_sector(conf
, r_sector
,
1587 previous
, &dummy1
, &sh2
);
1588 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
1589 || sh2
.qd_idx
!= sh
->qd_idx
) {
1590 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1599 * Copy data between a page in the stripe cache, and one or more bion
1600 * The page could align with the middle of the bio, or there could be
1601 * several bion, each with several bio_vecs, which cover part of the page
1602 * Multiple bion are linked together on bi_next. There may be extras
1603 * at the end of this list. We ignore them.
1605 static void copy_data(int frombio
, struct bio
*bio
,
1609 char *pa
= page_address(page
);
1610 struct bio_vec
*bvl
;
1614 if (bio
->bi_sector
>= sector
)
1615 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1617 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1618 bio_for_each_segment(bvl
, bio
, i
) {
1619 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1623 if (page_offset
< 0) {
1624 b_offset
= -page_offset
;
1625 page_offset
+= b_offset
;
1629 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1630 clen
= STRIPE_SIZE
- page_offset
;
1634 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1636 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1638 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1639 __bio_kunmap_atomic(ba
, KM_USER0
);
1641 if (clen
< len
) /* hit end of page */
1647 #define check_xor() do { \
1648 if (count == MAX_XOR_BLOCKS) { \
1649 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1654 static void compute_parity6(struct stripe_head
*sh
, int method
)
1656 raid5_conf_t
*conf
= sh
->raid_conf
;
1657 int i
, pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1658 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1660 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661 void *ptrs
[syndrome_disks
+2];
1663 pd_idx
= sh
->pd_idx
;
1664 qd_idx
= sh
->qd_idx
;
1665 d0_idx
= raid6_d0(sh
);
1667 pr_debug("compute_parity, stripe %llu, method %d\n",
1668 (unsigned long long)sh
->sector
, method
);
1671 case READ_MODIFY_WRITE
:
1672 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1673 case RECONSTRUCT_WRITE
:
1674 for (i
= disks
; i
-- ;)
1675 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1676 chosen
= sh
->dev
[i
].towrite
;
1677 sh
->dev
[i
].towrite
= NULL
;
1679 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1680 wake_up(&conf
->wait_for_overlap
);
1682 BUG_ON(sh
->dev
[i
].written
);
1683 sh
->dev
[i
].written
= chosen
;
1687 BUG(); /* Not implemented yet */
1690 for (i
= disks
; i
--;)
1691 if (sh
->dev
[i
].written
) {
1692 sector_t sector
= sh
->dev
[i
].sector
;
1693 struct bio
*wbi
= sh
->dev
[i
].written
;
1694 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1695 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1696 wbi
= r5_next_bio(wbi
, sector
);
1699 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1700 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1703 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1705 for (i
= 0; i
< disks
; i
++)
1706 ptrs
[i
] = (void *)raid6_empty_zero_page
;
1711 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1713 ptrs
[slot
] = page_address(sh
->dev
[i
].page
);
1714 if (slot
< syndrome_disks
&&
1715 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
)) {
1716 printk(KERN_ERR
"block %d/%d not uptodate "
1717 "on parity calc\n", i
, count
);
1721 i
= raid6_next_disk(i
, disks
);
1722 } while (i
!= d0_idx
);
1723 BUG_ON(count
!= syndrome_disks
);
1725 raid6_call
.gen_syndrome(syndrome_disks
+2, STRIPE_SIZE
, ptrs
);
1728 case RECONSTRUCT_WRITE
:
1729 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1730 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1731 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1732 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1735 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1736 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1742 /* Compute one missing block */
1743 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1745 int i
, count
, disks
= sh
->disks
;
1746 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1747 int qd_idx
= sh
->qd_idx
;
1749 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1750 (unsigned long long)sh
->sector
, dd_idx
);
1752 if ( dd_idx
== qd_idx
) {
1753 /* We're actually computing the Q drive */
1754 compute_parity6(sh
, UPDATE_PARITY
);
1756 dest
= page_address(sh
->dev
[dd_idx
].page
);
1757 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1759 for (i
= disks
; i
--; ) {
1760 if (i
== dd_idx
|| i
== qd_idx
)
1762 p
= page_address(sh
->dev
[i
].page
);
1763 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1766 printk("compute_block() %d, stripe %llu, %d"
1767 " not present\n", dd_idx
,
1768 (unsigned long long)sh
->sector
, i
);
1773 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1774 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1775 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1779 /* Compute two missing blocks */
1780 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1782 int i
, count
, disks
= sh
->disks
;
1783 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1784 int d0_idx
= raid6_d0(sh
);
1785 int faila
= -1, failb
= -1;
1786 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1787 void *ptrs
[syndrome_disks
+2];
1789 for (i
= 0; i
< disks
; i
++)
1790 ptrs
[i
] = (void *)raid6_empty_zero_page
;
1794 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1796 ptrs
[slot
] = page_address(sh
->dev
[i
].page
);
1802 i
= raid6_next_disk(i
, disks
);
1803 } while (i
!= d0_idx
);
1804 BUG_ON(count
!= syndrome_disks
);
1806 BUG_ON(faila
== failb
);
1807 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1809 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1810 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
,
1813 if (failb
== syndrome_disks
+1) {
1814 /* Q disk is one of the missing disks */
1815 if (faila
== syndrome_disks
) {
1816 /* Missing P+Q, just recompute */
1817 compute_parity6(sh
, UPDATE_PARITY
);
1820 /* We're missing D+Q; recompute D from P */
1821 compute_block_1(sh
, ((dd_idx1
== sh
->qd_idx
) ?
1824 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1829 /* We're missing D+P or D+D; */
1830 if (failb
== syndrome_disks
) {
1831 /* We're missing D+P. */
1832 raid6_datap_recov(syndrome_disks
+2, STRIPE_SIZE
, faila
, ptrs
);
1834 /* We're missing D+D. */
1835 raid6_2data_recov(syndrome_disks
+2, STRIPE_SIZE
, faila
, failb
,
1839 /* Both the above update both missing blocks */
1840 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1841 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1845 schedule_reconstruction5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1846 int rcw
, int expand
)
1848 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1851 /* if we are not expanding this is a proper write request, and
1852 * there will be bios with new data to be drained into the
1856 sh
->reconstruct_state
= reconstruct_state_drain_run
;
1857 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1859 sh
->reconstruct_state
= reconstruct_state_run
;
1861 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1863 for (i
= disks
; i
--; ) {
1864 struct r5dev
*dev
= &sh
->dev
[i
];
1867 set_bit(R5_LOCKED
, &dev
->flags
);
1868 set_bit(R5_Wantdrain
, &dev
->flags
);
1870 clear_bit(R5_UPTODATE
, &dev
->flags
);
1874 if (s
->locked
+ 1 == disks
)
1875 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1876 atomic_inc(&sh
->raid_conf
->pending_full_writes
);
1878 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1879 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1881 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
1882 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
1883 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1884 set_bit(STRIPE_OP_POSTXOR
, &s
->ops_request
);
1886 for (i
= disks
; i
--; ) {
1887 struct r5dev
*dev
= &sh
->dev
[i
];
1892 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1893 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1894 set_bit(R5_Wantdrain
, &dev
->flags
);
1895 set_bit(R5_LOCKED
, &dev
->flags
);
1896 clear_bit(R5_UPTODATE
, &dev
->flags
);
1902 /* keep the parity disk locked while asynchronous operations
1905 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1906 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1909 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1910 __func__
, (unsigned long long)sh
->sector
,
1911 s
->locked
, s
->ops_request
);
1915 * Each stripe/dev can have one or more bion attached.
1916 * toread/towrite point to the first in a chain.
1917 * The bi_next chain must be in order.
1919 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1922 raid5_conf_t
*conf
= sh
->raid_conf
;
1925 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1926 (unsigned long long)bi
->bi_sector
,
1927 (unsigned long long)sh
->sector
);
1930 spin_lock(&sh
->lock
);
1931 spin_lock_irq(&conf
->device_lock
);
1933 bip
= &sh
->dev
[dd_idx
].towrite
;
1934 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1937 bip
= &sh
->dev
[dd_idx
].toread
;
1938 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1939 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1941 bip
= & (*bip
)->bi_next
;
1943 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1946 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1950 bi
->bi_phys_segments
++;
1951 spin_unlock_irq(&conf
->device_lock
);
1952 spin_unlock(&sh
->lock
);
1954 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1955 (unsigned long long)bi
->bi_sector
,
1956 (unsigned long long)sh
->sector
, dd_idx
);
1958 if (conf
->mddev
->bitmap
&& firstwrite
) {
1959 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1961 sh
->bm_seq
= conf
->seq_flush
+1;
1962 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1966 /* check if page is covered */
1967 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1968 for (bi
=sh
->dev
[dd_idx
].towrite
;
1969 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1970 bi
&& bi
->bi_sector
<= sector
;
1971 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1972 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1973 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1975 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1976 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1981 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1982 spin_unlock_irq(&conf
->device_lock
);
1983 spin_unlock(&sh
->lock
);
1987 static void end_reshape(raid5_conf_t
*conf
);
1989 static int page_is_zero(struct page
*p
)
1991 char *a
= page_address(p
);
1992 return ((*(u32
*)a
) == 0 &&
1993 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1996 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
1997 struct stripe_head
*sh
)
1999 int sectors_per_chunk
=
2000 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2002 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2003 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2005 raid5_compute_sector(conf
,
2006 stripe
* (disks
- conf
->max_degraded
)
2007 *sectors_per_chunk
+ chunk_offset
,
2013 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2014 struct stripe_head_state
*s
, int disks
,
2015 struct bio
**return_bi
)
2018 for (i
= disks
; i
--; ) {
2022 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2025 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2026 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2027 /* multiple read failures in one stripe */
2028 md_error(conf
->mddev
, rdev
);
2031 spin_lock_irq(&conf
->device_lock
);
2032 /* fail all writes first */
2033 bi
= sh
->dev
[i
].towrite
;
2034 sh
->dev
[i
].towrite
= NULL
;
2040 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2041 wake_up(&conf
->wait_for_overlap
);
2043 while (bi
&& bi
->bi_sector
<
2044 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2045 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2046 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2047 if (!raid5_dec_bi_phys_segments(bi
)) {
2048 md_write_end(conf
->mddev
);
2049 bi
->bi_next
= *return_bi
;
2054 /* and fail all 'written' */
2055 bi
= sh
->dev
[i
].written
;
2056 sh
->dev
[i
].written
= NULL
;
2057 if (bi
) bitmap_end
= 1;
2058 while (bi
&& bi
->bi_sector
<
2059 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2060 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2061 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2062 if (!raid5_dec_bi_phys_segments(bi
)) {
2063 md_write_end(conf
->mddev
);
2064 bi
->bi_next
= *return_bi
;
2070 /* fail any reads if this device is non-operational and
2071 * the data has not reached the cache yet.
2073 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2074 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2075 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2076 bi
= sh
->dev
[i
].toread
;
2077 sh
->dev
[i
].toread
= NULL
;
2078 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2079 wake_up(&conf
->wait_for_overlap
);
2080 if (bi
) s
->to_read
--;
2081 while (bi
&& bi
->bi_sector
<
2082 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2083 struct bio
*nextbi
=
2084 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2085 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2086 if (!raid5_dec_bi_phys_segments(bi
)) {
2087 bi
->bi_next
= *return_bi
;
2093 spin_unlock_irq(&conf
->device_lock
);
2095 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2096 STRIPE_SECTORS
, 0, 0);
2099 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2100 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2101 md_wakeup_thread(conf
->mddev
->thread
);
2104 /* fetch_block5 - checks the given member device to see if its data needs
2105 * to be read or computed to satisfy a request.
2107 * Returns 1 when no more member devices need to be checked, otherwise returns
2108 * 0 to tell the loop in handle_stripe_fill5 to continue
2110 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2111 int disk_idx
, int disks
)
2113 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2114 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2116 /* is the data in this block needed, and can we get it? */
2117 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2118 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2120 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2121 s
->syncing
|| s
->expanding
||
2123 (failed_dev
->toread
||
2124 (failed_dev
->towrite
&&
2125 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
2126 /* We would like to get this block, possibly by computing it,
2127 * otherwise read it if the backing disk is insync
2129 if ((s
->uptodate
== disks
- 1) &&
2130 (s
->failed
&& disk_idx
== s
->failed_num
)) {
2131 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2132 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2133 set_bit(R5_Wantcompute
, &dev
->flags
);
2134 sh
->ops
.target
= disk_idx
;
2136 /* Careful: from this point on 'uptodate' is in the eye
2137 * of raid5_run_ops which services 'compute' operations
2138 * before writes. R5_Wantcompute flags a block that will
2139 * be R5_UPTODATE by the time it is needed for a
2140 * subsequent operation.
2143 return 1; /* uptodate + compute == disks */
2144 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2145 set_bit(R5_LOCKED
, &dev
->flags
);
2146 set_bit(R5_Wantread
, &dev
->flags
);
2148 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2157 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2159 static void handle_stripe_fill5(struct stripe_head
*sh
,
2160 struct stripe_head_state
*s
, int disks
)
2164 /* look for blocks to read/compute, skip this if a compute
2165 * is already in flight, or if the stripe contents are in the
2166 * midst of changing due to a write
2168 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2169 !sh
->reconstruct_state
)
2170 for (i
= disks
; i
--; )
2171 if (fetch_block5(sh
, s
, i
, disks
))
2173 set_bit(STRIPE_HANDLE
, &sh
->state
);
2176 static void handle_stripe_fill6(struct stripe_head
*sh
,
2177 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2181 for (i
= disks
; i
--; ) {
2182 struct r5dev
*dev
= &sh
->dev
[i
];
2183 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2184 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2185 (dev
->toread
|| (dev
->towrite
&&
2186 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2187 s
->syncing
|| s
->expanding
||
2189 (sh
->dev
[r6s
->failed_num
[0]].toread
||
2192 (sh
->dev
[r6s
->failed_num
[1]].toread
||
2194 /* we would like to get this block, possibly
2195 * by computing it, but we might not be able to
2197 if ((s
->uptodate
== disks
- 1) &&
2198 (s
->failed
&& (i
== r6s
->failed_num
[0] ||
2199 i
== r6s
->failed_num
[1]))) {
2200 pr_debug("Computing stripe %llu block %d\n",
2201 (unsigned long long)sh
->sector
, i
);
2202 compute_block_1(sh
, i
, 0);
2204 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
2205 /* Computing 2-failure is *very* expensive; only
2206 * do it if failed >= 2
2209 for (other
= disks
; other
--; ) {
2212 if (!test_bit(R5_UPTODATE
,
2213 &sh
->dev
[other
].flags
))
2217 pr_debug("Computing stripe %llu blocks %d,%d\n",
2218 (unsigned long long)sh
->sector
,
2220 compute_block_2(sh
, i
, other
);
2222 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2223 set_bit(R5_LOCKED
, &dev
->flags
);
2224 set_bit(R5_Wantread
, &dev
->flags
);
2226 pr_debug("Reading block %d (sync=%d)\n",
2231 set_bit(STRIPE_HANDLE
, &sh
->state
);
2235 /* handle_stripe_clean_event
2236 * any written block on an uptodate or failed drive can be returned.
2237 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2238 * never LOCKED, so we don't need to test 'failed' directly.
2240 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2241 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2246 for (i
= disks
; i
--; )
2247 if (sh
->dev
[i
].written
) {
2249 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2250 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2251 /* We can return any write requests */
2252 struct bio
*wbi
, *wbi2
;
2254 pr_debug("Return write for disc %d\n", i
);
2255 spin_lock_irq(&conf
->device_lock
);
2257 dev
->written
= NULL
;
2258 while (wbi
&& wbi
->bi_sector
<
2259 dev
->sector
+ STRIPE_SECTORS
) {
2260 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2261 if (!raid5_dec_bi_phys_segments(wbi
)) {
2262 md_write_end(conf
->mddev
);
2263 wbi
->bi_next
= *return_bi
;
2268 if (dev
->towrite
== NULL
)
2270 spin_unlock_irq(&conf
->device_lock
);
2272 bitmap_endwrite(conf
->mddev
->bitmap
,
2275 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2280 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2281 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2282 md_wakeup_thread(conf
->mddev
->thread
);
2285 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2286 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2288 int rmw
= 0, rcw
= 0, i
;
2289 for (i
= disks
; i
--; ) {
2290 /* would I have to read this buffer for read_modify_write */
2291 struct r5dev
*dev
= &sh
->dev
[i
];
2292 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2293 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2294 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2295 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2296 if (test_bit(R5_Insync
, &dev
->flags
))
2299 rmw
+= 2*disks
; /* cannot read it */
2301 /* Would I have to read this buffer for reconstruct_write */
2302 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2303 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2304 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2305 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2306 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2311 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2312 (unsigned long long)sh
->sector
, rmw
, rcw
);
2313 set_bit(STRIPE_HANDLE
, &sh
->state
);
2314 if (rmw
< rcw
&& rmw
> 0)
2315 /* prefer read-modify-write, but need to get some data */
2316 for (i
= disks
; i
--; ) {
2317 struct r5dev
*dev
= &sh
->dev
[i
];
2318 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2319 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2320 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2321 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2322 test_bit(R5_Insync
, &dev
->flags
)) {
2324 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2325 pr_debug("Read_old block "
2326 "%d for r-m-w\n", i
);
2327 set_bit(R5_LOCKED
, &dev
->flags
);
2328 set_bit(R5_Wantread
, &dev
->flags
);
2331 set_bit(STRIPE_DELAYED
, &sh
->state
);
2332 set_bit(STRIPE_HANDLE
, &sh
->state
);
2336 if (rcw
<= rmw
&& rcw
> 0)
2337 /* want reconstruct write, but need to get some data */
2338 for (i
= disks
; i
--; ) {
2339 struct r5dev
*dev
= &sh
->dev
[i
];
2340 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2342 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2343 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2344 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2345 test_bit(R5_Insync
, &dev
->flags
)) {
2347 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2348 pr_debug("Read_old block "
2349 "%d for Reconstruct\n", i
);
2350 set_bit(R5_LOCKED
, &dev
->flags
);
2351 set_bit(R5_Wantread
, &dev
->flags
);
2354 set_bit(STRIPE_DELAYED
, &sh
->state
);
2355 set_bit(STRIPE_HANDLE
, &sh
->state
);
2359 /* now if nothing is locked, and if we have enough data,
2360 * we can start a write request
2362 /* since handle_stripe can be called at any time we need to handle the
2363 * case where a compute block operation has been submitted and then a
2364 * subsequent call wants to start a write request. raid5_run_ops only
2365 * handles the case where compute block and postxor are requested
2366 * simultaneously. If this is not the case then new writes need to be
2367 * held off until the compute completes.
2369 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2370 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2371 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2372 schedule_reconstruction5(sh
, s
, rcw
== 0, 0);
2375 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2376 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2377 struct r6_state
*r6s
, int disks
)
2379 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2380 int qd_idx
= sh
->qd_idx
;
2381 for (i
= disks
; i
--; ) {
2382 struct r5dev
*dev
= &sh
->dev
[i
];
2383 /* Would I have to read this buffer for reconstruct_write */
2384 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2385 && i
!= pd_idx
&& i
!= qd_idx
2386 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2388 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2389 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2391 pr_debug("raid6: must_compute: "
2392 "disk %d flags=%#lx\n", i
, dev
->flags
);
2397 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2398 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2399 set_bit(STRIPE_HANDLE
, &sh
->state
);
2402 /* want reconstruct write, but need to get some data */
2403 for (i
= disks
; i
--; ) {
2404 struct r5dev
*dev
= &sh
->dev
[i
];
2405 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2406 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2407 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2408 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2409 test_bit(R5_Insync
, &dev
->flags
)) {
2411 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2412 pr_debug("Read_old stripe %llu "
2413 "block %d for Reconstruct\n",
2414 (unsigned long long)sh
->sector
, i
);
2415 set_bit(R5_LOCKED
, &dev
->flags
);
2416 set_bit(R5_Wantread
, &dev
->flags
);
2419 pr_debug("Request delayed stripe %llu "
2420 "block %d for Reconstruct\n",
2421 (unsigned long long)sh
->sector
, i
);
2422 set_bit(STRIPE_DELAYED
, &sh
->state
);
2423 set_bit(STRIPE_HANDLE
, &sh
->state
);
2427 /* now if nothing is locked, and if we have enough data, we can start a
2430 if (s
->locked
== 0 && rcw
== 0 &&
2431 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2432 if (must_compute
> 0) {
2433 /* We have failed blocks and need to compute them */
2434 switch (s
->failed
) {
2438 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2441 compute_block_2(sh
, r6s
->failed_num
[0],
2442 r6s
->failed_num
[1]);
2444 default: /* This request should have been failed? */
2449 pr_debug("Computing parity for stripe %llu\n",
2450 (unsigned long long)sh
->sector
);
2451 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2452 /* now every locked buffer is ready to be written */
2453 for (i
= disks
; i
--; )
2454 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2455 pr_debug("Writing stripe %llu block %d\n",
2456 (unsigned long long)sh
->sector
, i
);
2458 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2460 if (s
->locked
== disks
)
2461 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2462 atomic_inc(&conf
->pending_full_writes
);
2463 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2464 set_bit(STRIPE_INSYNC
, &sh
->state
);
2466 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2467 atomic_dec(&conf
->preread_active_stripes
);
2468 if (atomic_read(&conf
->preread_active_stripes
) <
2470 md_wakeup_thread(conf
->mddev
->thread
);
2475 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2476 struct stripe_head_state
*s
, int disks
)
2478 struct r5dev
*dev
= NULL
;
2480 set_bit(STRIPE_HANDLE
, &sh
->state
);
2482 switch (sh
->check_state
) {
2483 case check_state_idle
:
2484 /* start a new check operation if there are no failures */
2485 if (s
->failed
== 0) {
2486 BUG_ON(s
->uptodate
!= disks
);
2487 sh
->check_state
= check_state_run
;
2488 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2489 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2493 dev
= &sh
->dev
[s
->failed_num
];
2495 case check_state_compute_result
:
2496 sh
->check_state
= check_state_idle
;
2498 dev
= &sh
->dev
[sh
->pd_idx
];
2500 /* check that a write has not made the stripe insync */
2501 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2504 /* either failed parity check, or recovery is happening */
2505 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2506 BUG_ON(s
->uptodate
!= disks
);
2508 set_bit(R5_LOCKED
, &dev
->flags
);
2510 set_bit(R5_Wantwrite
, &dev
->flags
);
2512 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2513 set_bit(STRIPE_INSYNC
, &sh
->state
);
2515 case check_state_run
:
2516 break; /* we will be called again upon completion */
2517 case check_state_check_result
:
2518 sh
->check_state
= check_state_idle
;
2520 /* if a failure occurred during the check operation, leave
2521 * STRIPE_INSYNC not set and let the stripe be handled again
2526 /* handle a successful check operation, if parity is correct
2527 * we are done. Otherwise update the mismatch count and repair
2528 * parity if !MD_RECOVERY_CHECK
2530 if (sh
->ops
.zero_sum_result
== 0)
2531 /* parity is correct (on disc,
2532 * not in buffer any more)
2534 set_bit(STRIPE_INSYNC
, &sh
->state
);
2536 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2537 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2538 /* don't try to repair!! */
2539 set_bit(STRIPE_INSYNC
, &sh
->state
);
2541 sh
->check_state
= check_state_compute_run
;
2542 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2543 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2544 set_bit(R5_Wantcompute
,
2545 &sh
->dev
[sh
->pd_idx
].flags
);
2546 sh
->ops
.target
= sh
->pd_idx
;
2551 case check_state_compute_run
:
2554 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2555 __func__
, sh
->check_state
,
2556 (unsigned long long) sh
->sector
);
2562 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2563 struct stripe_head_state
*s
,
2564 struct r6_state
*r6s
, struct page
*tmp_page
,
2567 int update_p
= 0, update_q
= 0;
2569 int pd_idx
= sh
->pd_idx
;
2570 int qd_idx
= sh
->qd_idx
;
2572 set_bit(STRIPE_HANDLE
, &sh
->state
);
2574 BUG_ON(s
->failed
> 2);
2575 BUG_ON(s
->uptodate
< disks
);
2576 /* Want to check and possibly repair P and Q.
2577 * However there could be one 'failed' device, in which
2578 * case we can only check one of them, possibly using the
2579 * other to generate missing data
2582 /* If !tmp_page, we cannot do the calculations,
2583 * but as we have set STRIPE_HANDLE, we will soon be called
2584 * by stripe_handle with a tmp_page - just wait until then.
2587 if (s
->failed
== r6s
->q_failed
) {
2588 /* The only possible failed device holds 'Q', so it
2589 * makes sense to check P (If anything else were failed,
2590 * we would have used P to recreate it).
2592 compute_block_1(sh
, pd_idx
, 1);
2593 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2594 compute_block_1(sh
, pd_idx
, 0);
2598 if (!r6s
->q_failed
&& s
->failed
< 2) {
2599 /* q is not failed, and we didn't use it to generate
2600 * anything, so it makes sense to check it
2602 memcpy(page_address(tmp_page
),
2603 page_address(sh
->dev
[qd_idx
].page
),
2605 compute_parity6(sh
, UPDATE_PARITY
);
2606 if (memcmp(page_address(tmp_page
),
2607 page_address(sh
->dev
[qd_idx
].page
),
2608 STRIPE_SIZE
) != 0) {
2609 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2613 if (update_p
|| update_q
) {
2614 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2615 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2616 /* don't try to repair!! */
2617 update_p
= update_q
= 0;
2620 /* now write out any block on a failed drive,
2621 * or P or Q if they need it
2624 if (s
->failed
== 2) {
2625 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2627 set_bit(R5_LOCKED
, &dev
->flags
);
2628 set_bit(R5_Wantwrite
, &dev
->flags
);
2630 if (s
->failed
>= 1) {
2631 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2633 set_bit(R5_LOCKED
, &dev
->flags
);
2634 set_bit(R5_Wantwrite
, &dev
->flags
);
2638 dev
= &sh
->dev
[pd_idx
];
2640 set_bit(R5_LOCKED
, &dev
->flags
);
2641 set_bit(R5_Wantwrite
, &dev
->flags
);
2644 dev
= &sh
->dev
[qd_idx
];
2646 set_bit(R5_LOCKED
, &dev
->flags
);
2647 set_bit(R5_Wantwrite
, &dev
->flags
);
2649 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2651 set_bit(STRIPE_INSYNC
, &sh
->state
);
2655 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2656 struct r6_state
*r6s
)
2660 /* We have read all the blocks in this stripe and now we need to
2661 * copy some of them into a target stripe for expand.
2663 struct dma_async_tx_descriptor
*tx
= NULL
;
2664 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2665 for (i
= 0; i
< sh
->disks
; i
++)
2666 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2668 struct stripe_head
*sh2
;
2670 sector_t bn
= compute_blocknr(sh
, i
, 1);
2671 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2673 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2675 /* so far only the early blocks of this stripe
2676 * have been requested. When later blocks
2677 * get requested, we will try again
2680 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2681 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2682 /* must have already done this block */
2683 release_stripe(sh2
);
2687 /* place all the copies on one channel */
2688 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2689 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2690 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2692 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2693 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2694 for (j
= 0; j
< conf
->raid_disks
; j
++)
2695 if (j
!= sh2
->pd_idx
&&
2696 (!r6s
|| j
!= sh2
->qd_idx
) &&
2697 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2699 if (j
== conf
->raid_disks
) {
2700 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2701 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2703 release_stripe(sh2
);
2706 /* done submitting copies, wait for them to complete */
2709 dma_wait_for_async_tx(tx
);
2715 * handle_stripe - do things to a stripe.
2717 * We lock the stripe and then examine the state of various bits
2718 * to see what needs to be done.
2720 * return some read request which now have data
2721 * return some write requests which are safely on disc
2722 * schedule a read on some buffers
2723 * schedule a write of some buffers
2724 * return confirmation of parity correctness
2726 * buffers are taken off read_list or write_list, and bh_cache buffers
2727 * get BH_Lock set before the stripe lock is released.
2731 static bool handle_stripe5(struct stripe_head
*sh
)
2733 raid5_conf_t
*conf
= sh
->raid_conf
;
2734 int disks
= sh
->disks
, i
;
2735 struct bio
*return_bi
= NULL
;
2736 struct stripe_head_state s
;
2738 mdk_rdev_t
*blocked_rdev
= NULL
;
2741 memset(&s
, 0, sizeof(s
));
2742 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2743 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
2744 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
2745 sh
->reconstruct_state
);
2747 spin_lock(&sh
->lock
);
2748 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2749 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2751 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2752 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2753 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2755 /* Now to look around and see what can be done */
2757 for (i
=disks
; i
--; ) {
2759 struct r5dev
*dev
= &sh
->dev
[i
];
2760 clear_bit(R5_Insync
, &dev
->flags
);
2762 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2763 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2764 dev
->towrite
, dev
->written
);
2766 /* maybe we can request a biofill operation
2768 * new wantfill requests are only permitted while
2769 * ops_complete_biofill is guaranteed to be inactive
2771 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2772 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
2773 set_bit(R5_Wantfill
, &dev
->flags
);
2775 /* now count some things */
2776 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2777 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2778 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2780 if (test_bit(R5_Wantfill
, &dev
->flags
))
2782 else if (dev
->toread
)
2786 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2791 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2792 if (blocked_rdev
== NULL
&&
2793 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2794 blocked_rdev
= rdev
;
2795 atomic_inc(&rdev
->nr_pending
);
2797 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2798 /* The ReadError flag will just be confusing now */
2799 clear_bit(R5_ReadError
, &dev
->flags
);
2800 clear_bit(R5_ReWrite
, &dev
->flags
);
2802 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2803 || test_bit(R5_ReadError
, &dev
->flags
)) {
2807 set_bit(R5_Insync
, &dev
->flags
);
2811 if (unlikely(blocked_rdev
)) {
2812 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
2813 s
.to_write
|| s
.written
) {
2814 set_bit(STRIPE_HANDLE
, &sh
->state
);
2817 /* There is nothing for the blocked_rdev to block */
2818 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
2819 blocked_rdev
= NULL
;
2822 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
2823 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
2824 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
2827 pr_debug("locked=%d uptodate=%d to_read=%d"
2828 " to_write=%d failed=%d failed_num=%d\n",
2829 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2830 s
.failed
, s
.failed_num
);
2831 /* check if the array has lost two devices and, if so, some requests might
2834 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2835 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
2836 if (s
.failed
> 1 && s
.syncing
) {
2837 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2838 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2842 /* might be able to return some write requests if the parity block
2843 * is safe, or on a failed drive
2845 dev
= &sh
->dev
[sh
->pd_idx
];
2847 ((test_bit(R5_Insync
, &dev
->flags
) &&
2848 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2849 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2850 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2851 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
2853 /* Now we might consider reading some blocks, either to check/generate
2854 * parity, or to satisfy requests
2855 * or to load a block that is being partially written.
2857 if (s
.to_read
|| s
.non_overwrite
||
2858 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
2859 handle_stripe_fill5(sh
, &s
, disks
);
2861 /* Now we check to see if any write operations have recently
2865 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
2867 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
2868 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
2869 sh
->reconstruct_state
= reconstruct_state_idle
;
2871 /* All the 'written' buffers and the parity block are ready to
2872 * be written back to disk
2874 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2875 for (i
= disks
; i
--; ) {
2877 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2878 (i
== sh
->pd_idx
|| dev
->written
)) {
2879 pr_debug("Writing block %d\n", i
);
2880 set_bit(R5_Wantwrite
, &dev
->flags
);
2883 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2884 (i
== sh
->pd_idx
&& s
.failed
== 0))
2885 set_bit(STRIPE_INSYNC
, &sh
->state
);
2888 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2889 atomic_dec(&conf
->preread_active_stripes
);
2890 if (atomic_read(&conf
->preread_active_stripes
) <
2892 md_wakeup_thread(conf
->mddev
->thread
);
2896 /* Now to consider new write requests and what else, if anything
2897 * should be read. We do not handle new writes when:
2898 * 1/ A 'write' operation (copy+xor) is already in flight.
2899 * 2/ A 'check' operation is in flight, as it may clobber the parity
2902 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
2903 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
2905 /* maybe we need to check and possibly fix the parity for this stripe
2906 * Any reads will already have been scheduled, so we just see if enough
2907 * data is available. The parity check is held off while parity
2908 * dependent operations are in flight.
2910 if (sh
->check_state
||
2911 (s
.syncing
&& s
.locked
== 0 &&
2912 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
2913 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
2914 handle_parity_checks5(conf
, sh
, &s
, disks
);
2916 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2917 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2918 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2921 /* If the failed drive is just a ReadError, then we might need to progress
2922 * the repair/check process
2924 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2925 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2926 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2927 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2929 dev
= &sh
->dev
[s
.failed_num
];
2930 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2931 set_bit(R5_Wantwrite
, &dev
->flags
);
2932 set_bit(R5_ReWrite
, &dev
->flags
);
2933 set_bit(R5_LOCKED
, &dev
->flags
);
2936 /* let's read it back */
2937 set_bit(R5_Wantread
, &dev
->flags
);
2938 set_bit(R5_LOCKED
, &dev
->flags
);
2943 /* Finish reconstruct operations initiated by the expansion process */
2944 if (sh
->reconstruct_state
== reconstruct_state_result
) {
2945 struct stripe_head
*sh2
2946 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
2947 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
2948 /* sh cannot be written until sh2 has been read.
2949 * so arrange for sh to be delayed a little
2951 set_bit(STRIPE_DELAYED
, &sh
->state
);
2952 set_bit(STRIPE_HANDLE
, &sh
->state
);
2953 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
2955 atomic_inc(&conf
->preread_active_stripes
);
2956 release_stripe(sh2
);
2960 release_stripe(sh2
);
2962 sh
->reconstruct_state
= reconstruct_state_idle
;
2963 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2964 for (i
= conf
->raid_disks
; i
--; ) {
2965 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2966 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2971 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2972 !sh
->reconstruct_state
) {
2973 /* Need to write out all blocks after computing parity */
2974 sh
->disks
= conf
->raid_disks
;
2975 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
2976 schedule_reconstruction5(sh
, &s
, 1, 1);
2977 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
2978 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2979 atomic_dec(&conf
->reshape_stripes
);
2980 wake_up(&conf
->wait_for_overlap
);
2981 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2984 if (s
.expanding
&& s
.locked
== 0 &&
2985 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
2986 handle_stripe_expansion(conf
, sh
, NULL
);
2989 spin_unlock(&sh
->lock
);
2991 /* wait for this device to become unblocked */
2992 if (unlikely(blocked_rdev
))
2993 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
2996 raid5_run_ops(sh
, s
.ops_request
);
3000 return_io(return_bi
);
3002 return blocked_rdev
== NULL
;
3005 static bool handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
3007 raid5_conf_t
*conf
= sh
->raid_conf
;
3008 int disks
= sh
->disks
;
3009 struct bio
*return_bi
= NULL
;
3010 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
;
3011 struct stripe_head_state s
;
3012 struct r6_state r6s
;
3013 struct r5dev
*dev
, *pdev
, *qdev
;
3014 mdk_rdev_t
*blocked_rdev
= NULL
;
3016 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3017 "pd_idx=%d, qd_idx=%d\n",
3018 (unsigned long long)sh
->sector
, sh
->state
,
3019 atomic_read(&sh
->count
), pd_idx
, qd_idx
);
3020 memset(&s
, 0, sizeof(s
));
3022 spin_lock(&sh
->lock
);
3023 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3024 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3026 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3027 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3028 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3029 /* Now to look around and see what can be done */
3032 for (i
=disks
; i
--; ) {
3035 clear_bit(R5_Insync
, &dev
->flags
);
3037 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3038 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3039 /* maybe we can reply to a read */
3040 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
3041 struct bio
*rbi
, *rbi2
;
3042 pr_debug("Return read for disc %d\n", i
);
3043 spin_lock_irq(&conf
->device_lock
);
3046 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
3047 wake_up(&conf
->wait_for_overlap
);
3048 spin_unlock_irq(&conf
->device_lock
);
3049 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
3050 copy_data(0, rbi
, dev
->page
, dev
->sector
);
3051 rbi2
= r5_next_bio(rbi
, dev
->sector
);
3052 spin_lock_irq(&conf
->device_lock
);
3053 if (!raid5_dec_bi_phys_segments(rbi
)) {
3054 rbi
->bi_next
= return_bi
;
3057 spin_unlock_irq(&conf
->device_lock
);
3062 /* now count some things */
3063 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3064 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3071 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3076 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3077 if (blocked_rdev
== NULL
&&
3078 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3079 blocked_rdev
= rdev
;
3080 atomic_inc(&rdev
->nr_pending
);
3082 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3083 /* The ReadError flag will just be confusing now */
3084 clear_bit(R5_ReadError
, &dev
->flags
);
3085 clear_bit(R5_ReWrite
, &dev
->flags
);
3087 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3088 || test_bit(R5_ReadError
, &dev
->flags
)) {
3090 r6s
.failed_num
[s
.failed
] = i
;
3093 set_bit(R5_Insync
, &dev
->flags
);
3097 if (unlikely(blocked_rdev
)) {
3098 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3099 s
.to_write
|| s
.written
) {
3100 set_bit(STRIPE_HANDLE
, &sh
->state
);
3103 /* There is nothing for the blocked_rdev to block */
3104 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3105 blocked_rdev
= NULL
;
3108 pr_debug("locked=%d uptodate=%d to_read=%d"
3109 " to_write=%d failed=%d failed_num=%d,%d\n",
3110 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3111 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3112 /* check if the array has lost >2 devices and, if so, some requests
3113 * might need to be failed
3115 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3116 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3117 if (s
.failed
> 2 && s
.syncing
) {
3118 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3119 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3124 * might be able to return some write requests if the parity blocks
3125 * are safe, or on a failed drive
3127 pdev
= &sh
->dev
[pd_idx
];
3128 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3129 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3130 qdev
= &sh
->dev
[qd_idx
];
3131 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == qd_idx
)
3132 || (s
.failed
>= 2 && r6s
.failed_num
[1] == qd_idx
);
3135 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3136 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3137 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3138 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3139 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3140 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3141 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3143 /* Now we might consider reading some blocks, either to check/generate
3144 * parity, or to satisfy requests
3145 * or to load a block that is being partially written.
3147 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3148 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
3149 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
3151 /* now to consider writing and what else, if anything should be read */
3153 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
3155 /* maybe we need to check and possibly fix the parity for this stripe
3156 * Any reads will already have been scheduled, so we just see if enough
3159 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
3160 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
3162 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3163 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3164 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3167 /* If the failed drives are just a ReadError, then we might need
3168 * to progress the repair/check process
3170 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3171 for (i
= 0; i
< s
.failed
; i
++) {
3172 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3173 if (test_bit(R5_ReadError
, &dev
->flags
)
3174 && !test_bit(R5_LOCKED
, &dev
->flags
)
3175 && test_bit(R5_UPTODATE
, &dev
->flags
)
3177 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3178 set_bit(R5_Wantwrite
, &dev
->flags
);
3179 set_bit(R5_ReWrite
, &dev
->flags
);
3180 set_bit(R5_LOCKED
, &dev
->flags
);
3182 /* let's read it back */
3183 set_bit(R5_Wantread
, &dev
->flags
);
3184 set_bit(R5_LOCKED
, &dev
->flags
);
3189 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
3190 struct stripe_head
*sh2
3191 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3192 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3193 /* sh cannot be written until sh2 has been read.
3194 * so arrange for sh to be delayed a little
3196 set_bit(STRIPE_DELAYED
, &sh
->state
);
3197 set_bit(STRIPE_HANDLE
, &sh
->state
);
3198 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3200 atomic_inc(&conf
->preread_active_stripes
);
3201 release_stripe(sh2
);
3205 release_stripe(sh2
);
3207 /* Need to write out all blocks after computing P&Q */
3208 sh
->disks
= conf
->raid_disks
;
3209 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3210 compute_parity6(sh
, RECONSTRUCT_WRITE
);
3211 for (i
= conf
->raid_disks
; i
-- ; ) {
3212 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3214 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3216 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3217 } else if (s
.expanded
) {
3218 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3219 atomic_dec(&conf
->reshape_stripes
);
3220 wake_up(&conf
->wait_for_overlap
);
3221 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3224 if (s
.expanding
&& s
.locked
== 0 &&
3225 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3226 handle_stripe_expansion(conf
, sh
, &r6s
);
3229 spin_unlock(&sh
->lock
);
3231 /* wait for this device to become unblocked */
3232 if (unlikely(blocked_rdev
))
3233 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3237 return_io(return_bi
);
3239 return blocked_rdev
== NULL
;
3242 /* returns true if the stripe was handled */
3243 static bool handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
3245 if (sh
->raid_conf
->level
== 6)
3246 return handle_stripe6(sh
, tmp_page
);
3248 return handle_stripe5(sh
);
3253 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3255 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3256 while (!list_empty(&conf
->delayed_list
)) {
3257 struct list_head
*l
= conf
->delayed_list
.next
;
3258 struct stripe_head
*sh
;
3259 sh
= list_entry(l
, struct stripe_head
, lru
);
3261 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3262 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3263 atomic_inc(&conf
->preread_active_stripes
);
3264 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3267 blk_plug_device(conf
->mddev
->queue
);
3270 static void activate_bit_delay(raid5_conf_t
*conf
)
3272 /* device_lock is held */
3273 struct list_head head
;
3274 list_add(&head
, &conf
->bitmap_list
);
3275 list_del_init(&conf
->bitmap_list
);
3276 while (!list_empty(&head
)) {
3277 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3278 list_del_init(&sh
->lru
);
3279 atomic_inc(&sh
->count
);
3280 __release_stripe(conf
, sh
);
3284 static void unplug_slaves(mddev_t
*mddev
)
3286 raid5_conf_t
*conf
= mddev
->private;
3290 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3291 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3292 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3293 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3295 atomic_inc(&rdev
->nr_pending
);
3298 blk_unplug(r_queue
);
3300 rdev_dec_pending(rdev
, mddev
);
3307 static void raid5_unplug_device(struct request_queue
*q
)
3309 mddev_t
*mddev
= q
->queuedata
;
3310 raid5_conf_t
*conf
= mddev
->private;
3311 unsigned long flags
;
3313 spin_lock_irqsave(&conf
->device_lock
, flags
);
3315 if (blk_remove_plug(q
)) {
3317 raid5_activate_delayed(conf
);
3319 md_wakeup_thread(mddev
->thread
);
3321 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3323 unplug_slaves(mddev
);
3326 static int raid5_congested(void *data
, int bits
)
3328 mddev_t
*mddev
= data
;
3329 raid5_conf_t
*conf
= mddev
->private;
3331 /* No difference between reads and writes. Just check
3332 * how busy the stripe_cache is
3334 if (conf
->inactive_blocked
)
3338 if (list_empty_careful(&conf
->inactive_list
))
3344 /* We want read requests to align with chunks where possible,
3345 * but write requests don't need to.
3347 static int raid5_mergeable_bvec(struct request_queue
*q
,
3348 struct bvec_merge_data
*bvm
,
3349 struct bio_vec
*biovec
)
3351 mddev_t
*mddev
= q
->queuedata
;
3352 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3354 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3355 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3357 if ((bvm
->bi_rw
& 1) == WRITE
)
3358 return biovec
->bv_len
; /* always allow writes to be mergeable */
3360 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3361 chunk_sectors
= mddev
->new_chunk_sectors
;
3362 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3363 if (max
< 0) max
= 0;
3364 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3365 return biovec
->bv_len
;
3371 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3373 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3374 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3375 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3377 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3378 chunk_sectors
= mddev
->new_chunk_sectors
;
3379 return chunk_sectors
>=
3380 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3384 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3385 * later sampled by raid5d.
3387 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3389 unsigned long flags
;
3391 spin_lock_irqsave(&conf
->device_lock
, flags
);
3393 bi
->bi_next
= conf
->retry_read_aligned_list
;
3394 conf
->retry_read_aligned_list
= bi
;
3396 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3397 md_wakeup_thread(conf
->mddev
->thread
);
3401 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3405 bi
= conf
->retry_read_aligned
;
3407 conf
->retry_read_aligned
= NULL
;
3410 bi
= conf
->retry_read_aligned_list
;
3412 conf
->retry_read_aligned_list
= bi
->bi_next
;
3415 * this sets the active strip count to 1 and the processed
3416 * strip count to zero (upper 8 bits)
3418 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3426 * The "raid5_align_endio" should check if the read succeeded and if it
3427 * did, call bio_endio on the original bio (having bio_put the new bio
3429 * If the read failed..
3431 static void raid5_align_endio(struct bio
*bi
, int error
)
3433 struct bio
* raid_bi
= bi
->bi_private
;
3436 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3441 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3442 conf
= mddev
->private;
3443 rdev
= (void*)raid_bi
->bi_next
;
3444 raid_bi
->bi_next
= NULL
;
3446 rdev_dec_pending(rdev
, conf
->mddev
);
3448 if (!error
&& uptodate
) {
3449 bio_endio(raid_bi
, 0);
3450 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3451 wake_up(&conf
->wait_for_stripe
);
3456 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3458 add_bio_to_retry(raid_bi
, conf
);
3461 static int bio_fits_rdev(struct bio
*bi
)
3463 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3465 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3467 blk_recount_segments(q
, bi
);
3468 if (bi
->bi_phys_segments
> queue_max_phys_segments(q
))
3471 if (q
->merge_bvec_fn
)
3472 /* it's too hard to apply the merge_bvec_fn at this stage,
3481 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3483 mddev_t
*mddev
= q
->queuedata
;
3484 raid5_conf_t
*conf
= mddev
->private;
3485 unsigned int dd_idx
;
3486 struct bio
* align_bi
;
3489 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3490 pr_debug("chunk_aligned_read : non aligned\n");
3494 * use bio_clone to make a copy of the bio
3496 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3500 * set bi_end_io to a new function, and set bi_private to the
3503 align_bi
->bi_end_io
= raid5_align_endio
;
3504 align_bi
->bi_private
= raid_bio
;
3508 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3513 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3514 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3515 atomic_inc(&rdev
->nr_pending
);
3517 raid_bio
->bi_next
= (void*)rdev
;
3518 align_bi
->bi_bdev
= rdev
->bdev
;
3519 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3520 align_bi
->bi_sector
+= rdev
->data_offset
;
3522 if (!bio_fits_rdev(align_bi
)) {
3523 /* too big in some way */
3525 rdev_dec_pending(rdev
, mddev
);
3529 spin_lock_irq(&conf
->device_lock
);
3530 wait_event_lock_irq(conf
->wait_for_stripe
,
3532 conf
->device_lock
, /* nothing */);
3533 atomic_inc(&conf
->active_aligned_reads
);
3534 spin_unlock_irq(&conf
->device_lock
);
3536 generic_make_request(align_bi
);
3545 /* __get_priority_stripe - get the next stripe to process
3547 * Full stripe writes are allowed to pass preread active stripes up until
3548 * the bypass_threshold is exceeded. In general the bypass_count
3549 * increments when the handle_list is handled before the hold_list; however, it
3550 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3551 * stripe with in flight i/o. The bypass_count will be reset when the
3552 * head of the hold_list has changed, i.e. the head was promoted to the
3555 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3557 struct stripe_head
*sh
;
3559 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3561 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3562 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3563 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3565 if (!list_empty(&conf
->handle_list
)) {
3566 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3568 if (list_empty(&conf
->hold_list
))
3569 conf
->bypass_count
= 0;
3570 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3571 if (conf
->hold_list
.next
== conf
->last_hold
)
3572 conf
->bypass_count
++;
3574 conf
->last_hold
= conf
->hold_list
.next
;
3575 conf
->bypass_count
-= conf
->bypass_threshold
;
3576 if (conf
->bypass_count
< 0)
3577 conf
->bypass_count
= 0;
3580 } else if (!list_empty(&conf
->hold_list
) &&
3581 ((conf
->bypass_threshold
&&
3582 conf
->bypass_count
> conf
->bypass_threshold
) ||
3583 atomic_read(&conf
->pending_full_writes
) == 0)) {
3584 sh
= list_entry(conf
->hold_list
.next
,
3586 conf
->bypass_count
-= conf
->bypass_threshold
;
3587 if (conf
->bypass_count
< 0)
3588 conf
->bypass_count
= 0;
3592 list_del_init(&sh
->lru
);
3593 atomic_inc(&sh
->count
);
3594 BUG_ON(atomic_read(&sh
->count
) != 1);
3598 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3600 mddev_t
*mddev
= q
->queuedata
;
3601 raid5_conf_t
*conf
= mddev
->private;
3603 sector_t new_sector
;
3604 sector_t logical_sector
, last_sector
;
3605 struct stripe_head
*sh
;
3606 const int rw
= bio_data_dir(bi
);
3609 if (unlikely(bio_rw_flagged(bi
, BIO_RW_BARRIER
))) {
3610 bio_endio(bi
, -EOPNOTSUPP
);
3614 md_write_start(mddev
, bi
);
3616 cpu
= part_stat_lock();
3617 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
3618 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
3623 mddev
->reshape_position
== MaxSector
&&
3624 chunk_aligned_read(q
,bi
))
3627 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3628 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3630 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3632 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3634 int disks
, data_disks
;
3639 disks
= conf
->raid_disks
;
3640 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3641 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3642 /* spinlock is needed as reshape_progress may be
3643 * 64bit on a 32bit platform, and so it might be
3644 * possible to see a half-updated value
3645 * Ofcourse reshape_progress could change after
3646 * the lock is dropped, so once we get a reference
3647 * to the stripe that we think it is, we will have
3650 spin_lock_irq(&conf
->device_lock
);
3651 if (mddev
->delta_disks
< 0
3652 ? logical_sector
< conf
->reshape_progress
3653 : logical_sector
>= conf
->reshape_progress
) {
3654 disks
= conf
->previous_raid_disks
;
3657 if (mddev
->delta_disks
< 0
3658 ? logical_sector
< conf
->reshape_safe
3659 : logical_sector
>= conf
->reshape_safe
) {
3660 spin_unlock_irq(&conf
->device_lock
);
3665 spin_unlock_irq(&conf
->device_lock
);
3667 data_disks
= disks
- conf
->max_degraded
;
3669 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3672 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3673 (unsigned long long)new_sector
,
3674 (unsigned long long)logical_sector
);
3676 sh
= get_active_stripe(conf
, new_sector
, previous
,
3677 (bi
->bi_rw
&RWA_MASK
), 0);
3679 if (unlikely(previous
)) {
3680 /* expansion might have moved on while waiting for a
3681 * stripe, so we must do the range check again.
3682 * Expansion could still move past after this
3683 * test, but as we are holding a reference to
3684 * 'sh', we know that if that happens,
3685 * STRIPE_EXPANDING will get set and the expansion
3686 * won't proceed until we finish with the stripe.
3689 spin_lock_irq(&conf
->device_lock
);
3690 if (mddev
->delta_disks
< 0
3691 ? logical_sector
>= conf
->reshape_progress
3692 : logical_sector
< conf
->reshape_progress
)
3693 /* mismatch, need to try again */
3695 spin_unlock_irq(&conf
->device_lock
);
3703 if (bio_data_dir(bi
) == WRITE
&&
3704 logical_sector
>= mddev
->suspend_lo
&&
3705 logical_sector
< mddev
->suspend_hi
) {
3707 /* As the suspend_* range is controlled by
3708 * userspace, we want an interruptible
3711 flush_signals(current
);
3712 prepare_to_wait(&conf
->wait_for_overlap
,
3713 &w
, TASK_INTERRUPTIBLE
);
3714 if (logical_sector
>= mddev
->suspend_lo
&&
3715 logical_sector
< mddev
->suspend_hi
)
3720 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3721 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3722 /* Stripe is busy expanding or
3723 * add failed due to overlap. Flush everything
3726 raid5_unplug_device(mddev
->queue
);
3731 finish_wait(&conf
->wait_for_overlap
, &w
);
3732 set_bit(STRIPE_HANDLE
, &sh
->state
);
3733 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3736 /* cannot get stripe for read-ahead, just give-up */
3737 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3738 finish_wait(&conf
->wait_for_overlap
, &w
);
3743 spin_lock_irq(&conf
->device_lock
);
3744 remaining
= raid5_dec_bi_phys_segments(bi
);
3745 spin_unlock_irq(&conf
->device_lock
);
3746 if (remaining
== 0) {
3749 md_write_end(mddev
);
3756 static sector_t
raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
);
3758 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3760 /* reshaping is quite different to recovery/resync so it is
3761 * handled quite separately ... here.
3763 * On each call to sync_request, we gather one chunk worth of
3764 * destination stripes and flag them as expanding.
3765 * Then we find all the source stripes and request reads.
3766 * As the reads complete, handle_stripe will copy the data
3767 * into the destination stripe and release that stripe.
3769 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3770 struct stripe_head
*sh
;
3771 sector_t first_sector
, last_sector
;
3772 int raid_disks
= conf
->previous_raid_disks
;
3773 int data_disks
= raid_disks
- conf
->max_degraded
;
3774 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3777 sector_t writepos
, readpos
, safepos
;
3778 sector_t stripe_addr
;
3779 int reshape_sectors
;
3780 struct list_head stripes
;
3782 if (sector_nr
== 0) {
3783 /* If restarting in the middle, skip the initial sectors */
3784 if (mddev
->delta_disks
< 0 &&
3785 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
3786 sector_nr
= raid5_size(mddev
, 0, 0)
3787 - conf
->reshape_progress
;
3788 } else if (mddev
->delta_disks
>= 0 &&
3789 conf
->reshape_progress
> 0)
3790 sector_nr
= conf
->reshape_progress
;
3791 sector_div(sector_nr
, new_data_disks
);
3798 /* We need to process a full chunk at a time.
3799 * If old and new chunk sizes differ, we need to process the
3802 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
3803 reshape_sectors
= mddev
->new_chunk_sectors
;
3805 reshape_sectors
= mddev
->chunk_sectors
;
3807 /* we update the metadata when there is more than 3Meg
3808 * in the block range (that is rather arbitrary, should
3809 * probably be time based) or when the data about to be
3810 * copied would over-write the source of the data at
3811 * the front of the range.
3812 * i.e. one new_stripe along from reshape_progress new_maps
3813 * to after where reshape_safe old_maps to
3815 writepos
= conf
->reshape_progress
;
3816 sector_div(writepos
, new_data_disks
);
3817 readpos
= conf
->reshape_progress
;
3818 sector_div(readpos
, data_disks
);
3819 safepos
= conf
->reshape_safe
;
3820 sector_div(safepos
, data_disks
);
3821 if (mddev
->delta_disks
< 0) {
3822 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
3823 readpos
+= reshape_sectors
;
3824 safepos
+= reshape_sectors
;
3826 writepos
+= reshape_sectors
;
3827 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
3828 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
3831 /* 'writepos' is the most advanced device address we might write.
3832 * 'readpos' is the least advanced device address we might read.
3833 * 'safepos' is the least address recorded in the metadata as having
3835 * If 'readpos' is behind 'writepos', then there is no way that we can
3836 * ensure safety in the face of a crash - that must be done by userspace
3837 * making a backup of the data. So in that case there is no particular
3838 * rush to update metadata.
3839 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3840 * update the metadata to advance 'safepos' to match 'readpos' so that
3841 * we can be safe in the event of a crash.
3842 * So we insist on updating metadata if safepos is behind writepos and
3843 * readpos is beyond writepos.
3844 * In any case, update the metadata every 10 seconds.
3845 * Maybe that number should be configurable, but I'm not sure it is
3846 * worth it.... maybe it could be a multiple of safemode_delay???
3848 if ((mddev
->delta_disks
< 0
3849 ? (safepos
> writepos
&& readpos
< writepos
)
3850 : (safepos
< writepos
&& readpos
> writepos
)) ||
3851 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
3852 /* Cannot proceed until we've updated the superblock... */
3853 wait_event(conf
->wait_for_overlap
,
3854 atomic_read(&conf
->reshape_stripes
)==0);
3855 mddev
->reshape_position
= conf
->reshape_progress
;
3856 mddev
->curr_resync_completed
= mddev
->curr_resync
;
3857 conf
->reshape_checkpoint
= jiffies
;
3858 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3859 md_wakeup_thread(mddev
->thread
);
3860 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3861 kthread_should_stop());
3862 spin_lock_irq(&conf
->device_lock
);
3863 conf
->reshape_safe
= mddev
->reshape_position
;
3864 spin_unlock_irq(&conf
->device_lock
);
3865 wake_up(&conf
->wait_for_overlap
);
3866 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3869 if (mddev
->delta_disks
< 0) {
3870 BUG_ON(conf
->reshape_progress
== 0);
3871 stripe_addr
= writepos
;
3872 BUG_ON((mddev
->dev_sectors
&
3873 ~((sector_t
)reshape_sectors
- 1))
3874 - reshape_sectors
- stripe_addr
3877 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
3878 stripe_addr
= sector_nr
;
3880 INIT_LIST_HEAD(&stripes
);
3881 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
3884 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
3885 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3886 atomic_inc(&conf
->reshape_stripes
);
3887 /* If any of this stripe is beyond the end of the old
3888 * array, then we need to zero those blocks
3890 for (j
=sh
->disks
; j
--;) {
3892 if (j
== sh
->pd_idx
)
3894 if (conf
->level
== 6 &&
3897 s
= compute_blocknr(sh
, j
, 0);
3898 if (s
< raid5_size(mddev
, 0, 0)) {
3902 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3903 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3904 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3907 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3908 set_bit(STRIPE_HANDLE
, &sh
->state
);
3910 list_add(&sh
->lru
, &stripes
);
3912 spin_lock_irq(&conf
->device_lock
);
3913 if (mddev
->delta_disks
< 0)
3914 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
3916 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
3917 spin_unlock_irq(&conf
->device_lock
);
3918 /* Ok, those stripe are ready. We can start scheduling
3919 * reads on the source stripes.
3920 * The source stripes are determined by mapping the first and last
3921 * block on the destination stripes.
3924 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
3927 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
3928 * new_data_disks
- 1),
3930 if (last_sector
>= mddev
->dev_sectors
)
3931 last_sector
= mddev
->dev_sectors
- 1;
3932 while (first_sector
<= last_sector
) {
3933 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
3934 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3935 set_bit(STRIPE_HANDLE
, &sh
->state
);
3937 first_sector
+= STRIPE_SECTORS
;
3939 /* Now that the sources are clearly marked, we can release
3940 * the destination stripes
3942 while (!list_empty(&stripes
)) {
3943 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
3944 list_del_init(&sh
->lru
);
3947 /* If this takes us to the resync_max point where we have to pause,
3948 * then we need to write out the superblock.
3950 sector_nr
+= reshape_sectors
;
3951 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
3952 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
3953 /* Cannot proceed until we've updated the superblock... */
3954 wait_event(conf
->wait_for_overlap
,
3955 atomic_read(&conf
->reshape_stripes
) == 0);
3956 mddev
->reshape_position
= conf
->reshape_progress
;
3957 mddev
->curr_resync_completed
= mddev
->curr_resync
+ reshape_sectors
;
3958 conf
->reshape_checkpoint
= jiffies
;
3959 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3960 md_wakeup_thread(mddev
->thread
);
3961 wait_event(mddev
->sb_wait
,
3962 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
3963 || kthread_should_stop());
3964 spin_lock_irq(&conf
->device_lock
);
3965 conf
->reshape_safe
= mddev
->reshape_position
;
3966 spin_unlock_irq(&conf
->device_lock
);
3967 wake_up(&conf
->wait_for_overlap
);
3968 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3970 return reshape_sectors
;
3973 /* FIXME go_faster isn't used */
3974 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3976 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3977 struct stripe_head
*sh
;
3978 sector_t max_sector
= mddev
->dev_sectors
;
3980 int still_degraded
= 0;
3983 if (sector_nr
>= max_sector
) {
3984 /* just being told to finish up .. nothing much to do */
3985 unplug_slaves(mddev
);
3987 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3992 if (mddev
->curr_resync
< max_sector
) /* aborted */
3993 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3995 else /* completed sync */
3997 bitmap_close_sync(mddev
->bitmap
);
4002 /* Allow raid5_quiesce to complete */
4003 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4005 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4006 return reshape_request(mddev
, sector_nr
, skipped
);
4008 /* No need to check resync_max as we never do more than one
4009 * stripe, and as resync_max will always be on a chunk boundary,
4010 * if the check in md_do_sync didn't fire, there is no chance
4011 * of overstepping resync_max here
4014 /* if there is too many failed drives and we are trying
4015 * to resync, then assert that we are finished, because there is
4016 * nothing we can do.
4018 if (mddev
->degraded
>= conf
->max_degraded
&&
4019 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4020 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4024 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4025 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4026 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4027 /* we can skip this block, and probably more */
4028 sync_blocks
/= STRIPE_SECTORS
;
4030 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4034 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4036 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4038 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4039 /* make sure we don't swamp the stripe cache if someone else
4040 * is trying to get access
4042 schedule_timeout_uninterruptible(1);
4044 /* Need to check if array will still be degraded after recovery/resync
4045 * We don't need to check the 'failed' flag as when that gets set,
4048 for (i
= 0; i
< conf
->raid_disks
; i
++)
4049 if (conf
->disks
[i
].rdev
== NULL
)
4052 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4054 spin_lock(&sh
->lock
);
4055 set_bit(STRIPE_SYNCING
, &sh
->state
);
4056 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4057 spin_unlock(&sh
->lock
);
4059 /* wait for any blocked device to be handled */
4060 while(unlikely(!handle_stripe(sh
, NULL
)))
4064 return STRIPE_SECTORS
;
4067 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
4069 /* We may not be able to submit a whole bio at once as there
4070 * may not be enough stripe_heads available.
4071 * We cannot pre-allocate enough stripe_heads as we may need
4072 * more than exist in the cache (if we allow ever large chunks).
4073 * So we do one stripe head at a time and record in
4074 * ->bi_hw_segments how many have been done.
4076 * We *know* that this entire raid_bio is in one chunk, so
4077 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4079 struct stripe_head
*sh
;
4081 sector_t sector
, logical_sector
, last_sector
;
4086 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4087 sector
= raid5_compute_sector(conf
, logical_sector
,
4089 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4091 for (; logical_sector
< last_sector
;
4092 logical_sector
+= STRIPE_SECTORS
,
4093 sector
+= STRIPE_SECTORS
,
4096 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4097 /* already done this stripe */
4100 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4103 /* failed to get a stripe - must wait */
4104 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4105 conf
->retry_read_aligned
= raid_bio
;
4109 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4110 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4112 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4113 conf
->retry_read_aligned
= raid_bio
;
4117 handle_stripe(sh
, NULL
);
4121 spin_lock_irq(&conf
->device_lock
);
4122 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4123 spin_unlock_irq(&conf
->device_lock
);
4125 bio_endio(raid_bio
, 0);
4126 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4127 wake_up(&conf
->wait_for_stripe
);
4134 * This is our raid5 kernel thread.
4136 * We scan the hash table for stripes which can be handled now.
4137 * During the scan, completed stripes are saved for us by the interrupt
4138 * handler, so that they will not have to wait for our next wakeup.
4140 static void raid5d(mddev_t
*mddev
)
4142 struct stripe_head
*sh
;
4143 raid5_conf_t
*conf
= mddev
->private;
4146 pr_debug("+++ raid5d active\n");
4148 md_check_recovery(mddev
);
4151 spin_lock_irq(&conf
->device_lock
);
4155 if (conf
->seq_flush
!= conf
->seq_write
) {
4156 int seq
= conf
->seq_flush
;
4157 spin_unlock_irq(&conf
->device_lock
);
4158 bitmap_unplug(mddev
->bitmap
);
4159 spin_lock_irq(&conf
->device_lock
);
4160 conf
->seq_write
= seq
;
4161 activate_bit_delay(conf
);
4164 while ((bio
= remove_bio_from_retry(conf
))) {
4166 spin_unlock_irq(&conf
->device_lock
);
4167 ok
= retry_aligned_read(conf
, bio
);
4168 spin_lock_irq(&conf
->device_lock
);
4174 sh
= __get_priority_stripe(conf
);
4178 spin_unlock_irq(&conf
->device_lock
);
4181 handle_stripe(sh
, conf
->spare_page
);
4184 spin_lock_irq(&conf
->device_lock
);
4186 pr_debug("%d stripes handled\n", handled
);
4188 spin_unlock_irq(&conf
->device_lock
);
4190 async_tx_issue_pending_all();
4191 unplug_slaves(mddev
);
4193 pr_debug("--- raid5d inactive\n");
4197 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4199 raid5_conf_t
*conf
= mddev
->private;
4201 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4207 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4209 raid5_conf_t
*conf
= mddev
->private;
4213 if (len
>= PAGE_SIZE
)
4218 if (strict_strtoul(page
, 10, &new))
4220 if (new <= 16 || new > 32768)
4222 while (new < conf
->max_nr_stripes
) {
4223 if (drop_one_stripe(conf
))
4224 conf
->max_nr_stripes
--;
4228 err
= md_allow_write(mddev
);
4231 while (new > conf
->max_nr_stripes
) {
4232 if (grow_one_stripe(conf
))
4233 conf
->max_nr_stripes
++;
4239 static struct md_sysfs_entry
4240 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4241 raid5_show_stripe_cache_size
,
4242 raid5_store_stripe_cache_size
);
4245 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4247 raid5_conf_t
*conf
= mddev
->private;
4249 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4255 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4257 raid5_conf_t
*conf
= mddev
->private;
4259 if (len
>= PAGE_SIZE
)
4264 if (strict_strtoul(page
, 10, &new))
4266 if (new > conf
->max_nr_stripes
)
4268 conf
->bypass_threshold
= new;
4272 static struct md_sysfs_entry
4273 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4275 raid5_show_preread_threshold
,
4276 raid5_store_preread_threshold
);
4279 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4281 raid5_conf_t
*conf
= mddev
->private;
4283 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4288 static struct md_sysfs_entry
4289 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4291 static struct attribute
*raid5_attrs
[] = {
4292 &raid5_stripecache_size
.attr
,
4293 &raid5_stripecache_active
.attr
,
4294 &raid5_preread_bypass_threshold
.attr
,
4297 static struct attribute_group raid5_attrs_group
= {
4299 .attrs
= raid5_attrs
,
4303 raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
4305 raid5_conf_t
*conf
= mddev
->private;
4308 sectors
= mddev
->dev_sectors
;
4310 /* size is defined by the smallest of previous and new size */
4311 if (conf
->raid_disks
< conf
->previous_raid_disks
)
4312 raid_disks
= conf
->raid_disks
;
4314 raid_disks
= conf
->previous_raid_disks
;
4317 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4318 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4319 return sectors
* (raid_disks
- conf
->max_degraded
);
4322 static void free_conf(raid5_conf_t
*conf
)
4324 shrink_stripes(conf
);
4325 safe_put_page(conf
->spare_page
);
4327 kfree(conf
->stripe_hashtbl
);
4331 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4334 int raid_disk
, memory
;
4336 struct disk_info
*disk
;
4338 if (mddev
->new_level
!= 5
4339 && mddev
->new_level
!= 4
4340 && mddev
->new_level
!= 6) {
4341 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4342 mdname(mddev
), mddev
->new_level
);
4343 return ERR_PTR(-EIO
);
4345 if ((mddev
->new_level
== 5
4346 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4347 (mddev
->new_level
== 6
4348 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4349 printk(KERN_ERR
"raid5: %s: layout %d not supported\n",
4350 mdname(mddev
), mddev
->new_layout
);
4351 return ERR_PTR(-EIO
);
4353 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4354 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4355 mdname(mddev
), mddev
->raid_disks
);
4356 return ERR_PTR(-EINVAL
);
4359 if (!mddev
->new_chunk_sectors
||
4360 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4361 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4362 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4363 mddev
->new_chunk_sectors
<< 9, mdname(mddev
));
4364 return ERR_PTR(-EINVAL
);
4367 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4371 conf
->raid_disks
= mddev
->raid_disks
;
4372 if (mddev
->reshape_position
== MaxSector
)
4373 conf
->previous_raid_disks
= mddev
->raid_disks
;
4375 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4377 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4382 conf
->mddev
= mddev
;
4384 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4387 if (mddev
->new_level
== 6) {
4388 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4389 if (!conf
->spare_page
)
4392 spin_lock_init(&conf
->device_lock
);
4393 init_waitqueue_head(&conf
->wait_for_stripe
);
4394 init_waitqueue_head(&conf
->wait_for_overlap
);
4395 INIT_LIST_HEAD(&conf
->handle_list
);
4396 INIT_LIST_HEAD(&conf
->hold_list
);
4397 INIT_LIST_HEAD(&conf
->delayed_list
);
4398 INIT_LIST_HEAD(&conf
->bitmap_list
);
4399 INIT_LIST_HEAD(&conf
->inactive_list
);
4400 atomic_set(&conf
->active_stripes
, 0);
4401 atomic_set(&conf
->preread_active_stripes
, 0);
4402 atomic_set(&conf
->active_aligned_reads
, 0);
4403 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4405 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4407 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4408 raid_disk
= rdev
->raid_disk
;
4409 if (raid_disk
>= conf
->raid_disks
4412 disk
= conf
->disks
+ raid_disk
;
4416 if (test_bit(In_sync
, &rdev
->flags
)) {
4417 char b
[BDEVNAME_SIZE
];
4418 printk(KERN_INFO
"raid5: device %s operational as raid"
4419 " disk %d\n", bdevname(rdev
->bdev
,b
),
4422 /* Cannot rely on bitmap to complete recovery */
4426 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4427 conf
->level
= mddev
->new_level
;
4428 if (conf
->level
== 6)
4429 conf
->max_degraded
= 2;
4431 conf
->max_degraded
= 1;
4432 conf
->algorithm
= mddev
->new_layout
;
4433 conf
->max_nr_stripes
= NR_STRIPES
;
4434 conf
->reshape_progress
= mddev
->reshape_position
;
4435 if (conf
->reshape_progress
!= MaxSector
) {
4436 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4437 conf
->prev_algo
= mddev
->layout
;
4440 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4441 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4442 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4444 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4447 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4448 memory
, mdname(mddev
));
4450 conf
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4451 if (!conf
->thread
) {
4453 "raid5: couldn't allocate thread for %s\n",
4463 return ERR_PTR(-EIO
);
4465 return ERR_PTR(-ENOMEM
);
4468 static int run(mddev_t
*mddev
)
4471 int working_disks
= 0, chunk_size
;
4474 if (mddev
->recovery_cp
!= MaxSector
)
4475 printk(KERN_NOTICE
"raid5: %s is not clean"
4476 " -- starting background reconstruction\n",
4478 if (mddev
->reshape_position
!= MaxSector
) {
4479 /* Check that we can continue the reshape.
4480 * Currently only disks can change, it must
4481 * increase, and we must be past the point where
4482 * a stripe over-writes itself
4484 sector_t here_new
, here_old
;
4486 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4488 if (mddev
->new_level
!= mddev
->level
) {
4489 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4490 "required - aborting.\n",
4494 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4495 /* reshape_position must be on a new-stripe boundary, and one
4496 * further up in new geometry must map after here in old
4499 here_new
= mddev
->reshape_position
;
4500 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
4501 (mddev
->raid_disks
- max_degraded
))) {
4502 printk(KERN_ERR
"raid5: reshape_position not "
4503 "on a stripe boundary\n");
4506 /* here_new is the stripe we will write to */
4507 here_old
= mddev
->reshape_position
;
4508 sector_div(here_old
, mddev
->chunk_sectors
*
4509 (old_disks
-max_degraded
));
4510 /* here_old is the first stripe that we might need to read
4512 if (mddev
->delta_disks
== 0) {
4513 /* We cannot be sure it is safe to start an in-place
4514 * reshape. It is only safe if user-space if monitoring
4515 * and taking constant backups.
4516 * mdadm always starts a situation like this in
4517 * readonly mode so it can take control before
4518 * allowing any writes. So just check for that.
4520 if ((here_new
* mddev
->new_chunk_sectors
!=
4521 here_old
* mddev
->chunk_sectors
) ||
4523 printk(KERN_ERR
"raid5: in-place reshape must be started"
4524 " in read-only mode - aborting\n");
4527 } else if (mddev
->delta_disks
< 0
4528 ? (here_new
* mddev
->new_chunk_sectors
<=
4529 here_old
* mddev
->chunk_sectors
)
4530 : (here_new
* mddev
->new_chunk_sectors
>=
4531 here_old
* mddev
->chunk_sectors
)) {
4532 /* Reading from the same stripe as writing to - bad */
4533 printk(KERN_ERR
"raid5: reshape_position too early for "
4534 "auto-recovery - aborting.\n");
4537 printk(KERN_INFO
"raid5: reshape will continue\n");
4538 /* OK, we should be able to continue; */
4540 BUG_ON(mddev
->level
!= mddev
->new_level
);
4541 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4542 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
4543 BUG_ON(mddev
->delta_disks
!= 0);
4546 if (mddev
->private == NULL
)
4547 conf
= setup_conf(mddev
);
4549 conf
= mddev
->private;
4552 return PTR_ERR(conf
);
4554 mddev
->thread
= conf
->thread
;
4555 conf
->thread
= NULL
;
4556 mddev
->private = conf
;
4559 * 0 for a fully functional array, 1 or 2 for a degraded array.
4561 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4562 if (rdev
->raid_disk
>= 0 &&
4563 test_bit(In_sync
, &rdev
->flags
))
4566 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4568 if (mddev
->degraded
> conf
->max_degraded
) {
4569 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4570 " (%d/%d failed)\n",
4571 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4575 /* device size must be a multiple of chunk size */
4576 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
4577 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
4579 if (mddev
->degraded
> 0 &&
4580 mddev
->recovery_cp
!= MaxSector
) {
4581 if (mddev
->ok_start_degraded
)
4583 "raid5: starting dirty degraded array: %s"
4584 "- data corruption possible.\n",
4588 "raid5: cannot start dirty degraded array for %s\n",
4594 if (mddev
->degraded
== 0)
4595 printk("raid5: raid level %d set %s active with %d out of %d"
4596 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4597 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4600 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4601 " out of %d devices, algorithm %d\n", conf
->level
,
4602 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4603 mddev
->raid_disks
, mddev
->new_layout
);
4605 print_raid5_conf(conf
);
4607 if (conf
->reshape_progress
!= MaxSector
) {
4608 printk("...ok start reshape thread\n");
4609 conf
->reshape_safe
= conf
->reshape_progress
;
4610 atomic_set(&conf
->reshape_stripes
, 0);
4611 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4612 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4613 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4614 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4615 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4619 /* read-ahead size must cover two whole stripes, which is
4620 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4623 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4624 int stripe
= data_disks
*
4625 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4626 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4627 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4630 /* Ok, everything is just fine now */
4631 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4633 "raid5: failed to create sysfs attributes for %s\n",
4636 mddev
->queue
->queue_lock
= &conf
->device_lock
;
4638 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4639 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4640 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4642 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
4644 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4645 chunk_size
= mddev
->chunk_sectors
<< 9;
4646 blk_queue_io_min(mddev
->queue
, chunk_size
);
4647 blk_queue_io_opt(mddev
->queue
, chunk_size
*
4648 (conf
->raid_disks
- conf
->max_degraded
));
4650 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4651 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
4652 rdev
->data_offset
<< 9);
4656 md_unregister_thread(mddev
->thread
);
4657 mddev
->thread
= NULL
;
4659 print_raid5_conf(conf
);
4662 mddev
->private = NULL
;
4663 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4669 static int stop(mddev_t
*mddev
)
4671 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4673 md_unregister_thread(mddev
->thread
);
4674 mddev
->thread
= NULL
;
4675 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4676 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4677 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4679 mddev
->private = NULL
;
4684 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
4688 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4689 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4690 seq_printf(seq
, "sh %llu, count %d.\n",
4691 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4692 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4693 for (i
= 0; i
< sh
->disks
; i
++) {
4694 seq_printf(seq
, "(cache%d: %p %ld) ",
4695 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4697 seq_printf(seq
, "\n");
4700 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
4702 struct stripe_head
*sh
;
4703 struct hlist_node
*hn
;
4706 spin_lock_irq(&conf
->device_lock
);
4707 for (i
= 0; i
< NR_HASH
; i
++) {
4708 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4709 if (sh
->raid_conf
!= conf
)
4714 spin_unlock_irq(&conf
->device_lock
);
4718 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
4720 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4723 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
4724 mddev
->chunk_sectors
/ 2, mddev
->layout
);
4725 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4726 for (i
= 0; i
< conf
->raid_disks
; i
++)
4727 seq_printf (seq
, "%s",
4728 conf
->disks
[i
].rdev
&&
4729 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4730 seq_printf (seq
, "]");
4732 seq_printf (seq
, "\n");
4733 printall(seq
, conf
);
4737 static void print_raid5_conf (raid5_conf_t
*conf
)
4740 struct disk_info
*tmp
;
4742 printk("RAID5 conf printout:\n");
4744 printk("(conf==NULL)\n");
4747 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4748 conf
->raid_disks
- conf
->mddev
->degraded
);
4750 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4751 char b
[BDEVNAME_SIZE
];
4752 tmp
= conf
->disks
+ i
;
4754 printk(" disk %d, o:%d, dev:%s\n",
4755 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4756 bdevname(tmp
->rdev
->bdev
,b
));
4760 static int raid5_spare_active(mddev_t
*mddev
)
4763 raid5_conf_t
*conf
= mddev
->private;
4764 struct disk_info
*tmp
;
4766 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4767 tmp
= conf
->disks
+ i
;
4769 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4770 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4771 unsigned long flags
;
4772 spin_lock_irqsave(&conf
->device_lock
, flags
);
4774 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4777 print_raid5_conf(conf
);
4781 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4783 raid5_conf_t
*conf
= mddev
->private;
4786 struct disk_info
*p
= conf
->disks
+ number
;
4788 print_raid5_conf(conf
);
4791 if (number
>= conf
->raid_disks
&&
4792 conf
->reshape_progress
== MaxSector
)
4793 clear_bit(In_sync
, &rdev
->flags
);
4795 if (test_bit(In_sync
, &rdev
->flags
) ||
4796 atomic_read(&rdev
->nr_pending
)) {
4800 /* Only remove non-faulty devices if recovery
4803 if (!test_bit(Faulty
, &rdev
->flags
) &&
4804 mddev
->degraded
<= conf
->max_degraded
&&
4805 number
< conf
->raid_disks
) {
4811 if (atomic_read(&rdev
->nr_pending
)) {
4812 /* lost the race, try later */
4819 print_raid5_conf(conf
);
4823 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4825 raid5_conf_t
*conf
= mddev
->private;
4828 struct disk_info
*p
;
4830 int last
= conf
->raid_disks
- 1;
4832 if (mddev
->degraded
> conf
->max_degraded
)
4833 /* no point adding a device */
4836 if (rdev
->raid_disk
>= 0)
4837 first
= last
= rdev
->raid_disk
;
4840 * find the disk ... but prefer rdev->saved_raid_disk
4843 if (rdev
->saved_raid_disk
>= 0 &&
4844 rdev
->saved_raid_disk
>= first
&&
4845 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4846 disk
= rdev
->saved_raid_disk
;
4849 for ( ; disk
<= last
; disk
++)
4850 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4851 clear_bit(In_sync
, &rdev
->flags
);
4852 rdev
->raid_disk
= disk
;
4854 if (rdev
->saved_raid_disk
!= disk
)
4856 rcu_assign_pointer(p
->rdev
, rdev
);
4859 print_raid5_conf(conf
);
4863 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4865 /* no resync is happening, and there is enough space
4866 * on all devices, so we can resize.
4867 * We need to make sure resync covers any new space.
4868 * If the array is shrinking we should possibly wait until
4869 * any io in the removed space completes, but it hardly seems
4872 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4873 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
4874 mddev
->raid_disks
));
4875 if (mddev
->array_sectors
>
4876 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
4878 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4880 revalidate_disk(mddev
->gendisk
);
4881 if (sectors
> mddev
->dev_sectors
&& mddev
->recovery_cp
== MaxSector
) {
4882 mddev
->recovery_cp
= mddev
->dev_sectors
;
4883 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4885 mddev
->dev_sectors
= sectors
;
4886 mddev
->resync_max_sectors
= sectors
;
4890 static int check_stripe_cache(mddev_t
*mddev
)
4892 /* Can only proceed if there are plenty of stripe_heads.
4893 * We need a minimum of one full stripe,, and for sensible progress
4894 * it is best to have about 4 times that.
4895 * If we require 4 times, then the default 256 4K stripe_heads will
4896 * allow for chunk sizes up to 256K, which is probably OK.
4897 * If the chunk size is greater, user-space should request more
4898 * stripe_heads first.
4900 raid5_conf_t
*conf
= mddev
->private;
4901 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
4902 > conf
->max_nr_stripes
||
4903 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
4904 > conf
->max_nr_stripes
) {
4905 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4906 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
4913 static int check_reshape(mddev_t
*mddev
)
4915 raid5_conf_t
*conf
= mddev
->private;
4917 if (mddev
->delta_disks
== 0 &&
4918 mddev
->new_layout
== mddev
->layout
&&
4919 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
4920 return 0; /* nothing to do */
4922 /* Cannot grow a bitmap yet */
4924 if (mddev
->degraded
> conf
->max_degraded
)
4926 if (mddev
->delta_disks
< 0) {
4927 /* We might be able to shrink, but the devices must
4928 * be made bigger first.
4929 * For raid6, 4 is the minimum size.
4930 * Otherwise 2 is the minimum
4933 if (mddev
->level
== 6)
4935 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
4939 if (!check_stripe_cache(mddev
))
4942 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4945 static int raid5_start_reshape(mddev_t
*mddev
)
4947 raid5_conf_t
*conf
= mddev
->private;
4950 int added_devices
= 0;
4951 unsigned long flags
;
4953 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4956 if (!check_stripe_cache(mddev
))
4959 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4960 if (rdev
->raid_disk
< 0 &&
4961 !test_bit(Faulty
, &rdev
->flags
))
4964 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4965 /* Not enough devices even to make a degraded array
4970 /* Refuse to reduce size of the array. Any reductions in
4971 * array size must be through explicit setting of array_size
4974 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
4975 < mddev
->array_sectors
) {
4976 printk(KERN_ERR
"md: %s: array size must be reduced "
4977 "before number of disks\n", mdname(mddev
));
4981 atomic_set(&conf
->reshape_stripes
, 0);
4982 spin_lock_irq(&conf
->device_lock
);
4983 conf
->previous_raid_disks
= conf
->raid_disks
;
4984 conf
->raid_disks
+= mddev
->delta_disks
;
4985 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
4986 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4987 conf
->prev_algo
= conf
->algorithm
;
4988 conf
->algorithm
= mddev
->new_layout
;
4989 if (mddev
->delta_disks
< 0)
4990 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
4992 conf
->reshape_progress
= 0;
4993 conf
->reshape_safe
= conf
->reshape_progress
;
4995 spin_unlock_irq(&conf
->device_lock
);
4997 /* Add some new drives, as many as will fit.
4998 * We know there are enough to make the newly sized array work.
5000 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5001 if (rdev
->raid_disk
< 0 &&
5002 !test_bit(Faulty
, &rdev
->flags
)) {
5003 if (raid5_add_disk(mddev
, rdev
) == 0) {
5005 set_bit(In_sync
, &rdev
->flags
);
5007 rdev
->recovery_offset
= 0;
5008 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5009 if (sysfs_create_link(&mddev
->kobj
,
5012 "raid5: failed to create "
5013 " link %s for %s\n",
5019 if (mddev
->delta_disks
> 0) {
5020 spin_lock_irqsave(&conf
->device_lock
, flags
);
5021 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
)
5023 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5025 mddev
->raid_disks
= conf
->raid_disks
;
5026 mddev
->reshape_position
= conf
->reshape_progress
;
5027 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5029 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5030 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5031 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5032 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5033 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5035 if (!mddev
->sync_thread
) {
5036 mddev
->recovery
= 0;
5037 spin_lock_irq(&conf
->device_lock
);
5038 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5039 conf
->reshape_progress
= MaxSector
;
5040 spin_unlock_irq(&conf
->device_lock
);
5043 conf
->reshape_checkpoint
= jiffies
;
5044 md_wakeup_thread(mddev
->sync_thread
);
5045 md_new_event(mddev
);
5049 /* This is called from the reshape thread and should make any
5050 * changes needed in 'conf'
5052 static void end_reshape(raid5_conf_t
*conf
)
5055 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5057 spin_lock_irq(&conf
->device_lock
);
5058 conf
->previous_raid_disks
= conf
->raid_disks
;
5059 conf
->reshape_progress
= MaxSector
;
5060 spin_unlock_irq(&conf
->device_lock
);
5061 wake_up(&conf
->wait_for_overlap
);
5063 /* read-ahead size must cover two whole stripes, which is
5064 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5067 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5068 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5070 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5071 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5076 /* This is called from the raid5d thread with mddev_lock held.
5077 * It makes config changes to the device.
5079 static void raid5_finish_reshape(mddev_t
*mddev
)
5081 raid5_conf_t
*conf
= mddev
->private;
5083 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5085 if (mddev
->delta_disks
> 0) {
5086 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5087 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5089 revalidate_disk(mddev
->gendisk
);
5092 mddev
->degraded
= conf
->raid_disks
;
5093 for (d
= 0; d
< conf
->raid_disks
; d
++)
5094 if (conf
->disks
[d
].rdev
&&
5096 &conf
->disks
[d
].rdev
->flags
))
5098 for (d
= conf
->raid_disks
;
5099 d
< conf
->raid_disks
- mddev
->delta_disks
;
5101 mdk_rdev_t
*rdev
= conf
->disks
[d
].rdev
;
5102 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5104 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5105 sysfs_remove_link(&mddev
->kobj
, nm
);
5106 rdev
->raid_disk
= -1;
5110 mddev
->layout
= conf
->algorithm
;
5111 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5112 mddev
->reshape_position
= MaxSector
;
5113 mddev
->delta_disks
= 0;
5117 static void raid5_quiesce(mddev_t
*mddev
, int state
)
5119 raid5_conf_t
*conf
= mddev
->private;
5122 case 2: /* resume for a suspend */
5123 wake_up(&conf
->wait_for_overlap
);
5126 case 1: /* stop all writes */
5127 spin_lock_irq(&conf
->device_lock
);
5128 /* '2' tells resync/reshape to pause so that all
5129 * active stripes can drain
5132 wait_event_lock_irq(conf
->wait_for_stripe
,
5133 atomic_read(&conf
->active_stripes
) == 0 &&
5134 atomic_read(&conf
->active_aligned_reads
) == 0,
5135 conf
->device_lock
, /* nothing */);
5137 spin_unlock_irq(&conf
->device_lock
);
5138 /* allow reshape to continue */
5139 wake_up(&conf
->wait_for_overlap
);
5142 case 0: /* re-enable writes */
5143 spin_lock_irq(&conf
->device_lock
);
5145 wake_up(&conf
->wait_for_stripe
);
5146 wake_up(&conf
->wait_for_overlap
);
5147 spin_unlock_irq(&conf
->device_lock
);
5153 static void *raid5_takeover_raid1(mddev_t
*mddev
)
5157 if (mddev
->raid_disks
!= 2 ||
5158 mddev
->degraded
> 1)
5159 return ERR_PTR(-EINVAL
);
5161 /* Should check if there are write-behind devices? */
5163 chunksect
= 64*2; /* 64K by default */
5165 /* The array must be an exact multiple of chunksize */
5166 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5169 if ((chunksect
<<9) < STRIPE_SIZE
)
5170 /* array size does not allow a suitable chunk size */
5171 return ERR_PTR(-EINVAL
);
5173 mddev
->new_level
= 5;
5174 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5175 mddev
->new_chunk_sectors
= chunksect
;
5177 return setup_conf(mddev
);
5180 static void *raid5_takeover_raid6(mddev_t
*mddev
)
5184 switch (mddev
->layout
) {
5185 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5186 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5188 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5189 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5191 case ALGORITHM_LEFT_SYMMETRIC_6
:
5192 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5194 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5195 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5197 case ALGORITHM_PARITY_0_6
:
5198 new_layout
= ALGORITHM_PARITY_0
;
5200 case ALGORITHM_PARITY_N
:
5201 new_layout
= ALGORITHM_PARITY_N
;
5204 return ERR_PTR(-EINVAL
);
5206 mddev
->new_level
= 5;
5207 mddev
->new_layout
= new_layout
;
5208 mddev
->delta_disks
= -1;
5209 mddev
->raid_disks
-= 1;
5210 return setup_conf(mddev
);
5214 static int raid5_check_reshape(mddev_t
*mddev
)
5216 /* For a 2-drive array, the layout and chunk size can be changed
5217 * immediately as not restriping is needed.
5218 * For larger arrays we record the new value - after validation
5219 * to be used by a reshape pass.
5221 raid5_conf_t
*conf
= mddev
->private;
5222 int new_chunk
= mddev
->new_chunk_sectors
;
5224 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5226 if (new_chunk
> 0) {
5227 if (!is_power_of_2(new_chunk
))
5229 if (new_chunk
< (PAGE_SIZE
>>9))
5231 if (mddev
->array_sectors
& (new_chunk
-1))
5232 /* not factor of array size */
5236 /* They look valid */
5238 if (mddev
->raid_disks
== 2) {
5239 /* can make the change immediately */
5240 if (mddev
->new_layout
>= 0) {
5241 conf
->algorithm
= mddev
->new_layout
;
5242 mddev
->layout
= mddev
->new_layout
;
5244 if (new_chunk
> 0) {
5245 conf
->chunk_sectors
= new_chunk
;
5246 mddev
->chunk_sectors
= new_chunk
;
5248 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5249 md_wakeup_thread(mddev
->thread
);
5251 return check_reshape(mddev
);
5254 static int raid6_check_reshape(mddev_t
*mddev
)
5256 int new_chunk
= mddev
->new_chunk_sectors
;
5258 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5260 if (new_chunk
> 0) {
5261 if (!is_power_of_2(new_chunk
))
5263 if (new_chunk
< (PAGE_SIZE
>> 9))
5265 if (mddev
->array_sectors
& (new_chunk
-1))
5266 /* not factor of array size */
5270 /* They look valid */
5271 return check_reshape(mddev
);
5274 static void *raid5_takeover(mddev_t
*mddev
)
5276 /* raid5 can take over:
5277 * raid0 - if all devices are the same - make it a raid4 layout
5278 * raid1 - if there are two drives. We need to know the chunk size
5279 * raid4 - trivial - just use a raid4 layout.
5280 * raid6 - Providing it is a *_6 layout
5283 if (mddev
->level
== 1)
5284 return raid5_takeover_raid1(mddev
);
5285 if (mddev
->level
== 4) {
5286 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5287 mddev
->new_level
= 5;
5288 return setup_conf(mddev
);
5290 if (mddev
->level
== 6)
5291 return raid5_takeover_raid6(mddev
);
5293 return ERR_PTR(-EINVAL
);
5297 static struct mdk_personality raid5_personality
;
5299 static void *raid6_takeover(mddev_t
*mddev
)
5301 /* Currently can only take over a raid5. We map the
5302 * personality to an equivalent raid6 personality
5303 * with the Q block at the end.
5307 if (mddev
->pers
!= &raid5_personality
)
5308 return ERR_PTR(-EINVAL
);
5309 if (mddev
->degraded
> 1)
5310 return ERR_PTR(-EINVAL
);
5311 if (mddev
->raid_disks
> 253)
5312 return ERR_PTR(-EINVAL
);
5313 if (mddev
->raid_disks
< 3)
5314 return ERR_PTR(-EINVAL
);
5316 switch (mddev
->layout
) {
5317 case ALGORITHM_LEFT_ASYMMETRIC
:
5318 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5320 case ALGORITHM_RIGHT_ASYMMETRIC
:
5321 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5323 case ALGORITHM_LEFT_SYMMETRIC
:
5324 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5326 case ALGORITHM_RIGHT_SYMMETRIC
:
5327 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5329 case ALGORITHM_PARITY_0
:
5330 new_layout
= ALGORITHM_PARITY_0_6
;
5332 case ALGORITHM_PARITY_N
:
5333 new_layout
= ALGORITHM_PARITY_N
;
5336 return ERR_PTR(-EINVAL
);
5338 mddev
->new_level
= 6;
5339 mddev
->new_layout
= new_layout
;
5340 mddev
->delta_disks
= 1;
5341 mddev
->raid_disks
+= 1;
5342 return setup_conf(mddev
);
5346 static struct mdk_personality raid6_personality
=
5350 .owner
= THIS_MODULE
,
5351 .make_request
= make_request
,
5355 .error_handler
= error
,
5356 .hot_add_disk
= raid5_add_disk
,
5357 .hot_remove_disk
= raid5_remove_disk
,
5358 .spare_active
= raid5_spare_active
,
5359 .sync_request
= sync_request
,
5360 .resize
= raid5_resize
,
5362 .check_reshape
= raid6_check_reshape
,
5363 .start_reshape
= raid5_start_reshape
,
5364 .finish_reshape
= raid5_finish_reshape
,
5365 .quiesce
= raid5_quiesce
,
5366 .takeover
= raid6_takeover
,
5368 static struct mdk_personality raid5_personality
=
5372 .owner
= THIS_MODULE
,
5373 .make_request
= make_request
,
5377 .error_handler
= error
,
5378 .hot_add_disk
= raid5_add_disk
,
5379 .hot_remove_disk
= raid5_remove_disk
,
5380 .spare_active
= raid5_spare_active
,
5381 .sync_request
= sync_request
,
5382 .resize
= raid5_resize
,
5384 .check_reshape
= raid5_check_reshape
,
5385 .start_reshape
= raid5_start_reshape
,
5386 .finish_reshape
= raid5_finish_reshape
,
5387 .quiesce
= raid5_quiesce
,
5388 .takeover
= raid5_takeover
,
5391 static struct mdk_personality raid4_personality
=
5395 .owner
= THIS_MODULE
,
5396 .make_request
= make_request
,
5400 .error_handler
= error
,
5401 .hot_add_disk
= raid5_add_disk
,
5402 .hot_remove_disk
= raid5_remove_disk
,
5403 .spare_active
= raid5_spare_active
,
5404 .sync_request
= sync_request
,
5405 .resize
= raid5_resize
,
5407 .check_reshape
= raid5_check_reshape
,
5408 .start_reshape
= raid5_start_reshape
,
5409 .finish_reshape
= raid5_finish_reshape
,
5410 .quiesce
= raid5_quiesce
,
5413 static int __init
raid5_init(void)
5415 register_md_personality(&raid6_personality
);
5416 register_md_personality(&raid5_personality
);
5417 register_md_personality(&raid4_personality
);
5421 static void raid5_exit(void)
5423 unregister_md_personality(&raid6_personality
);
5424 unregister_md_personality(&raid5_personality
);
5425 unregister_md_personality(&raid4_personality
);
5428 module_init(raid5_init
);
5429 module_exit(raid5_exit
);
5430 MODULE_LICENSE("GPL");
5431 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5432 MODULE_ALIAS("md-raid5");
5433 MODULE_ALIAS("md-raid4");
5434 MODULE_ALIAS("md-level-5");
5435 MODULE_ALIAS("md-level-4");
5436 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5437 MODULE_ALIAS("md-raid6");
5438 MODULE_ALIAS("md-level-6");
5440 /* This used to be two separate modules, they were: */
5441 MODULE_ALIAS("raid5");
5442 MODULE_ALIAS("raid6");