2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
52 #define IOAPIC_RANGE_START (0xfee00000)
53 #define IOAPIC_RANGE_END (0xfeefffff)
54 #define IOVA_START_ADDR (0x1000)
56 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
58 #define MAX_AGAW_WIDTH 64
60 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
61 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
63 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
64 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
65 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
66 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
67 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
69 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
70 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
71 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
74 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
75 are never going to work. */
76 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn
)
78 return dma_pfn
>> (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
81 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn
)
83 return mm_pfn
<< (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
85 static inline unsigned long page_to_dma_pfn(struct page
*pg
)
87 return mm_to_dma_pfn(page_to_pfn(pg
));
89 static inline unsigned long virt_to_dma_pfn(void *p
)
91 return page_to_dma_pfn(virt_to_page(p
));
94 /* global iommu list, set NULL for ignored DMAR units */
95 static struct intel_iommu
**g_iommus
;
97 static int rwbf_quirk
;
102 * 12-63: Context Ptr (12 - (haw-1))
109 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
110 static inline bool root_present(struct root_entry
*root
)
112 return (root
->val
& 1);
114 static inline void set_root_present(struct root_entry
*root
)
118 static inline void set_root_value(struct root_entry
*root
, unsigned long value
)
120 root
->val
|= value
& VTD_PAGE_MASK
;
123 static inline struct context_entry
*
124 get_context_addr_from_root(struct root_entry
*root
)
126 return (struct context_entry
*)
127 (root_present(root
)?phys_to_virt(
128 root
->val
& VTD_PAGE_MASK
) :
135 * 1: fault processing disable
136 * 2-3: translation type
137 * 12-63: address space root
143 struct context_entry
{
148 static inline bool context_present(struct context_entry
*context
)
150 return (context
->lo
& 1);
152 static inline void context_set_present(struct context_entry
*context
)
157 static inline void context_set_fault_enable(struct context_entry
*context
)
159 context
->lo
&= (((u64
)-1) << 2) | 1;
162 static inline void context_set_translation_type(struct context_entry
*context
,
165 context
->lo
&= (((u64
)-1) << 4) | 3;
166 context
->lo
|= (value
& 3) << 2;
169 static inline void context_set_address_root(struct context_entry
*context
,
172 context
->lo
|= value
& VTD_PAGE_MASK
;
175 static inline void context_set_address_width(struct context_entry
*context
,
178 context
->hi
|= value
& 7;
181 static inline void context_set_domain_id(struct context_entry
*context
,
184 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
187 static inline void context_clear_entry(struct context_entry
*context
)
200 * 12-63: Host physcial address
206 static inline void dma_clear_pte(struct dma_pte
*pte
)
211 static inline void dma_set_pte_readable(struct dma_pte
*pte
)
213 pte
->val
|= DMA_PTE_READ
;
216 static inline void dma_set_pte_writable(struct dma_pte
*pte
)
218 pte
->val
|= DMA_PTE_WRITE
;
221 static inline void dma_set_pte_snp(struct dma_pte
*pte
)
223 pte
->val
|= DMA_PTE_SNP
;
226 static inline void dma_set_pte_prot(struct dma_pte
*pte
, unsigned long prot
)
228 pte
->val
= (pte
->val
& ~3) | (prot
& 3);
231 static inline u64
dma_pte_addr(struct dma_pte
*pte
)
234 return pte
->val
& VTD_PAGE_MASK
;
236 /* Must have a full atomic 64-bit read */
237 return __cmpxchg64(pte
, 0ULL, 0ULL) & VTD_PAGE_MASK
;
241 static inline void dma_set_pte_pfn(struct dma_pte
*pte
, unsigned long pfn
)
243 pte
->val
|= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
246 static inline bool dma_pte_present(struct dma_pte
*pte
)
248 return (pte
->val
& 3) != 0;
251 static inline int first_pte_in_page(struct dma_pte
*pte
)
253 return !((unsigned long)pte
& ~VTD_PAGE_MASK
);
257 * This domain is a statically identity mapping domain.
258 * 1. This domain creats a static 1:1 mapping to all usable memory.
259 * 2. It maps to each iommu if successful.
260 * 3. Each iommu mapps to this domain if successful.
262 static struct dmar_domain
*si_domain
;
263 static int hw_pass_through
= 1;
265 /* devices under the same p2p bridge are owned in one domain */
266 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
268 /* domain represents a virtual machine, more than one devices
269 * across iommus may be owned in one domain, e.g. kvm guest.
271 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
273 /* si_domain contains mulitple devices */
274 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
277 int id
; /* domain id */
278 unsigned long iommu_bmp
; /* bitmap of iommus this domain uses*/
280 struct list_head devices
; /* all devices' list */
281 struct iova_domain iovad
; /* iova's that belong to this domain */
283 struct dma_pte
*pgd
; /* virtual address */
284 int gaw
; /* max guest address width */
286 /* adjusted guest address width, 0 is level 2 30-bit */
289 int flags
; /* flags to find out type of domain */
291 int iommu_coherency
;/* indicate coherency of iommu access */
292 int iommu_snooping
; /* indicate snooping control feature*/
293 int iommu_count
; /* reference count of iommu */
294 spinlock_t iommu_lock
; /* protect iommu set in domain */
295 u64 max_addr
; /* maximum mapped address */
298 /* PCI domain-device relationship */
299 struct device_domain_info
{
300 struct list_head link
; /* link to domain siblings */
301 struct list_head global
; /* link to global list */
302 int segment
; /* PCI domain */
303 u8 bus
; /* PCI bus number */
304 u8 devfn
; /* PCI devfn number */
305 struct pci_dev
*dev
; /* it's NULL for PCIE-to-PCI bridge */
306 struct intel_iommu
*iommu
; /* IOMMU used by this device */
307 struct dmar_domain
*domain
; /* pointer to domain */
310 static void flush_unmaps_timeout(unsigned long data
);
312 DEFINE_TIMER(unmap_timer
, flush_unmaps_timeout
, 0, 0);
314 #define HIGH_WATER_MARK 250
315 struct deferred_flush_tables
{
317 struct iova
*iova
[HIGH_WATER_MARK
];
318 struct dmar_domain
*domain
[HIGH_WATER_MARK
];
321 static struct deferred_flush_tables
*deferred_flush
;
323 /* bitmap for indexing intel_iommus */
324 static int g_num_of_iommus
;
326 static DEFINE_SPINLOCK(async_umap_flush_lock
);
327 static LIST_HEAD(unmaps_to_do
);
330 static long list_size
;
332 static void domain_remove_dev_info(struct dmar_domain
*domain
);
334 #ifdef CONFIG_DMAR_DEFAULT_ON
335 int dmar_disabled
= 0;
337 int dmar_disabled
= 1;
338 #endif /*CONFIG_DMAR_DEFAULT_ON*/
340 static int __initdata dmar_map_gfx
= 1;
341 static int dmar_forcedac
;
342 static int intel_iommu_strict
;
344 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
345 static DEFINE_SPINLOCK(device_domain_lock
);
346 static LIST_HEAD(device_domain_list
);
348 static struct iommu_ops intel_iommu_ops
;
350 static int __init
intel_iommu_setup(char *str
)
355 if (!strncmp(str
, "on", 2)) {
357 printk(KERN_INFO
"Intel-IOMMU: enabled\n");
358 } else if (!strncmp(str
, "off", 3)) {
360 printk(KERN_INFO
"Intel-IOMMU: disabled\n");
361 } else if (!strncmp(str
, "igfx_off", 8)) {
364 "Intel-IOMMU: disable GFX device mapping\n");
365 } else if (!strncmp(str
, "forcedac", 8)) {
367 "Intel-IOMMU: Forcing DAC for PCI devices\n");
369 } else if (!strncmp(str
, "strict", 6)) {
371 "Intel-IOMMU: disable batched IOTLB flush\n");
372 intel_iommu_strict
= 1;
375 str
+= strcspn(str
, ",");
381 __setup("intel_iommu=", intel_iommu_setup
);
383 static struct kmem_cache
*iommu_domain_cache
;
384 static struct kmem_cache
*iommu_devinfo_cache
;
385 static struct kmem_cache
*iommu_iova_cache
;
387 static inline void *iommu_kmem_cache_alloc(struct kmem_cache
*cachep
)
392 /* trying to avoid low memory issues */
393 flags
= current
->flags
& PF_MEMALLOC
;
394 current
->flags
|= PF_MEMALLOC
;
395 vaddr
= kmem_cache_alloc(cachep
, GFP_ATOMIC
);
396 current
->flags
&= (~PF_MEMALLOC
| flags
);
401 static inline void *alloc_pgtable_page(void)
406 /* trying to avoid low memory issues */
407 flags
= current
->flags
& PF_MEMALLOC
;
408 current
->flags
|= PF_MEMALLOC
;
409 vaddr
= (void *)get_zeroed_page(GFP_ATOMIC
);
410 current
->flags
&= (~PF_MEMALLOC
| flags
);
414 static inline void free_pgtable_page(void *vaddr
)
416 free_page((unsigned long)vaddr
);
419 static inline void *alloc_domain_mem(void)
421 return iommu_kmem_cache_alloc(iommu_domain_cache
);
424 static void free_domain_mem(void *vaddr
)
426 kmem_cache_free(iommu_domain_cache
, vaddr
);
429 static inline void * alloc_devinfo_mem(void)
431 return iommu_kmem_cache_alloc(iommu_devinfo_cache
);
434 static inline void free_devinfo_mem(void *vaddr
)
436 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
439 struct iova
*alloc_iova_mem(void)
441 return iommu_kmem_cache_alloc(iommu_iova_cache
);
444 void free_iova_mem(struct iova
*iova
)
446 kmem_cache_free(iommu_iova_cache
, iova
);
450 static inline int width_to_agaw(int width
);
452 static int __iommu_calculate_agaw(struct intel_iommu
*iommu
, int max_gaw
)
457 sagaw
= cap_sagaw(iommu
->cap
);
458 for (agaw
= width_to_agaw(max_gaw
);
460 if (test_bit(agaw
, &sagaw
))
468 * Calculate max SAGAW for each iommu.
470 int iommu_calculate_max_sagaw(struct intel_iommu
*iommu
)
472 return __iommu_calculate_agaw(iommu
, MAX_AGAW_WIDTH
);
476 * calculate agaw for each iommu.
477 * "SAGAW" may be different across iommus, use a default agaw, and
478 * get a supported less agaw for iommus that don't support the default agaw.
480 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
482 return __iommu_calculate_agaw(iommu
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
485 /* This functionin only returns single iommu in a domain */
486 static struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
490 /* si_domain and vm domain should not get here. */
491 BUG_ON(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
);
492 BUG_ON(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
);
494 iommu_id
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
495 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
498 return g_iommus
[iommu_id
];
501 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
505 domain
->iommu_coherency
= 1;
507 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
508 for (; i
< g_num_of_iommus
; ) {
509 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
510 domain
->iommu_coherency
= 0;
513 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
517 static void domain_update_iommu_snooping(struct dmar_domain
*domain
)
521 domain
->iommu_snooping
= 1;
523 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
524 for (; i
< g_num_of_iommus
; ) {
525 if (!ecap_sc_support(g_iommus
[i
]->ecap
)) {
526 domain
->iommu_snooping
= 0;
529 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
533 /* Some capabilities may be different across iommus */
534 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
536 domain_update_iommu_coherency(domain
);
537 domain_update_iommu_snooping(domain
);
540 static struct intel_iommu
*device_to_iommu(int segment
, u8 bus
, u8 devfn
)
542 struct dmar_drhd_unit
*drhd
= NULL
;
545 for_each_drhd_unit(drhd
) {
548 if (segment
!= drhd
->segment
)
551 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
552 if (drhd
->devices
[i
] &&
553 drhd
->devices
[i
]->bus
->number
== bus
&&
554 drhd
->devices
[i
]->devfn
== devfn
)
556 if (drhd
->devices
[i
] &&
557 drhd
->devices
[i
]->subordinate
&&
558 drhd
->devices
[i
]->subordinate
->number
<= bus
&&
559 drhd
->devices
[i
]->subordinate
->subordinate
>= bus
)
563 if (drhd
->include_all
)
570 static void domain_flush_cache(struct dmar_domain
*domain
,
571 void *addr
, int size
)
573 if (!domain
->iommu_coherency
)
574 clflush_cache_range(addr
, size
);
577 /* Gets context entry for a given bus and devfn */
578 static struct context_entry
* device_to_context_entry(struct intel_iommu
*iommu
,
581 struct root_entry
*root
;
582 struct context_entry
*context
;
583 unsigned long phy_addr
;
586 spin_lock_irqsave(&iommu
->lock
, flags
);
587 root
= &iommu
->root_entry
[bus
];
588 context
= get_context_addr_from_root(root
);
590 context
= (struct context_entry
*)alloc_pgtable_page();
592 spin_unlock_irqrestore(&iommu
->lock
, flags
);
595 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
596 phy_addr
= virt_to_phys((void *)context
);
597 set_root_value(root
, phy_addr
);
598 set_root_present(root
);
599 __iommu_flush_cache(iommu
, root
, sizeof(*root
));
601 spin_unlock_irqrestore(&iommu
->lock
, flags
);
602 return &context
[devfn
];
605 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
607 struct root_entry
*root
;
608 struct context_entry
*context
;
612 spin_lock_irqsave(&iommu
->lock
, flags
);
613 root
= &iommu
->root_entry
[bus
];
614 context
= get_context_addr_from_root(root
);
619 ret
= context_present(&context
[devfn
]);
621 spin_unlock_irqrestore(&iommu
->lock
, flags
);
625 static void clear_context_table(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
627 struct root_entry
*root
;
628 struct context_entry
*context
;
631 spin_lock_irqsave(&iommu
->lock
, flags
);
632 root
= &iommu
->root_entry
[bus
];
633 context
= get_context_addr_from_root(root
);
635 context_clear_entry(&context
[devfn
]);
636 __iommu_flush_cache(iommu
, &context
[devfn
], \
639 spin_unlock_irqrestore(&iommu
->lock
, flags
);
642 static void free_context_table(struct intel_iommu
*iommu
)
644 struct root_entry
*root
;
647 struct context_entry
*context
;
649 spin_lock_irqsave(&iommu
->lock
, flags
);
650 if (!iommu
->root_entry
) {
653 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
654 root
= &iommu
->root_entry
[i
];
655 context
= get_context_addr_from_root(root
);
657 free_pgtable_page(context
);
659 free_pgtable_page(iommu
->root_entry
);
660 iommu
->root_entry
= NULL
;
662 spin_unlock_irqrestore(&iommu
->lock
, flags
);
665 /* page table handling */
666 #define LEVEL_STRIDE (9)
667 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
669 static inline int agaw_to_level(int agaw
)
674 static inline int agaw_to_width(int agaw
)
676 return 30 + agaw
* LEVEL_STRIDE
;
680 static inline int width_to_agaw(int width
)
682 return (width
- 30) / LEVEL_STRIDE
;
685 static inline unsigned int level_to_offset_bits(int level
)
687 return (level
- 1) * LEVEL_STRIDE
;
690 static inline int pfn_level_offset(unsigned long pfn
, int level
)
692 return (pfn
>> level_to_offset_bits(level
)) & LEVEL_MASK
;
695 static inline unsigned long level_mask(int level
)
697 return -1UL << level_to_offset_bits(level
);
700 static inline unsigned long level_size(int level
)
702 return 1UL << level_to_offset_bits(level
);
705 static inline unsigned long align_to_level(unsigned long pfn
, int level
)
707 return (pfn
+ level_size(level
) - 1) & level_mask(level
);
710 static struct dma_pte
*pfn_to_dma_pte(struct dmar_domain
*domain
,
713 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
714 struct dma_pte
*parent
, *pte
= NULL
;
715 int level
= agaw_to_level(domain
->agaw
);
718 BUG_ON(!domain
->pgd
);
719 BUG_ON(addr_width
< BITS_PER_LONG
&& pfn
>> addr_width
);
720 parent
= domain
->pgd
;
725 offset
= pfn_level_offset(pfn
, level
);
726 pte
= &parent
[offset
];
730 if (!dma_pte_present(pte
)) {
733 tmp_page
= alloc_pgtable_page();
738 domain_flush_cache(domain
, tmp_page
, VTD_PAGE_SIZE
);
739 pteval
= ((uint64_t)virt_to_dma_pfn(tmp_page
) << VTD_PAGE_SHIFT
) | DMA_PTE_READ
| DMA_PTE_WRITE
;
740 if (cmpxchg64(&pte
->val
, 0ULL, pteval
)) {
741 /* Someone else set it while we were thinking; use theirs. */
742 free_pgtable_page(tmp_page
);
745 domain_flush_cache(domain
, pte
, sizeof(*pte
));
748 parent
= phys_to_virt(dma_pte_addr(pte
));
755 /* return address's pte at specific level */
756 static struct dma_pte
*dma_pfn_level_pte(struct dmar_domain
*domain
,
760 struct dma_pte
*parent
, *pte
= NULL
;
761 int total
= agaw_to_level(domain
->agaw
);
764 parent
= domain
->pgd
;
765 while (level
<= total
) {
766 offset
= pfn_level_offset(pfn
, total
);
767 pte
= &parent
[offset
];
771 if (!dma_pte_present(pte
))
773 parent
= phys_to_virt(dma_pte_addr(pte
));
779 /* clear last level pte, a tlb flush should be followed */
780 static void dma_pte_clear_range(struct dmar_domain
*domain
,
781 unsigned long start_pfn
,
782 unsigned long last_pfn
)
784 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
785 struct dma_pte
*first_pte
, *pte
;
787 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
788 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
789 BUG_ON(start_pfn
> last_pfn
);
791 /* we don't need lock here; nobody else touches the iova range */
793 first_pte
= pte
= dma_pfn_level_pte(domain
, start_pfn
, 1);
795 start_pfn
= align_to_level(start_pfn
+ 1, 2);
802 } while (start_pfn
<= last_pfn
&& !first_pte_in_page(pte
));
804 domain_flush_cache(domain
, first_pte
,
805 (void *)pte
- (void *)first_pte
);
807 } while (start_pfn
&& start_pfn
<= last_pfn
);
810 /* free page table pages. last level pte should already be cleared */
811 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
812 unsigned long start_pfn
,
813 unsigned long last_pfn
)
815 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
816 struct dma_pte
*first_pte
, *pte
;
817 int total
= agaw_to_level(domain
->agaw
);
821 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
822 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
823 BUG_ON(start_pfn
> last_pfn
);
825 /* We don't need lock here; nobody else touches the iova range */
827 while (level
<= total
) {
828 tmp
= align_to_level(start_pfn
, level
);
830 /* If we can't even clear one PTE at this level, we're done */
831 if (tmp
+ level_size(level
) - 1 > last_pfn
)
835 first_pte
= pte
= dma_pfn_level_pte(domain
, tmp
, level
);
837 tmp
= align_to_level(tmp
+ 1, level
+ 1);
841 if (dma_pte_present(pte
)) {
842 free_pgtable_page(phys_to_virt(dma_pte_addr(pte
)));
846 tmp
+= level_size(level
);
847 } while (!first_pte_in_page(pte
) &&
848 tmp
+ level_size(level
) - 1 <= last_pfn
);
850 domain_flush_cache(domain
, first_pte
,
851 (void *)pte
- (void *)first_pte
);
853 } while (tmp
&& tmp
+ level_size(level
) - 1 <= last_pfn
);
857 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
858 free_pgtable_page(domain
->pgd
);
864 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
866 struct root_entry
*root
;
869 root
= (struct root_entry
*)alloc_pgtable_page();
873 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
875 spin_lock_irqsave(&iommu
->lock
, flags
);
876 iommu
->root_entry
= root
;
877 spin_unlock_irqrestore(&iommu
->lock
, flags
);
882 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
888 addr
= iommu
->root_entry
;
890 spin_lock_irqsave(&iommu
->register_lock
, flag
);
891 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, virt_to_phys(addr
));
893 writel(iommu
->gcmd
| DMA_GCMD_SRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
895 /* Make sure hardware complete it */
896 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
897 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
899 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
902 static void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
907 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
910 spin_lock_irqsave(&iommu
->register_lock
, flag
);
911 writel(iommu
->gcmd
| DMA_GCMD_WBF
, iommu
->reg
+ DMAR_GCMD_REG
);
913 /* Make sure hardware complete it */
914 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
915 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
917 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
920 /* return value determine if we need a write buffer flush */
921 static void __iommu_flush_context(struct intel_iommu
*iommu
,
922 u16 did
, u16 source_id
, u8 function_mask
,
929 case DMA_CCMD_GLOBAL_INVL
:
930 val
= DMA_CCMD_GLOBAL_INVL
;
932 case DMA_CCMD_DOMAIN_INVL
:
933 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
935 case DMA_CCMD_DEVICE_INVL
:
936 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
937 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
944 spin_lock_irqsave(&iommu
->register_lock
, flag
);
945 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
947 /* Make sure hardware complete it */
948 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
949 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
951 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
954 /* return value determine if we need a write buffer flush */
955 static void __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
956 u64 addr
, unsigned int size_order
, u64 type
)
958 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
959 u64 val
= 0, val_iva
= 0;
963 case DMA_TLB_GLOBAL_FLUSH
:
964 /* global flush doesn't need set IVA_REG */
965 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
967 case DMA_TLB_DSI_FLUSH
:
968 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
970 case DMA_TLB_PSI_FLUSH
:
971 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
972 /* Note: always flush non-leaf currently */
973 val_iva
= size_order
| addr
;
978 /* Note: set drain read/write */
981 * This is probably to be super secure.. Looks like we can
982 * ignore it without any impact.
984 if (cap_read_drain(iommu
->cap
))
985 val
|= DMA_TLB_READ_DRAIN
;
987 if (cap_write_drain(iommu
->cap
))
988 val
|= DMA_TLB_WRITE_DRAIN
;
990 spin_lock_irqsave(&iommu
->register_lock
, flag
);
991 /* Note: Only uses first TLB reg currently */
993 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
994 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
996 /* Make sure hardware complete it */
997 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
998 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
1000 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1002 /* check IOTLB invalidation granularity */
1003 if (DMA_TLB_IAIG(val
) == 0)
1004 printk(KERN_ERR
"IOMMU: flush IOTLB failed\n");
1005 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
1006 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1007 (unsigned long long)DMA_TLB_IIRG(type
),
1008 (unsigned long long)DMA_TLB_IAIG(val
));
1011 static struct device_domain_info
*iommu_support_dev_iotlb(
1012 struct dmar_domain
*domain
, int segment
, u8 bus
, u8 devfn
)
1015 unsigned long flags
;
1016 struct device_domain_info
*info
;
1017 struct intel_iommu
*iommu
= device_to_iommu(segment
, bus
, devfn
);
1019 if (!ecap_dev_iotlb_support(iommu
->ecap
))
1025 spin_lock_irqsave(&device_domain_lock
, flags
);
1026 list_for_each_entry(info
, &domain
->devices
, link
)
1027 if (info
->bus
== bus
&& info
->devfn
== devfn
) {
1031 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1033 if (!found
|| !info
->dev
)
1036 if (!pci_find_ext_capability(info
->dev
, PCI_EXT_CAP_ID_ATS
))
1039 if (!dmar_find_matched_atsr_unit(info
->dev
))
1042 info
->iommu
= iommu
;
1047 static void iommu_enable_dev_iotlb(struct device_domain_info
*info
)
1052 pci_enable_ats(info
->dev
, VTD_PAGE_SHIFT
);
1055 static void iommu_disable_dev_iotlb(struct device_domain_info
*info
)
1057 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1060 pci_disable_ats(info
->dev
);
1063 static void iommu_flush_dev_iotlb(struct dmar_domain
*domain
,
1064 u64 addr
, unsigned mask
)
1067 unsigned long flags
;
1068 struct device_domain_info
*info
;
1070 spin_lock_irqsave(&device_domain_lock
, flags
);
1071 list_for_each_entry(info
, &domain
->devices
, link
) {
1072 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1075 sid
= info
->bus
<< 8 | info
->devfn
;
1076 qdep
= pci_ats_queue_depth(info
->dev
);
1077 qi_flush_dev_iotlb(info
->iommu
, sid
, qdep
, addr
, mask
);
1079 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1082 static void iommu_flush_iotlb_psi(struct intel_iommu
*iommu
, u16 did
,
1083 unsigned long pfn
, unsigned int pages
)
1085 unsigned int mask
= ilog2(__roundup_pow_of_two(pages
));
1086 uint64_t addr
= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
1091 * Fallback to domain selective flush if no PSI support or the size is
1093 * PSI requires page size to be 2 ^ x, and the base address is naturally
1094 * aligned to the size
1096 if (!cap_pgsel_inv(iommu
->cap
) || mask
> cap_max_amask_val(iommu
->cap
))
1097 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
1100 iommu
->flush
.flush_iotlb(iommu
, did
, addr
, mask
,
1104 * In caching mode, domain ID 0 is reserved for non-present to present
1105 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1107 if (!cap_caching_mode(iommu
->cap
) || did
)
1108 iommu_flush_dev_iotlb(iommu
->domains
[did
], addr
, mask
);
1111 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1114 unsigned long flags
;
1116 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1117 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1118 pmen
&= ~DMA_PMEN_EPM
;
1119 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1121 /* wait for the protected region status bit to clear */
1122 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1123 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1125 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1128 static int iommu_enable_translation(struct intel_iommu
*iommu
)
1131 unsigned long flags
;
1133 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1134 iommu
->gcmd
|= DMA_GCMD_TE
;
1135 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1137 /* Make sure hardware complete it */
1138 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1139 readl
, (sts
& DMA_GSTS_TES
), sts
);
1141 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1145 static int iommu_disable_translation(struct intel_iommu
*iommu
)
1150 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1151 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1152 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1154 /* Make sure hardware complete it */
1155 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1156 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1158 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1163 static int iommu_init_domains(struct intel_iommu
*iommu
)
1165 unsigned long ndomains
;
1166 unsigned long nlongs
;
1168 ndomains
= cap_ndoms(iommu
->cap
);
1169 pr_debug("Number of Domains supportd <%ld>\n", ndomains
);
1170 nlongs
= BITS_TO_LONGS(ndomains
);
1172 spin_lock_init(&iommu
->lock
);
1174 /* TBD: there might be 64K domains,
1175 * consider other allocation for future chip
1177 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1178 if (!iommu
->domain_ids
) {
1179 printk(KERN_ERR
"Allocating domain id array failed\n");
1182 iommu
->domains
= kcalloc(ndomains
, sizeof(struct dmar_domain
*),
1184 if (!iommu
->domains
) {
1185 printk(KERN_ERR
"Allocating domain array failed\n");
1190 * if Caching mode is set, then invalid translations are tagged
1191 * with domainid 0. Hence we need to pre-allocate it.
1193 if (cap_caching_mode(iommu
->cap
))
1194 set_bit(0, iommu
->domain_ids
);
1199 static void domain_exit(struct dmar_domain
*domain
);
1200 static void vm_domain_exit(struct dmar_domain
*domain
);
1202 void free_dmar_iommu(struct intel_iommu
*iommu
)
1204 struct dmar_domain
*domain
;
1206 unsigned long flags
;
1208 if ((iommu
->domains
) && (iommu
->domain_ids
)) {
1209 i
= find_first_bit(iommu
->domain_ids
, cap_ndoms(iommu
->cap
));
1210 for (; i
< cap_ndoms(iommu
->cap
); ) {
1211 domain
= iommu
->domains
[i
];
1212 clear_bit(i
, iommu
->domain_ids
);
1214 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1215 if (--domain
->iommu_count
== 0) {
1216 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
1217 vm_domain_exit(domain
);
1219 domain_exit(domain
);
1221 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1223 i
= find_next_bit(iommu
->domain_ids
,
1224 cap_ndoms(iommu
->cap
), i
+1);
1228 if (iommu
->gcmd
& DMA_GCMD_TE
)
1229 iommu_disable_translation(iommu
);
1232 set_irq_data(iommu
->irq
, NULL
);
1233 /* This will mask the irq */
1234 free_irq(iommu
->irq
, iommu
);
1235 destroy_irq(iommu
->irq
);
1238 kfree(iommu
->domains
);
1239 kfree(iommu
->domain_ids
);
1241 g_iommus
[iommu
->seq_id
] = NULL
;
1243 /* if all iommus are freed, free g_iommus */
1244 for (i
= 0; i
< g_num_of_iommus
; i
++) {
1249 if (i
== g_num_of_iommus
)
1252 /* free context mapping */
1253 free_context_table(iommu
);
1256 static struct dmar_domain
*alloc_domain(void)
1258 struct dmar_domain
*domain
;
1260 domain
= alloc_domain_mem();
1264 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
1270 static int iommu_attach_domain(struct dmar_domain
*domain
,
1271 struct intel_iommu
*iommu
)
1274 unsigned long ndomains
;
1275 unsigned long flags
;
1277 ndomains
= cap_ndoms(iommu
->cap
);
1279 spin_lock_irqsave(&iommu
->lock
, flags
);
1281 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1282 if (num
>= ndomains
) {
1283 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1284 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1289 set_bit(num
, iommu
->domain_ids
);
1290 set_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1291 iommu
->domains
[num
] = domain
;
1292 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1297 static void iommu_detach_domain(struct dmar_domain
*domain
,
1298 struct intel_iommu
*iommu
)
1300 unsigned long flags
;
1304 spin_lock_irqsave(&iommu
->lock
, flags
);
1305 ndomains
= cap_ndoms(iommu
->cap
);
1306 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1307 for (; num
< ndomains
; ) {
1308 if (iommu
->domains
[num
] == domain
) {
1312 num
= find_next_bit(iommu
->domain_ids
,
1313 cap_ndoms(iommu
->cap
), num
+1);
1317 clear_bit(num
, iommu
->domain_ids
);
1318 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1319 iommu
->domains
[num
] = NULL
;
1321 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1324 static struct iova_domain reserved_iova_list
;
1325 static struct lock_class_key reserved_rbtree_key
;
1327 static void dmar_init_reserved_ranges(void)
1329 struct pci_dev
*pdev
= NULL
;
1333 init_iova_domain(&reserved_iova_list
, DMA_32BIT_PFN
);
1335 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1336 &reserved_rbtree_key
);
1338 /* IOAPIC ranges shouldn't be accessed by DMA */
1339 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1340 IOVA_PFN(IOAPIC_RANGE_END
));
1342 printk(KERN_ERR
"Reserve IOAPIC range failed\n");
1344 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1345 for_each_pci_dev(pdev
) {
1348 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1349 r
= &pdev
->resource
[i
];
1350 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1352 iova
= reserve_iova(&reserved_iova_list
,
1356 printk(KERN_ERR
"Reserve iova failed\n");
1362 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1364 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1367 static inline int guestwidth_to_adjustwidth(int gaw
)
1370 int r
= (gaw
- 12) % 9;
1381 static int domain_init(struct dmar_domain
*domain
, int guest_width
)
1383 struct intel_iommu
*iommu
;
1384 int adjust_width
, agaw
;
1385 unsigned long sagaw
;
1387 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
1388 spin_lock_init(&domain
->iommu_lock
);
1390 domain_reserve_special_ranges(domain
);
1392 /* calculate AGAW */
1393 iommu
= domain_get_iommu(domain
);
1394 if (guest_width
> cap_mgaw(iommu
->cap
))
1395 guest_width
= cap_mgaw(iommu
->cap
);
1396 domain
->gaw
= guest_width
;
1397 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1398 agaw
= width_to_agaw(adjust_width
);
1399 sagaw
= cap_sagaw(iommu
->cap
);
1400 if (!test_bit(agaw
, &sagaw
)) {
1401 /* hardware doesn't support it, choose a bigger one */
1402 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw
);
1403 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1407 domain
->agaw
= agaw
;
1408 INIT_LIST_HEAD(&domain
->devices
);
1410 if (ecap_coherent(iommu
->ecap
))
1411 domain
->iommu_coherency
= 1;
1413 domain
->iommu_coherency
= 0;
1415 if (ecap_sc_support(iommu
->ecap
))
1416 domain
->iommu_snooping
= 1;
1418 domain
->iommu_snooping
= 0;
1420 domain
->iommu_count
= 1;
1422 /* always allocate the top pgd */
1423 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
1426 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1430 static void domain_exit(struct dmar_domain
*domain
)
1432 struct dmar_drhd_unit
*drhd
;
1433 struct intel_iommu
*iommu
;
1435 /* Domain 0 is reserved, so dont process it */
1439 domain_remove_dev_info(domain
);
1441 put_iova_domain(&domain
->iovad
);
1444 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1446 /* free page tables */
1447 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1449 for_each_active_iommu(iommu
, drhd
)
1450 if (test_bit(iommu
->seq_id
, &domain
->iommu_bmp
))
1451 iommu_detach_domain(domain
, iommu
);
1453 free_domain_mem(domain
);
1456 static int domain_context_mapping_one(struct dmar_domain
*domain
, int segment
,
1457 u8 bus
, u8 devfn
, int translation
)
1459 struct context_entry
*context
;
1460 unsigned long flags
;
1461 struct intel_iommu
*iommu
;
1462 struct dma_pte
*pgd
;
1464 unsigned long ndomains
;
1467 struct device_domain_info
*info
= NULL
;
1469 pr_debug("Set context mapping for %02x:%02x.%d\n",
1470 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1472 BUG_ON(!domain
->pgd
);
1473 BUG_ON(translation
!= CONTEXT_TT_PASS_THROUGH
&&
1474 translation
!= CONTEXT_TT_MULTI_LEVEL
);
1476 iommu
= device_to_iommu(segment
, bus
, devfn
);
1480 context
= device_to_context_entry(iommu
, bus
, devfn
);
1483 spin_lock_irqsave(&iommu
->lock
, flags
);
1484 if (context_present(context
)) {
1485 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1492 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
1493 domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
) {
1496 /* find an available domain id for this device in iommu */
1497 ndomains
= cap_ndoms(iommu
->cap
);
1498 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1499 for (; num
< ndomains
; ) {
1500 if (iommu
->domains
[num
] == domain
) {
1505 num
= find_next_bit(iommu
->domain_ids
,
1506 cap_ndoms(iommu
->cap
), num
+1);
1510 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1511 if (num
>= ndomains
) {
1512 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1513 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1517 set_bit(num
, iommu
->domain_ids
);
1518 iommu
->domains
[num
] = domain
;
1522 /* Skip top levels of page tables for
1523 * iommu which has less agaw than default.
1525 for (agaw
= domain
->agaw
; agaw
!= iommu
->agaw
; agaw
--) {
1526 pgd
= phys_to_virt(dma_pte_addr(pgd
));
1527 if (!dma_pte_present(pgd
)) {
1528 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1534 context_set_domain_id(context
, id
);
1536 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1537 info
= iommu_support_dev_iotlb(domain
, segment
, bus
, devfn
);
1538 translation
= info
? CONTEXT_TT_DEV_IOTLB
:
1539 CONTEXT_TT_MULTI_LEVEL
;
1542 * In pass through mode, AW must be programmed to indicate the largest
1543 * AGAW value supported by hardware. And ASR is ignored by hardware.
1545 if (unlikely(translation
== CONTEXT_TT_PASS_THROUGH
))
1546 context_set_address_width(context
, iommu
->msagaw
);
1548 context_set_address_root(context
, virt_to_phys(pgd
));
1549 context_set_address_width(context
, iommu
->agaw
);
1552 context_set_translation_type(context
, translation
);
1553 context_set_fault_enable(context
);
1554 context_set_present(context
);
1555 domain_flush_cache(domain
, context
, sizeof(*context
));
1558 * It's a non-present to present mapping. If hardware doesn't cache
1559 * non-present entry we only need to flush the write-buffer. If the
1560 * _does_ cache non-present entries, then it does so in the special
1561 * domain #0, which we have to flush:
1563 if (cap_caching_mode(iommu
->cap
)) {
1564 iommu
->flush
.flush_context(iommu
, 0,
1565 (((u16
)bus
) << 8) | devfn
,
1566 DMA_CCMD_MASK_NOBIT
,
1567 DMA_CCMD_DEVICE_INVL
);
1568 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_DSI_FLUSH
);
1570 iommu_flush_write_buffer(iommu
);
1572 iommu_enable_dev_iotlb(info
);
1573 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1575 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1576 if (!test_and_set_bit(iommu
->seq_id
, &domain
->iommu_bmp
)) {
1577 domain
->iommu_count
++;
1578 domain_update_iommu_cap(domain
);
1580 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1585 domain_context_mapping(struct dmar_domain
*domain
, struct pci_dev
*pdev
,
1589 struct pci_dev
*tmp
, *parent
;
1591 ret
= domain_context_mapping_one(domain
, pci_domain_nr(pdev
->bus
),
1592 pdev
->bus
->number
, pdev
->devfn
,
1597 /* dependent device mapping */
1598 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1601 /* Secondary interface's bus number and devfn 0 */
1602 parent
= pdev
->bus
->self
;
1603 while (parent
!= tmp
) {
1604 ret
= domain_context_mapping_one(domain
,
1605 pci_domain_nr(parent
->bus
),
1606 parent
->bus
->number
,
1607 parent
->devfn
, translation
);
1610 parent
= parent
->bus
->self
;
1612 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
1613 return domain_context_mapping_one(domain
,
1614 pci_domain_nr(tmp
->subordinate
),
1615 tmp
->subordinate
->number
, 0,
1617 else /* this is a legacy PCI bridge */
1618 return domain_context_mapping_one(domain
,
1619 pci_domain_nr(tmp
->bus
),
1625 static int domain_context_mapped(struct pci_dev
*pdev
)
1628 struct pci_dev
*tmp
, *parent
;
1629 struct intel_iommu
*iommu
;
1631 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
1636 ret
= device_context_mapped(iommu
, pdev
->bus
->number
, pdev
->devfn
);
1639 /* dependent device mapping */
1640 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1643 /* Secondary interface's bus number and devfn 0 */
1644 parent
= pdev
->bus
->self
;
1645 while (parent
!= tmp
) {
1646 ret
= device_context_mapped(iommu
, parent
->bus
->number
,
1650 parent
= parent
->bus
->self
;
1653 return device_context_mapped(iommu
, tmp
->subordinate
->number
,
1656 return device_context_mapped(iommu
, tmp
->bus
->number
,
1660 /* Returns a number of VTD pages, but aligned to MM page size */
1661 static inline unsigned long aligned_nrpages(unsigned long host_addr
,
1664 host_addr
&= ~PAGE_MASK
;
1665 return PAGE_ALIGN(host_addr
+ size
) >> VTD_PAGE_SHIFT
;
1668 static int __domain_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1669 struct scatterlist
*sg
, unsigned long phys_pfn
,
1670 unsigned long nr_pages
, int prot
)
1672 struct dma_pte
*first_pte
= NULL
, *pte
= NULL
;
1673 phys_addr_t
uninitialized_var(pteval
);
1674 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
1675 unsigned long sg_res
;
1677 BUG_ON(addr_width
< BITS_PER_LONG
&& (iov_pfn
+ nr_pages
- 1) >> addr_width
);
1679 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
1682 prot
&= DMA_PTE_READ
| DMA_PTE_WRITE
| DMA_PTE_SNP
;
1687 sg_res
= nr_pages
+ 1;
1688 pteval
= ((phys_addr_t
)phys_pfn
<< VTD_PAGE_SHIFT
) | prot
;
1691 while (nr_pages
--) {
1695 sg_res
= aligned_nrpages(sg
->offset
, sg
->length
);
1696 sg
->dma_address
= ((dma_addr_t
)iov_pfn
<< VTD_PAGE_SHIFT
) + sg
->offset
;
1697 sg
->dma_length
= sg
->length
;
1698 pteval
= page_to_phys(sg_page(sg
)) | prot
;
1701 first_pte
= pte
= pfn_to_dma_pte(domain
, iov_pfn
);
1705 /* We don't need lock here, nobody else
1706 * touches the iova range
1708 tmp
= cmpxchg64_local(&pte
->val
, 0ULL, pteval
);
1710 static int dumps
= 5;
1711 printk(KERN_CRIT
"ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1712 iov_pfn
, tmp
, (unsigned long long)pteval
);
1715 debug_dma_dump_mappings(NULL
);
1720 if (!nr_pages
|| first_pte_in_page(pte
)) {
1721 domain_flush_cache(domain
, first_pte
,
1722 (void *)pte
- (void *)first_pte
);
1726 pteval
+= VTD_PAGE_SIZE
;
1734 static inline int domain_sg_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1735 struct scatterlist
*sg
, unsigned long nr_pages
,
1738 return __domain_mapping(domain
, iov_pfn
, sg
, 0, nr_pages
, prot
);
1741 static inline int domain_pfn_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1742 unsigned long phys_pfn
, unsigned long nr_pages
,
1745 return __domain_mapping(domain
, iov_pfn
, NULL
, phys_pfn
, nr_pages
, prot
);
1748 static void iommu_detach_dev(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
1753 clear_context_table(iommu
, bus
, devfn
);
1754 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
1755 DMA_CCMD_GLOBAL_INVL
);
1756 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
1759 static void domain_remove_dev_info(struct dmar_domain
*domain
)
1761 struct device_domain_info
*info
;
1762 unsigned long flags
;
1763 struct intel_iommu
*iommu
;
1765 spin_lock_irqsave(&device_domain_lock
, flags
);
1766 while (!list_empty(&domain
->devices
)) {
1767 info
= list_entry(domain
->devices
.next
,
1768 struct device_domain_info
, link
);
1769 list_del(&info
->link
);
1770 list_del(&info
->global
);
1772 info
->dev
->dev
.archdata
.iommu
= NULL
;
1773 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1775 iommu_disable_dev_iotlb(info
);
1776 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
1777 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
1778 free_devinfo_mem(info
);
1780 spin_lock_irqsave(&device_domain_lock
, flags
);
1782 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1787 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1789 static struct dmar_domain
*
1790 find_domain(struct pci_dev
*pdev
)
1792 struct device_domain_info
*info
;
1794 /* No lock here, assumes no domain exit in normal case */
1795 info
= pdev
->dev
.archdata
.iommu
;
1797 return info
->domain
;
1801 /* domain is initialized */
1802 static struct dmar_domain
*get_domain_for_dev(struct pci_dev
*pdev
, int gaw
)
1804 struct dmar_domain
*domain
, *found
= NULL
;
1805 struct intel_iommu
*iommu
;
1806 struct dmar_drhd_unit
*drhd
;
1807 struct device_domain_info
*info
, *tmp
;
1808 struct pci_dev
*dev_tmp
;
1809 unsigned long flags
;
1810 int bus
= 0, devfn
= 0;
1814 domain
= find_domain(pdev
);
1818 segment
= pci_domain_nr(pdev
->bus
);
1820 dev_tmp
= pci_find_upstream_pcie_bridge(pdev
);
1822 if (dev_tmp
->is_pcie
) {
1823 bus
= dev_tmp
->subordinate
->number
;
1826 bus
= dev_tmp
->bus
->number
;
1827 devfn
= dev_tmp
->devfn
;
1829 spin_lock_irqsave(&device_domain_lock
, flags
);
1830 list_for_each_entry(info
, &device_domain_list
, global
) {
1831 if (info
->segment
== segment
&&
1832 info
->bus
== bus
&& info
->devfn
== devfn
) {
1833 found
= info
->domain
;
1837 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1838 /* pcie-pci bridge already has a domain, uses it */
1845 domain
= alloc_domain();
1849 /* Allocate new domain for the device */
1850 drhd
= dmar_find_matched_drhd_unit(pdev
);
1852 printk(KERN_ERR
"IOMMU: can't find DMAR for device %s\n",
1856 iommu
= drhd
->iommu
;
1858 ret
= iommu_attach_domain(domain
, iommu
);
1860 domain_exit(domain
);
1864 if (domain_init(domain
, gaw
)) {
1865 domain_exit(domain
);
1869 /* register pcie-to-pci device */
1871 info
= alloc_devinfo_mem();
1873 domain_exit(domain
);
1876 info
->segment
= segment
;
1878 info
->devfn
= devfn
;
1880 info
->domain
= domain
;
1881 /* This domain is shared by devices under p2p bridge */
1882 domain
->flags
|= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES
;
1884 /* pcie-to-pci bridge already has a domain, uses it */
1886 spin_lock_irqsave(&device_domain_lock
, flags
);
1887 list_for_each_entry(tmp
, &device_domain_list
, global
) {
1888 if (tmp
->segment
== segment
&&
1889 tmp
->bus
== bus
&& tmp
->devfn
== devfn
) {
1890 found
= tmp
->domain
;
1895 free_devinfo_mem(info
);
1896 domain_exit(domain
);
1899 list_add(&info
->link
, &domain
->devices
);
1900 list_add(&info
->global
, &device_domain_list
);
1902 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1906 info
= alloc_devinfo_mem();
1909 info
->segment
= segment
;
1910 info
->bus
= pdev
->bus
->number
;
1911 info
->devfn
= pdev
->devfn
;
1913 info
->domain
= domain
;
1914 spin_lock_irqsave(&device_domain_lock
, flags
);
1915 /* somebody is fast */
1916 found
= find_domain(pdev
);
1917 if (found
!= NULL
) {
1918 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1919 if (found
!= domain
) {
1920 domain_exit(domain
);
1923 free_devinfo_mem(info
);
1926 list_add(&info
->link
, &domain
->devices
);
1927 list_add(&info
->global
, &device_domain_list
);
1928 pdev
->dev
.archdata
.iommu
= info
;
1929 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1932 /* recheck it here, maybe others set it */
1933 return find_domain(pdev
);
1936 static int iommu_identity_mapping
;
1938 static int iommu_domain_identity_map(struct dmar_domain
*domain
,
1939 unsigned long long start
,
1940 unsigned long long end
)
1942 unsigned long first_vpfn
= start
>> VTD_PAGE_SHIFT
;
1943 unsigned long last_vpfn
= end
>> VTD_PAGE_SHIFT
;
1945 if (!reserve_iova(&domain
->iovad
, dma_to_mm_pfn(first_vpfn
),
1946 dma_to_mm_pfn(last_vpfn
))) {
1947 printk(KERN_ERR
"IOMMU: reserve iova failed\n");
1951 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1952 start
, end
, domain
->id
);
1954 * RMRR range might have overlap with physical memory range,
1957 dma_pte_clear_range(domain
, first_vpfn
, last_vpfn
);
1959 return domain_pfn_mapping(domain
, first_vpfn
, first_vpfn
,
1960 last_vpfn
- first_vpfn
+ 1,
1961 DMA_PTE_READ
|DMA_PTE_WRITE
);
1964 static int iommu_prepare_identity_map(struct pci_dev
*pdev
,
1965 unsigned long long start
,
1966 unsigned long long end
)
1968 struct dmar_domain
*domain
;
1971 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
1975 /* For _hardware_ passthrough, don't bother. But for software
1976 passthrough, we do it anyway -- it may indicate a memory
1977 range which is reserved in E820, so which didn't get set
1978 up to start with in si_domain */
1979 if (domain
== si_domain
&& hw_pass_through
) {
1980 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1981 pci_name(pdev
), start
, end
);
1986 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1987 pci_name(pdev
), start
, end
);
1989 if (end
>> agaw_to_width(domain
->agaw
)) {
1990 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1991 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1992 agaw_to_width(domain
->agaw
),
1993 dmi_get_system_info(DMI_BIOS_VENDOR
),
1994 dmi_get_system_info(DMI_BIOS_VERSION
),
1995 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2000 ret
= iommu_domain_identity_map(domain
, start
, end
);
2004 /* context entry init */
2005 ret
= domain_context_mapping(domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
2012 domain_exit(domain
);
2016 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
2017 struct pci_dev
*pdev
)
2019 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2021 return iommu_prepare_identity_map(pdev
, rmrr
->base_address
,
2022 rmrr
->end_address
+ 1);
2025 #ifdef CONFIG_DMAR_FLOPPY_WA
2026 static inline void iommu_prepare_isa(void)
2028 struct pci_dev
*pdev
;
2031 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
2035 printk(KERN_INFO
"IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2036 ret
= iommu_prepare_identity_map(pdev
, 0, 16*1024*1024);
2039 printk(KERN_ERR
"IOMMU: Failed to create 0-16MiB identity map; "
2040 "floppy might not work\n");
2044 static inline void iommu_prepare_isa(void)
2048 #endif /* !CONFIG_DMAR_FLPY_WA */
2050 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
);
2052 static int __init
si_domain_work_fn(unsigned long start_pfn
,
2053 unsigned long end_pfn
, void *datax
)
2057 *ret
= iommu_domain_identity_map(si_domain
,
2058 (uint64_t)start_pfn
<< PAGE_SHIFT
,
2059 (uint64_t)end_pfn
<< PAGE_SHIFT
);
2064 static int __init
si_domain_init(int hw
)
2066 struct dmar_drhd_unit
*drhd
;
2067 struct intel_iommu
*iommu
;
2070 si_domain
= alloc_domain();
2074 pr_debug("Identity mapping domain is domain %d\n", si_domain
->id
);
2076 for_each_active_iommu(iommu
, drhd
) {
2077 ret
= iommu_attach_domain(si_domain
, iommu
);
2079 domain_exit(si_domain
);
2084 if (md_domain_init(si_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
2085 domain_exit(si_domain
);
2089 si_domain
->flags
= DOMAIN_FLAG_STATIC_IDENTITY
;
2094 for_each_online_node(nid
) {
2095 work_with_active_regions(nid
, si_domain_work_fn
, &ret
);
2103 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
2104 struct pci_dev
*pdev
);
2105 static int identity_mapping(struct pci_dev
*pdev
)
2107 struct device_domain_info
*info
;
2109 if (likely(!iommu_identity_mapping
))
2113 list_for_each_entry(info
, &si_domain
->devices
, link
)
2114 if (info
->dev
== pdev
)
2119 static int domain_add_dev_info(struct dmar_domain
*domain
,
2120 struct pci_dev
*pdev
,
2123 struct device_domain_info
*info
;
2124 unsigned long flags
;
2127 info
= alloc_devinfo_mem();
2131 ret
= domain_context_mapping(domain
, pdev
, translation
);
2133 free_devinfo_mem(info
);
2137 info
->segment
= pci_domain_nr(pdev
->bus
);
2138 info
->bus
= pdev
->bus
->number
;
2139 info
->devfn
= pdev
->devfn
;
2141 info
->domain
= domain
;
2143 spin_lock_irqsave(&device_domain_lock
, flags
);
2144 list_add(&info
->link
, &domain
->devices
);
2145 list_add(&info
->global
, &device_domain_list
);
2146 pdev
->dev
.archdata
.iommu
= info
;
2147 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2152 static int iommu_should_identity_map(struct pci_dev
*pdev
, int startup
)
2154 if (iommu_identity_mapping
== 2)
2155 return IS_GFX_DEVICE(pdev
);
2158 * We want to start off with all devices in the 1:1 domain, and
2159 * take them out later if we find they can't access all of memory.
2161 * However, we can't do this for PCI devices behind bridges,
2162 * because all PCI devices behind the same bridge will end up
2163 * with the same source-id on their transactions.
2165 * Practically speaking, we can't change things around for these
2166 * devices at run-time, because we can't be sure there'll be no
2167 * DMA transactions in flight for any of their siblings.
2169 * So PCI devices (unless they're on the root bus) as well as
2170 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2171 * the 1:1 domain, just in _case_ one of their siblings turns out
2172 * not to be able to map all of memory.
2174 if (!pdev
->is_pcie
) {
2175 if (!pci_is_root_bus(pdev
->bus
))
2177 if (pdev
->class >> 8 == PCI_CLASS_BRIDGE_PCI
)
2179 } else if (pdev
->pcie_type
== PCI_EXP_TYPE_PCI_BRIDGE
)
2183 * At boot time, we don't yet know if devices will be 64-bit capable.
2184 * Assume that they will -- if they turn out not to be, then we can
2185 * take them out of the 1:1 domain later.
2188 return pdev
->dma_mask
> DMA_BIT_MASK(32);
2193 static int __init
iommu_prepare_static_identity_mapping(int hw
)
2195 struct pci_dev
*pdev
= NULL
;
2198 ret
= si_domain_init(hw
);
2202 for_each_pci_dev(pdev
) {
2203 if (iommu_should_identity_map(pdev
, 1)) {
2204 printk(KERN_INFO
"IOMMU: %s identity mapping for device %s\n",
2205 hw
? "hardware" : "software", pci_name(pdev
));
2207 ret
= domain_add_dev_info(si_domain
, pdev
,
2208 hw
? CONTEXT_TT_PASS_THROUGH
:
2209 CONTEXT_TT_MULTI_LEVEL
);
2218 int __init
init_dmars(void)
2220 struct dmar_drhd_unit
*drhd
;
2221 struct dmar_rmrr_unit
*rmrr
;
2222 struct pci_dev
*pdev
;
2223 struct intel_iommu
*iommu
;
2229 * initialize and program root entry to not present
2232 for_each_drhd_unit(drhd
) {
2235 * lock not needed as this is only incremented in the single
2236 * threaded kernel __init code path all other access are read
2241 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
2244 printk(KERN_ERR
"Allocating global iommu array failed\n");
2249 deferred_flush
= kzalloc(g_num_of_iommus
*
2250 sizeof(struct deferred_flush_tables
), GFP_KERNEL
);
2251 if (!deferred_flush
) {
2256 for_each_drhd_unit(drhd
) {
2260 iommu
= drhd
->iommu
;
2261 g_iommus
[iommu
->seq_id
] = iommu
;
2263 ret
= iommu_init_domains(iommu
);
2269 * we could share the same root & context tables
2270 * amoung all IOMMU's. Need to Split it later.
2272 ret
= iommu_alloc_root_entry(iommu
);
2274 printk(KERN_ERR
"IOMMU: allocate root entry failed\n");
2277 if (!ecap_pass_through(iommu
->ecap
))
2278 hw_pass_through
= 0;
2282 * Start from the sane iommu hardware state.
2284 for_each_drhd_unit(drhd
) {
2288 iommu
= drhd
->iommu
;
2291 * If the queued invalidation is already initialized by us
2292 * (for example, while enabling interrupt-remapping) then
2293 * we got the things already rolling from a sane state.
2299 * Clear any previous faults.
2301 dmar_fault(-1, iommu
);
2303 * Disable queued invalidation if supported and already enabled
2304 * before OS handover.
2306 dmar_disable_qi(iommu
);
2309 for_each_drhd_unit(drhd
) {
2313 iommu
= drhd
->iommu
;
2315 if (dmar_enable_qi(iommu
)) {
2317 * Queued Invalidate not enabled, use Register Based
2320 iommu
->flush
.flush_context
= __iommu_flush_context
;
2321 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
2322 printk(KERN_INFO
"IOMMU 0x%Lx: using Register based "
2324 (unsigned long long)drhd
->reg_base_addr
);
2326 iommu
->flush
.flush_context
= qi_flush_context
;
2327 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
2328 printk(KERN_INFO
"IOMMU 0x%Lx: using Queued "
2330 (unsigned long long)drhd
->reg_base_addr
);
2334 if (iommu_pass_through
)
2335 iommu_identity_mapping
= 1;
2336 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2338 iommu_identity_mapping
= 2;
2341 * If pass through is not set or not enabled, setup context entries for
2342 * identity mappings for rmrr, gfx, and isa and may fall back to static
2343 * identity mapping if iommu_identity_mapping is set.
2345 if (iommu_identity_mapping
) {
2346 ret
= iommu_prepare_static_identity_mapping(hw_pass_through
);
2348 printk(KERN_CRIT
"Failed to setup IOMMU pass-through\n");
2354 * for each dev attached to rmrr
2356 * locate drhd for dev, alloc domain for dev
2357 * allocate free domain
2358 * allocate page table entries for rmrr
2359 * if context not allocated for bus
2360 * allocate and init context
2361 * set present in root table for this bus
2362 * init context with domain, translation etc
2366 printk(KERN_INFO
"IOMMU: Setting RMRR:\n");
2367 for_each_rmrr_units(rmrr
) {
2368 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2369 pdev
= rmrr
->devices
[i
];
2371 * some BIOS lists non-exist devices in DMAR
2376 ret
= iommu_prepare_rmrr_dev(rmrr
, pdev
);
2379 "IOMMU: mapping reserved region failed\n");
2383 iommu_prepare_isa();
2388 * global invalidate context cache
2389 * global invalidate iotlb
2390 * enable translation
2392 for_each_drhd_unit(drhd
) {
2395 iommu
= drhd
->iommu
;
2397 iommu_flush_write_buffer(iommu
);
2399 ret
= dmar_set_interrupt(iommu
);
2403 iommu_set_root_entry(iommu
);
2405 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
2406 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
2408 ret
= iommu_enable_translation(iommu
);
2412 iommu_disable_protect_mem_regions(iommu
);
2417 for_each_drhd_unit(drhd
) {
2420 iommu
= drhd
->iommu
;
2427 /* This takes a number of _MM_ pages, not VTD pages */
2428 static struct iova
*intel_alloc_iova(struct device
*dev
,
2429 struct dmar_domain
*domain
,
2430 unsigned long nrpages
, uint64_t dma_mask
)
2432 struct pci_dev
*pdev
= to_pci_dev(dev
);
2433 struct iova
*iova
= NULL
;
2435 /* Restrict dma_mask to the width that the iommu can handle */
2436 dma_mask
= min_t(uint64_t, DOMAIN_MAX_ADDR(domain
->gaw
), dma_mask
);
2438 if (!dmar_forcedac
&& dma_mask
> DMA_BIT_MASK(32)) {
2440 * First try to allocate an io virtual address in
2441 * DMA_BIT_MASK(32) and if that fails then try allocating
2444 iova
= alloc_iova(&domain
->iovad
, nrpages
,
2445 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2449 iova
= alloc_iova(&domain
->iovad
, nrpages
, IOVA_PFN(dma_mask
), 1);
2450 if (unlikely(!iova
)) {
2451 printk(KERN_ERR
"Allocating %ld-page iova for %s failed",
2452 nrpages
, pci_name(pdev
));
2459 static struct dmar_domain
*__get_valid_domain_for_dev(struct pci_dev
*pdev
)
2461 struct dmar_domain
*domain
;
2464 domain
= get_domain_for_dev(pdev
,
2465 DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2468 "Allocating domain for %s failed", pci_name(pdev
));
2472 /* make sure context mapping is ok */
2473 if (unlikely(!domain_context_mapped(pdev
))) {
2474 ret
= domain_context_mapping(domain
, pdev
,
2475 CONTEXT_TT_MULTI_LEVEL
);
2478 "Domain context map for %s failed",
2487 static inline struct dmar_domain
*get_valid_domain_for_dev(struct pci_dev
*dev
)
2489 struct device_domain_info
*info
;
2491 /* No lock here, assumes no domain exit in normal case */
2492 info
= dev
->dev
.archdata
.iommu
;
2494 return info
->domain
;
2496 return __get_valid_domain_for_dev(dev
);
2499 static int iommu_dummy(struct pci_dev
*pdev
)
2501 return pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
;
2504 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2505 static int iommu_no_mapping(struct device
*dev
)
2507 struct pci_dev
*pdev
;
2510 if (unlikely(dev
->bus
!= &pci_bus_type
))
2513 pdev
= to_pci_dev(dev
);
2514 if (iommu_dummy(pdev
))
2517 if (!iommu_identity_mapping
)
2520 found
= identity_mapping(pdev
);
2522 if (iommu_should_identity_map(pdev
, 0))
2526 * 32 bit DMA is removed from si_domain and fall back
2527 * to non-identity mapping.
2529 domain_remove_one_dev_info(si_domain
, pdev
);
2530 printk(KERN_INFO
"32bit %s uses non-identity mapping\n",
2536 * In case of a detached 64 bit DMA device from vm, the device
2537 * is put into si_domain for identity mapping.
2539 if (iommu_should_identity_map(pdev
, 0)) {
2541 ret
= domain_add_dev_info(si_domain
, pdev
,
2543 CONTEXT_TT_PASS_THROUGH
:
2544 CONTEXT_TT_MULTI_LEVEL
);
2546 printk(KERN_INFO
"64bit %s uses identity mapping\n",
2556 static dma_addr_t
__intel_map_single(struct device
*hwdev
, phys_addr_t paddr
,
2557 size_t size
, int dir
, u64 dma_mask
)
2559 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2560 struct dmar_domain
*domain
;
2561 phys_addr_t start_paddr
;
2565 struct intel_iommu
*iommu
;
2566 unsigned long paddr_pfn
= paddr
>> PAGE_SHIFT
;
2568 BUG_ON(dir
== DMA_NONE
);
2570 if (iommu_no_mapping(hwdev
))
2573 domain
= get_valid_domain_for_dev(pdev
);
2577 iommu
= domain_get_iommu(domain
);
2578 size
= aligned_nrpages(paddr
, size
);
2580 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
2586 * Check if DMAR supports zero-length reads on write only
2589 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2590 !cap_zlr(iommu
->cap
))
2591 prot
|= DMA_PTE_READ
;
2592 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2593 prot
|= DMA_PTE_WRITE
;
2595 * paddr - (paddr + size) might be partial page, we should map the whole
2596 * page. Note: if two part of one page are separately mapped, we
2597 * might have two guest_addr mapping to the same host paddr, but this
2598 * is not a big problem
2600 ret
= domain_pfn_mapping(domain
, mm_to_dma_pfn(iova
->pfn_lo
),
2601 mm_to_dma_pfn(paddr_pfn
), size
, prot
);
2605 /* it's a non-present to present mapping. Only flush if caching mode */
2606 if (cap_caching_mode(iommu
->cap
))
2607 iommu_flush_iotlb_psi(iommu
, 0, mm_to_dma_pfn(iova
->pfn_lo
), size
);
2609 iommu_flush_write_buffer(iommu
);
2611 start_paddr
= (phys_addr_t
)iova
->pfn_lo
<< PAGE_SHIFT
;
2612 start_paddr
+= paddr
& ~PAGE_MASK
;
2617 __free_iova(&domain
->iovad
, iova
);
2618 printk(KERN_ERR
"Device %s request: %zx@%llx dir %d --- failed\n",
2619 pci_name(pdev
), size
, (unsigned long long)paddr
, dir
);
2623 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
2624 unsigned long offset
, size_t size
,
2625 enum dma_data_direction dir
,
2626 struct dma_attrs
*attrs
)
2628 return __intel_map_single(dev
, page_to_phys(page
) + offset
, size
,
2629 dir
, to_pci_dev(dev
)->dma_mask
);
2632 static void flush_unmaps(void)
2638 /* just flush them all */
2639 for (i
= 0; i
< g_num_of_iommus
; i
++) {
2640 struct intel_iommu
*iommu
= g_iommus
[i
];
2644 if (!deferred_flush
[i
].next
)
2647 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2648 DMA_TLB_GLOBAL_FLUSH
);
2649 for (j
= 0; j
< deferred_flush
[i
].next
; j
++) {
2651 struct iova
*iova
= deferred_flush
[i
].iova
[j
];
2653 mask
= ilog2(mm_to_dma_pfn(iova
->pfn_hi
- iova
->pfn_lo
+ 1));
2654 iommu_flush_dev_iotlb(deferred_flush
[i
].domain
[j
],
2655 (uint64_t)iova
->pfn_lo
<< PAGE_SHIFT
, mask
);
2656 __free_iova(&deferred_flush
[i
].domain
[j
]->iovad
, iova
);
2658 deferred_flush
[i
].next
= 0;
2664 static void flush_unmaps_timeout(unsigned long data
)
2666 unsigned long flags
;
2668 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2670 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2673 static void add_unmap(struct dmar_domain
*dom
, struct iova
*iova
)
2675 unsigned long flags
;
2677 struct intel_iommu
*iommu
;
2679 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2680 if (list_size
== HIGH_WATER_MARK
)
2683 iommu
= domain_get_iommu(dom
);
2684 iommu_id
= iommu
->seq_id
;
2686 next
= deferred_flush
[iommu_id
].next
;
2687 deferred_flush
[iommu_id
].domain
[next
] = dom
;
2688 deferred_flush
[iommu_id
].iova
[next
] = iova
;
2689 deferred_flush
[iommu_id
].next
++;
2692 mod_timer(&unmap_timer
, jiffies
+ msecs_to_jiffies(10));
2696 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2699 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
2700 size_t size
, enum dma_data_direction dir
,
2701 struct dma_attrs
*attrs
)
2703 struct pci_dev
*pdev
= to_pci_dev(dev
);
2704 struct dmar_domain
*domain
;
2705 unsigned long start_pfn
, last_pfn
;
2707 struct intel_iommu
*iommu
;
2709 if (iommu_no_mapping(dev
))
2712 domain
= find_domain(pdev
);
2715 iommu
= domain_get_iommu(domain
);
2717 iova
= find_iova(&domain
->iovad
, IOVA_PFN(dev_addr
));
2718 if (WARN_ONCE(!iova
, "Driver unmaps unmatched page at PFN %llx\n",
2719 (unsigned long long)dev_addr
))
2722 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2723 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2725 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2726 pci_name(pdev
), start_pfn
, last_pfn
);
2728 /* clear the whole page */
2729 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2731 /* free page tables */
2732 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2734 if (intel_iommu_strict
) {
2735 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2736 last_pfn
- start_pfn
+ 1);
2738 __free_iova(&domain
->iovad
, iova
);
2740 add_unmap(domain
, iova
);
2742 * queue up the release of the unmap to save the 1/6th of the
2743 * cpu used up by the iotlb flush operation...
2748 static void *intel_alloc_coherent(struct device
*hwdev
, size_t size
,
2749 dma_addr_t
*dma_handle
, gfp_t flags
)
2754 size
= PAGE_ALIGN(size
);
2755 order
= get_order(size
);
2756 flags
&= ~(GFP_DMA
| GFP_DMA32
);
2758 vaddr
= (void *)__get_free_pages(flags
, order
);
2761 memset(vaddr
, 0, size
);
2763 *dma_handle
= __intel_map_single(hwdev
, virt_to_bus(vaddr
), size
,
2765 hwdev
->coherent_dma_mask
);
2768 free_pages((unsigned long)vaddr
, order
);
2772 static void intel_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
2773 dma_addr_t dma_handle
)
2777 size
= PAGE_ALIGN(size
);
2778 order
= get_order(size
);
2780 intel_unmap_page(hwdev
, dma_handle
, size
, DMA_BIDIRECTIONAL
, NULL
);
2781 free_pages((unsigned long)vaddr
, order
);
2784 static void intel_unmap_sg(struct device
*hwdev
, struct scatterlist
*sglist
,
2785 int nelems
, enum dma_data_direction dir
,
2786 struct dma_attrs
*attrs
)
2788 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2789 struct dmar_domain
*domain
;
2790 unsigned long start_pfn
, last_pfn
;
2792 struct intel_iommu
*iommu
;
2794 if (iommu_no_mapping(hwdev
))
2797 domain
= find_domain(pdev
);
2800 iommu
= domain_get_iommu(domain
);
2802 iova
= find_iova(&domain
->iovad
, IOVA_PFN(sglist
[0].dma_address
));
2803 if (WARN_ONCE(!iova
, "Driver unmaps unmatched sglist at PFN %llx\n",
2804 (unsigned long long)sglist
[0].dma_address
))
2807 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2808 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2810 /* clear the whole page */
2811 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2813 /* free page tables */
2814 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2816 if (intel_iommu_strict
) {
2817 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2818 last_pfn
- start_pfn
+ 1);
2820 __free_iova(&domain
->iovad
, iova
);
2822 add_unmap(domain
, iova
);
2824 * queue up the release of the unmap to save the 1/6th of the
2825 * cpu used up by the iotlb flush operation...
2830 static int intel_nontranslate_map_sg(struct device
*hddev
,
2831 struct scatterlist
*sglist
, int nelems
, int dir
)
2834 struct scatterlist
*sg
;
2836 for_each_sg(sglist
, sg
, nelems
, i
) {
2837 BUG_ON(!sg_page(sg
));
2838 sg
->dma_address
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2839 sg
->dma_length
= sg
->length
;
2844 static int intel_map_sg(struct device
*hwdev
, struct scatterlist
*sglist
, int nelems
,
2845 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2848 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2849 struct dmar_domain
*domain
;
2852 size_t offset_pfn
= 0;
2853 struct iova
*iova
= NULL
;
2855 struct scatterlist
*sg
;
2856 unsigned long start_vpfn
;
2857 struct intel_iommu
*iommu
;
2859 BUG_ON(dir
== DMA_NONE
);
2860 if (iommu_no_mapping(hwdev
))
2861 return intel_nontranslate_map_sg(hwdev
, sglist
, nelems
, dir
);
2863 domain
= get_valid_domain_for_dev(pdev
);
2867 iommu
= domain_get_iommu(domain
);
2869 for_each_sg(sglist
, sg
, nelems
, i
)
2870 size
+= aligned_nrpages(sg
->offset
, sg
->length
);
2872 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
2875 sglist
->dma_length
= 0;
2880 * Check if DMAR supports zero-length reads on write only
2883 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2884 !cap_zlr(iommu
->cap
))
2885 prot
|= DMA_PTE_READ
;
2886 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2887 prot
|= DMA_PTE_WRITE
;
2889 start_vpfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2891 ret
= domain_sg_mapping(domain
, start_vpfn
, sglist
, size
, prot
);
2892 if (unlikely(ret
)) {
2893 /* clear the page */
2894 dma_pte_clear_range(domain
, start_vpfn
,
2895 start_vpfn
+ size
- 1);
2896 /* free page tables */
2897 dma_pte_free_pagetable(domain
, start_vpfn
,
2898 start_vpfn
+ size
- 1);
2900 __free_iova(&domain
->iovad
, iova
);
2904 /* it's a non-present to present mapping. Only flush if caching mode */
2905 if (cap_caching_mode(iommu
->cap
))
2906 iommu_flush_iotlb_psi(iommu
, 0, start_vpfn
, offset_pfn
);
2908 iommu_flush_write_buffer(iommu
);
2913 static int intel_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2918 struct dma_map_ops intel_dma_ops
= {
2919 .alloc_coherent
= intel_alloc_coherent
,
2920 .free_coherent
= intel_free_coherent
,
2921 .map_sg
= intel_map_sg
,
2922 .unmap_sg
= intel_unmap_sg
,
2923 .map_page
= intel_map_page
,
2924 .unmap_page
= intel_unmap_page
,
2925 .mapping_error
= intel_mapping_error
,
2928 static inline int iommu_domain_cache_init(void)
2932 iommu_domain_cache
= kmem_cache_create("iommu_domain",
2933 sizeof(struct dmar_domain
),
2938 if (!iommu_domain_cache
) {
2939 printk(KERN_ERR
"Couldn't create iommu_domain cache\n");
2946 static inline int iommu_devinfo_cache_init(void)
2950 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
2951 sizeof(struct device_domain_info
),
2955 if (!iommu_devinfo_cache
) {
2956 printk(KERN_ERR
"Couldn't create devinfo cache\n");
2963 static inline int iommu_iova_cache_init(void)
2967 iommu_iova_cache
= kmem_cache_create("iommu_iova",
2968 sizeof(struct iova
),
2972 if (!iommu_iova_cache
) {
2973 printk(KERN_ERR
"Couldn't create iova cache\n");
2980 static int __init
iommu_init_mempool(void)
2983 ret
= iommu_iova_cache_init();
2987 ret
= iommu_domain_cache_init();
2991 ret
= iommu_devinfo_cache_init();
2995 kmem_cache_destroy(iommu_domain_cache
);
2997 kmem_cache_destroy(iommu_iova_cache
);
3002 static void __init
iommu_exit_mempool(void)
3004 kmem_cache_destroy(iommu_devinfo_cache
);
3005 kmem_cache_destroy(iommu_domain_cache
);
3006 kmem_cache_destroy(iommu_iova_cache
);
3010 static void __init
init_no_remapping_devices(void)
3012 struct dmar_drhd_unit
*drhd
;
3014 for_each_drhd_unit(drhd
) {
3015 if (!drhd
->include_all
) {
3017 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3018 if (drhd
->devices
[i
] != NULL
)
3020 /* ignore DMAR unit if no pci devices exist */
3021 if (i
== drhd
->devices_cnt
)
3029 for_each_drhd_unit(drhd
) {
3031 if (drhd
->ignored
|| drhd
->include_all
)
3034 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3035 if (drhd
->devices
[i
] &&
3036 !IS_GFX_DEVICE(drhd
->devices
[i
]))
3039 if (i
< drhd
->devices_cnt
)
3042 /* bypass IOMMU if it is just for gfx devices */
3044 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
3045 if (!drhd
->devices
[i
])
3047 drhd
->devices
[i
]->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3052 #ifdef CONFIG_SUSPEND
3053 static int init_iommu_hw(void)
3055 struct dmar_drhd_unit
*drhd
;
3056 struct intel_iommu
*iommu
= NULL
;
3058 for_each_active_iommu(iommu
, drhd
)
3060 dmar_reenable_qi(iommu
);
3062 for_each_active_iommu(iommu
, drhd
) {
3063 iommu_flush_write_buffer(iommu
);
3065 iommu_set_root_entry(iommu
);
3067 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3068 DMA_CCMD_GLOBAL_INVL
);
3069 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3070 DMA_TLB_GLOBAL_FLUSH
);
3071 iommu_enable_translation(iommu
);
3072 iommu_disable_protect_mem_regions(iommu
);
3078 static void iommu_flush_all(void)
3080 struct dmar_drhd_unit
*drhd
;
3081 struct intel_iommu
*iommu
;
3083 for_each_active_iommu(iommu
, drhd
) {
3084 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3085 DMA_CCMD_GLOBAL_INVL
);
3086 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3087 DMA_TLB_GLOBAL_FLUSH
);
3091 static int iommu_suspend(struct sys_device
*dev
, pm_message_t state
)
3093 struct dmar_drhd_unit
*drhd
;
3094 struct intel_iommu
*iommu
= NULL
;
3097 for_each_active_iommu(iommu
, drhd
) {
3098 iommu
->iommu_state
= kzalloc(sizeof(u32
) * MAX_SR_DMAR_REGS
,
3100 if (!iommu
->iommu_state
)
3106 for_each_active_iommu(iommu
, drhd
) {
3107 iommu_disable_translation(iommu
);
3109 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3111 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
3112 readl(iommu
->reg
+ DMAR_FECTL_REG
);
3113 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
3114 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
3115 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
3116 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
3117 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
3118 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
3120 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3125 for_each_active_iommu(iommu
, drhd
)
3126 kfree(iommu
->iommu_state
);
3131 static int iommu_resume(struct sys_device
*dev
)
3133 struct dmar_drhd_unit
*drhd
;
3134 struct intel_iommu
*iommu
= NULL
;
3137 if (init_iommu_hw()) {
3138 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3142 for_each_active_iommu(iommu
, drhd
) {
3144 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3146 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
3147 iommu
->reg
+ DMAR_FECTL_REG
);
3148 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
3149 iommu
->reg
+ DMAR_FEDATA_REG
);
3150 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
3151 iommu
->reg
+ DMAR_FEADDR_REG
);
3152 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
3153 iommu
->reg
+ DMAR_FEUADDR_REG
);
3155 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3158 for_each_active_iommu(iommu
, drhd
)
3159 kfree(iommu
->iommu_state
);
3164 static struct sysdev_class iommu_sysclass
= {
3166 .resume
= iommu_resume
,
3167 .suspend
= iommu_suspend
,
3170 static struct sys_device device_iommu
= {
3171 .cls
= &iommu_sysclass
,
3174 static int __init
init_iommu_sysfs(void)
3178 error
= sysdev_class_register(&iommu_sysclass
);
3182 error
= sysdev_register(&device_iommu
);
3184 sysdev_class_unregister(&iommu_sysclass
);
3190 static int __init
init_iommu_sysfs(void)
3194 #endif /* CONFIG_PM */
3196 int __init
intel_iommu_init(void)
3201 /* VT-d is required for a TXT/tboot launch, so enforce that */
3202 force_on
= tboot_force_iommu();
3204 if (dmar_table_init()) {
3206 panic("tboot: Failed to initialize DMAR table\n");
3210 if (dmar_dev_scope_init()) {
3212 panic("tboot: Failed to initialize DMAR device scope\n");
3217 * Check the need for DMA-remapping initialization now.
3218 * Above initialization will also be used by Interrupt-remapping.
3220 if (no_iommu
|| swiotlb
|| dmar_disabled
)
3223 iommu_init_mempool();
3224 dmar_init_reserved_ranges();
3226 init_no_remapping_devices();
3231 panic("tboot: Failed to initialize DMARs\n");
3232 printk(KERN_ERR
"IOMMU: dmar init failed\n");
3233 put_iova_domain(&reserved_iova_list
);
3234 iommu_exit_mempool();
3238 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3240 init_timer(&unmap_timer
);
3242 dma_ops
= &intel_dma_ops
;
3246 register_iommu(&intel_iommu_ops
);
3251 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
3252 struct pci_dev
*pdev
)
3254 struct pci_dev
*tmp
, *parent
;
3256 if (!iommu
|| !pdev
)
3259 /* dependent device detach */
3260 tmp
= pci_find_upstream_pcie_bridge(pdev
);
3261 /* Secondary interface's bus number and devfn 0 */
3263 parent
= pdev
->bus
->self
;
3264 while (parent
!= tmp
) {
3265 iommu_detach_dev(iommu
, parent
->bus
->number
,
3267 parent
= parent
->bus
->self
;
3269 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
3270 iommu_detach_dev(iommu
,
3271 tmp
->subordinate
->number
, 0);
3272 else /* this is a legacy PCI bridge */
3273 iommu_detach_dev(iommu
, tmp
->bus
->number
,
3278 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
3279 struct pci_dev
*pdev
)
3281 struct device_domain_info
*info
;
3282 struct intel_iommu
*iommu
;
3283 unsigned long flags
;
3285 struct list_head
*entry
, *tmp
;
3287 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3292 spin_lock_irqsave(&device_domain_lock
, flags
);
3293 list_for_each_safe(entry
, tmp
, &domain
->devices
) {
3294 info
= list_entry(entry
, struct device_domain_info
, link
);
3295 /* No need to compare PCI domain; it has to be the same */
3296 if (info
->bus
== pdev
->bus
->number
&&
3297 info
->devfn
== pdev
->devfn
) {
3298 list_del(&info
->link
);
3299 list_del(&info
->global
);
3301 info
->dev
->dev
.archdata
.iommu
= NULL
;
3302 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3304 iommu_disable_dev_iotlb(info
);
3305 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3306 iommu_detach_dependent_devices(iommu
, pdev
);
3307 free_devinfo_mem(info
);
3309 spin_lock_irqsave(&device_domain_lock
, flags
);
3317 /* if there is no other devices under the same iommu
3318 * owned by this domain, clear this iommu in iommu_bmp
3319 * update iommu count and coherency
3321 if (iommu
== device_to_iommu(info
->segment
, info
->bus
,
3327 unsigned long tmp_flags
;
3328 spin_lock_irqsave(&domain
->iommu_lock
, tmp_flags
);
3329 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
3330 domain
->iommu_count
--;
3331 domain_update_iommu_cap(domain
);
3332 spin_unlock_irqrestore(&domain
->iommu_lock
, tmp_flags
);
3335 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3338 static void vm_domain_remove_all_dev_info(struct dmar_domain
*domain
)
3340 struct device_domain_info
*info
;
3341 struct intel_iommu
*iommu
;
3342 unsigned long flags1
, flags2
;
3344 spin_lock_irqsave(&device_domain_lock
, flags1
);
3345 while (!list_empty(&domain
->devices
)) {
3346 info
= list_entry(domain
->devices
.next
,
3347 struct device_domain_info
, link
);
3348 list_del(&info
->link
);
3349 list_del(&info
->global
);
3351 info
->dev
->dev
.archdata
.iommu
= NULL
;
3353 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3355 iommu_disable_dev_iotlb(info
);
3356 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
3357 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3358 iommu_detach_dependent_devices(iommu
, info
->dev
);
3360 /* clear this iommu in iommu_bmp, update iommu count
3363 spin_lock_irqsave(&domain
->iommu_lock
, flags2
);
3364 if (test_and_clear_bit(iommu
->seq_id
,
3365 &domain
->iommu_bmp
)) {
3366 domain
->iommu_count
--;
3367 domain_update_iommu_cap(domain
);
3369 spin_unlock_irqrestore(&domain
->iommu_lock
, flags2
);
3371 free_devinfo_mem(info
);
3372 spin_lock_irqsave(&device_domain_lock
, flags1
);
3374 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3377 /* domain id for virtual machine, it won't be set in context */
3378 static unsigned long vm_domid
;
3380 static int vm_domain_min_agaw(struct dmar_domain
*domain
)
3383 int min_agaw
= domain
->agaw
;
3385 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
3386 for (; i
< g_num_of_iommus
; ) {
3387 if (min_agaw
> g_iommus
[i
]->agaw
)
3388 min_agaw
= g_iommus
[i
]->agaw
;
3390 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
3396 static struct dmar_domain
*iommu_alloc_vm_domain(void)
3398 struct dmar_domain
*domain
;
3400 domain
= alloc_domain_mem();
3404 domain
->id
= vm_domid
++;
3405 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
3406 domain
->flags
= DOMAIN_FLAG_VIRTUAL_MACHINE
;
3411 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
)
3415 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
3416 spin_lock_init(&domain
->iommu_lock
);
3418 domain_reserve_special_ranges(domain
);
3420 /* calculate AGAW */
3421 domain
->gaw
= guest_width
;
3422 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
3423 domain
->agaw
= width_to_agaw(adjust_width
);
3425 INIT_LIST_HEAD(&domain
->devices
);
3427 domain
->iommu_count
= 0;
3428 domain
->iommu_coherency
= 0;
3429 domain
->iommu_snooping
= 0;
3430 domain
->max_addr
= 0;
3432 /* always allocate the top pgd */
3433 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
3436 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
3440 static void iommu_free_vm_domain(struct dmar_domain
*domain
)
3442 unsigned long flags
;
3443 struct dmar_drhd_unit
*drhd
;
3444 struct intel_iommu
*iommu
;
3446 unsigned long ndomains
;
3448 for_each_drhd_unit(drhd
) {
3451 iommu
= drhd
->iommu
;
3453 ndomains
= cap_ndoms(iommu
->cap
);
3454 i
= find_first_bit(iommu
->domain_ids
, ndomains
);
3455 for (; i
< ndomains
; ) {
3456 if (iommu
->domains
[i
] == domain
) {
3457 spin_lock_irqsave(&iommu
->lock
, flags
);
3458 clear_bit(i
, iommu
->domain_ids
);
3459 iommu
->domains
[i
] = NULL
;
3460 spin_unlock_irqrestore(&iommu
->lock
, flags
);
3463 i
= find_next_bit(iommu
->domain_ids
, ndomains
, i
+1);
3468 static void vm_domain_exit(struct dmar_domain
*domain
)
3470 /* Domain 0 is reserved, so dont process it */
3474 vm_domain_remove_all_dev_info(domain
);
3476 put_iova_domain(&domain
->iovad
);
3479 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3481 /* free page tables */
3482 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3484 iommu_free_vm_domain(domain
);
3485 free_domain_mem(domain
);
3488 static int intel_iommu_domain_init(struct iommu_domain
*domain
)
3490 struct dmar_domain
*dmar_domain
;
3492 dmar_domain
= iommu_alloc_vm_domain();
3495 "intel_iommu_domain_init: dmar_domain == NULL\n");
3498 if (md_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
3500 "intel_iommu_domain_init() failed\n");
3501 vm_domain_exit(dmar_domain
);
3504 domain
->priv
= dmar_domain
;
3509 static void intel_iommu_domain_destroy(struct iommu_domain
*domain
)
3511 struct dmar_domain
*dmar_domain
= domain
->priv
;
3513 domain
->priv
= NULL
;
3514 vm_domain_exit(dmar_domain
);
3517 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
3520 struct dmar_domain
*dmar_domain
= domain
->priv
;
3521 struct pci_dev
*pdev
= to_pci_dev(dev
);
3522 struct intel_iommu
*iommu
;
3526 /* normally pdev is not mapped */
3527 if (unlikely(domain_context_mapped(pdev
))) {
3528 struct dmar_domain
*old_domain
;
3530 old_domain
= find_domain(pdev
);
3532 if (dmar_domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
3533 dmar_domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
)
3534 domain_remove_one_dev_info(old_domain
, pdev
);
3536 domain_remove_dev_info(old_domain
);
3540 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3545 /* check if this iommu agaw is sufficient for max mapped address */
3546 addr_width
= agaw_to_width(iommu
->agaw
);
3547 end
= DOMAIN_MAX_ADDR(addr_width
);
3548 end
= end
& VTD_PAGE_MASK
;
3549 if (end
< dmar_domain
->max_addr
) {
3550 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3551 "sufficient for the mapped address (%llx)\n",
3552 __func__
, iommu
->agaw
, dmar_domain
->max_addr
);
3556 return domain_add_dev_info(dmar_domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
3559 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
3562 struct dmar_domain
*dmar_domain
= domain
->priv
;
3563 struct pci_dev
*pdev
= to_pci_dev(dev
);
3565 domain_remove_one_dev_info(dmar_domain
, pdev
);
3568 static int intel_iommu_map_range(struct iommu_domain
*domain
,
3569 unsigned long iova
, phys_addr_t hpa
,
3570 size_t size
, int iommu_prot
)
3572 struct dmar_domain
*dmar_domain
= domain
->priv
;
3578 if (iommu_prot
& IOMMU_READ
)
3579 prot
|= DMA_PTE_READ
;
3580 if (iommu_prot
& IOMMU_WRITE
)
3581 prot
|= DMA_PTE_WRITE
;
3582 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
3583 prot
|= DMA_PTE_SNP
;
3585 max_addr
= iova
+ size
;
3586 if (dmar_domain
->max_addr
< max_addr
) {
3590 /* check if minimum agaw is sufficient for mapped address */
3591 min_agaw
= vm_domain_min_agaw(dmar_domain
);
3592 addr_width
= agaw_to_width(min_agaw
);
3593 end
= DOMAIN_MAX_ADDR(addr_width
);
3594 end
= end
& VTD_PAGE_MASK
;
3595 if (end
< max_addr
) {
3596 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3597 "sufficient for the mapped address (%llx)\n",
3598 __func__
, min_agaw
, max_addr
);
3601 dmar_domain
->max_addr
= max_addr
;
3603 /* Round up size to next multiple of PAGE_SIZE, if it and
3604 the low bits of hpa would take us onto the next page */
3605 size
= aligned_nrpages(hpa
, size
);
3606 ret
= domain_pfn_mapping(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
3607 hpa
>> VTD_PAGE_SHIFT
, size
, prot
);
3611 static void intel_iommu_unmap_range(struct iommu_domain
*domain
,
3612 unsigned long iova
, size_t size
)
3614 struct dmar_domain
*dmar_domain
= domain
->priv
;
3619 dma_pte_clear_range(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
3620 (iova
+ size
- 1) >> VTD_PAGE_SHIFT
);
3622 if (dmar_domain
->max_addr
== iova
+ size
)
3623 dmar_domain
->max_addr
= iova
;
3626 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
3629 struct dmar_domain
*dmar_domain
= domain
->priv
;
3630 struct dma_pte
*pte
;
3633 pte
= pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
);
3635 phys
= dma_pte_addr(pte
);
3640 static int intel_iommu_domain_has_cap(struct iommu_domain
*domain
,
3643 struct dmar_domain
*dmar_domain
= domain
->priv
;
3645 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
3646 return dmar_domain
->iommu_snooping
;
3651 static struct iommu_ops intel_iommu_ops
= {
3652 .domain_init
= intel_iommu_domain_init
,
3653 .domain_destroy
= intel_iommu_domain_destroy
,
3654 .attach_dev
= intel_iommu_attach_device
,
3655 .detach_dev
= intel_iommu_detach_device
,
3656 .map
= intel_iommu_map_range
,
3657 .unmap
= intel_iommu_unmap_range
,
3658 .iova_to_phys
= intel_iommu_iova_to_phys
,
3659 .domain_has_cap
= intel_iommu_domain_has_cap
,
3662 static void __devinit
quirk_iommu_rwbf(struct pci_dev
*dev
)
3665 * Mobile 4 Series Chipset neglects to set RWBF capability,
3668 printk(KERN_INFO
"DMAR: Forcing write-buffer flush capability\n");
3672 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);