2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
37 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/errno.h>
41 #include <linux/signal.h>
42 #include <linux/sched.h>
43 #include <linux/spinlock.h>
44 #include <linux/smp_lock.h>
45 #include <linux/interrupt.h>
46 #include <linux/miscdevice.h>
47 #include <linux/slab.h>
48 #include <linux/ioport.h>
49 #include <linux/fcntl.h>
50 #include <linux/init.h>
51 #include <linux/delay.h>
52 #include <linux/ctype.h>
53 #include <linux/parport.h>
54 #include <linux/version.h>
55 #include <linux/list.h>
56 #include <linux/notifier.h>
57 #include <linux/reboot.h>
58 #include <linux/utsrelease.h>
61 #include <asm/uaccess.h>
62 #include <asm/system.h>
65 #define KEYPAD_MINOR 185
67 #define PANEL_VERSION "0.9.5"
69 #define LCD_MAXBYTES 256 /* max burst write */
71 #define KEYPAD_BUFFER 64
72 #define INPUT_POLL_TIME (HZ/50) /* poll the keyboard this every second */
73 #define KEYPAD_REP_START (10) /* a key starts to repeat after this times INPUT_POLL_TIME */
74 #define KEYPAD_REP_DELAY (2) /* a key repeats this times INPUT_POLL_TIME */
76 #define FLASH_LIGHT_TEMPO (200) /* keep the light on this times INPUT_POLL_TIME for each flash */
78 /* converts an r_str() input to an active high, bits string : 000BAOSE */
79 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
81 #define PNL_PBUSY 0x80 /* inverted input, active low */
82 #define PNL_PACK 0x40 /* direct input, active low */
83 #define PNL_POUTPA 0x20 /* direct input, active high */
84 #define PNL_PSELECD 0x10 /* direct input, active high */
85 #define PNL_PERRORP 0x08 /* direct input, active low */
87 #define PNL_PBIDIR 0x20 /* bi-directional ports */
88 #define PNL_PINTEN 0x10 /* high to read data in or-ed with data out */
89 #define PNL_PSELECP 0x08 /* inverted output, active low */
90 #define PNL_PINITP 0x04 /* direct output, active low */
91 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
92 #define PNL_PSTROBE 0x01 /* inverted output */
113 #define PIN_AUTOLF 14
115 #define PIN_SELECP 17
116 #define PIN_NOT_SET 127
118 #define LCD_FLAG_S 0x0001
119 #define LCD_FLAG_ID 0x0002
120 #define LCD_FLAG_B 0x0004 /* blink on */
121 #define LCD_FLAG_C 0x0008 /* cursor on */
122 #define LCD_FLAG_D 0x0010 /* display on */
123 #define LCD_FLAG_F 0x0020 /* large font mode */
124 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
125 #define LCD_FLAG_L 0x0080 /* backlight enabled */
127 #define LCD_ESCAPE_LEN 24 /* 24 chars max for an LCD escape command */
128 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
130 /* macros to simplify use of the parallel port */
131 #define r_ctr(x) (parport_read_control((x)->port))
132 #define r_dtr(x) (parport_read_data((x)->port))
133 #define r_str(x) (parport_read_status((x)->port))
134 #define w_ctr(x, y) do { parport_write_control((x)->port, (y)); } while (0)
135 #define w_dtr(x, y) do { parport_write_data((x)->port, (y)); } while (0)
137 /* this defines which bits are to be used and which ones to be ignored */
138 static __u8 scan_mask_o
; /* logical or of the output bits involved in the scan matrix */
139 static __u8 scan_mask_i
; /* logical or of the input bits involved in the scan matrix */
141 typedef __u64 pmask_t
;
155 struct logical_input
{
156 struct list_head list
;
159 enum input_type type
;
160 enum input_state state
;
161 __u8 rise_time
, fall_time
;
162 __u8 rise_timer
, fall_timer
, high_timer
;
165 struct { /* this structure is valid when type == INPUT_TYPE_STD */
166 void (*press_fct
) (int);
167 void (*release_fct
) (int);
171 struct { /* this structure is valid when type == INPUT_TYPE_KBD */
172 /* strings can be full-length (ie. non null-terminated) */
173 char press_str
[sizeof(void *) + sizeof(int)];
174 char repeat_str
[sizeof(void *) + sizeof(int)];
175 char release_str
[sizeof(void *) + sizeof(int)];
180 LIST_HEAD(logical_inputs
); /* list of all defined logical inputs */
182 /* physical contacts history
183 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
184 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
185 * corresponds to the ground.
186 * Within each group, bits are stored in the same order as read on the port :
187 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
188 * So, each __u64 (or pmask_t) is represented like this :
189 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
190 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
192 static pmask_t phys_read
; /* what has just been read from the I/O ports */
193 static pmask_t phys_read_prev
; /* previous phys_read */
194 static pmask_t phys_curr
; /* stabilized phys_read (phys_read|phys_read_prev) */
195 static pmask_t phys_prev
; /* previous phys_curr */
196 static char inputs_stable
; /* 0 means that at least one logical signal needs be computed */
198 /* these variables are specific to the keypad */
199 static char keypad_buffer
[KEYPAD_BUFFER
];
200 static int keypad_buflen
;
201 static int keypad_start
;
202 static char keypressed
;
203 static wait_queue_head_t keypad_read_wait
;
205 /* lcd-specific variables */
206 static unsigned long int lcd_flags
; /* contains the LCD config state */
207 static unsigned long int lcd_addr_x
; /* contains the LCD X offset */
208 static unsigned long int lcd_addr_y
; /* contains the LCD Y offset */
209 static char lcd_escape
[LCD_ESCAPE_LEN
+ 1]; /* current escape sequence, 0 terminated */
210 static int lcd_escape_len
= -1; /* not in escape state. >=0 = escape cmd len */
213 * Bit masks to convert LCD signals to parallel port outputs.
214 * _d_ are values for data port, _c_ are for control port.
215 * [0] = signal OFF, [1] = signal ON, [2] = mask
222 * one entry for each bit on the LCD
233 * each bit can be either connected to a DATA or CTRL port
239 static unsigned char lcd_bits
[LCD_PORTS
][LCD_BITS
][BIT_STATES
];
244 #define LCD_PROTO_PARALLEL 0
245 #define LCD_PROTO_SERIAL 1
246 #define LCD_PROTO_TI_DA8XX_LCD 2
251 #define LCD_CHARSET_NORMAL 0
252 #define LCD_CHARSET_KS0074 1
257 #define LCD_TYPE_NONE 0
258 #define LCD_TYPE_OLD 1
259 #define LCD_TYPE_KS0074 2
260 #define LCD_TYPE_HANTRONIX 3
261 #define LCD_TYPE_NEXCOM 4
262 #define LCD_TYPE_CUSTOM 5
267 #define KEYPAD_TYPE_NONE 0
268 #define KEYPAD_TYPE_OLD 1
269 #define KEYPAD_TYPE_NEW 2
270 #define KEYPAD_TYPE_NEXCOM 3
275 #define PANEL_PROFILE_CUSTOM 0
276 #define PANEL_PROFILE_OLD 1
277 #define PANEL_PROFILE_NEW 2
278 #define PANEL_PROFILE_HANTRONIX 3
279 #define PANEL_PROFILE_NEXCOM 4
280 #define PANEL_PROFILE_LARGE 5
283 * Construct custom config from the kernel's configuration
285 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
286 #define DEFAULT_PARPORT 0
287 #define DEFAULT_LCD LCD_TYPE_OLD
288 #define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
289 #define DEFAULT_LCD_WIDTH 40
290 #define DEFAULT_LCD_BWIDTH 40
291 #define DEFAULT_LCD_HWIDTH 64
292 #define DEFAULT_LCD_HEIGHT 2
293 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
295 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
296 #define DEFAULT_LCD_PIN_RS PIN_SELECP
297 #define DEFAULT_LCD_PIN_RW PIN_INITP
298 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
299 #define DEFAULT_LCD_PIN_SDA PIN_D0
300 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
301 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
303 #ifdef CONFIG_PANEL_PROFILE
304 #undef DEFAULT_PROFILE
305 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
308 #ifdef CONFIG_PANEL_PARPORT
309 #undef DEFAULT_PARPORT
310 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
313 #if DEFAULT_PROFILE == 0 /* custom */
314 #ifdef CONFIG_PANEL_KEYPAD
315 #undef DEFAULT_KEYPAD
316 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
319 #ifdef CONFIG_PANEL_LCD
321 #define DEFAULT_LCD CONFIG_PANEL_LCD
324 #ifdef CONFIG_PANEL_LCD_WIDTH
325 #undef DEFAULT_LCD_WIDTH
326 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
329 #ifdef CONFIG_PANEL_LCD_BWIDTH
330 #undef DEFAULT_LCD_BWIDTH
331 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
334 #ifdef CONFIG_PANEL_LCD_HWIDTH
335 #undef DEFAULT_LCD_HWIDTH
336 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
339 #ifdef CONFIG_PANEL_LCD_HEIGHT
340 #undef DEFAULT_LCD_HEIGHT
341 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
344 #ifdef CONFIG_PANEL_LCD_PROTO
345 #undef DEFAULT_LCD_PROTO
346 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
349 #ifdef CONFIG_PANEL_LCD_PIN_E
350 #undef DEFAULT_LCD_PIN_E
351 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
354 #ifdef CONFIG_PANEL_LCD_PIN_RS
355 #undef DEFAULT_LCD_PIN_RS
356 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
359 #ifdef CONFIG_PANEL_LCD_PIN_RW
360 #undef DEFAULT_LCD_PIN_RW
361 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
364 #ifdef CONFIG_PANEL_LCD_PIN_SCL
365 #undef DEFAULT_LCD_PIN_SCL
366 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
369 #ifdef CONFIG_PANEL_LCD_PIN_SDA
370 #undef DEFAULT_LCD_PIN_SDA
371 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
374 #ifdef CONFIG_PANEL_LCD_PIN_BL
375 #undef DEFAULT_LCD_PIN_BL
376 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
379 #ifdef CONFIG_PANEL_LCD_CHARSET
380 #undef DEFAULT_LCD_CHARSET
381 #define DEFAULT_LCD_CHARSET
384 #endif /* DEFAULT_PROFILE == 0 */
386 /* global variables */
387 static int keypad_open_cnt
; /* #times opened */
388 static int lcd_open_cnt
; /* #times opened */
389 static struct pardevice
*pprt
;
391 static int lcd_initialized
;
392 static int keypad_initialized
;
394 static int light_tempo
;
396 static char lcd_must_clear
;
397 static char lcd_left_shift
;
398 static char init_in_progress
;
400 static void (*lcd_write_cmd
) (int);
401 static void (*lcd_write_data
) (int);
402 static void (*lcd_clear_fast
) (void);
404 static DEFINE_SPINLOCK(pprt_lock
);
405 static struct timer_list scan_timer
;
407 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
409 static int parport
= -1;
410 module_param(parport
, int, 0000);
411 MODULE_PARM_DESC(parport
, "Parallel port index (0=lpt1, 1=lpt2, ...)");
413 static int lcd_height
= -1;
414 module_param(lcd_height
, int, 0000);
415 MODULE_PARM_DESC(lcd_height
, "Number of lines on the LCD");
417 static int lcd_width
= -1;
418 module_param(lcd_width
, int, 0000);
419 MODULE_PARM_DESC(lcd_width
, "Number of columns on the LCD");
421 static int lcd_bwidth
= -1; /* internal buffer width (usually 40) */
422 module_param(lcd_bwidth
, int, 0000);
423 MODULE_PARM_DESC(lcd_bwidth
, "Internal LCD line width (40)");
425 static int lcd_hwidth
= -1; /* hardware buffer width (usually 64) */
426 module_param(lcd_hwidth
, int, 0000);
427 MODULE_PARM_DESC(lcd_hwidth
, "LCD line hardware address (64)");
429 static int lcd_enabled
= -1;
430 module_param(lcd_enabled
, int, 0000);
431 MODULE_PARM_DESC(lcd_enabled
, "Deprecated option, use lcd_type instead");
433 static int keypad_enabled
= -1;
434 module_param(keypad_enabled
, int, 0000);
435 MODULE_PARM_DESC(keypad_enabled
, "Deprecated option, use keypad_type instead");
437 static int lcd_type
= -1;
438 module_param(lcd_type
, int, 0000);
439 MODULE_PARM_DESC(lcd_type
,
440 "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
442 static int lcd_proto
= -1;
443 module_param(lcd_proto
, int, 0000);
444 MODULE_PARM_DESC(lcd_proto
, "LCD communication: 0=parallel (//), 1=serial,"
445 "2=TI LCD Interface");
447 static int lcd_charset
= -1;
448 module_param(lcd_charset
, int, 0000);
449 MODULE_PARM_DESC(lcd_charset
, "LCD character set: 0=standard, 1=KS0074");
451 static int keypad_type
= -1;
452 module_param(keypad_type
, int, 0000);
453 MODULE_PARM_DESC(keypad_type
,
454 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
456 static int profile
= DEFAULT_PROFILE
;
457 module_param(profile
, int, 0000);
458 MODULE_PARM_DESC(profile
,
459 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; 4=16x2 nexcom; default=40x2, old kp");
462 * These are the parallel port pins the LCD control signals are connected to.
463 * Set this to 0 if the signal is not used. Set it to its opposite value
464 * (negative) if the signal is negated. -MAXINT is used to indicate that the
465 * pin has not been explicitly specified.
467 * WARNING! no check will be performed about collisions with keypad !
470 static int lcd_e_pin
= PIN_NOT_SET
;
471 module_param(lcd_e_pin
, int, 0000);
472 MODULE_PARM_DESC(lcd_e_pin
,
473 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
475 static int lcd_rs_pin
= PIN_NOT_SET
;
476 module_param(lcd_rs_pin
, int, 0000);
477 MODULE_PARM_DESC(lcd_rs_pin
,
478 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
480 static int lcd_rw_pin
= PIN_NOT_SET
;
481 module_param(lcd_rw_pin
, int, 0000);
482 MODULE_PARM_DESC(lcd_rw_pin
,
483 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
485 static int lcd_bl_pin
= PIN_NOT_SET
;
486 module_param(lcd_bl_pin
, int, 0000);
487 MODULE_PARM_DESC(lcd_bl_pin
,
488 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
490 static int lcd_da_pin
= PIN_NOT_SET
;
491 module_param(lcd_da_pin
, int, 0000);
492 MODULE_PARM_DESC(lcd_da_pin
,
493 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
495 static int lcd_cl_pin
= PIN_NOT_SET
;
496 module_param(lcd_cl_pin
, int, 0000);
497 MODULE_PARM_DESC(lcd_cl_pin
,
498 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
500 static unsigned char *lcd_char_conv
;
502 /* for some LCD drivers (ks0074) we need a charset conversion table. */
503 static unsigned char lcd_char_conv_ks0074
[256] = {
504 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
505 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
506 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
507 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
508 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
509 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
510 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
511 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
512 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
513 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
514 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
515 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
516 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
517 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
518 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
519 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
520 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
521 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
522 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
523 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
524 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
525 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
526 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
527 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
528 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
529 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
530 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
531 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
532 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
533 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
534 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
535 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
536 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
539 char old_keypad_profile
[][4][9] = {
540 {"S0", "Left\n", "Left\n", ""},
541 {"S1", "Down\n", "Down\n", ""},
542 {"S2", "Up\n", "Up\n", ""},
543 {"S3", "Right\n", "Right\n", ""},
544 {"S4", "Esc\n", "Esc\n", ""},
545 {"S5", "Ret\n", "Ret\n", ""},
549 /* signals, press, repeat, release */
550 char new_keypad_profile
[][4][9] = {
551 {"S0", "Left\n", "Left\n", ""},
552 {"S1", "Down\n", "Down\n", ""},
553 {"S2", "Up\n", "Up\n", ""},
554 {"S3", "Right\n", "Right\n", ""},
555 {"S4s5", "", "Esc\n", "Esc\n"},
556 {"s4S5", "", "Ret\n", "Ret\n"},
557 {"S4S5", "Help\n", "", ""},
558 /* add new signals above this line */
562 /* signals, press, repeat, release */
563 char nexcom_keypad_profile
[][4][9] = {
564 {"a-p-e-", "Down\n", "Down\n", ""},
565 {"a-p-E-", "Ret\n", "Ret\n", ""},
566 {"a-P-E-", "Esc\n", "Esc\n", ""},
567 {"a-P-e-", "Up\n", "Up\n", ""},
568 /* add new signals above this line */
572 static char (*keypad_profile
)[4][9] = old_keypad_profile
;
574 /* FIXME: this should be converted to a bit array containing signals states */
576 unsigned char e
; /* parallel LCD E (data latch on falling edge) */
577 unsigned char rs
; /* parallel LCD RS (0 = cmd, 1 = data) */
578 unsigned char rw
; /* parallel LCD R/W (0 = W, 1 = R) */
579 unsigned char bl
; /* parallel LCD backlight (0 = off, 1 = on) */
580 unsigned char cl
; /* serial LCD clock (latch on rising edge) */
581 unsigned char da
; /* serial LCD data */
584 static void init_scan_timer(void);
586 /* sets data port bits according to current signals values */
587 static int set_data_bits(void)
592 for (bit
= 0; bit
< LCD_BITS
; bit
++)
593 val
&= lcd_bits
[LCD_PORT_D
][bit
][BIT_MSK
];
595 val
|= lcd_bits
[LCD_PORT_D
][LCD_BIT_E
][bits
.e
]
596 | lcd_bits
[LCD_PORT_D
][LCD_BIT_RS
][bits
.rs
]
597 | lcd_bits
[LCD_PORT_D
][LCD_BIT_RW
][bits
.rw
]
598 | lcd_bits
[LCD_PORT_D
][LCD_BIT_BL
][bits
.bl
]
599 | lcd_bits
[LCD_PORT_D
][LCD_BIT_CL
][bits
.cl
]
600 | lcd_bits
[LCD_PORT_D
][LCD_BIT_DA
][bits
.da
];
606 /* sets ctrl port bits according to current signals values */
607 static int set_ctrl_bits(void)
612 for (bit
= 0; bit
< LCD_BITS
; bit
++)
613 val
&= lcd_bits
[LCD_PORT_C
][bit
][BIT_MSK
];
615 val
|= lcd_bits
[LCD_PORT_C
][LCD_BIT_E
][bits
.e
]
616 | lcd_bits
[LCD_PORT_C
][LCD_BIT_RS
][bits
.rs
]
617 | lcd_bits
[LCD_PORT_C
][LCD_BIT_RW
][bits
.rw
]
618 | lcd_bits
[LCD_PORT_C
][LCD_BIT_BL
][bits
.bl
]
619 | lcd_bits
[LCD_PORT_C
][LCD_BIT_CL
][bits
.cl
]
620 | lcd_bits
[LCD_PORT_C
][LCD_BIT_DA
][bits
.da
];
626 /* sets ctrl & data port bits according to current signals values */
627 static void panel_set_bits(void)
634 * Converts a parallel port pin (from -25 to 25) to data and control ports
635 * masks, and data and control port bits. The signal will be considered
636 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
638 * Result will be used this way :
639 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
640 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
642 void pin_to_bits(int pin
, unsigned char *d_val
, unsigned char *c_val
)
644 int d_bit
, c_bit
, inv
;
646 d_val
[0] = c_val
[0] = d_val
[1] = c_val
[1] = 0;
647 d_val
[2] = c_val
[2] = 0xFF;
659 case PIN_STROBE
: /* strobe, inverted */
663 case PIN_D0
...PIN_D7
: /* D0 - D7 = 2 - 9 */
664 d_bit
= 1 << (pin
- 2);
666 case PIN_AUTOLF
: /* autofeed, inverted */
670 case PIN_INITP
: /* init, direct */
673 case PIN_SELECP
: /* select_in, inverted */
677 default: /* unknown pin, ignore */
690 /* sleeps that many milliseconds with a reschedule */
691 static void long_sleep(int ms
)
697 current
->state
= TASK_INTERRUPTIBLE
;
698 schedule_timeout((ms
* HZ
+ 999) / 1000);
702 /* send a serial byte to the LCD panel. The caller is responsible for locking if needed. */
703 static void lcd_send_serial(int byte
)
707 /* the data bit is set on D0, and the clock on STROBE.
708 * LCD reads D0 on STROBE's rising edge.
710 for (bit
= 0; bit
< 8; bit
++) {
711 bits
.cl
= BIT_CLR
; /* CLK low */
715 udelay(2); /* maintain the data during 2 us before CLK up */
716 bits
.cl
= BIT_SET
; /* CLK high */
718 udelay(1); /* maintain the strobe during 1 us */
723 /* turn the backlight on or off */
724 static void lcd_backlight(int on
)
726 if (lcd_bl_pin
== PIN_NONE
)
729 /* The backlight is activated by seting the AUTOFEED line to +5V */
730 spin_lock(&pprt_lock
);
733 spin_unlock(&pprt_lock
);
736 /* send a command to the LCD panel in serial mode */
737 static void lcd_write_cmd_s(int cmd
)
739 spin_lock(&pprt_lock
);
740 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
741 lcd_send_serial(cmd
& 0x0F);
742 lcd_send_serial((cmd
>> 4) & 0x0F);
743 udelay(40); /* the shortest command takes at least 40 us */
744 spin_unlock(&pprt_lock
);
747 /* send data to the LCD panel in serial mode */
748 static void lcd_write_data_s(int data
)
750 spin_lock(&pprt_lock
);
751 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
752 lcd_send_serial(data
& 0x0F);
753 lcd_send_serial((data
>> 4) & 0x0F);
754 udelay(40); /* the shortest data takes at least 40 us */
755 spin_unlock(&pprt_lock
);
758 /* send a command to the LCD panel in 8 bits parallel mode */
759 static void lcd_write_cmd_p8(int cmd
)
761 spin_lock(&pprt_lock
);
762 /* present the data to the data port */
764 udelay(20); /* maintain the data during 20 us before the strobe */
771 udelay(40); /* maintain the strobe during 40 us */
776 udelay(120); /* the shortest command takes at least 120 us */
777 spin_unlock(&pprt_lock
);
780 /* send data to the LCD panel in 8 bits parallel mode */
781 static void lcd_write_data_p8(int data
)
783 spin_lock(&pprt_lock
);
784 /* present the data to the data port */
786 udelay(20); /* maintain the data during 20 us before the strobe */
793 udelay(40); /* maintain the strobe during 40 us */
798 udelay(45); /* the shortest data takes at least 45 us */
799 spin_unlock(&pprt_lock
);
802 /* send a command to the TI LCD panel */
803 static void lcd_write_cmd_tilcd(int cmd
)
805 spin_lock(&pprt_lock
);
806 /* present the data to the control port */
809 spin_unlock(&pprt_lock
);
812 /* send data to the TI LCD panel */
813 static void lcd_write_data_tilcd(int data
)
815 spin_lock(&pprt_lock
);
816 /* present the data to the data port */
819 spin_unlock(&pprt_lock
);
822 static void lcd_gotoxy(void)
824 lcd_write_cmd(0x80 /* set DDRAM address */
825 | (lcd_addr_y
? lcd_hwidth
: 0)
826 /* we force the cursor to stay at the end of the line if it wants to go farther */
827 | ((lcd_addr_x
< lcd_bwidth
) ? lcd_addr_x
&
828 (lcd_hwidth
- 1) : lcd_bwidth
- 1));
831 static void lcd_print(char c
)
833 if (lcd_addr_x
< lcd_bwidth
) {
834 if (lcd_char_conv
!= NULL
)
835 c
= lcd_char_conv
[(unsigned char)c
];
839 /* prevents the cursor from wrapping onto the next line */
840 if (lcd_addr_x
== lcd_bwidth
)
844 /* fills the display with spaces and resets X/Y */
845 static void lcd_clear_fast_s(void)
848 lcd_addr_x
= lcd_addr_y
= 0;
851 spin_lock(&pprt_lock
);
852 for (pos
= 0; pos
< lcd_height
* lcd_hwidth
; pos
++) {
853 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
854 lcd_send_serial(' ' & 0x0F);
855 lcd_send_serial((' ' >> 4) & 0x0F);
856 udelay(40); /* the shortest data takes at least 40 us */
858 spin_unlock(&pprt_lock
);
860 lcd_addr_x
= lcd_addr_y
= 0;
864 /* fills the display with spaces and resets X/Y */
865 static void lcd_clear_fast_p8(void)
868 lcd_addr_x
= lcd_addr_y
= 0;
871 spin_lock(&pprt_lock
);
872 for (pos
= 0; pos
< lcd_height
* lcd_hwidth
; pos
++) {
873 /* present the data to the data port */
875 udelay(20); /* maintain the data during 20 us before the strobe */
882 udelay(40); /* maintain the strobe during 40 us */
887 udelay(45); /* the shortest data takes at least 45 us */
889 spin_unlock(&pprt_lock
);
891 lcd_addr_x
= lcd_addr_y
= 0;
895 /* fills the display with spaces and resets X/Y */
896 static void lcd_clear_fast_tilcd(void)
899 lcd_addr_x
= lcd_addr_y
= 0;
902 spin_lock(&pprt_lock
);
903 for (pos
= 0; pos
< lcd_height
* lcd_hwidth
; pos
++) {
904 /* present the data to the data port */
909 spin_unlock(&pprt_lock
);
911 lcd_addr_x
= lcd_addr_y
= 0;
915 /* clears the display and resets X/Y */
916 static void lcd_clear_display(void)
918 lcd_write_cmd(0x01); /* clear display */
919 lcd_addr_x
= lcd_addr_y
= 0;
920 /* we must wait a few milliseconds (15) */
924 static void lcd_init_display(void)
927 lcd_flags
= ((lcd_height
> 1) ? LCD_FLAG_N
: 0)
928 | LCD_FLAG_D
| LCD_FLAG_C
| LCD_FLAG_B
;
930 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
932 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
934 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
936 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
939 lcd_write_cmd(0x30 /* set font height and lines number */
940 | ((lcd_flags
& LCD_FLAG_F
) ? 4 : 0)
941 | ((lcd_flags
& LCD_FLAG_N
) ? 8 : 0)
945 lcd_write_cmd(0x08); /* display off, cursor off, blink off */
948 lcd_write_cmd(0x08 /* set display mode */
949 | ((lcd_flags
& LCD_FLAG_D
) ? 4 : 0)
950 | ((lcd_flags
& LCD_FLAG_C
) ? 2 : 0)
951 | ((lcd_flags
& LCD_FLAG_B
) ? 1 : 0)
954 lcd_backlight((lcd_flags
& LCD_FLAG_L
) ? 1 : 0);
958 lcd_write_cmd(0x06); /* entry mode set : increment, cursor shifting */
964 * These are the file operation function for user access to /dev/lcd
965 * This function can also be called from inside the kernel, by
966 * setting file and ppos to NULL.
970 static ssize_t
lcd_write(struct file
*file
,
971 const char *buf
, size_t count
, loff_t
*ppos
)
974 const char *tmp
= buf
;
977 for (; count
-- > 0; (ppos
? (*ppos
)++ : 0), ++tmp
) {
978 if (!in_interrupt() && (((count
+ 1) & 0x1f) == 0))
979 schedule(); /* let's be a little nice with other processes that need some CPU */
981 if (ppos
== NULL
&& file
== NULL
)
982 c
= *tmp
; /* let's not use get_user() from the kernel ! */
983 else if (get_user(c
, tmp
))
986 /* first, we'll test if we're in escape mode */
987 if ((c
!= '\n') && lcd_escape_len
>= 0) { /* yes, let's add this char to the buffer */
988 lcd_escape
[lcd_escape_len
++] = c
;
989 lcd_escape
[lcd_escape_len
] = 0;
991 lcd_escape_len
= -1; /* aborts any previous escape sequence */
994 case LCD_ESCAPE_CHAR
: /* start of an escape sequence */
996 lcd_escape
[lcd_escape_len
] = 0;
998 case '\b': /* go back one char and clear it */
999 if (lcd_addr_x
> 0) {
1000 if (lcd_addr_x
< lcd_bwidth
) /* check if we're not at the end of the line */
1001 lcd_write_cmd(0x10); /* back one char */
1004 lcd_write_data(' '); /* replace with a space */
1005 lcd_write_cmd(0x10); /* back one char again */
1007 case '\014': /* quickly clear the display */
1010 case '\n': /* flush the remainder of the current line and go to the
1011 beginning of the next line */
1012 for (; lcd_addr_x
< lcd_bwidth
; lcd_addr_x
++)
1013 lcd_write_data(' ');
1015 lcd_addr_y
= (lcd_addr_y
+ 1) % lcd_height
;
1018 case '\r': /* go to the beginning of the same line */
1022 case '\t': /* print a space instead of the tab */
1025 default: /* simply print this char */
1031 /* now we'll see if we're in an escape mode and if the current
1032 escape sequence can be understood.
1034 if (lcd_escape_len
>= 2) { /* minimal length for an escape command */
1035 int processed
= 0; /* 1 means the command has been processed */
1037 if (!strcmp(lcd_escape
, "[2J")) { /* Clear the display */
1038 lcd_clear_fast(); /* clear display */
1040 } else if (!strcmp(lcd_escape
, "[H")) { /* Cursor to home */
1041 lcd_addr_x
= lcd_addr_y
= 0;
1045 /* codes starting with ^[[L */
1046 else if ((lcd_escape_len
>= 3) &&
1047 (lcd_escape
[0] == '[') && (lcd_escape
[1] == 'L')) { /* LCD special codes */
1049 char *esc
= lcd_escape
+ 2;
1050 int oldflags
= lcd_flags
;
1052 /* check for display mode flags */
1054 case 'D': /* Display ON */
1055 lcd_flags
|= LCD_FLAG_D
;
1058 case 'd': /* Display OFF */
1059 lcd_flags
&= ~LCD_FLAG_D
;
1062 case 'C': /* Cursor ON */
1063 lcd_flags
|= LCD_FLAG_C
;
1066 case 'c': /* Cursor OFF */
1067 lcd_flags
&= ~LCD_FLAG_C
;
1070 case 'B': /* Blink ON */
1071 lcd_flags
|= LCD_FLAG_B
;
1074 case 'b': /* Blink OFF */
1075 lcd_flags
&= ~LCD_FLAG_B
;
1078 case '+': /* Back light ON */
1079 lcd_flags
|= LCD_FLAG_L
;
1082 case '-': /* Back light OFF */
1083 lcd_flags
&= ~LCD_FLAG_L
;
1086 case '*': /* flash back light using the keypad timer */
1087 if (scan_timer
.function
!= NULL
) {
1088 if (light_tempo
== 0
1089 && ((lcd_flags
& LCD_FLAG_L
)
1092 light_tempo
= FLASH_LIGHT_TEMPO
;
1096 case 'f': /* Small Font */
1097 lcd_flags
&= ~LCD_FLAG_F
;
1100 case 'F': /* Large Font */
1101 lcd_flags
|= LCD_FLAG_F
;
1104 case 'n': /* One Line */
1105 lcd_flags
&= ~LCD_FLAG_N
;
1108 case 'N': /* Two Lines */
1109 lcd_flags
|= LCD_FLAG_N
;
1112 case 'l': /* Shift Cursor Left */
1113 if (lcd_addr_x
> 0) {
1114 if (lcd_addr_x
< lcd_bwidth
)
1115 lcd_write_cmd(0x10); /* back one char if not at end of line */
1121 case 'r': /* shift cursor right */
1122 if (lcd_addr_x
< lcd_width
) {
1123 if (lcd_addr_x
< (lcd_bwidth
- 1))
1124 lcd_write_cmd(0x14); /* allow the cursor to pass the end of the line */
1130 case 'L': /* shift display left */
1132 lcd_write_cmd(0x18);
1136 case 'R': /* shift display right */
1138 lcd_write_cmd(0x1C);
1142 case 'k':{ /* kill end of line */
1144 for (x
= lcd_addr_x
; x
< lcd_bwidth
; x
++)
1145 lcd_write_data(' ');
1146 lcd_gotoxy(); /* restore cursor position */
1150 case 'I': /* reinitialize display */
1156 case 'G': /* Generator : LGcxxxxx...xx; */ {
1157 /* must have <c> between '0' and '7', representing the numerical
1158 * ASCII code of the redefined character, and <xx...xx> a sequence
1159 * of 16 hex digits representing 8 bytes for each character. Most
1160 * LCDs will only use 5 lower bits of the 7 first bytes.
1163 unsigned char cgbytes
[8];
1164 unsigned char cgaddr
;
1170 if (strchr(esc
, ';') == NULL
)
1175 cgaddr
= *(esc
++) - '0';
1184 while (*esc
&& cgoffset
< 8) {
1186 if (*esc
>= '0' && *esc
<= '9')
1187 value
|= (*esc
- '0') << shift
;
1188 else if (*esc
>= 'A' && *esc
<= 'Z')
1189 value
|= (*esc
- 'A' + 10) << shift
;
1190 else if (*esc
>= 'a' && *esc
<= 'z')
1191 value
|= (*esc
- 'a' + 10) << shift
;
1198 cgbytes
[cgoffset
++] = value
;
1205 lcd_write_cmd(0x40 | (cgaddr
* 8));
1206 for (addr
= 0; addr
< cgoffset
; addr
++)
1207 lcd_write_data(cgbytes
[addr
]);
1209 lcd_gotoxy(); /* ensures that we stop writing to CGRAM */
1213 case 'x': /* gotoxy : LxXXX[yYYY]; */
1214 case 'y': /* gotoxy : LyYYY[xXXX]; */
1215 if (strchr(esc
, ';') == NULL
)
1222 while (isdigit(*esc
)) {
1229 } else if (*esc
== 'y') {
1232 while (isdigit(*esc
)) {
1246 } /* end of switch */
1248 /* Check wether one flag was changed */
1249 if (oldflags
!= lcd_flags
) {
1250 /* check wether one of B,C,D flags was changed */
1251 if ((oldflags
^ lcd_flags
) &
1252 (LCD_FLAG_B
| LCD_FLAG_C
| LCD_FLAG_D
))
1253 /* set display mode */
1254 lcd_write_cmd(0x08 |
1255 ((lcd_flags
& LCD_FLAG_D
) ? 4 : 0) |
1256 ((lcd_flags
& LCD_FLAG_C
) ? 2 : 0) |
1257 ((lcd_flags
& LCD_FLAG_B
) ? 1 : 0));
1258 /* check wether one of F,N flags was changed */
1259 else if ((oldflags
^ lcd_flags
) &
1260 (LCD_FLAG_F
| LCD_FLAG_N
))
1261 lcd_write_cmd(0x30 |
1262 ((lcd_flags
& LCD_FLAG_F
) ? 4 : 0) |
1263 ((lcd_flags
& LCD_FLAG_N
) ? 8 : 0));
1264 /* check wether L flag was changed */
1265 else if ((oldflags
^ lcd_flags
) &
1267 if (lcd_flags
& (LCD_FLAG_L
))
1269 else if (light_tempo
== 0) /* switch off the light only when the tempo lighting is gone */
1275 /* LCD special escape codes */
1276 /* flush the escape sequence if it's been processed or if it is
1277 getting too long. */
1278 if (processed
|| (lcd_escape_len
>= LCD_ESCAPE_LEN
))
1279 lcd_escape_len
= -1;
1280 } /* escape codes */
1286 static int lcd_open(struct inode
*inode
, struct file
*file
)
1289 return -EBUSY
; /* open only once at a time */
1291 if (file
->f_mode
& FMODE_READ
) /* device is write-only */
1294 if (lcd_must_clear
) {
1295 lcd_clear_display();
1302 static int lcd_release(struct inode
*inode
, struct file
*file
)
1308 static struct file_operations lcd_fops
= {
1311 .release
= lcd_release
,
1314 static struct miscdevice lcd_dev
= {
1320 /* public function usable from the kernel for any purpose */
1321 void panel_lcd_print(char *s
)
1323 if (lcd_enabled
&& lcd_initialized
)
1324 lcd_write(NULL
, s
, strlen(s
), NULL
);
1327 /* initialize the LCD driver */
1331 case LCD_TYPE_OLD
: /* parallel mode, 8 bits */
1333 lcd_proto
= LCD_PROTO_PARALLEL
;
1334 if (lcd_charset
< 0)
1335 lcd_charset
= LCD_CHARSET_NORMAL
;
1336 if (lcd_e_pin
== PIN_NOT_SET
)
1337 lcd_e_pin
= PIN_STROBE
;
1338 if (lcd_rs_pin
== PIN_NOT_SET
)
1339 lcd_rs_pin
= PIN_AUTOLF
;
1350 case LCD_TYPE_KS0074
: /* serial mode, ks0074 */
1352 lcd_proto
= LCD_PROTO_SERIAL
;
1353 if (lcd_charset
< 0)
1354 lcd_charset
= LCD_CHARSET_KS0074
;
1355 if (lcd_bl_pin
== PIN_NOT_SET
)
1356 lcd_bl_pin
= PIN_AUTOLF
;
1357 if (lcd_cl_pin
== PIN_NOT_SET
)
1358 lcd_cl_pin
= PIN_STROBE
;
1359 if (lcd_da_pin
== PIN_NOT_SET
)
1360 lcd_da_pin
= PIN_D0
;
1371 case LCD_TYPE_NEXCOM
: /* parallel mode, 8 bits, generic */
1373 lcd_proto
= LCD_PROTO_PARALLEL
;
1374 if (lcd_charset
< 0)
1375 lcd_charset
= LCD_CHARSET_NORMAL
;
1376 if (lcd_e_pin
== PIN_NOT_SET
)
1377 lcd_e_pin
= PIN_AUTOLF
;
1378 if (lcd_rs_pin
== PIN_NOT_SET
)
1379 lcd_rs_pin
= PIN_SELECP
;
1380 if (lcd_rw_pin
== PIN_NOT_SET
)
1381 lcd_rw_pin
= PIN_INITP
;
1392 case LCD_TYPE_CUSTOM
: /* customer-defined */
1394 lcd_proto
= DEFAULT_LCD_PROTO
;
1395 if (lcd_charset
< 0)
1396 lcd_charset
= DEFAULT_LCD_CHARSET
;
1397 /* default geometry will be set later */
1399 case LCD_TYPE_HANTRONIX
: /* parallel mode, 8 bits, hantronix-like */
1402 lcd_proto
= LCD_PROTO_PARALLEL
;
1403 if (lcd_charset
< 0)
1404 lcd_charset
= LCD_CHARSET_NORMAL
;
1405 if (lcd_e_pin
== PIN_NOT_SET
)
1406 lcd_e_pin
= PIN_STROBE
;
1407 if (lcd_rs_pin
== PIN_NOT_SET
)
1408 lcd_rs_pin
= PIN_SELECP
;
1421 /* this is used to catch wrong and default values */
1423 lcd_width
= DEFAULT_LCD_WIDTH
;
1424 if (lcd_bwidth
<= 0)
1425 lcd_bwidth
= DEFAULT_LCD_BWIDTH
;
1426 if (lcd_hwidth
<= 0)
1427 lcd_hwidth
= DEFAULT_LCD_HWIDTH
;
1428 if (lcd_height
<= 0)
1429 lcd_height
= DEFAULT_LCD_HEIGHT
;
1431 if (lcd_proto
== LCD_PROTO_SERIAL
) { /* SERIAL */
1432 lcd_write_cmd
= lcd_write_cmd_s
;
1433 lcd_write_data
= lcd_write_data_s
;
1434 lcd_clear_fast
= lcd_clear_fast_s
;
1436 if (lcd_cl_pin
== PIN_NOT_SET
)
1437 lcd_cl_pin
= DEFAULT_LCD_PIN_SCL
;
1438 if (lcd_da_pin
== PIN_NOT_SET
)
1439 lcd_da_pin
= DEFAULT_LCD_PIN_SDA
;
1441 } else if (lcd_proto
== LCD_PROTO_PARALLEL
) { /* PARALLEL */
1442 lcd_write_cmd
= lcd_write_cmd_p8
;
1443 lcd_write_data
= lcd_write_data_p8
;
1444 lcd_clear_fast
= lcd_clear_fast_p8
;
1446 if (lcd_e_pin
== PIN_NOT_SET
)
1447 lcd_e_pin
= DEFAULT_LCD_PIN_E
;
1448 if (lcd_rs_pin
== PIN_NOT_SET
)
1449 lcd_rs_pin
= DEFAULT_LCD_PIN_RS
;
1450 if (lcd_rw_pin
== PIN_NOT_SET
)
1451 lcd_rw_pin
= DEFAULT_LCD_PIN_RW
;
1453 lcd_write_cmd
= lcd_write_cmd_tilcd
;
1454 lcd_write_data
= lcd_write_data_tilcd
;
1455 lcd_clear_fast
= lcd_clear_fast_tilcd
;
1458 if (lcd_bl_pin
== PIN_NOT_SET
)
1459 lcd_bl_pin
= DEFAULT_LCD_PIN_BL
;
1461 if (lcd_e_pin
== PIN_NOT_SET
)
1462 lcd_e_pin
= PIN_NONE
;
1463 if (lcd_rs_pin
== PIN_NOT_SET
)
1464 lcd_rs_pin
= PIN_NONE
;
1465 if (lcd_rw_pin
== PIN_NOT_SET
)
1466 lcd_rw_pin
= PIN_NONE
;
1467 if (lcd_bl_pin
== PIN_NOT_SET
)
1468 lcd_bl_pin
= PIN_NONE
;
1469 if (lcd_cl_pin
== PIN_NOT_SET
)
1470 lcd_cl_pin
= PIN_NONE
;
1471 if (lcd_da_pin
== PIN_NOT_SET
)
1472 lcd_da_pin
= PIN_NONE
;
1474 if (lcd_charset
< 0)
1475 lcd_charset
= DEFAULT_LCD_CHARSET
;
1477 if (lcd_charset
== LCD_CHARSET_KS0074
)
1478 lcd_char_conv
= lcd_char_conv_ks0074
;
1480 lcd_char_conv
= NULL
;
1482 if (lcd_bl_pin
!= PIN_NONE
)
1485 pin_to_bits(lcd_e_pin
, lcd_bits
[LCD_PORT_D
][LCD_BIT_E
],
1486 lcd_bits
[LCD_PORT_C
][LCD_BIT_E
]);
1487 pin_to_bits(lcd_rs_pin
, lcd_bits
[LCD_PORT_D
][LCD_BIT_RS
],
1488 lcd_bits
[LCD_PORT_C
][LCD_BIT_RS
]);
1489 pin_to_bits(lcd_rw_pin
, lcd_bits
[LCD_PORT_D
][LCD_BIT_RW
],
1490 lcd_bits
[LCD_PORT_C
][LCD_BIT_RW
]);
1491 pin_to_bits(lcd_bl_pin
, lcd_bits
[LCD_PORT_D
][LCD_BIT_BL
],
1492 lcd_bits
[LCD_PORT_C
][LCD_BIT_BL
]);
1493 pin_to_bits(lcd_cl_pin
, lcd_bits
[LCD_PORT_D
][LCD_BIT_CL
],
1494 lcd_bits
[LCD_PORT_C
][LCD_BIT_CL
]);
1495 pin_to_bits(lcd_da_pin
, lcd_bits
[LCD_PORT_D
][LCD_BIT_DA
],
1496 lcd_bits
[LCD_PORT_C
][LCD_BIT_DA
]);
1498 /* before this line, we must NOT send anything to the display.
1499 * Since lcd_init_display() needs to write data, we have to
1500 * enable mark the LCD initialized just before.
1502 lcd_initialized
= 1;
1505 /* display a short message */
1506 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1507 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1508 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE
);
1511 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE
"\nPanel-"
1514 lcd_addr_x
= lcd_addr_y
= 0;
1515 lcd_must_clear
= 1; /* clear the display on the next device opening */
1520 * These are the file operation function for user access to /dev/keypad
1523 static ssize_t
keypad_read(struct file
*file
,
1524 char *buf
, size_t count
, loff_t
*ppos
)
1530 if (keypad_buflen
== 0) {
1531 if (file
->f_flags
& O_NONBLOCK
)
1534 interruptible_sleep_on(&keypad_read_wait
);
1535 if (signal_pending(current
))
1539 for (; count
-- > 0 && (keypad_buflen
> 0); ++i
, ++tmp
, --keypad_buflen
) {
1540 put_user(keypad_buffer
[keypad_start
], tmp
);
1541 keypad_start
= (keypad_start
+ 1) % KEYPAD_BUFFER
;
1548 static int keypad_open(struct inode
*inode
, struct file
*file
)
1551 if (keypad_open_cnt
)
1552 return -EBUSY
; /* open only once at a time */
1554 if (file
->f_mode
& FMODE_WRITE
) /* device is read-only */
1557 keypad_buflen
= 0; /* flush the buffer on opening */
1562 static int keypad_release(struct inode
*inode
, struct file
*file
)
1568 static struct file_operations keypad_fops
= {
1569 .read
= keypad_read
, /* read */
1570 .open
= keypad_open
, /* open */
1571 .release
= keypad_release
, /* close */
1574 static struct miscdevice keypad_dev
= {
1580 static void keypad_send_key(char *string
, int max_len
)
1582 if (init_in_progress
)
1585 /* send the key to the device only if a process is attached to it. */
1586 if (keypad_open_cnt
> 0) {
1587 while (max_len
-- && keypad_buflen
< KEYPAD_BUFFER
&& *string
) {
1588 keypad_buffer
[(keypad_start
+ keypad_buflen
++) %
1589 KEYPAD_BUFFER
] = *string
++;
1591 wake_up_interruptible(&keypad_read_wait
);
1595 /* this function scans all the bits involving at least one logical signal, and puts the
1596 * results in the bitfield "phys_read" (one bit per established contact), and sets
1597 * "phys_read_prev" to "phys_read".
1599 * Note: to debounce input signals, we will only consider as switched a signal which is
1600 * stable across 2 measures. Signals which are different between two reads will be kept
1601 * as they previously were in their logical form (phys_prev). A signal which has just
1602 * switched will have a 1 in (phys_read ^ phys_read_prev).
1604 static void phys_scan_contacts(void)
1611 phys_prev
= phys_curr
;
1612 phys_read_prev
= phys_read
;
1613 phys_read
= 0; /* flush all signals */
1615 oldval
= r_dtr(pprt
) | scan_mask_o
; /* keep track of old value, with all outputs disabled */
1616 w_dtr(pprt
, oldval
& ~scan_mask_o
); /* activate all keyboard outputs (active low) */
1617 bitmask
= PNL_PINPUT(r_str(pprt
)) & scan_mask_i
; /* will have a 1 for each bit set to gnd */
1618 w_dtr(pprt
, oldval
); /* disable all matrix signals */
1620 /* now that all outputs are cleared, the only active input bits are
1621 * directly connected to the ground
1623 gndmask
= PNL_PINPUT(r_str(pprt
)) & scan_mask_i
; /* 1 for each grounded input */
1625 phys_read
|= (pmask_t
) gndmask
<< 40; /* grounded inputs are signals 40-44 */
1627 if (bitmask
!= gndmask
) {
1628 /* since clearing the outputs changed some inputs, we know that some
1629 * input signals are currently tied to some outputs. So we'll scan them.
1631 for (bit
= 0; bit
< 8; bit
++) {
1634 if (!(scan_mask_o
& bitval
)) /* skip unused bits */
1637 w_dtr(pprt
, oldval
& ~bitval
); /* enable this output */
1638 bitmask
= PNL_PINPUT(r_str(pprt
)) & ~gndmask
;
1639 phys_read
|= (pmask_t
) bitmask
<< (5 * bit
);
1641 w_dtr(pprt
, oldval
); /* disable all outputs */
1643 /* this is easy: use old bits when they are flapping, use new ones when stable */
1645 (phys_prev
& (phys_read
^ phys_read_prev
)) | (phys_read
&
1650 static void panel_process_inputs(void)
1652 struct list_head
*item
;
1653 struct logical_input
*input
;
1657 "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
1658 phys_prev
, phys_curr
);
1663 list_for_each(item
, &logical_inputs
) {
1664 input
= list_entry(item
, struct logical_input
, list
);
1666 switch (input
->state
) {
1668 if ((phys_curr
& input
->mask
) != input
->value
)
1670 /* if all needed ones were already set previously, this means that
1671 * this logical signal has been activated by the releasing of
1672 * another combined signal, so we don't want to match.
1673 * eg: AB -(release B)-> A -(release A)-> 0 : don't match A.
1675 if ((phys_prev
& input
->mask
) == input
->value
)
1677 input
->rise_timer
= 0;
1678 input
->state
= INPUT_ST_RISING
;
1679 /* no break here, fall through */
1680 case INPUT_ST_RISING
:
1681 if ((phys_curr
& input
->mask
) != input
->value
) {
1682 input
->state
= INPUT_ST_LOW
;
1685 if (input
->rise_timer
< input
->rise_time
) {
1687 input
->rise_timer
++;
1690 input
->high_timer
= 0;
1691 input
->state
= INPUT_ST_HIGH
;
1692 /* no break here, fall through */
1696 * this is an invalid test. It tries to catch transitions from single-key
1697 * to multiple-key, but doesn't take into account the contacts polarity.
1698 * The only solution to the problem is to parse keys from the most complex
1699 * to the simplest combinations, and mark them as 'caught' once a combination
1700 * matches, then unmatch it for all other ones.
1703 /* try to catch dangerous transitions cases :
1704 * someone adds a bit, so this signal was a false
1705 * positive resulting from a transition. We should invalidate
1706 * the signal immediately and not call the release function.
1707 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1709 if (((phys_prev
& input
->mask
) == input
->value
)
1710 && ((phys_curr
& input
->mask
) > input
->value
)) {
1711 input
->state
= INPUT_ST_LOW
; /* invalidate */
1716 if ((phys_curr
& input
->mask
) == input
->value
) {
1717 if ((input
->type
== INPUT_TYPE_STD
)
1718 && (input
->high_timer
== 0)) {
1719 input
->high_timer
++;
1720 if (input
->u
.std
.press_fct
!= NULL
)
1721 input
->u
.std
.press_fct(input
->u
.
1724 } else if (input
->type
== INPUT_TYPE_KBD
) {
1725 keypressed
= 1; /* will turn on the light */
1727 if (input
->high_timer
== 0) {
1728 if (input
->u
.kbd
.press_str
[0])
1729 keypad_send_key(input
->
1738 if (input
->u
.kbd
.repeat_str
[0]) {
1739 if (input
->high_timer
>=
1741 input
->high_timer
-=
1743 keypad_send_key(input
->
1751 inputs_stable
= 0; /* we will need to come back here soon */
1754 if (input
->high_timer
< 255)
1755 input
->high_timer
++;
1759 /* else signal falling down. Let's fall through. */
1760 input
->state
= INPUT_ST_FALLING
;
1761 input
->fall_timer
= 0;
1763 /* no break here, fall through */
1764 case INPUT_ST_FALLING
:
1766 /* FIXME !!! same comment as above */
1767 if (((phys_prev
& input
->mask
) == input
->value
)
1768 && ((phys_curr
& input
->mask
) > input
->value
)) {
1769 input
->state
= INPUT_ST_LOW
; /* invalidate */
1774 if ((phys_curr
& input
->mask
) == input
->value
) {
1775 if (input
->type
== INPUT_TYPE_KBD
) {
1776 keypressed
= 1; /* will turn on the light */
1778 if (input
->u
.kbd
.repeat_str
[0]) {
1779 if (input
->high_timer
>= KEYPAD_REP_START
)
1780 input
->high_timer
-= KEYPAD_REP_DELAY
;
1781 keypad_send_key(input
->u
.kbd
.repeat_str
,
1782 sizeof(input
->u
.kbd
.repeat_str
));
1783 inputs_stable
= 0; /* we will need to come back here soon */
1786 if (input
->high_timer
< 255)
1787 input
->high_timer
++;
1789 input
->state
= INPUT_ST_HIGH
;
1791 } else if (input
->fall_timer
>= input
->fall_time
) {
1792 /* call release event */
1793 if (input
->type
== INPUT_TYPE_STD
) {
1794 if (input
->u
.std
.release_fct
!= NULL
)
1795 input
->u
.std
.release_fct(input
->u
.std
.release_data
);
1797 } else if (input
->type
== INPUT_TYPE_KBD
) {
1798 if (input
->u
.kbd
.release_str
[0])
1799 keypad_send_key(input
->u
.kbd
.release_str
,
1800 sizeof(input
->u
.kbd
.release_str
));
1803 input
->state
= INPUT_ST_LOW
;
1806 input
->fall_timer
++;
1814 static void panel_scan_timer(void)
1816 if (keypad_enabled
&& keypad_initialized
) {
1817 if (spin_trylock(&pprt_lock
)) {
1818 phys_scan_contacts();
1819 spin_unlock(&pprt_lock
); /* no need for the parport anymore */
1822 if (!inputs_stable
|| phys_curr
!= phys_prev
)
1823 panel_process_inputs();
1826 if (lcd_enabled
&& lcd_initialized
) {
1828 if (light_tempo
== 0 && ((lcd_flags
& LCD_FLAG_L
) == 0))
1830 light_tempo
= FLASH_LIGHT_TEMPO
;
1831 } else if (light_tempo
> 0) {
1833 if (light_tempo
== 0 && ((lcd_flags
& LCD_FLAG_L
) == 0))
1838 mod_timer(&scan_timer
, jiffies
+ INPUT_POLL_TIME
);
1841 static void init_scan_timer(void)
1843 if (scan_timer
.function
!= NULL
)
1844 return; /* already started */
1846 init_timer(&scan_timer
);
1847 scan_timer
.expires
= jiffies
+ INPUT_POLL_TIME
;
1848 scan_timer
.data
= 0;
1849 scan_timer
.function
= (void *)&panel_scan_timer
;
1850 add_timer(&scan_timer
);
1853 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1854 * if <omask> or <imask> are non-null, they will be or'ed with the bits corresponding
1855 * to out and in bits respectively.
1856 * returns 1 if ok, 0 if error (in which case, nothing is written).
1858 static int input_name2mask(char *name
, pmask_t
*mask
, pmask_t
*value
,
1859 char *imask
, char *omask
)
1861 static char sigtab
[10] = "EeSsPpAaBb";
1865 om
= im
= m
= v
= 0ULL;
1867 int in
, out
, bit
, neg
;
1868 for (in
= 0; (in
< sizeof(sigtab
)) && (sigtab
[in
] != *name
); in
++)
1870 if (in
>= sizeof(sigtab
))
1871 return 0; /* input name not found */
1872 neg
= (in
& 1); /* odd (lower) names are negated */
1877 if (isdigit(*name
)) {
1880 } else if (*name
== '-')
1883 return 0; /* unknown bit name */
1885 bit
= (out
* 5) + in
;
1901 /* tries to bind a key to the signal name <name>. The key will send the
1902 * strings <press>, <repeat>, <release> for these respective events.
1903 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1905 static struct logical_input
*panel_bind_key(char *name
, char *press
,
1906 char *repeat
, char *release
)
1908 struct logical_input
*key
;
1910 key
= kmalloc(sizeof(struct logical_input
), GFP_KERNEL
);
1912 printk(KERN_ERR
"panel: not enough memory\n");
1915 memset(key
, 0, sizeof(struct logical_input
));
1916 if (!input_name2mask(name
, &key
->mask
, &key
->value
, &scan_mask_i
,
1920 key
->type
= INPUT_TYPE_KBD
;
1921 key
->state
= INPUT_ST_LOW
;
1926 printk(KERN_DEBUG
"bind: <%s> : m=%016Lx v=%016Lx\n", name
, key
->mask
,
1929 strncpy(key
->u
.kbd
.press_str
, press
, sizeof(key
->u
.kbd
.press_str
));
1930 strncpy(key
->u
.kbd
.repeat_str
, repeat
, sizeof(key
->u
.kbd
.repeat_str
));
1931 strncpy(key
->u
.kbd
.release_str
, release
,
1932 sizeof(key
->u
.kbd
.release_str
));
1933 list_add(&key
->list
, &logical_inputs
);
1938 /* tries to bind a callback function to the signal name <name>. The function
1939 * <press_fct> will be called with the <press_data> arg when the signal is
1940 * activated, and so on for <release_fct>/<release_data>
1941 * Returns the pointer to the new signal if ok, NULL if the signal could not be bound.
1943 static struct logical_input
*panel_bind_callback(char *name
,
1944 void (*press_fct
) (int),
1946 void (*release_fct
) (int),
1949 struct logical_input
*callback
;
1951 callback
= kmalloc(sizeof(struct logical_input
), GFP_KERNEL
);
1953 printk(KERN_ERR
"panel: not enough memory\n");
1956 memset(callback
, 0, sizeof(struct logical_input
));
1957 if (!input_name2mask(name
, &callback
->mask
, &callback
->value
,
1958 &scan_mask_i
, &scan_mask_o
))
1961 callback
->type
= INPUT_TYPE_STD
;
1962 callback
->state
= INPUT_ST_LOW
;
1963 callback
->rise_time
= 1;
1964 callback
->fall_time
= 1;
1965 callback
->u
.std
.press_fct
= press_fct
;
1966 callback
->u
.std
.press_data
= press_data
;
1967 callback
->u
.std
.release_fct
= release_fct
;
1968 callback
->u
.std
.release_data
= release_data
;
1969 list_add(&callback
->list
, &logical_inputs
);
1974 static void keypad_init(void)
1977 init_waitqueue_head(&keypad_read_wait
);
1978 keypad_buflen
= 0; /* flushes any eventual noisy keystroke */
1980 /* Let's create all known keys */
1982 for (keynum
= 0; keypad_profile
[keynum
][0][0]; keynum
++) {
1983 panel_bind_key(keypad_profile
[keynum
][0],
1984 keypad_profile
[keynum
][1],
1985 keypad_profile
[keynum
][2],
1986 keypad_profile
[keynum
][3]);
1990 keypad_initialized
= 1;
1993 /**************************************************/
1994 /* device initialization */
1995 /**************************************************/
1997 static int panel_notify_sys(struct notifier_block
*this, unsigned long code
,
2000 if (lcd_enabled
&& lcd_initialized
) {
2004 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2008 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2011 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2020 static struct notifier_block panel_notifier
= {
2026 static void panel_attach(struct parport
*port
)
2028 if (port
->number
!= parport
)
2033 "panel_attach(): port->number=%d parport=%d, already registered !\n",
2034 port
->number
, parport
);
2038 pprt
= parport_register_device(port
, "panel", NULL
, NULL
, /* pf, kf */
2040 /*PARPORT_DEV_EXCL */
2043 if (parport_claim(pprt
)) {
2045 "Panel: could not claim access to parport%d. Aborting.\n",
2050 /* must init LCD first, just in case an IRQ from the keypad is generated at keypad init */
2053 misc_register(&lcd_dev
);
2056 if (keypad_enabled
) {
2058 misc_register(&keypad_dev
);
2062 static void panel_detach(struct parport
*port
)
2064 if (port
->number
!= parport
)
2069 "panel_detach(): port->number=%d parport=%d, nothing to unregister.\n",
2070 port
->number
, parport
);
2074 if (keypad_enabled
&& keypad_initialized
)
2075 misc_deregister(&keypad_dev
);
2077 if (lcd_enabled
&& lcd_initialized
)
2078 misc_deregister(&lcd_dev
);
2080 parport_release(pprt
);
2081 parport_unregister_device(pprt
);
2085 static struct parport_driver panel_driver
= {
2087 .attach
= panel_attach
,
2088 .detach
= panel_detach
,
2092 int panel_init(void)
2094 /* for backwards compatibility */
2095 if (keypad_type
< 0)
2096 keypad_type
= keypad_enabled
;
2099 lcd_type
= lcd_enabled
;
2102 parport
= DEFAULT_PARPORT
;
2104 /* take care of an eventual profile */
2106 case PANEL_PROFILE_CUSTOM
: /* custom profile */
2107 if (keypad_type
< 0)
2108 keypad_type
= DEFAULT_KEYPAD
;
2110 lcd_type
= DEFAULT_LCD
;
2112 case PANEL_PROFILE_OLD
: /* 8 bits, 2*16, old keypad */
2113 if (keypad_type
< 0)
2114 keypad_type
= KEYPAD_TYPE_OLD
;
2116 lcd_type
= LCD_TYPE_OLD
;
2122 case PANEL_PROFILE_NEW
: /* serial, 2*16, new keypad */
2123 if (keypad_type
< 0)
2124 keypad_type
= KEYPAD_TYPE_NEW
;
2126 lcd_type
= LCD_TYPE_KS0074
;
2128 case PANEL_PROFILE_HANTRONIX
: /* 8 bits, 2*16 hantronix-like, no keypad */
2129 if (keypad_type
< 0)
2130 keypad_type
= KEYPAD_TYPE_NONE
;
2132 lcd_type
= LCD_TYPE_HANTRONIX
;
2134 case PANEL_PROFILE_NEXCOM
: /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2135 if (keypad_type
< 0)
2136 keypad_type
= KEYPAD_TYPE_NEXCOM
;
2138 lcd_type
= LCD_TYPE_NEXCOM
;
2140 case PANEL_PROFILE_LARGE
: /* 8 bits, 2*40, old keypad */
2141 if (keypad_type
< 0)
2142 keypad_type
= KEYPAD_TYPE_OLD
;
2144 lcd_type
= LCD_TYPE_OLD
;
2148 lcd_enabled
= (lcd_type
> 0);
2149 keypad_enabled
= (keypad_type
> 0);
2151 switch (keypad_type
) {
2152 case KEYPAD_TYPE_OLD
:
2153 keypad_profile
= old_keypad_profile
;
2155 case KEYPAD_TYPE_NEW
:
2156 keypad_profile
= new_keypad_profile
;
2158 case KEYPAD_TYPE_NEXCOM
:
2159 keypad_profile
= nexcom_keypad_profile
;
2162 keypad_profile
= NULL
;
2166 /* tells various subsystems about the fact that we are initializing */
2167 init_in_progress
= 1;
2169 if (parport_register_driver(&panel_driver
)) {
2171 "Panel: could not register with parport. Aborting.\n");
2175 if (!lcd_enabled
&& !keypad_enabled
) {
2176 /* no device enabled, let's release the parport */
2178 parport_release(pprt
);
2179 parport_unregister_device(pprt
);
2181 parport_unregister_driver(&panel_driver
);
2182 printk(KERN_ERR
"Panel driver version " PANEL_VERSION
2187 register_reboot_notifier(&panel_notifier
);
2190 printk(KERN_INFO
"Panel driver version " PANEL_VERSION
2191 " registered on parport%d (io=0x%lx).\n", parport
,
2194 printk(KERN_INFO
"Panel driver version " PANEL_VERSION
2195 " not yet registered\n");
2196 /* tells various subsystems about the fact that initialization is finished */
2197 init_in_progress
= 0;
2201 static int __init
panel_init_module(void)
2203 return panel_init();
2206 static void __exit
panel_cleanup_module(void)
2208 unregister_reboot_notifier(&panel_notifier
);
2210 if (scan_timer
.function
!= NULL
)
2211 del_timer(&scan_timer
);
2215 misc_deregister(&keypad_dev
);
2218 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2219 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2220 misc_deregister(&lcd_dev
);
2223 /* TODO: free all input signals */
2224 parport_release(pprt
);
2225 parport_unregister_device(pprt
);
2227 parport_unregister_driver(&panel_driver
);
2230 module_init(panel_init_module
);
2231 module_exit(panel_cleanup_module
);
2232 MODULE_AUTHOR("Willy Tarreau");
2233 MODULE_LICENSE("GPL");