2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats
[] = {
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats
[] = {
62 DRM_FORMAT_XRGB2101010
,
63 DRM_FORMAT_XBGR2101010
,
66 static const uint32_t skl_primary_formats
[] = {
73 DRM_FORMAT_XRGB2101010
,
74 DRM_FORMAT_XBGR2101010
,
82 static const uint32_t intel_cursor_formats
[] = {
86 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
, bool on
);
88 static void i9xx_crtc_clock_get(struct intel_crtc
*crtc
,
89 struct intel_crtc_state
*pipe_config
);
90 static void ironlake_pch_clock_get(struct intel_crtc
*crtc
,
91 struct intel_crtc_state
*pipe_config
);
93 static int intel_framebuffer_init(struct drm_device
*dev
,
94 struct intel_framebuffer
*ifb
,
95 struct drm_mode_fb_cmd2
*mode_cmd
,
96 struct drm_i915_gem_object
*obj
);
97 static void i9xx_set_pipeconf(struct intel_crtc
*intel_crtc
);
98 static void intel_set_pipe_timings(struct intel_crtc
*intel_crtc
);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc
*crtc
,
100 struct intel_link_m_n
*m_n
,
101 struct intel_link_m_n
*m2_n2
);
102 static void ironlake_set_pipeconf(struct drm_crtc
*crtc
);
103 static void haswell_set_pipeconf(struct drm_crtc
*crtc
);
104 static void intel_set_pipe_csc(struct drm_crtc
*crtc
);
105 static void vlv_prepare_pll(struct intel_crtc
*crtc
,
106 const struct intel_crtc_state
*pipe_config
);
107 static void chv_prepare_pll(struct intel_crtc
*crtc
,
108 const struct intel_crtc_state
*pipe_config
);
109 static void intel_begin_crtc_commit(struct drm_crtc
*, struct drm_crtc_state
*);
110 static void intel_finish_crtc_commit(struct drm_crtc
*, struct drm_crtc_state
*);
111 static void skl_init_scalers(struct drm_device
*dev
, struct intel_crtc
*intel_crtc
,
112 struct intel_crtc_state
*crtc_state
);
113 static int i9xx_get_refclk(const struct intel_crtc_state
*crtc_state
,
115 static void skylake_pfit_enable(struct intel_crtc
*crtc
);
116 static void ironlake_pfit_disable(struct intel_crtc
*crtc
, bool force
);
117 static void ironlake_pfit_enable(struct intel_crtc
*crtc
);
118 static void intel_modeset_setup_hw_state(struct drm_device
*dev
);
119 static void intel_pre_disable_primary(struct drm_crtc
*crtc
);
127 int p2_slow
, p2_fast
;
130 typedef struct intel_limit intel_limit_t
;
132 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private
*dev_priv
)
139 int hpll_freq
, vco_freq
[] = { 800, 1600, 2000, 2400 };
141 /* Obtain SKU information */
142 mutex_lock(&dev_priv
->sb_lock
);
143 hpll_freq
= vlv_cck_read(dev_priv
, CCK_FUSE_REG
) &
144 CCK_FUSE_HPLL_FREQ_MASK
;
145 mutex_unlock(&dev_priv
->sb_lock
);
147 return vco_freq
[hpll_freq
] * 1000;
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private
*dev_priv
,
151 const char *name
, u32 reg
)
156 if (dev_priv
->hpll_freq
== 0)
157 dev_priv
->hpll_freq
= valleyview_get_vco(dev_priv
);
159 mutex_lock(&dev_priv
->sb_lock
);
160 val
= vlv_cck_read(dev_priv
, reg
);
161 mutex_unlock(&dev_priv
->sb_lock
);
163 divider
= val
& CCK_FREQUENCY_VALUES
;
165 WARN((val
& CCK_FREQUENCY_STATUS
) !=
166 (divider
<< CCK_FREQUENCY_STATUS_SHIFT
),
167 "%s change in progress\n", name
);
169 return DIV_ROUND_CLOSEST(dev_priv
->hpll_freq
<< 1, divider
+ 1);
173 intel_pch_rawclk(struct drm_device
*dev
)
175 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
177 WARN_ON(!HAS_PCH_SPLIT(dev
));
179 return I915_READ(PCH_RAWCLK_FREQ
) & RAWCLK_FREQ_MASK
;
182 /* hrawclock is 1/4 the FSB frequency */
183 int intel_hrawclk(struct drm_device
*dev
)
185 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
188 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189 if (IS_VALLEYVIEW(dev
))
192 clkcfg
= I915_READ(CLKCFG
);
193 switch (clkcfg
& CLKCFG_FSB_MASK
) {
202 case CLKCFG_FSB_1067
:
204 case CLKCFG_FSB_1333
:
206 /* these two are just a guess; one of them might be right */
207 case CLKCFG_FSB_1600
:
208 case CLKCFG_FSB_1600_ALT
:
215 static void intel_update_czclk(struct drm_i915_private
*dev_priv
)
217 if (!IS_VALLEYVIEW(dev_priv
))
220 dev_priv
->czclk_freq
= vlv_get_cck_clock_hpll(dev_priv
, "czclk",
221 CCK_CZ_CLOCK_CONTROL
);
223 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv
->czclk_freq
);
226 static inline u32
/* units of 100MHz */
227 intel_fdi_link_freq(struct drm_device
*dev
)
230 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
231 return (I915_READ(FDI_PLL_BIOS_0
) & FDI_PLL_FB_CLOCK_MASK
) + 2;
236 static const intel_limit_t intel_limits_i8xx_dac
= {
237 .dot
= { .min
= 25000, .max
= 350000 },
238 .vco
= { .min
= 908000, .max
= 1512000 },
239 .n
= { .min
= 2, .max
= 16 },
240 .m
= { .min
= 96, .max
= 140 },
241 .m1
= { .min
= 18, .max
= 26 },
242 .m2
= { .min
= 6, .max
= 16 },
243 .p
= { .min
= 4, .max
= 128 },
244 .p1
= { .min
= 2, .max
= 33 },
245 .p2
= { .dot_limit
= 165000,
246 .p2_slow
= 4, .p2_fast
= 2 },
249 static const intel_limit_t intel_limits_i8xx_dvo
= {
250 .dot
= { .min
= 25000, .max
= 350000 },
251 .vco
= { .min
= 908000, .max
= 1512000 },
252 .n
= { .min
= 2, .max
= 16 },
253 .m
= { .min
= 96, .max
= 140 },
254 .m1
= { .min
= 18, .max
= 26 },
255 .m2
= { .min
= 6, .max
= 16 },
256 .p
= { .min
= 4, .max
= 128 },
257 .p1
= { .min
= 2, .max
= 33 },
258 .p2
= { .dot_limit
= 165000,
259 .p2_slow
= 4, .p2_fast
= 4 },
262 static const intel_limit_t intel_limits_i8xx_lvds
= {
263 .dot
= { .min
= 25000, .max
= 350000 },
264 .vco
= { .min
= 908000, .max
= 1512000 },
265 .n
= { .min
= 2, .max
= 16 },
266 .m
= { .min
= 96, .max
= 140 },
267 .m1
= { .min
= 18, .max
= 26 },
268 .m2
= { .min
= 6, .max
= 16 },
269 .p
= { .min
= 4, .max
= 128 },
270 .p1
= { .min
= 1, .max
= 6 },
271 .p2
= { .dot_limit
= 165000,
272 .p2_slow
= 14, .p2_fast
= 7 },
275 static const intel_limit_t intel_limits_i9xx_sdvo
= {
276 .dot
= { .min
= 20000, .max
= 400000 },
277 .vco
= { .min
= 1400000, .max
= 2800000 },
278 .n
= { .min
= 1, .max
= 6 },
279 .m
= { .min
= 70, .max
= 120 },
280 .m1
= { .min
= 8, .max
= 18 },
281 .m2
= { .min
= 3, .max
= 7 },
282 .p
= { .min
= 5, .max
= 80 },
283 .p1
= { .min
= 1, .max
= 8 },
284 .p2
= { .dot_limit
= 200000,
285 .p2_slow
= 10, .p2_fast
= 5 },
288 static const intel_limit_t intel_limits_i9xx_lvds
= {
289 .dot
= { .min
= 20000, .max
= 400000 },
290 .vco
= { .min
= 1400000, .max
= 2800000 },
291 .n
= { .min
= 1, .max
= 6 },
292 .m
= { .min
= 70, .max
= 120 },
293 .m1
= { .min
= 8, .max
= 18 },
294 .m2
= { .min
= 3, .max
= 7 },
295 .p
= { .min
= 7, .max
= 98 },
296 .p1
= { .min
= 1, .max
= 8 },
297 .p2
= { .dot_limit
= 112000,
298 .p2_slow
= 14, .p2_fast
= 7 },
302 static const intel_limit_t intel_limits_g4x_sdvo
= {
303 .dot
= { .min
= 25000, .max
= 270000 },
304 .vco
= { .min
= 1750000, .max
= 3500000},
305 .n
= { .min
= 1, .max
= 4 },
306 .m
= { .min
= 104, .max
= 138 },
307 .m1
= { .min
= 17, .max
= 23 },
308 .m2
= { .min
= 5, .max
= 11 },
309 .p
= { .min
= 10, .max
= 30 },
310 .p1
= { .min
= 1, .max
= 3},
311 .p2
= { .dot_limit
= 270000,
317 static const intel_limit_t intel_limits_g4x_hdmi
= {
318 .dot
= { .min
= 22000, .max
= 400000 },
319 .vco
= { .min
= 1750000, .max
= 3500000},
320 .n
= { .min
= 1, .max
= 4 },
321 .m
= { .min
= 104, .max
= 138 },
322 .m1
= { .min
= 16, .max
= 23 },
323 .m2
= { .min
= 5, .max
= 11 },
324 .p
= { .min
= 5, .max
= 80 },
325 .p1
= { .min
= 1, .max
= 8},
326 .p2
= { .dot_limit
= 165000,
327 .p2_slow
= 10, .p2_fast
= 5 },
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
331 .dot
= { .min
= 20000, .max
= 115000 },
332 .vco
= { .min
= 1750000, .max
= 3500000 },
333 .n
= { .min
= 1, .max
= 3 },
334 .m
= { .min
= 104, .max
= 138 },
335 .m1
= { .min
= 17, .max
= 23 },
336 .m2
= { .min
= 5, .max
= 11 },
337 .p
= { .min
= 28, .max
= 112 },
338 .p1
= { .min
= 2, .max
= 8 },
339 .p2
= { .dot_limit
= 0,
340 .p2_slow
= 14, .p2_fast
= 14
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
345 .dot
= { .min
= 80000, .max
= 224000 },
346 .vco
= { .min
= 1750000, .max
= 3500000 },
347 .n
= { .min
= 1, .max
= 3 },
348 .m
= { .min
= 104, .max
= 138 },
349 .m1
= { .min
= 17, .max
= 23 },
350 .m2
= { .min
= 5, .max
= 11 },
351 .p
= { .min
= 14, .max
= 42 },
352 .p1
= { .min
= 2, .max
= 6 },
353 .p2
= { .dot_limit
= 0,
354 .p2_slow
= 7, .p2_fast
= 7
358 static const intel_limit_t intel_limits_pineview_sdvo
= {
359 .dot
= { .min
= 20000, .max
= 400000},
360 .vco
= { .min
= 1700000, .max
= 3500000 },
361 /* Pineview's Ncounter is a ring counter */
362 .n
= { .min
= 3, .max
= 6 },
363 .m
= { .min
= 2, .max
= 256 },
364 /* Pineview only has one combined m divider, which we treat as m2. */
365 .m1
= { .min
= 0, .max
= 0 },
366 .m2
= { .min
= 0, .max
= 254 },
367 .p
= { .min
= 5, .max
= 80 },
368 .p1
= { .min
= 1, .max
= 8 },
369 .p2
= { .dot_limit
= 200000,
370 .p2_slow
= 10, .p2_fast
= 5 },
373 static const intel_limit_t intel_limits_pineview_lvds
= {
374 .dot
= { .min
= 20000, .max
= 400000 },
375 .vco
= { .min
= 1700000, .max
= 3500000 },
376 .n
= { .min
= 3, .max
= 6 },
377 .m
= { .min
= 2, .max
= 256 },
378 .m1
= { .min
= 0, .max
= 0 },
379 .m2
= { .min
= 0, .max
= 254 },
380 .p
= { .min
= 7, .max
= 112 },
381 .p1
= { .min
= 1, .max
= 8 },
382 .p2
= { .dot_limit
= 112000,
383 .p2_slow
= 14, .p2_fast
= 14 },
386 /* Ironlake / Sandybridge
388 * We calculate clock using (register_value + 2) for N/M1/M2, so here
389 * the range value for them is (actual_value - 2).
391 static const intel_limit_t intel_limits_ironlake_dac
= {
392 .dot
= { .min
= 25000, .max
= 350000 },
393 .vco
= { .min
= 1760000, .max
= 3510000 },
394 .n
= { .min
= 1, .max
= 5 },
395 .m
= { .min
= 79, .max
= 127 },
396 .m1
= { .min
= 12, .max
= 22 },
397 .m2
= { .min
= 5, .max
= 9 },
398 .p
= { .min
= 5, .max
= 80 },
399 .p1
= { .min
= 1, .max
= 8 },
400 .p2
= { .dot_limit
= 225000,
401 .p2_slow
= 10, .p2_fast
= 5 },
404 static const intel_limit_t intel_limits_ironlake_single_lvds
= {
405 .dot
= { .min
= 25000, .max
= 350000 },
406 .vco
= { .min
= 1760000, .max
= 3510000 },
407 .n
= { .min
= 1, .max
= 3 },
408 .m
= { .min
= 79, .max
= 118 },
409 .m1
= { .min
= 12, .max
= 22 },
410 .m2
= { .min
= 5, .max
= 9 },
411 .p
= { .min
= 28, .max
= 112 },
412 .p1
= { .min
= 2, .max
= 8 },
413 .p2
= { .dot_limit
= 225000,
414 .p2_slow
= 14, .p2_fast
= 14 },
417 static const intel_limit_t intel_limits_ironlake_dual_lvds
= {
418 .dot
= { .min
= 25000, .max
= 350000 },
419 .vco
= { .min
= 1760000, .max
= 3510000 },
420 .n
= { .min
= 1, .max
= 3 },
421 .m
= { .min
= 79, .max
= 127 },
422 .m1
= { .min
= 12, .max
= 22 },
423 .m2
= { .min
= 5, .max
= 9 },
424 .p
= { .min
= 14, .max
= 56 },
425 .p1
= { .min
= 2, .max
= 8 },
426 .p2
= { .dot_limit
= 225000,
427 .p2_slow
= 7, .p2_fast
= 7 },
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m
= {
432 .dot
= { .min
= 25000, .max
= 350000 },
433 .vco
= { .min
= 1760000, .max
= 3510000 },
434 .n
= { .min
= 1, .max
= 2 },
435 .m
= { .min
= 79, .max
= 126 },
436 .m1
= { .min
= 12, .max
= 22 },
437 .m2
= { .min
= 5, .max
= 9 },
438 .p
= { .min
= 28, .max
= 112 },
439 .p1
= { .min
= 2, .max
= 8 },
440 .p2
= { .dot_limit
= 225000,
441 .p2_slow
= 14, .p2_fast
= 14 },
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m
= {
445 .dot
= { .min
= 25000, .max
= 350000 },
446 .vco
= { .min
= 1760000, .max
= 3510000 },
447 .n
= { .min
= 1, .max
= 3 },
448 .m
= { .min
= 79, .max
= 126 },
449 .m1
= { .min
= 12, .max
= 22 },
450 .m2
= { .min
= 5, .max
= 9 },
451 .p
= { .min
= 14, .max
= 42 },
452 .p1
= { .min
= 2, .max
= 6 },
453 .p2
= { .dot_limit
= 225000,
454 .p2_slow
= 7, .p2_fast
= 7 },
457 static const intel_limit_t intel_limits_vlv
= {
459 * These are the data rate limits (measured in fast clocks)
460 * since those are the strictest limits we have. The fast
461 * clock and actual rate limits are more relaxed, so checking
462 * them would make no difference.
464 .dot
= { .min
= 25000 * 5, .max
= 270000 * 5 },
465 .vco
= { .min
= 4000000, .max
= 6000000 },
466 .n
= { .min
= 1, .max
= 7 },
467 .m1
= { .min
= 2, .max
= 3 },
468 .m2
= { .min
= 11, .max
= 156 },
469 .p1
= { .min
= 2, .max
= 3 },
470 .p2
= { .p2_slow
= 2, .p2_fast
= 20 }, /* slow=min, fast=max */
473 static const intel_limit_t intel_limits_chv
= {
475 * These are the data rate limits (measured in fast clocks)
476 * since those are the strictest limits we have. The fast
477 * clock and actual rate limits are more relaxed, so checking
478 * them would make no difference.
480 .dot
= { .min
= 25000 * 5, .max
= 540000 * 5},
481 .vco
= { .min
= 4800000, .max
= 6480000 },
482 .n
= { .min
= 1, .max
= 1 },
483 .m1
= { .min
= 2, .max
= 2 },
484 .m2
= { .min
= 24 << 22, .max
= 175 << 22 },
485 .p1
= { .min
= 2, .max
= 4 },
486 .p2
= { .p2_slow
= 1, .p2_fast
= 14 },
489 static const intel_limit_t intel_limits_bxt
= {
490 /* FIXME: find real dot limits */
491 .dot
= { .min
= 0, .max
= INT_MAX
},
492 .vco
= { .min
= 4800000, .max
= 6700000 },
493 .n
= { .min
= 1, .max
= 1 },
494 .m1
= { .min
= 2, .max
= 2 },
495 /* FIXME: find real m2 limits */
496 .m2
= { .min
= 2 << 22, .max
= 255 << 22 },
497 .p1
= { .min
= 2, .max
= 4 },
498 .p2
= { .p2_slow
= 1, .p2_fast
= 20 },
502 needs_modeset(struct drm_crtc_state
*state
)
504 return drm_atomic_crtc_needs_modeset(state
);
508 * Returns whether any output on the specified pipe is of the specified type
510 bool intel_pipe_has_type(struct intel_crtc
*crtc
, enum intel_output_type type
)
512 struct drm_device
*dev
= crtc
->base
.dev
;
513 struct intel_encoder
*encoder
;
515 for_each_encoder_on_crtc(dev
, &crtc
->base
, encoder
)
516 if (encoder
->type
== type
)
523 * Returns whether any output on the specified pipe will have the specified
524 * type after a staged modeset is complete, i.e., the same as
525 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
528 static bool intel_pipe_will_have_type(const struct intel_crtc_state
*crtc_state
,
531 struct drm_atomic_state
*state
= crtc_state
->base
.state
;
532 struct drm_connector
*connector
;
533 struct drm_connector_state
*connector_state
;
534 struct intel_encoder
*encoder
;
535 int i
, num_connectors
= 0;
537 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
538 if (connector_state
->crtc
!= crtc_state
->base
.crtc
)
543 encoder
= to_intel_encoder(connector_state
->best_encoder
);
544 if (encoder
->type
== type
)
548 WARN_ON(num_connectors
== 0);
553 static const intel_limit_t
*
554 intel_ironlake_limit(struct intel_crtc_state
*crtc_state
, int refclk
)
556 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
557 const intel_limit_t
*limit
;
559 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
560 if (intel_is_dual_link_lvds(dev
)) {
561 if (refclk
== 100000)
562 limit
= &intel_limits_ironlake_dual_lvds_100m
;
564 limit
= &intel_limits_ironlake_dual_lvds
;
566 if (refclk
== 100000)
567 limit
= &intel_limits_ironlake_single_lvds_100m
;
569 limit
= &intel_limits_ironlake_single_lvds
;
572 limit
= &intel_limits_ironlake_dac
;
577 static const intel_limit_t
*
578 intel_g4x_limit(struct intel_crtc_state
*crtc_state
)
580 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
581 const intel_limit_t
*limit
;
583 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
584 if (intel_is_dual_link_lvds(dev
))
585 limit
= &intel_limits_g4x_dual_channel_lvds
;
587 limit
= &intel_limits_g4x_single_channel_lvds
;
588 } else if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_HDMI
) ||
589 intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_ANALOG
)) {
590 limit
= &intel_limits_g4x_hdmi
;
591 } else if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_SDVO
)) {
592 limit
= &intel_limits_g4x_sdvo
;
593 } else /* The option is for other outputs */
594 limit
= &intel_limits_i9xx_sdvo
;
599 static const intel_limit_t
*
600 intel_limit(struct intel_crtc_state
*crtc_state
, int refclk
)
602 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
603 const intel_limit_t
*limit
;
606 limit
= &intel_limits_bxt
;
607 else if (HAS_PCH_SPLIT(dev
))
608 limit
= intel_ironlake_limit(crtc_state
, refclk
);
609 else if (IS_G4X(dev
)) {
610 limit
= intel_g4x_limit(crtc_state
);
611 } else if (IS_PINEVIEW(dev
)) {
612 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
))
613 limit
= &intel_limits_pineview_lvds
;
615 limit
= &intel_limits_pineview_sdvo
;
616 } else if (IS_CHERRYVIEW(dev
)) {
617 limit
= &intel_limits_chv
;
618 } else if (IS_VALLEYVIEW(dev
)) {
619 limit
= &intel_limits_vlv
;
620 } else if (!IS_GEN2(dev
)) {
621 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
))
622 limit
= &intel_limits_i9xx_lvds
;
624 limit
= &intel_limits_i9xx_sdvo
;
626 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
))
627 limit
= &intel_limits_i8xx_lvds
;
628 else if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_DVO
))
629 limit
= &intel_limits_i8xx_dvo
;
631 limit
= &intel_limits_i8xx_dac
;
637 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640 * The helpers' return value is the rate of the clock that is fed to the
641 * display engine's pipe which can be the above fast dot clock rate or a
642 * divided-down version of it.
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
645 static int pnv_calc_dpll_params(int refclk
, intel_clock_t
*clock
)
647 clock
->m
= clock
->m2
+ 2;
648 clock
->p
= clock
->p1
* clock
->p2
;
649 if (WARN_ON(clock
->n
== 0 || clock
->p
== 0))
651 clock
->vco
= DIV_ROUND_CLOSEST(refclk
* clock
->m
, clock
->n
);
652 clock
->dot
= DIV_ROUND_CLOSEST(clock
->vco
, clock
->p
);
657 static uint32_t i9xx_dpll_compute_m(struct dpll
*dpll
)
659 return 5 * (dpll
->m1
+ 2) + (dpll
->m2
+ 2);
662 static int i9xx_calc_dpll_params(int refclk
, intel_clock_t
*clock
)
664 clock
->m
= i9xx_dpll_compute_m(clock
);
665 clock
->p
= clock
->p1
* clock
->p2
;
666 if (WARN_ON(clock
->n
+ 2 == 0 || clock
->p
== 0))
668 clock
->vco
= DIV_ROUND_CLOSEST(refclk
* clock
->m
, clock
->n
+ 2);
669 clock
->dot
= DIV_ROUND_CLOSEST(clock
->vco
, clock
->p
);
674 static int vlv_calc_dpll_params(int refclk
, intel_clock_t
*clock
)
676 clock
->m
= clock
->m1
* clock
->m2
;
677 clock
->p
= clock
->p1
* clock
->p2
;
678 if (WARN_ON(clock
->n
== 0 || clock
->p
== 0))
680 clock
->vco
= DIV_ROUND_CLOSEST(refclk
* clock
->m
, clock
->n
);
681 clock
->dot
= DIV_ROUND_CLOSEST(clock
->vco
, clock
->p
);
683 return clock
->dot
/ 5;
686 int chv_calc_dpll_params(int refclk
, intel_clock_t
*clock
)
688 clock
->m
= clock
->m1
* clock
->m2
;
689 clock
->p
= clock
->p1
* clock
->p2
;
690 if (WARN_ON(clock
->n
== 0 || clock
->p
== 0))
692 clock
->vco
= DIV_ROUND_CLOSEST_ULL((uint64_t)refclk
* clock
->m
,
694 clock
->dot
= DIV_ROUND_CLOSEST(clock
->vco
, clock
->p
);
696 return clock
->dot
/ 5;
699 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
701 * Returns whether the given set of divisors are valid for a given refclk with
702 * the given connectors.
705 static bool intel_PLL_is_valid(struct drm_device
*dev
,
706 const intel_limit_t
*limit
,
707 const intel_clock_t
*clock
)
709 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
710 INTELPllInvalid("n out of range\n");
711 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
712 INTELPllInvalid("p1 out of range\n");
713 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
714 INTELPllInvalid("m2 out of range\n");
715 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
716 INTELPllInvalid("m1 out of range\n");
718 if (!IS_PINEVIEW(dev
) && !IS_VALLEYVIEW(dev
) && !IS_BROXTON(dev
))
719 if (clock
->m1
<= clock
->m2
)
720 INTELPllInvalid("m1 <= m2\n");
722 if (!IS_VALLEYVIEW(dev
) && !IS_BROXTON(dev
)) {
723 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
724 INTELPllInvalid("p out of range\n");
725 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
726 INTELPllInvalid("m out of range\n");
729 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
730 INTELPllInvalid("vco out of range\n");
731 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
732 * connector, etc., rather than just a single range.
734 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
735 INTELPllInvalid("dot out of range\n");
741 i9xx_select_p2_div(const intel_limit_t
*limit
,
742 const struct intel_crtc_state
*crtc_state
,
745 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
747 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
749 * For LVDS just rely on its current settings for dual-channel.
750 * We haven't figured out how to reliably set up different
751 * single/dual channel state, if we even can.
753 if (intel_is_dual_link_lvds(dev
))
754 return limit
->p2
.p2_fast
;
756 return limit
->p2
.p2_slow
;
758 if (target
< limit
->p2
.dot_limit
)
759 return limit
->p2
.p2_slow
;
761 return limit
->p2
.p2_fast
;
766 i9xx_find_best_dpll(const intel_limit_t
*limit
,
767 struct intel_crtc_state
*crtc_state
,
768 int target
, int refclk
, intel_clock_t
*match_clock
,
769 intel_clock_t
*best_clock
)
771 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
775 memset(best_clock
, 0, sizeof(*best_clock
));
777 clock
.p2
= i9xx_select_p2_div(limit
, crtc_state
, target
);
779 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
781 for (clock
.m2
= limit
->m2
.min
;
782 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
783 if (clock
.m2
>= clock
.m1
)
785 for (clock
.n
= limit
->n
.min
;
786 clock
.n
<= limit
->n
.max
; clock
.n
++) {
787 for (clock
.p1
= limit
->p1
.min
;
788 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
791 i9xx_calc_dpll_params(refclk
, &clock
);
792 if (!intel_PLL_is_valid(dev
, limit
,
796 clock
.p
!= match_clock
->p
)
799 this_err
= abs(clock
.dot
- target
);
800 if (this_err
< err
) {
809 return (err
!= target
);
813 pnv_find_best_dpll(const intel_limit_t
*limit
,
814 struct intel_crtc_state
*crtc_state
,
815 int target
, int refclk
, intel_clock_t
*match_clock
,
816 intel_clock_t
*best_clock
)
818 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
822 memset(best_clock
, 0, sizeof(*best_clock
));
824 clock
.p2
= i9xx_select_p2_div(limit
, crtc_state
, target
);
826 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
828 for (clock
.m2
= limit
->m2
.min
;
829 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
830 for (clock
.n
= limit
->n
.min
;
831 clock
.n
<= limit
->n
.max
; clock
.n
++) {
832 for (clock
.p1
= limit
->p1
.min
;
833 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
836 pnv_calc_dpll_params(refclk
, &clock
);
837 if (!intel_PLL_is_valid(dev
, limit
,
841 clock
.p
!= match_clock
->p
)
844 this_err
= abs(clock
.dot
- target
);
845 if (this_err
< err
) {
854 return (err
!= target
);
858 g4x_find_best_dpll(const intel_limit_t
*limit
,
859 struct intel_crtc_state
*crtc_state
,
860 int target
, int refclk
, intel_clock_t
*match_clock
,
861 intel_clock_t
*best_clock
)
863 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
867 /* approximately equals target * 0.00585 */
868 int err_most
= (target
>> 8) + (target
>> 9);
870 memset(best_clock
, 0, sizeof(*best_clock
));
872 clock
.p2
= i9xx_select_p2_div(limit
, crtc_state
, target
);
874 max_n
= limit
->n
.max
;
875 /* based on hardware requirement, prefer smaller n to precision */
876 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
877 /* based on hardware requirement, prefere larger m1,m2 */
878 for (clock
.m1
= limit
->m1
.max
;
879 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
880 for (clock
.m2
= limit
->m2
.max
;
881 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
882 for (clock
.p1
= limit
->p1
.max
;
883 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
886 i9xx_calc_dpll_params(refclk
, &clock
);
887 if (!intel_PLL_is_valid(dev
, limit
,
891 this_err
= abs(clock
.dot
- target
);
892 if (this_err
< err_most
) {
906 * Check if the calculated PLL configuration is more optimal compared to the
907 * best configuration and error found so far. Return the calculated error.
909 static bool vlv_PLL_is_optimal(struct drm_device
*dev
, int target_freq
,
910 const intel_clock_t
*calculated_clock
,
911 const intel_clock_t
*best_clock
,
912 unsigned int best_error_ppm
,
913 unsigned int *error_ppm
)
916 * For CHV ignore the error and consider only the P value.
917 * Prefer a bigger P value based on HW requirements.
919 if (IS_CHERRYVIEW(dev
)) {
922 return calculated_clock
->p
> best_clock
->p
;
925 if (WARN_ON_ONCE(!target_freq
))
928 *error_ppm
= div_u64(1000000ULL *
929 abs(target_freq
- calculated_clock
->dot
),
932 * Prefer a better P value over a better (smaller) error if the error
933 * is small. Ensure this preference for future configurations too by
934 * setting the error to 0.
936 if (*error_ppm
< 100 && calculated_clock
->p
> best_clock
->p
) {
942 return *error_ppm
+ 10 < best_error_ppm
;
946 vlv_find_best_dpll(const intel_limit_t
*limit
,
947 struct intel_crtc_state
*crtc_state
,
948 int target
, int refclk
, intel_clock_t
*match_clock
,
949 intel_clock_t
*best_clock
)
951 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
952 struct drm_device
*dev
= crtc
->base
.dev
;
954 unsigned int bestppm
= 1000000;
955 /* min update 19.2 MHz */
956 int max_n
= min(limit
->n
.max
, refclk
/ 19200);
959 target
*= 5; /* fast clock */
961 memset(best_clock
, 0, sizeof(*best_clock
));
963 /* based on hardware requirement, prefer smaller n to precision */
964 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
965 for (clock
.p1
= limit
->p1
.max
; clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
966 for (clock
.p2
= limit
->p2
.p2_fast
; clock
.p2
>= limit
->p2
.p2_slow
;
967 clock
.p2
-= clock
.p2
> 10 ? 2 : 1) {
968 clock
.p
= clock
.p1
* clock
.p2
;
969 /* based on hardware requirement, prefer bigger m1,m2 values */
970 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
; clock
.m1
++) {
973 clock
.m2
= DIV_ROUND_CLOSEST(target
* clock
.p
* clock
.n
,
976 vlv_calc_dpll_params(refclk
, &clock
);
978 if (!intel_PLL_is_valid(dev
, limit
,
982 if (!vlv_PLL_is_optimal(dev
, target
,
1000 chv_find_best_dpll(const intel_limit_t
*limit
,
1001 struct intel_crtc_state
*crtc_state
,
1002 int target
, int refclk
, intel_clock_t
*match_clock
,
1003 intel_clock_t
*best_clock
)
1005 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
1006 struct drm_device
*dev
= crtc
->base
.dev
;
1007 unsigned int best_error_ppm
;
1008 intel_clock_t clock
;
1012 memset(best_clock
, 0, sizeof(*best_clock
));
1013 best_error_ppm
= 1000000;
1016 * Based on hardware doc, the n always set to 1, and m1 always
1017 * set to 2. If requires to support 200Mhz refclk, we need to
1018 * revisit this because n may not 1 anymore.
1020 clock
.n
= 1, clock
.m1
= 2;
1021 target
*= 5; /* fast clock */
1023 for (clock
.p1
= limit
->p1
.max
; clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
1024 for (clock
.p2
= limit
->p2
.p2_fast
;
1025 clock
.p2
>= limit
->p2
.p2_slow
;
1026 clock
.p2
-= clock
.p2
> 10 ? 2 : 1) {
1027 unsigned int error_ppm
;
1029 clock
.p
= clock
.p1
* clock
.p2
;
1031 m2
= DIV_ROUND_CLOSEST_ULL(((uint64_t)target
* clock
.p
*
1032 clock
.n
) << 22, refclk
* clock
.m1
);
1034 if (m2
> INT_MAX
/clock
.m1
)
1039 chv_calc_dpll_params(refclk
, &clock
);
1041 if (!intel_PLL_is_valid(dev
, limit
, &clock
))
1044 if (!vlv_PLL_is_optimal(dev
, target
, &clock
, best_clock
,
1045 best_error_ppm
, &error_ppm
))
1048 *best_clock
= clock
;
1049 best_error_ppm
= error_ppm
;
1057 bool bxt_find_best_dpll(struct intel_crtc_state
*crtc_state
, int target_clock
,
1058 intel_clock_t
*best_clock
)
1060 int refclk
= i9xx_get_refclk(crtc_state
, 0);
1062 return chv_find_best_dpll(intel_limit(crtc_state
, refclk
), crtc_state
,
1063 target_clock
, refclk
, NULL
, best_clock
);
1066 bool intel_crtc_active(struct drm_crtc
*crtc
)
1068 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1070 /* Be paranoid as we can arrive here with only partial
1071 * state retrieved from the hardware during setup.
1073 * We can ditch the adjusted_mode.crtc_clock check as soon
1074 * as Haswell has gained clock readout/fastboot support.
1076 * We can ditch the crtc->primary->fb check as soon as we can
1077 * properly reconstruct framebuffers.
1079 * FIXME: The intel_crtc->active here should be switched to
1080 * crtc->state->active once we have proper CRTC states wired up
1083 return intel_crtc
->active
&& crtc
->primary
->state
->fb
&&
1084 intel_crtc
->config
->base
.adjusted_mode
.crtc_clock
;
1087 enum transcoder
intel_pipe_to_cpu_transcoder(struct drm_i915_private
*dev_priv
,
1090 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
1091 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1093 return intel_crtc
->config
->cpu_transcoder
;
1096 static bool pipe_dsl_stopped(struct drm_device
*dev
, enum pipe pipe
)
1098 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1099 u32 reg
= PIPEDSL(pipe
);
1104 line_mask
= DSL_LINEMASK_GEN2
;
1106 line_mask
= DSL_LINEMASK_GEN3
;
1108 line1
= I915_READ(reg
) & line_mask
;
1110 line2
= I915_READ(reg
) & line_mask
;
1112 return line1
== line2
;
1116 * intel_wait_for_pipe_off - wait for pipe to turn off
1117 * @crtc: crtc whose pipe to wait for
1119 * After disabling a pipe, we can't wait for vblank in the usual way,
1120 * spinning on the vblank interrupt status bit, since we won't actually
1121 * see an interrupt when the pipe is disabled.
1123 * On Gen4 and above:
1124 * wait for the pipe register state bit to turn off
1127 * wait for the display line value to settle (it usually
1128 * ends up stopping at the start of the next frame).
1131 static void intel_wait_for_pipe_off(struct intel_crtc
*crtc
)
1133 struct drm_device
*dev
= crtc
->base
.dev
;
1134 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1135 enum transcoder cpu_transcoder
= crtc
->config
->cpu_transcoder
;
1136 enum pipe pipe
= crtc
->pipe
;
1138 if (INTEL_INFO(dev
)->gen
>= 4) {
1139 int reg
= PIPECONF(cpu_transcoder
);
1141 /* Wait for the Pipe State to go off */
1142 if (wait_for((I915_READ(reg
) & I965_PIPECONF_ACTIVE
) == 0,
1144 WARN(1, "pipe_off wait timed out\n");
1146 /* Wait for the display line to settle */
1147 if (wait_for(pipe_dsl_stopped(dev
, pipe
), 100))
1148 WARN(1, "pipe_off wait timed out\n");
1152 static const char *state_string(bool enabled
)
1154 return enabled
? "on" : "off";
1157 /* Only for pre-ILK configs */
1158 void assert_pll(struct drm_i915_private
*dev_priv
,
1159 enum pipe pipe
, bool state
)
1164 val
= I915_READ(DPLL(pipe
));
1165 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
1166 I915_STATE_WARN(cur_state
!= state
,
1167 "PLL state assertion failure (expected %s, current %s)\n",
1168 state_string(state
), state_string(cur_state
));
1171 /* XXX: the dsi pll is shared between MIPI DSI ports */
1172 static void assert_dsi_pll(struct drm_i915_private
*dev_priv
, bool state
)
1177 mutex_lock(&dev_priv
->sb_lock
);
1178 val
= vlv_cck_read(dev_priv
, CCK_REG_DSI_PLL_CONTROL
);
1179 mutex_unlock(&dev_priv
->sb_lock
);
1181 cur_state
= val
& DSI_PLL_VCO_EN
;
1182 I915_STATE_WARN(cur_state
!= state
,
1183 "DSI PLL state assertion failure (expected %s, current %s)\n",
1184 state_string(state
), state_string(cur_state
));
1186 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1187 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1189 struct intel_shared_dpll
*
1190 intel_crtc_to_shared_dpll(struct intel_crtc
*crtc
)
1192 struct drm_i915_private
*dev_priv
= crtc
->base
.dev
->dev_private
;
1194 if (crtc
->config
->shared_dpll
< 0)
1197 return &dev_priv
->shared_dplls
[crtc
->config
->shared_dpll
];
1201 void assert_shared_dpll(struct drm_i915_private
*dev_priv
,
1202 struct intel_shared_dpll
*pll
,
1206 struct intel_dpll_hw_state hw_state
;
1209 "asserting DPLL %s with no DPLL\n", state_string(state
)))
1212 cur_state
= pll
->get_hw_state(dev_priv
, pll
, &hw_state
);
1213 I915_STATE_WARN(cur_state
!= state
,
1214 "%s assertion failure (expected %s, current %s)\n",
1215 pll
->name
, state_string(state
), state_string(cur_state
));
1218 static void assert_fdi_tx(struct drm_i915_private
*dev_priv
,
1219 enum pipe pipe
, bool state
)
1222 enum transcoder cpu_transcoder
= intel_pipe_to_cpu_transcoder(dev_priv
,
1225 if (HAS_DDI(dev_priv
->dev
)) {
1226 /* DDI does not have a specific FDI_TX register */
1227 u32 val
= I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder
));
1228 cur_state
= !!(val
& TRANS_DDI_FUNC_ENABLE
);
1230 u32 val
= I915_READ(FDI_TX_CTL(pipe
));
1231 cur_state
= !!(val
& FDI_TX_ENABLE
);
1233 I915_STATE_WARN(cur_state
!= state
,
1234 "FDI TX state assertion failure (expected %s, current %s)\n",
1235 state_string(state
), state_string(cur_state
));
1237 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1238 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1240 static void assert_fdi_rx(struct drm_i915_private
*dev_priv
,
1241 enum pipe pipe
, bool state
)
1246 val
= I915_READ(FDI_RX_CTL(pipe
));
1247 cur_state
= !!(val
& FDI_RX_ENABLE
);
1248 I915_STATE_WARN(cur_state
!= state
,
1249 "FDI RX state assertion failure (expected %s, current %s)\n",
1250 state_string(state
), state_string(cur_state
));
1252 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1253 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1255 static void assert_fdi_tx_pll_enabled(struct drm_i915_private
*dev_priv
,
1260 /* ILK FDI PLL is always enabled */
1261 if (INTEL_INFO(dev_priv
->dev
)->gen
== 5)
1264 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1265 if (HAS_DDI(dev_priv
->dev
))
1268 val
= I915_READ(FDI_TX_CTL(pipe
));
1269 I915_STATE_WARN(!(val
& FDI_TX_PLL_ENABLE
), "FDI TX PLL assertion failure, should be active but is disabled\n");
1272 void assert_fdi_rx_pll(struct drm_i915_private
*dev_priv
,
1273 enum pipe pipe
, bool state
)
1278 val
= I915_READ(FDI_RX_CTL(pipe
));
1279 cur_state
= !!(val
& FDI_RX_PLL_ENABLE
);
1280 I915_STATE_WARN(cur_state
!= state
,
1281 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1282 state_string(state
), state_string(cur_state
));
1285 void assert_panel_unlocked(struct drm_i915_private
*dev_priv
,
1288 struct drm_device
*dev
= dev_priv
->dev
;
1291 enum pipe panel_pipe
= PIPE_A
;
1294 if (WARN_ON(HAS_DDI(dev
)))
1297 if (HAS_PCH_SPLIT(dev
)) {
1300 pp_reg
= PCH_PP_CONTROL
;
1301 port_sel
= I915_READ(PCH_PP_ON_DELAYS
) & PANEL_PORT_SELECT_MASK
;
1303 if (port_sel
== PANEL_PORT_SELECT_LVDS
&&
1304 I915_READ(PCH_LVDS
) & LVDS_PIPEB_SELECT
)
1305 panel_pipe
= PIPE_B
;
1306 /* XXX: else fix for eDP */
1307 } else if (IS_VALLEYVIEW(dev
)) {
1308 /* presumably write lock depends on pipe, not port select */
1309 pp_reg
= VLV_PIPE_PP_CONTROL(pipe
);
1312 pp_reg
= PP_CONTROL
;
1313 if (I915_READ(LVDS
) & LVDS_PIPEB_SELECT
)
1314 panel_pipe
= PIPE_B
;
1317 val
= I915_READ(pp_reg
);
1318 if (!(val
& PANEL_POWER_ON
) ||
1319 ((val
& PANEL_UNLOCK_MASK
) == PANEL_UNLOCK_REGS
))
1322 I915_STATE_WARN(panel_pipe
== pipe
&& locked
,
1323 "panel assertion failure, pipe %c regs locked\n",
1327 static void assert_cursor(struct drm_i915_private
*dev_priv
,
1328 enum pipe pipe
, bool state
)
1330 struct drm_device
*dev
= dev_priv
->dev
;
1333 if (IS_845G(dev
) || IS_I865G(dev
))
1334 cur_state
= I915_READ(CURCNTR(PIPE_A
)) & CURSOR_ENABLE
;
1336 cur_state
= I915_READ(CURCNTR(pipe
)) & CURSOR_MODE
;
1338 I915_STATE_WARN(cur_state
!= state
,
1339 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1340 pipe_name(pipe
), state_string(state
), state_string(cur_state
));
1342 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1343 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1345 void assert_pipe(struct drm_i915_private
*dev_priv
,
1346 enum pipe pipe
, bool state
)
1349 enum transcoder cpu_transcoder
= intel_pipe_to_cpu_transcoder(dev_priv
,
1352 /* if we need the pipe quirk it must be always on */
1353 if ((pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
1354 (pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
1357 if (!intel_display_power_is_enabled(dev_priv
,
1358 POWER_DOMAIN_TRANSCODER(cpu_transcoder
))) {
1361 u32 val
= I915_READ(PIPECONF(cpu_transcoder
));
1362 cur_state
= !!(val
& PIPECONF_ENABLE
);
1365 I915_STATE_WARN(cur_state
!= state
,
1366 "pipe %c assertion failure (expected %s, current %s)\n",
1367 pipe_name(pipe
), state_string(state
), state_string(cur_state
));
1370 static void assert_plane(struct drm_i915_private
*dev_priv
,
1371 enum plane plane
, bool state
)
1376 val
= I915_READ(DSPCNTR(plane
));
1377 cur_state
= !!(val
& DISPLAY_PLANE_ENABLE
);
1378 I915_STATE_WARN(cur_state
!= state
,
1379 "plane %c assertion failure (expected %s, current %s)\n",
1380 plane_name(plane
), state_string(state
), state_string(cur_state
));
1383 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1384 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1386 static void assert_planes_disabled(struct drm_i915_private
*dev_priv
,
1389 struct drm_device
*dev
= dev_priv
->dev
;
1392 /* Primary planes are fixed to pipes on gen4+ */
1393 if (INTEL_INFO(dev
)->gen
>= 4) {
1394 u32 val
= I915_READ(DSPCNTR(pipe
));
1395 I915_STATE_WARN(val
& DISPLAY_PLANE_ENABLE
,
1396 "plane %c assertion failure, should be disabled but not\n",
1401 /* Need to check both planes against the pipe */
1402 for_each_pipe(dev_priv
, i
) {
1403 u32 val
= I915_READ(DSPCNTR(i
));
1404 enum pipe cur_pipe
= (val
& DISPPLANE_SEL_PIPE_MASK
) >>
1405 DISPPLANE_SEL_PIPE_SHIFT
;
1406 I915_STATE_WARN((val
& DISPLAY_PLANE_ENABLE
) && pipe
== cur_pipe
,
1407 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1408 plane_name(i
), pipe_name(pipe
));
1412 static void assert_sprites_disabled(struct drm_i915_private
*dev_priv
,
1415 struct drm_device
*dev
= dev_priv
->dev
;
1418 if (INTEL_INFO(dev
)->gen
>= 9) {
1419 for_each_sprite(dev_priv
, pipe
, sprite
) {
1420 u32 val
= I915_READ(PLANE_CTL(pipe
, sprite
));
1421 I915_STATE_WARN(val
& PLANE_CTL_ENABLE
,
1422 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1423 sprite
, pipe_name(pipe
));
1425 } else if (IS_VALLEYVIEW(dev
)) {
1426 for_each_sprite(dev_priv
, pipe
, sprite
) {
1427 u32 val
= I915_READ(SPCNTR(pipe
, sprite
));
1428 I915_STATE_WARN(val
& SP_ENABLE
,
1429 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1430 sprite_name(pipe
, sprite
), pipe_name(pipe
));
1432 } else if (INTEL_INFO(dev
)->gen
>= 7) {
1433 u32 val
= I915_READ(SPRCTL(pipe
));
1434 I915_STATE_WARN(val
& SPRITE_ENABLE
,
1435 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436 plane_name(pipe
), pipe_name(pipe
));
1437 } else if (INTEL_INFO(dev
)->gen
>= 5) {
1438 u32 val
= I915_READ(DVSCNTR(pipe
));
1439 I915_STATE_WARN(val
& DVS_ENABLE
,
1440 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1441 plane_name(pipe
), pipe_name(pipe
));
1445 static void assert_vblank_disabled(struct drm_crtc
*crtc
)
1447 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc
) == 0))
1448 drm_crtc_vblank_put(crtc
);
1451 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private
*dev_priv
)
1456 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv
->dev
) || HAS_PCH_CPT(dev_priv
->dev
)));
1458 val
= I915_READ(PCH_DREF_CONTROL
);
1459 enabled
= !!(val
& (DREF_SSC_SOURCE_MASK
| DREF_NONSPREAD_SOURCE_MASK
|
1460 DREF_SUPERSPREAD_SOURCE_MASK
));
1461 I915_STATE_WARN(!enabled
, "PCH refclk assertion failure, should be active but is disabled\n");
1464 static void assert_pch_transcoder_disabled(struct drm_i915_private
*dev_priv
,
1470 val
= I915_READ(PCH_TRANSCONF(pipe
));
1471 enabled
= !!(val
& TRANS_ENABLE
);
1472 I915_STATE_WARN(enabled
,
1473 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1477 static bool dp_pipe_enabled(struct drm_i915_private
*dev_priv
,
1478 enum pipe pipe
, u32 port_sel
, u32 val
)
1480 if ((val
& DP_PORT_EN
) == 0)
1483 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1484 u32 trans_dp_ctl_reg
= TRANS_DP_CTL(pipe
);
1485 u32 trans_dp_ctl
= I915_READ(trans_dp_ctl_reg
);
1486 if ((trans_dp_ctl
& TRANS_DP_PORT_SEL_MASK
) != port_sel
)
1488 } else if (IS_CHERRYVIEW(dev_priv
->dev
)) {
1489 if ((val
& DP_PIPE_MASK_CHV
) != DP_PIPE_SELECT_CHV(pipe
))
1492 if ((val
& DP_PIPE_MASK
) != (pipe
<< 30))
1498 static bool hdmi_pipe_enabled(struct drm_i915_private
*dev_priv
,
1499 enum pipe pipe
, u32 val
)
1501 if ((val
& SDVO_ENABLE
) == 0)
1504 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1505 if ((val
& SDVO_PIPE_SEL_MASK_CPT
) != SDVO_PIPE_SEL_CPT(pipe
))
1507 } else if (IS_CHERRYVIEW(dev_priv
->dev
)) {
1508 if ((val
& SDVO_PIPE_SEL_MASK_CHV
) != SDVO_PIPE_SEL_CHV(pipe
))
1511 if ((val
& SDVO_PIPE_SEL_MASK
) != SDVO_PIPE_SEL(pipe
))
1517 static bool lvds_pipe_enabled(struct drm_i915_private
*dev_priv
,
1518 enum pipe pipe
, u32 val
)
1520 if ((val
& LVDS_PORT_EN
) == 0)
1523 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1524 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1527 if ((val
& LVDS_PIPE_MASK
) != LVDS_PIPE(pipe
))
1533 static bool adpa_pipe_enabled(struct drm_i915_private
*dev_priv
,
1534 enum pipe pipe
, u32 val
)
1536 if ((val
& ADPA_DAC_ENABLE
) == 0)
1538 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1539 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1542 if ((val
& ADPA_PIPE_SELECT_MASK
) != ADPA_PIPE_SELECT(pipe
))
1548 static void assert_pch_dp_disabled(struct drm_i915_private
*dev_priv
,
1549 enum pipe pipe
, int reg
, u32 port_sel
)
1551 u32 val
= I915_READ(reg
);
1552 I915_STATE_WARN(dp_pipe_enabled(dev_priv
, pipe
, port_sel
, val
),
1553 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1554 reg
, pipe_name(pipe
));
1556 I915_STATE_WARN(HAS_PCH_IBX(dev_priv
->dev
) && (val
& DP_PORT_EN
) == 0
1557 && (val
& DP_PIPEB_SELECT
),
1558 "IBX PCH dp port still using transcoder B\n");
1561 static void assert_pch_hdmi_disabled(struct drm_i915_private
*dev_priv
,
1562 enum pipe pipe
, int reg
)
1564 u32 val
= I915_READ(reg
);
1565 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv
, pipe
, val
),
1566 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1567 reg
, pipe_name(pipe
));
1569 I915_STATE_WARN(HAS_PCH_IBX(dev_priv
->dev
) && (val
& SDVO_ENABLE
) == 0
1570 && (val
& SDVO_PIPE_B_SELECT
),
1571 "IBX PCH hdmi port still using transcoder B\n");
1574 static void assert_pch_ports_disabled(struct drm_i915_private
*dev_priv
,
1579 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_B
, TRANS_DP_PORT_SEL_B
);
1580 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_C
, TRANS_DP_PORT_SEL_C
);
1581 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_D
, TRANS_DP_PORT_SEL_D
);
1583 val
= I915_READ(PCH_ADPA
);
1584 I915_STATE_WARN(adpa_pipe_enabled(dev_priv
, pipe
, val
),
1585 "PCH VGA enabled on transcoder %c, should be disabled\n",
1588 val
= I915_READ(PCH_LVDS
);
1589 I915_STATE_WARN(lvds_pipe_enabled(dev_priv
, pipe
, val
),
1590 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1593 assert_pch_hdmi_disabled(dev_priv
, pipe
, PCH_HDMIB
);
1594 assert_pch_hdmi_disabled(dev_priv
, pipe
, PCH_HDMIC
);
1595 assert_pch_hdmi_disabled(dev_priv
, pipe
, PCH_HDMID
);
1598 static void vlv_enable_pll(struct intel_crtc
*crtc
,
1599 const struct intel_crtc_state
*pipe_config
)
1601 struct drm_device
*dev
= crtc
->base
.dev
;
1602 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1603 int reg
= DPLL(crtc
->pipe
);
1604 u32 dpll
= pipe_config
->dpll_hw_state
.dpll
;
1606 assert_pipe_disabled(dev_priv
, crtc
->pipe
);
1608 /* No really, not for ILK+ */
1609 BUG_ON(!IS_VALLEYVIEW(dev_priv
->dev
));
1611 /* PLL is protected by panel, make sure we can write it */
1612 if (IS_MOBILE(dev_priv
->dev
))
1613 assert_panel_unlocked(dev_priv
, crtc
->pipe
);
1615 I915_WRITE(reg
, dpll
);
1619 if (wait_for(((I915_READ(reg
) & DPLL_LOCK_VLV
) == DPLL_LOCK_VLV
), 1))
1620 DRM_ERROR("DPLL %d failed to lock\n", crtc
->pipe
);
1622 I915_WRITE(DPLL_MD(crtc
->pipe
), pipe_config
->dpll_hw_state
.dpll_md
);
1623 POSTING_READ(DPLL_MD(crtc
->pipe
));
1625 /* We do this three times for luck */
1626 I915_WRITE(reg
, dpll
);
1628 udelay(150); /* wait for warmup */
1629 I915_WRITE(reg
, dpll
);
1631 udelay(150); /* wait for warmup */
1632 I915_WRITE(reg
, dpll
);
1634 udelay(150); /* wait for warmup */
1637 static void chv_enable_pll(struct intel_crtc
*crtc
,
1638 const struct intel_crtc_state
*pipe_config
)
1640 struct drm_device
*dev
= crtc
->base
.dev
;
1641 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1642 int pipe
= crtc
->pipe
;
1643 enum dpio_channel port
= vlv_pipe_to_channel(pipe
);
1646 assert_pipe_disabled(dev_priv
, crtc
->pipe
);
1648 BUG_ON(!IS_CHERRYVIEW(dev_priv
->dev
));
1650 mutex_lock(&dev_priv
->sb_lock
);
1652 /* Enable back the 10bit clock to display controller */
1653 tmp
= vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW14(port
));
1654 tmp
|= DPIO_DCLKP_EN
;
1655 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW14(port
), tmp
);
1657 mutex_unlock(&dev_priv
->sb_lock
);
1660 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1665 I915_WRITE(DPLL(pipe
), pipe_config
->dpll_hw_state
.dpll
);
1667 /* Check PLL is locked */
1668 if (wait_for(((I915_READ(DPLL(pipe
)) & DPLL_LOCK_VLV
) == DPLL_LOCK_VLV
), 1))
1669 DRM_ERROR("PLL %d failed to lock\n", pipe
);
1671 /* not sure when this should be written */
1672 I915_WRITE(DPLL_MD(pipe
), pipe_config
->dpll_hw_state
.dpll_md
);
1673 POSTING_READ(DPLL_MD(pipe
));
1676 static int intel_num_dvo_pipes(struct drm_device
*dev
)
1678 struct intel_crtc
*crtc
;
1681 for_each_intel_crtc(dev
, crtc
)
1682 count
+= crtc
->base
.state
->active
&&
1683 intel_pipe_has_type(crtc
, INTEL_OUTPUT_DVO
);
1688 static void i9xx_enable_pll(struct intel_crtc
*crtc
)
1690 struct drm_device
*dev
= crtc
->base
.dev
;
1691 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1692 int reg
= DPLL(crtc
->pipe
);
1693 u32 dpll
= crtc
->config
->dpll_hw_state
.dpll
;
1695 assert_pipe_disabled(dev_priv
, crtc
->pipe
);
1697 /* No really, not for ILK+ */
1698 BUG_ON(INTEL_INFO(dev
)->gen
>= 5);
1700 /* PLL is protected by panel, make sure we can write it */
1701 if (IS_MOBILE(dev
) && !IS_I830(dev
))
1702 assert_panel_unlocked(dev_priv
, crtc
->pipe
);
1704 /* Enable DVO 2x clock on both PLLs if necessary */
1705 if (IS_I830(dev
) && intel_num_dvo_pipes(dev
) > 0) {
1707 * It appears to be important that we don't enable this
1708 * for the current pipe before otherwise configuring the
1709 * PLL. No idea how this should be handled if multiple
1710 * DVO outputs are enabled simultaneosly.
1712 dpll
|= DPLL_DVO_2X_MODE
;
1713 I915_WRITE(DPLL(!crtc
->pipe
),
1714 I915_READ(DPLL(!crtc
->pipe
)) | DPLL_DVO_2X_MODE
);
1718 * Apparently we need to have VGA mode enabled prior to changing
1719 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1720 * dividers, even though the register value does change.
1724 I915_WRITE(reg
, dpll
);
1726 /* Wait for the clocks to stabilize. */
1730 if (INTEL_INFO(dev
)->gen
>= 4) {
1731 I915_WRITE(DPLL_MD(crtc
->pipe
),
1732 crtc
->config
->dpll_hw_state
.dpll_md
);
1734 /* The pixel multiplier can only be updated once the
1735 * DPLL is enabled and the clocks are stable.
1737 * So write it again.
1739 I915_WRITE(reg
, dpll
);
1742 /* We do this three times for luck */
1743 I915_WRITE(reg
, dpll
);
1745 udelay(150); /* wait for warmup */
1746 I915_WRITE(reg
, dpll
);
1748 udelay(150); /* wait for warmup */
1749 I915_WRITE(reg
, dpll
);
1751 udelay(150); /* wait for warmup */
1755 * i9xx_disable_pll - disable a PLL
1756 * @dev_priv: i915 private structure
1757 * @pipe: pipe PLL to disable
1759 * Disable the PLL for @pipe, making sure the pipe is off first.
1761 * Note! This is for pre-ILK only.
1763 static void i9xx_disable_pll(struct intel_crtc
*crtc
)
1765 struct drm_device
*dev
= crtc
->base
.dev
;
1766 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1767 enum pipe pipe
= crtc
->pipe
;
1769 /* Disable DVO 2x clock on both PLLs if necessary */
1771 intel_pipe_has_type(crtc
, INTEL_OUTPUT_DVO
) &&
1772 !intel_num_dvo_pipes(dev
)) {
1773 I915_WRITE(DPLL(PIPE_B
),
1774 I915_READ(DPLL(PIPE_B
)) & ~DPLL_DVO_2X_MODE
);
1775 I915_WRITE(DPLL(PIPE_A
),
1776 I915_READ(DPLL(PIPE_A
)) & ~DPLL_DVO_2X_MODE
);
1779 /* Don't disable pipe or pipe PLLs if needed */
1780 if ((pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
1781 (pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
1784 /* Make sure the pipe isn't still relying on us */
1785 assert_pipe_disabled(dev_priv
, pipe
);
1787 I915_WRITE(DPLL(pipe
), DPLL_VGA_MODE_DIS
);
1788 POSTING_READ(DPLL(pipe
));
1791 static void vlv_disable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1795 /* Make sure the pipe isn't still relying on us */
1796 assert_pipe_disabled(dev_priv
, pipe
);
1799 * Leave integrated clock source and reference clock enabled for pipe B.
1800 * The latter is needed for VGA hotplug / manual detection.
1802 val
= DPLL_VGA_MODE_DIS
;
1804 val
= DPLL_INTEGRATED_CRI_CLK_VLV
| DPLL_REF_CLK_ENABLE_VLV
;
1805 I915_WRITE(DPLL(pipe
), val
);
1806 POSTING_READ(DPLL(pipe
));
1810 static void chv_disable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1812 enum dpio_channel port
= vlv_pipe_to_channel(pipe
);
1815 /* Make sure the pipe isn't still relying on us */
1816 assert_pipe_disabled(dev_priv
, pipe
);
1818 /* Set PLL en = 0 */
1819 val
= DPLL_SSC_REF_CLK_CHV
|
1820 DPLL_REF_CLK_ENABLE_VLV
| DPLL_VGA_MODE_DIS
;
1822 val
|= DPLL_INTEGRATED_CRI_CLK_VLV
;
1823 I915_WRITE(DPLL(pipe
), val
);
1824 POSTING_READ(DPLL(pipe
));
1826 mutex_lock(&dev_priv
->sb_lock
);
1828 /* Disable 10bit clock to display controller */
1829 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW14(port
));
1830 val
&= ~DPIO_DCLKP_EN
;
1831 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW14(port
), val
);
1833 mutex_unlock(&dev_priv
->sb_lock
);
1836 void vlv_wait_port_ready(struct drm_i915_private
*dev_priv
,
1837 struct intel_digital_port
*dport
,
1838 unsigned int expected_mask
)
1843 switch (dport
->port
) {
1845 port_mask
= DPLL_PORTB_READY_MASK
;
1849 port_mask
= DPLL_PORTC_READY_MASK
;
1851 expected_mask
<<= 4;
1854 port_mask
= DPLL_PORTD_READY_MASK
;
1855 dpll_reg
= DPIO_PHY_STATUS
;
1861 if (wait_for((I915_READ(dpll_reg
) & port_mask
) == expected_mask
, 1000))
1862 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1863 port_name(dport
->port
), I915_READ(dpll_reg
) & port_mask
, expected_mask
);
1866 static void intel_prepare_shared_dpll(struct intel_crtc
*crtc
)
1868 struct drm_device
*dev
= crtc
->base
.dev
;
1869 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1870 struct intel_shared_dpll
*pll
= intel_crtc_to_shared_dpll(crtc
);
1872 if (WARN_ON(pll
== NULL
))
1875 WARN_ON(!pll
->config
.crtc_mask
);
1876 if (pll
->active
== 0) {
1877 DRM_DEBUG_DRIVER("setting up %s\n", pll
->name
);
1879 assert_shared_dpll_disabled(dev_priv
, pll
);
1881 pll
->mode_set(dev_priv
, pll
);
1886 * intel_enable_shared_dpll - enable PCH PLL
1887 * @dev_priv: i915 private structure
1888 * @pipe: pipe PLL to enable
1890 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1891 * drives the transcoder clock.
1893 static void intel_enable_shared_dpll(struct intel_crtc
*crtc
)
1895 struct drm_device
*dev
= crtc
->base
.dev
;
1896 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1897 struct intel_shared_dpll
*pll
= intel_crtc_to_shared_dpll(crtc
);
1899 if (WARN_ON(pll
== NULL
))
1902 if (WARN_ON(pll
->config
.crtc_mask
== 0))
1905 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1906 pll
->name
, pll
->active
, pll
->on
,
1907 crtc
->base
.base
.id
);
1909 if (pll
->active
++) {
1911 assert_shared_dpll_enabled(dev_priv
, pll
);
1916 intel_display_power_get(dev_priv
, POWER_DOMAIN_PLLS
);
1918 DRM_DEBUG_KMS("enabling %s\n", pll
->name
);
1919 pll
->enable(dev_priv
, pll
);
1923 static void intel_disable_shared_dpll(struct intel_crtc
*crtc
)
1925 struct drm_device
*dev
= crtc
->base
.dev
;
1926 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1927 struct intel_shared_dpll
*pll
= intel_crtc_to_shared_dpll(crtc
);
1929 /* PCH only available on ILK+ */
1930 if (INTEL_INFO(dev
)->gen
< 5)
1936 if (WARN_ON(!(pll
->config
.crtc_mask
& (1 << drm_crtc_index(&crtc
->base
)))))
1939 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1940 pll
->name
, pll
->active
, pll
->on
,
1941 crtc
->base
.base
.id
);
1943 if (WARN_ON(pll
->active
== 0)) {
1944 assert_shared_dpll_disabled(dev_priv
, pll
);
1948 assert_shared_dpll_enabled(dev_priv
, pll
);
1953 DRM_DEBUG_KMS("disabling %s\n", pll
->name
);
1954 pll
->disable(dev_priv
, pll
);
1957 intel_display_power_put(dev_priv
, POWER_DOMAIN_PLLS
);
1960 static void ironlake_enable_pch_transcoder(struct drm_i915_private
*dev_priv
,
1963 struct drm_device
*dev
= dev_priv
->dev
;
1964 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
1965 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1966 uint32_t reg
, val
, pipeconf_val
;
1968 /* PCH only available on ILK+ */
1969 BUG_ON(!HAS_PCH_SPLIT(dev
));
1971 /* Make sure PCH DPLL is enabled */
1972 assert_shared_dpll_enabled(dev_priv
,
1973 intel_crtc_to_shared_dpll(intel_crtc
));
1975 /* FDI must be feeding us bits for PCH ports */
1976 assert_fdi_tx_enabled(dev_priv
, pipe
);
1977 assert_fdi_rx_enabled(dev_priv
, pipe
);
1979 if (HAS_PCH_CPT(dev
)) {
1980 /* Workaround: Set the timing override bit before enabling the
1981 * pch transcoder. */
1982 reg
= TRANS_CHICKEN2(pipe
);
1983 val
= I915_READ(reg
);
1984 val
|= TRANS_CHICKEN2_TIMING_OVERRIDE
;
1985 I915_WRITE(reg
, val
);
1988 reg
= PCH_TRANSCONF(pipe
);
1989 val
= I915_READ(reg
);
1990 pipeconf_val
= I915_READ(PIPECONF(pipe
));
1992 if (HAS_PCH_IBX(dev_priv
->dev
)) {
1994 * Make the BPC in transcoder be consistent with
1995 * that in pipeconf reg. For HDMI we must use 8bpc
1996 * here for both 8bpc and 12bpc.
1998 val
&= ~PIPECONF_BPC_MASK
;
1999 if (intel_pipe_has_type(intel_crtc
, INTEL_OUTPUT_HDMI
))
2000 val
|= PIPECONF_8BPC
;
2002 val
|= pipeconf_val
& PIPECONF_BPC_MASK
;
2005 val
&= ~TRANS_INTERLACE_MASK
;
2006 if ((pipeconf_val
& PIPECONF_INTERLACE_MASK
) == PIPECONF_INTERLACED_ILK
)
2007 if (HAS_PCH_IBX(dev_priv
->dev
) &&
2008 intel_pipe_has_type(intel_crtc
, INTEL_OUTPUT_SDVO
))
2009 val
|= TRANS_LEGACY_INTERLACED_ILK
;
2011 val
|= TRANS_INTERLACED
;
2013 val
|= TRANS_PROGRESSIVE
;
2015 I915_WRITE(reg
, val
| TRANS_ENABLE
);
2016 if (wait_for(I915_READ(reg
) & TRANS_STATE_ENABLE
, 100))
2017 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe
));
2020 static void lpt_enable_pch_transcoder(struct drm_i915_private
*dev_priv
,
2021 enum transcoder cpu_transcoder
)
2023 u32 val
, pipeconf_val
;
2025 /* PCH only available on ILK+ */
2026 BUG_ON(!HAS_PCH_SPLIT(dev_priv
->dev
));
2028 /* FDI must be feeding us bits for PCH ports */
2029 assert_fdi_tx_enabled(dev_priv
, (enum pipe
) cpu_transcoder
);
2030 assert_fdi_rx_enabled(dev_priv
, TRANSCODER_A
);
2032 /* Workaround: set timing override bit. */
2033 val
= I915_READ(TRANS_CHICKEN2(PIPE_A
));
2034 val
|= TRANS_CHICKEN2_TIMING_OVERRIDE
;
2035 I915_WRITE(TRANS_CHICKEN2(PIPE_A
), val
);
2038 pipeconf_val
= I915_READ(PIPECONF(cpu_transcoder
));
2040 if ((pipeconf_val
& PIPECONF_INTERLACE_MASK_HSW
) ==
2041 PIPECONF_INTERLACED_ILK
)
2042 val
|= TRANS_INTERLACED
;
2044 val
|= TRANS_PROGRESSIVE
;
2046 I915_WRITE(LPT_TRANSCONF
, val
);
2047 if (wait_for(I915_READ(LPT_TRANSCONF
) & TRANS_STATE_ENABLE
, 100))
2048 DRM_ERROR("Failed to enable PCH transcoder\n");
2051 static void ironlake_disable_pch_transcoder(struct drm_i915_private
*dev_priv
,
2054 struct drm_device
*dev
= dev_priv
->dev
;
2057 /* FDI relies on the transcoder */
2058 assert_fdi_tx_disabled(dev_priv
, pipe
);
2059 assert_fdi_rx_disabled(dev_priv
, pipe
);
2061 /* Ports must be off as well */
2062 assert_pch_ports_disabled(dev_priv
, pipe
);
2064 reg
= PCH_TRANSCONF(pipe
);
2065 val
= I915_READ(reg
);
2066 val
&= ~TRANS_ENABLE
;
2067 I915_WRITE(reg
, val
);
2068 /* wait for PCH transcoder off, transcoder state */
2069 if (wait_for((I915_READ(reg
) & TRANS_STATE_ENABLE
) == 0, 50))
2070 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe
));
2072 if (!HAS_PCH_IBX(dev
)) {
2073 /* Workaround: Clear the timing override chicken bit again. */
2074 reg
= TRANS_CHICKEN2(pipe
);
2075 val
= I915_READ(reg
);
2076 val
&= ~TRANS_CHICKEN2_TIMING_OVERRIDE
;
2077 I915_WRITE(reg
, val
);
2081 static void lpt_disable_pch_transcoder(struct drm_i915_private
*dev_priv
)
2085 val
= I915_READ(LPT_TRANSCONF
);
2086 val
&= ~TRANS_ENABLE
;
2087 I915_WRITE(LPT_TRANSCONF
, val
);
2088 /* wait for PCH transcoder off, transcoder state */
2089 if (wait_for((I915_READ(LPT_TRANSCONF
) & TRANS_STATE_ENABLE
) == 0, 50))
2090 DRM_ERROR("Failed to disable PCH transcoder\n");
2092 /* Workaround: clear timing override bit. */
2093 val
= I915_READ(TRANS_CHICKEN2(PIPE_A
));
2094 val
&= ~TRANS_CHICKEN2_TIMING_OVERRIDE
;
2095 I915_WRITE(TRANS_CHICKEN2(PIPE_A
), val
);
2099 * intel_enable_pipe - enable a pipe, asserting requirements
2100 * @crtc: crtc responsible for the pipe
2102 * Enable @crtc's pipe, making sure that various hardware specific requirements
2103 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2105 static void intel_enable_pipe(struct intel_crtc
*crtc
)
2107 struct drm_device
*dev
= crtc
->base
.dev
;
2108 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2109 enum pipe pipe
= crtc
->pipe
;
2110 enum transcoder cpu_transcoder
= intel_pipe_to_cpu_transcoder(dev_priv
,
2112 enum pipe pch_transcoder
;
2116 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe
));
2118 assert_planes_disabled(dev_priv
, pipe
);
2119 assert_cursor_disabled(dev_priv
, pipe
);
2120 assert_sprites_disabled(dev_priv
, pipe
);
2122 if (HAS_PCH_LPT(dev_priv
->dev
))
2123 pch_transcoder
= TRANSCODER_A
;
2125 pch_transcoder
= pipe
;
2128 * A pipe without a PLL won't actually be able to drive bits from
2129 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2132 if (HAS_GMCH_DISPLAY(dev_priv
->dev
))
2133 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DSI
))
2134 assert_dsi_pll_enabled(dev_priv
);
2136 assert_pll_enabled(dev_priv
, pipe
);
2138 if (crtc
->config
->has_pch_encoder
) {
2139 /* if driving the PCH, we need FDI enabled */
2140 assert_fdi_rx_pll_enabled(dev_priv
, pch_transcoder
);
2141 assert_fdi_tx_pll_enabled(dev_priv
,
2142 (enum pipe
) cpu_transcoder
);
2144 /* FIXME: assert CPU port conditions for SNB+ */
2147 reg
= PIPECONF(cpu_transcoder
);
2148 val
= I915_READ(reg
);
2149 if (val
& PIPECONF_ENABLE
) {
2150 WARN_ON(!((pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
2151 (pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
)));
2155 I915_WRITE(reg
, val
| PIPECONF_ENABLE
);
2160 * intel_disable_pipe - disable a pipe, asserting requirements
2161 * @crtc: crtc whose pipes is to be disabled
2163 * Disable the pipe of @crtc, making sure that various hardware
2164 * specific requirements are met, if applicable, e.g. plane
2165 * disabled, panel fitter off, etc.
2167 * Will wait until the pipe has shut down before returning.
2169 static void intel_disable_pipe(struct intel_crtc
*crtc
)
2171 struct drm_i915_private
*dev_priv
= crtc
->base
.dev
->dev_private
;
2172 enum transcoder cpu_transcoder
= crtc
->config
->cpu_transcoder
;
2173 enum pipe pipe
= crtc
->pipe
;
2177 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe
));
2180 * Make sure planes won't keep trying to pump pixels to us,
2181 * or we might hang the display.
2183 assert_planes_disabled(dev_priv
, pipe
);
2184 assert_cursor_disabled(dev_priv
, pipe
);
2185 assert_sprites_disabled(dev_priv
, pipe
);
2187 reg
= PIPECONF(cpu_transcoder
);
2188 val
= I915_READ(reg
);
2189 if ((val
& PIPECONF_ENABLE
) == 0)
2193 * Double wide has implications for planes
2194 * so best keep it disabled when not needed.
2196 if (crtc
->config
->double_wide
)
2197 val
&= ~PIPECONF_DOUBLE_WIDE
;
2199 /* Don't disable pipe or pipe PLLs if needed */
2200 if (!(pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) &&
2201 !(pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
2202 val
&= ~PIPECONF_ENABLE
;
2204 I915_WRITE(reg
, val
);
2205 if ((val
& PIPECONF_ENABLE
) == 0)
2206 intel_wait_for_pipe_off(crtc
);
2209 static bool need_vtd_wa(struct drm_device
*dev
)
2211 #ifdef CONFIG_INTEL_IOMMU
2212 if (INTEL_INFO(dev
)->gen
>= 6 && intel_iommu_gfx_mapped
)
2219 intel_tile_height(struct drm_device
*dev
, uint32_t pixel_format
,
2220 uint64_t fb_format_modifier
, unsigned int plane
)
2222 unsigned int tile_height
;
2223 uint32_t pixel_bytes
;
2225 switch (fb_format_modifier
) {
2226 case DRM_FORMAT_MOD_NONE
:
2229 case I915_FORMAT_MOD_X_TILED
:
2230 tile_height
= IS_GEN2(dev
) ? 16 : 8;
2232 case I915_FORMAT_MOD_Y_TILED
:
2235 case I915_FORMAT_MOD_Yf_TILED
:
2236 pixel_bytes
= drm_format_plane_cpp(pixel_format
, plane
);
2237 switch (pixel_bytes
) {
2251 "128-bit pixels are not supported for display!");
2257 MISSING_CASE(fb_format_modifier
);
2266 intel_fb_align_height(struct drm_device
*dev
, unsigned int height
,
2267 uint32_t pixel_format
, uint64_t fb_format_modifier
)
2269 return ALIGN(height
, intel_tile_height(dev
, pixel_format
,
2270 fb_format_modifier
, 0));
2274 intel_fill_fb_ggtt_view(struct i915_ggtt_view
*view
, struct drm_framebuffer
*fb
,
2275 const struct drm_plane_state
*plane_state
)
2277 struct intel_rotation_info
*info
= &view
->rotation_info
;
2278 unsigned int tile_height
, tile_pitch
;
2280 *view
= i915_ggtt_view_normal
;
2285 if (!intel_rotation_90_or_270(plane_state
->rotation
))
2288 *view
= i915_ggtt_view_rotated
;
2290 info
->height
= fb
->height
;
2291 info
->pixel_format
= fb
->pixel_format
;
2292 info
->pitch
= fb
->pitches
[0];
2293 info
->uv_offset
= fb
->offsets
[1];
2294 info
->fb_modifier
= fb
->modifier
[0];
2296 tile_height
= intel_tile_height(fb
->dev
, fb
->pixel_format
,
2297 fb
->modifier
[0], 0);
2298 tile_pitch
= PAGE_SIZE
/ tile_height
;
2299 info
->width_pages
= DIV_ROUND_UP(fb
->pitches
[0], tile_pitch
);
2300 info
->height_pages
= DIV_ROUND_UP(fb
->height
, tile_height
);
2301 info
->size
= info
->width_pages
* info
->height_pages
* PAGE_SIZE
;
2303 if (info
->pixel_format
== DRM_FORMAT_NV12
) {
2304 tile_height
= intel_tile_height(fb
->dev
, fb
->pixel_format
,
2305 fb
->modifier
[0], 1);
2306 tile_pitch
= PAGE_SIZE
/ tile_height
;
2307 info
->width_pages_uv
= DIV_ROUND_UP(fb
->pitches
[0], tile_pitch
);
2308 info
->height_pages_uv
= DIV_ROUND_UP(fb
->height
/ 2,
2310 info
->size_uv
= info
->width_pages_uv
* info
->height_pages_uv
*
2317 static unsigned int intel_linear_alignment(struct drm_i915_private
*dev_priv
)
2319 if (INTEL_INFO(dev_priv
)->gen
>= 9)
2321 else if (IS_BROADWATER(dev_priv
) || IS_CRESTLINE(dev_priv
) ||
2322 IS_VALLEYVIEW(dev_priv
))
2324 else if (INTEL_INFO(dev_priv
)->gen
>= 4)
2331 intel_pin_and_fence_fb_obj(struct drm_plane
*plane
,
2332 struct drm_framebuffer
*fb
,
2333 const struct drm_plane_state
*plane_state
,
2334 struct intel_engine_cs
*pipelined
,
2335 struct drm_i915_gem_request
**pipelined_request
)
2337 struct drm_device
*dev
= fb
->dev
;
2338 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2339 struct drm_i915_gem_object
*obj
= intel_fb_obj(fb
);
2340 struct i915_ggtt_view view
;
2344 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
2346 switch (fb
->modifier
[0]) {
2347 case DRM_FORMAT_MOD_NONE
:
2348 alignment
= intel_linear_alignment(dev_priv
);
2350 case I915_FORMAT_MOD_X_TILED
:
2351 if (INTEL_INFO(dev
)->gen
>= 9)
2352 alignment
= 256 * 1024;
2354 /* pin() will align the object as required by fence */
2358 case I915_FORMAT_MOD_Y_TILED
:
2359 case I915_FORMAT_MOD_Yf_TILED
:
2360 if (WARN_ONCE(INTEL_INFO(dev
)->gen
< 9,
2361 "Y tiling bo slipped through, driver bug!\n"))
2363 alignment
= 1 * 1024 * 1024;
2366 MISSING_CASE(fb
->modifier
[0]);
2370 ret
= intel_fill_fb_ggtt_view(&view
, fb
, plane_state
);
2374 /* Note that the w/a also requires 64 PTE of padding following the
2375 * bo. We currently fill all unused PTE with the shadow page and so
2376 * we should always have valid PTE following the scanout preventing
2379 if (need_vtd_wa(dev
) && alignment
< 256 * 1024)
2380 alignment
= 256 * 1024;
2383 * Global gtt pte registers are special registers which actually forward
2384 * writes to a chunk of system memory. Which means that there is no risk
2385 * that the register values disappear as soon as we call
2386 * intel_runtime_pm_put(), so it is correct to wrap only the
2387 * pin/unpin/fence and not more.
2389 intel_runtime_pm_get(dev_priv
);
2391 dev_priv
->mm
.interruptible
= false;
2392 ret
= i915_gem_object_pin_to_display_plane(obj
, alignment
, pipelined
,
2393 pipelined_request
, &view
);
2395 goto err_interruptible
;
2397 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398 * fence, whereas 965+ only requires a fence if using
2399 * framebuffer compression. For simplicity, we always install
2400 * a fence as the cost is not that onerous.
2402 if (view
.type
== I915_GGTT_VIEW_NORMAL
) {
2403 ret
= i915_gem_object_get_fence(obj
);
2404 if (ret
== -EDEADLK
) {
2406 * -EDEADLK means there are no free fences
2409 * This is propagated to atomic, but it uses
2410 * -EDEADLK to force a locking recovery, so
2411 * change the returned error to -EBUSY.
2418 i915_gem_object_pin_fence(obj
);
2421 dev_priv
->mm
.interruptible
= true;
2422 intel_runtime_pm_put(dev_priv
);
2426 i915_gem_object_unpin_from_display_plane(obj
, &view
);
2428 dev_priv
->mm
.interruptible
= true;
2429 intel_runtime_pm_put(dev_priv
);
2433 static void intel_unpin_fb_obj(struct drm_framebuffer
*fb
,
2434 const struct drm_plane_state
*plane_state
)
2436 struct drm_i915_gem_object
*obj
= intel_fb_obj(fb
);
2437 struct i915_ggtt_view view
;
2440 WARN_ON(!mutex_is_locked(&obj
->base
.dev
->struct_mutex
));
2442 ret
= intel_fill_fb_ggtt_view(&view
, fb
, plane_state
);
2443 WARN_ONCE(ret
, "Couldn't get view from plane state!");
2445 if (view
.type
== I915_GGTT_VIEW_NORMAL
)
2446 i915_gem_object_unpin_fence(obj
);
2448 i915_gem_object_unpin_from_display_plane(obj
, &view
);
2451 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2452 * is assumed to be a power-of-two. */
2453 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private
*dev_priv
,
2455 unsigned int tiling_mode
,
2459 if (tiling_mode
!= I915_TILING_NONE
) {
2460 unsigned int tile_rows
, tiles
;
2465 tiles
= *x
/ (512/cpp
);
2468 return tile_rows
* pitch
* 8 + tiles
* 4096;
2470 unsigned int alignment
= intel_linear_alignment(dev_priv
) - 1;
2471 unsigned int offset
;
2473 offset
= *y
* pitch
+ *x
* cpp
;
2474 *y
= (offset
& alignment
) / pitch
;
2475 *x
= ((offset
& alignment
) - *y
* pitch
) / cpp
;
2476 return offset
& ~alignment
;
2480 static int i9xx_format_to_fourcc(int format
)
2483 case DISPPLANE_8BPP
:
2484 return DRM_FORMAT_C8
;
2485 case DISPPLANE_BGRX555
:
2486 return DRM_FORMAT_XRGB1555
;
2487 case DISPPLANE_BGRX565
:
2488 return DRM_FORMAT_RGB565
;
2490 case DISPPLANE_BGRX888
:
2491 return DRM_FORMAT_XRGB8888
;
2492 case DISPPLANE_RGBX888
:
2493 return DRM_FORMAT_XBGR8888
;
2494 case DISPPLANE_BGRX101010
:
2495 return DRM_FORMAT_XRGB2101010
;
2496 case DISPPLANE_RGBX101010
:
2497 return DRM_FORMAT_XBGR2101010
;
2501 static int skl_format_to_fourcc(int format
, bool rgb_order
, bool alpha
)
2504 case PLANE_CTL_FORMAT_RGB_565
:
2505 return DRM_FORMAT_RGB565
;
2507 case PLANE_CTL_FORMAT_XRGB_8888
:
2510 return DRM_FORMAT_ABGR8888
;
2512 return DRM_FORMAT_XBGR8888
;
2515 return DRM_FORMAT_ARGB8888
;
2517 return DRM_FORMAT_XRGB8888
;
2519 case PLANE_CTL_FORMAT_XRGB_2101010
:
2521 return DRM_FORMAT_XBGR2101010
;
2523 return DRM_FORMAT_XRGB2101010
;
2528 intel_alloc_initial_plane_obj(struct intel_crtc
*crtc
,
2529 struct intel_initial_plane_config
*plane_config
)
2531 struct drm_device
*dev
= crtc
->base
.dev
;
2532 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2533 struct drm_i915_gem_object
*obj
= NULL
;
2534 struct drm_mode_fb_cmd2 mode_cmd
= { 0 };
2535 struct drm_framebuffer
*fb
= &plane_config
->fb
->base
;
2536 u32 base_aligned
= round_down(plane_config
->base
, PAGE_SIZE
);
2537 u32 size_aligned
= round_up(plane_config
->base
+ plane_config
->size
,
2540 size_aligned
-= base_aligned
;
2542 if (plane_config
->size
== 0)
2545 /* If the FB is too big, just don't use it since fbdev is not very
2546 * important and we should probably use that space with FBC or other
2548 if (size_aligned
* 2 > dev_priv
->gtt
.stolen_usable_size
)
2551 obj
= i915_gem_object_create_stolen_for_preallocated(dev
,
2558 obj
->tiling_mode
= plane_config
->tiling
;
2559 if (obj
->tiling_mode
== I915_TILING_X
)
2560 obj
->stride
= fb
->pitches
[0];
2562 mode_cmd
.pixel_format
= fb
->pixel_format
;
2563 mode_cmd
.width
= fb
->width
;
2564 mode_cmd
.height
= fb
->height
;
2565 mode_cmd
.pitches
[0] = fb
->pitches
[0];
2566 mode_cmd
.modifier
[0] = fb
->modifier
[0];
2567 mode_cmd
.flags
= DRM_MODE_FB_MODIFIERS
;
2569 mutex_lock(&dev
->struct_mutex
);
2570 if (intel_framebuffer_init(dev
, to_intel_framebuffer(fb
),
2572 DRM_DEBUG_KMS("intel fb init failed\n");
2575 mutex_unlock(&dev
->struct_mutex
);
2577 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj
);
2581 drm_gem_object_unreference(&obj
->base
);
2582 mutex_unlock(&dev
->struct_mutex
);
2586 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2588 update_state_fb(struct drm_plane
*plane
)
2590 if (plane
->fb
== plane
->state
->fb
)
2593 if (plane
->state
->fb
)
2594 drm_framebuffer_unreference(plane
->state
->fb
);
2595 plane
->state
->fb
= plane
->fb
;
2596 if (plane
->state
->fb
)
2597 drm_framebuffer_reference(plane
->state
->fb
);
2601 intel_find_initial_plane_obj(struct intel_crtc
*intel_crtc
,
2602 struct intel_initial_plane_config
*plane_config
)
2604 struct drm_device
*dev
= intel_crtc
->base
.dev
;
2605 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2607 struct intel_crtc
*i
;
2608 struct drm_i915_gem_object
*obj
;
2609 struct drm_plane
*primary
= intel_crtc
->base
.primary
;
2610 struct drm_plane_state
*plane_state
= primary
->state
;
2611 struct drm_crtc_state
*crtc_state
= intel_crtc
->base
.state
;
2612 struct intel_plane
*intel_plane
= to_intel_plane(primary
);
2613 struct drm_framebuffer
*fb
;
2615 if (!plane_config
->fb
)
2618 if (intel_alloc_initial_plane_obj(intel_crtc
, plane_config
)) {
2619 fb
= &plane_config
->fb
->base
;
2623 kfree(plane_config
->fb
);
2626 * Failed to alloc the obj, check to see if we should share
2627 * an fb with another CRTC instead
2629 for_each_crtc(dev
, c
) {
2630 i
= to_intel_crtc(c
);
2632 if (c
== &intel_crtc
->base
)
2638 fb
= c
->primary
->fb
;
2642 obj
= intel_fb_obj(fb
);
2643 if (i915_gem_obj_ggtt_offset(obj
) == plane_config
->base
) {
2644 drm_framebuffer_reference(fb
);
2650 * We've failed to reconstruct the BIOS FB. Current display state
2651 * indicates that the primary plane is visible, but has a NULL FB,
2652 * which will lead to problems later if we don't fix it up. The
2653 * simplest solution is to just disable the primary plane now and
2654 * pretend the BIOS never had it enabled.
2656 to_intel_plane_state(plane_state
)->visible
= false;
2657 crtc_state
->plane_mask
&= ~(1 << drm_plane_index(primary
));
2658 intel_pre_disable_primary(&intel_crtc
->base
);
2659 intel_plane
->disable_plane(primary
, &intel_crtc
->base
);
2664 plane_state
->src_x
= 0;
2665 plane_state
->src_y
= 0;
2666 plane_state
->src_w
= fb
->width
<< 16;
2667 plane_state
->src_h
= fb
->height
<< 16;
2669 plane_state
->crtc_x
= 0;
2670 plane_state
->crtc_y
= 0;
2671 plane_state
->crtc_w
= fb
->width
;
2672 plane_state
->crtc_h
= fb
->height
;
2674 obj
= intel_fb_obj(fb
);
2675 if (obj
->tiling_mode
!= I915_TILING_NONE
)
2676 dev_priv
->preserve_bios_swizzle
= true;
2678 drm_framebuffer_reference(fb
);
2679 primary
->fb
= primary
->state
->fb
= fb
;
2680 primary
->crtc
= primary
->state
->crtc
= &intel_crtc
->base
;
2681 intel_crtc
->base
.state
->plane_mask
|= (1 << drm_plane_index(primary
));
2682 obj
->frontbuffer_bits
|= to_intel_plane(primary
)->frontbuffer_bit
;
2685 static void i9xx_update_primary_plane(struct drm_crtc
*crtc
,
2686 struct drm_framebuffer
*fb
,
2689 struct drm_device
*dev
= crtc
->dev
;
2690 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2691 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2692 struct drm_plane
*primary
= crtc
->primary
;
2693 bool visible
= to_intel_plane_state(primary
->state
)->visible
;
2694 struct drm_i915_gem_object
*obj
;
2695 int plane
= intel_crtc
->plane
;
2696 unsigned long linear_offset
;
2698 u32 reg
= DSPCNTR(plane
);
2701 if (!visible
|| !fb
) {
2703 if (INTEL_INFO(dev
)->gen
>= 4)
2704 I915_WRITE(DSPSURF(plane
), 0);
2706 I915_WRITE(DSPADDR(plane
), 0);
2711 obj
= intel_fb_obj(fb
);
2712 if (WARN_ON(obj
== NULL
))
2715 pixel_size
= drm_format_plane_cpp(fb
->pixel_format
, 0);
2717 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
2719 dspcntr
|= DISPLAY_PLANE_ENABLE
;
2721 if (INTEL_INFO(dev
)->gen
< 4) {
2722 if (intel_crtc
->pipe
== PIPE_B
)
2723 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
2725 /* pipesrc and dspsize control the size that is scaled from,
2726 * which should always be the user's requested size.
2728 I915_WRITE(DSPSIZE(plane
),
2729 ((intel_crtc
->config
->pipe_src_h
- 1) << 16) |
2730 (intel_crtc
->config
->pipe_src_w
- 1));
2731 I915_WRITE(DSPPOS(plane
), 0);
2732 } else if (IS_CHERRYVIEW(dev
) && plane
== PLANE_B
) {
2733 I915_WRITE(PRIMSIZE(plane
),
2734 ((intel_crtc
->config
->pipe_src_h
- 1) << 16) |
2735 (intel_crtc
->config
->pipe_src_w
- 1));
2736 I915_WRITE(PRIMPOS(plane
), 0);
2737 I915_WRITE(PRIMCNSTALPHA(plane
), 0);
2740 switch (fb
->pixel_format
) {
2742 dspcntr
|= DISPPLANE_8BPP
;
2744 case DRM_FORMAT_XRGB1555
:
2745 dspcntr
|= DISPPLANE_BGRX555
;
2747 case DRM_FORMAT_RGB565
:
2748 dspcntr
|= DISPPLANE_BGRX565
;
2750 case DRM_FORMAT_XRGB8888
:
2751 dspcntr
|= DISPPLANE_BGRX888
;
2753 case DRM_FORMAT_XBGR8888
:
2754 dspcntr
|= DISPPLANE_RGBX888
;
2756 case DRM_FORMAT_XRGB2101010
:
2757 dspcntr
|= DISPPLANE_BGRX101010
;
2759 case DRM_FORMAT_XBGR2101010
:
2760 dspcntr
|= DISPPLANE_RGBX101010
;
2766 if (INTEL_INFO(dev
)->gen
>= 4 &&
2767 obj
->tiling_mode
!= I915_TILING_NONE
)
2768 dspcntr
|= DISPPLANE_TILED
;
2771 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
2773 linear_offset
= y
* fb
->pitches
[0] + x
* pixel_size
;
2775 if (INTEL_INFO(dev
)->gen
>= 4) {
2776 intel_crtc
->dspaddr_offset
=
2777 intel_gen4_compute_page_offset(dev_priv
,
2778 &x
, &y
, obj
->tiling_mode
,
2781 linear_offset
-= intel_crtc
->dspaddr_offset
;
2783 intel_crtc
->dspaddr_offset
= linear_offset
;
2786 if (crtc
->primary
->state
->rotation
== BIT(DRM_ROTATE_180
)) {
2787 dspcntr
|= DISPPLANE_ROTATE_180
;
2789 x
+= (intel_crtc
->config
->pipe_src_w
- 1);
2790 y
+= (intel_crtc
->config
->pipe_src_h
- 1);
2792 /* Finding the last pixel of the last line of the display
2793 data and adding to linear_offset*/
2795 (intel_crtc
->config
->pipe_src_h
- 1) * fb
->pitches
[0] +
2796 (intel_crtc
->config
->pipe_src_w
- 1) * pixel_size
;
2799 intel_crtc
->adjusted_x
= x
;
2800 intel_crtc
->adjusted_y
= y
;
2802 I915_WRITE(reg
, dspcntr
);
2804 I915_WRITE(DSPSTRIDE(plane
), fb
->pitches
[0]);
2805 if (INTEL_INFO(dev
)->gen
>= 4) {
2806 I915_WRITE(DSPSURF(plane
),
2807 i915_gem_obj_ggtt_offset(obj
) + intel_crtc
->dspaddr_offset
);
2808 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
2809 I915_WRITE(DSPLINOFF(plane
), linear_offset
);
2811 I915_WRITE(DSPADDR(plane
), i915_gem_obj_ggtt_offset(obj
) + linear_offset
);
2815 static void ironlake_update_primary_plane(struct drm_crtc
*crtc
,
2816 struct drm_framebuffer
*fb
,
2819 struct drm_device
*dev
= crtc
->dev
;
2820 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2821 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2822 struct drm_plane
*primary
= crtc
->primary
;
2823 bool visible
= to_intel_plane_state(primary
->state
)->visible
;
2824 struct drm_i915_gem_object
*obj
;
2825 int plane
= intel_crtc
->plane
;
2826 unsigned long linear_offset
;
2828 u32 reg
= DSPCNTR(plane
);
2831 if (!visible
|| !fb
) {
2833 I915_WRITE(DSPSURF(plane
), 0);
2838 obj
= intel_fb_obj(fb
);
2839 if (WARN_ON(obj
== NULL
))
2842 pixel_size
= drm_format_plane_cpp(fb
->pixel_format
, 0);
2844 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
2846 dspcntr
|= DISPLAY_PLANE_ENABLE
;
2848 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
2849 dspcntr
|= DISPPLANE_PIPE_CSC_ENABLE
;
2851 switch (fb
->pixel_format
) {
2853 dspcntr
|= DISPPLANE_8BPP
;
2855 case DRM_FORMAT_RGB565
:
2856 dspcntr
|= DISPPLANE_BGRX565
;
2858 case DRM_FORMAT_XRGB8888
:
2859 dspcntr
|= DISPPLANE_BGRX888
;
2861 case DRM_FORMAT_XBGR8888
:
2862 dspcntr
|= DISPPLANE_RGBX888
;
2864 case DRM_FORMAT_XRGB2101010
:
2865 dspcntr
|= DISPPLANE_BGRX101010
;
2867 case DRM_FORMAT_XBGR2101010
:
2868 dspcntr
|= DISPPLANE_RGBX101010
;
2874 if (obj
->tiling_mode
!= I915_TILING_NONE
)
2875 dspcntr
|= DISPPLANE_TILED
;
2877 if (!IS_HASWELL(dev
) && !IS_BROADWELL(dev
))
2878 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
2880 linear_offset
= y
* fb
->pitches
[0] + x
* pixel_size
;
2881 intel_crtc
->dspaddr_offset
=
2882 intel_gen4_compute_page_offset(dev_priv
,
2883 &x
, &y
, obj
->tiling_mode
,
2886 linear_offset
-= intel_crtc
->dspaddr_offset
;
2887 if (crtc
->primary
->state
->rotation
== BIT(DRM_ROTATE_180
)) {
2888 dspcntr
|= DISPPLANE_ROTATE_180
;
2890 if (!IS_HASWELL(dev
) && !IS_BROADWELL(dev
)) {
2891 x
+= (intel_crtc
->config
->pipe_src_w
- 1);
2892 y
+= (intel_crtc
->config
->pipe_src_h
- 1);
2894 /* Finding the last pixel of the last line of the display
2895 data and adding to linear_offset*/
2897 (intel_crtc
->config
->pipe_src_h
- 1) * fb
->pitches
[0] +
2898 (intel_crtc
->config
->pipe_src_w
- 1) * pixel_size
;
2902 intel_crtc
->adjusted_x
= x
;
2903 intel_crtc
->adjusted_y
= y
;
2905 I915_WRITE(reg
, dspcntr
);
2907 I915_WRITE(DSPSTRIDE(plane
), fb
->pitches
[0]);
2908 I915_WRITE(DSPSURF(plane
),
2909 i915_gem_obj_ggtt_offset(obj
) + intel_crtc
->dspaddr_offset
);
2910 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
)) {
2911 I915_WRITE(DSPOFFSET(plane
), (y
<< 16) | x
);
2913 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
2914 I915_WRITE(DSPLINOFF(plane
), linear_offset
);
2919 u32
intel_fb_stride_alignment(struct drm_device
*dev
, uint64_t fb_modifier
,
2920 uint32_t pixel_format
)
2922 u32 bits_per_pixel
= drm_format_plane_cpp(pixel_format
, 0) * 8;
2925 * The stride is either expressed as a multiple of 64 bytes
2926 * chunks for linear buffers or in number of tiles for tiled
2929 switch (fb_modifier
) {
2930 case DRM_FORMAT_MOD_NONE
:
2932 case I915_FORMAT_MOD_X_TILED
:
2933 if (INTEL_INFO(dev
)->gen
== 2)
2936 case I915_FORMAT_MOD_Y_TILED
:
2937 /* No need to check for old gens and Y tiling since this is
2938 * about the display engine and those will be blocked before
2942 case I915_FORMAT_MOD_Yf_TILED
:
2943 if (bits_per_pixel
== 8)
2948 MISSING_CASE(fb_modifier
);
2953 unsigned long intel_plane_obj_offset(struct intel_plane
*intel_plane
,
2954 struct drm_i915_gem_object
*obj
,
2957 const struct i915_ggtt_view
*view
= &i915_ggtt_view_normal
;
2958 struct i915_vma
*vma
;
2959 unsigned char *offset
;
2961 if (intel_rotation_90_or_270(intel_plane
->base
.state
->rotation
))
2962 view
= &i915_ggtt_view_rotated
;
2964 vma
= i915_gem_obj_to_ggtt_view(obj
, view
);
2965 if (WARN(!vma
, "ggtt vma for display object not found! (view=%u)\n",
2969 offset
= (unsigned char *)vma
->node
.start
;
2972 offset
+= vma
->ggtt_view
.rotation_info
.uv_start_page
*
2976 return (unsigned long)offset
;
2979 static void skl_detach_scaler(struct intel_crtc
*intel_crtc
, int id
)
2981 struct drm_device
*dev
= intel_crtc
->base
.dev
;
2982 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2984 I915_WRITE(SKL_PS_CTRL(intel_crtc
->pipe
, id
), 0);
2985 I915_WRITE(SKL_PS_WIN_POS(intel_crtc
->pipe
, id
), 0);
2986 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc
->pipe
, id
), 0);
2990 * This function detaches (aka. unbinds) unused scalers in hardware
2992 static void skl_detach_scalers(struct intel_crtc
*intel_crtc
)
2994 struct intel_crtc_scaler_state
*scaler_state
;
2997 scaler_state
= &intel_crtc
->config
->scaler_state
;
2999 /* loop through and disable scalers that aren't in use */
3000 for (i
= 0; i
< intel_crtc
->num_scalers
; i
++) {
3001 if (!scaler_state
->scalers
[i
].in_use
)
3002 skl_detach_scaler(intel_crtc
, i
);
3006 u32
skl_plane_ctl_format(uint32_t pixel_format
)
3008 switch (pixel_format
) {
3010 return PLANE_CTL_FORMAT_INDEXED
;
3011 case DRM_FORMAT_RGB565
:
3012 return PLANE_CTL_FORMAT_RGB_565
;
3013 case DRM_FORMAT_XBGR8888
:
3014 return PLANE_CTL_FORMAT_XRGB_8888
| PLANE_CTL_ORDER_RGBX
;
3015 case DRM_FORMAT_XRGB8888
:
3016 return PLANE_CTL_FORMAT_XRGB_8888
;
3018 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3019 * to be already pre-multiplied. We need to add a knob (or a different
3020 * DRM_FORMAT) for user-space to configure that.
3022 case DRM_FORMAT_ABGR8888
:
3023 return PLANE_CTL_FORMAT_XRGB_8888
| PLANE_CTL_ORDER_RGBX
|
3024 PLANE_CTL_ALPHA_SW_PREMULTIPLY
;
3025 case DRM_FORMAT_ARGB8888
:
3026 return PLANE_CTL_FORMAT_XRGB_8888
|
3027 PLANE_CTL_ALPHA_SW_PREMULTIPLY
;
3028 case DRM_FORMAT_XRGB2101010
:
3029 return PLANE_CTL_FORMAT_XRGB_2101010
;
3030 case DRM_FORMAT_XBGR2101010
:
3031 return PLANE_CTL_ORDER_RGBX
| PLANE_CTL_FORMAT_XRGB_2101010
;
3032 case DRM_FORMAT_YUYV
:
3033 return PLANE_CTL_FORMAT_YUV422
| PLANE_CTL_YUV422_YUYV
;
3034 case DRM_FORMAT_YVYU
:
3035 return PLANE_CTL_FORMAT_YUV422
| PLANE_CTL_YUV422_YVYU
;
3036 case DRM_FORMAT_UYVY
:
3037 return PLANE_CTL_FORMAT_YUV422
| PLANE_CTL_YUV422_UYVY
;
3038 case DRM_FORMAT_VYUY
:
3039 return PLANE_CTL_FORMAT_YUV422
| PLANE_CTL_YUV422_VYUY
;
3041 MISSING_CASE(pixel_format
);
3047 u32
skl_plane_ctl_tiling(uint64_t fb_modifier
)
3049 switch (fb_modifier
) {
3050 case DRM_FORMAT_MOD_NONE
:
3052 case I915_FORMAT_MOD_X_TILED
:
3053 return PLANE_CTL_TILED_X
;
3054 case I915_FORMAT_MOD_Y_TILED
:
3055 return PLANE_CTL_TILED_Y
;
3056 case I915_FORMAT_MOD_Yf_TILED
:
3057 return PLANE_CTL_TILED_YF
;
3059 MISSING_CASE(fb_modifier
);
3065 u32
skl_plane_ctl_rotation(unsigned int rotation
)
3068 case BIT(DRM_ROTATE_0
):
3071 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3072 * while i915 HW rotation is clockwise, thats why this swapping.
3074 case BIT(DRM_ROTATE_90
):
3075 return PLANE_CTL_ROTATE_270
;
3076 case BIT(DRM_ROTATE_180
):
3077 return PLANE_CTL_ROTATE_180
;
3078 case BIT(DRM_ROTATE_270
):
3079 return PLANE_CTL_ROTATE_90
;
3081 MISSING_CASE(rotation
);
3087 static void skylake_update_primary_plane(struct drm_crtc
*crtc
,
3088 struct drm_framebuffer
*fb
,
3091 struct drm_device
*dev
= crtc
->dev
;
3092 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3093 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3094 struct drm_plane
*plane
= crtc
->primary
;
3095 bool visible
= to_intel_plane_state(plane
->state
)->visible
;
3096 struct drm_i915_gem_object
*obj
;
3097 int pipe
= intel_crtc
->pipe
;
3098 u32 plane_ctl
, stride_div
, stride
;
3099 u32 tile_height
, plane_offset
, plane_size
;
3100 unsigned int rotation
;
3101 int x_offset
, y_offset
;
3102 unsigned long surf_addr
;
3103 struct intel_crtc_state
*crtc_state
= intel_crtc
->config
;
3104 struct intel_plane_state
*plane_state
;
3105 int src_x
= 0, src_y
= 0, src_w
= 0, src_h
= 0;
3106 int dst_x
= 0, dst_y
= 0, dst_w
= 0, dst_h
= 0;
3109 plane_state
= to_intel_plane_state(plane
->state
);
3111 if (!visible
|| !fb
) {
3112 I915_WRITE(PLANE_CTL(pipe
, 0), 0);
3113 I915_WRITE(PLANE_SURF(pipe
, 0), 0);
3114 POSTING_READ(PLANE_CTL(pipe
, 0));
3118 plane_ctl
= PLANE_CTL_ENABLE
|
3119 PLANE_CTL_PIPE_GAMMA_ENABLE
|
3120 PLANE_CTL_PIPE_CSC_ENABLE
;
3122 plane_ctl
|= skl_plane_ctl_format(fb
->pixel_format
);
3123 plane_ctl
|= skl_plane_ctl_tiling(fb
->modifier
[0]);
3124 plane_ctl
|= PLANE_CTL_PLANE_GAMMA_DISABLE
;
3126 rotation
= plane
->state
->rotation
;
3127 plane_ctl
|= skl_plane_ctl_rotation(rotation
);
3129 obj
= intel_fb_obj(fb
);
3130 stride_div
= intel_fb_stride_alignment(dev
, fb
->modifier
[0],
3132 surf_addr
= intel_plane_obj_offset(to_intel_plane(plane
), obj
, 0);
3134 WARN_ON(drm_rect_width(&plane_state
->src
) == 0);
3136 scaler_id
= plane_state
->scaler_id
;
3137 src_x
= plane_state
->src
.x1
>> 16;
3138 src_y
= plane_state
->src
.y1
>> 16;
3139 src_w
= drm_rect_width(&plane_state
->src
) >> 16;
3140 src_h
= drm_rect_height(&plane_state
->src
) >> 16;
3141 dst_x
= plane_state
->dst
.x1
;
3142 dst_y
= plane_state
->dst
.y1
;
3143 dst_w
= drm_rect_width(&plane_state
->dst
);
3144 dst_h
= drm_rect_height(&plane_state
->dst
);
3146 WARN_ON(x
!= src_x
|| y
!= src_y
);
3148 if (intel_rotation_90_or_270(rotation
)) {
3149 /* stride = Surface height in tiles */
3150 tile_height
= intel_tile_height(dev
, fb
->pixel_format
,
3151 fb
->modifier
[0], 0);
3152 stride
= DIV_ROUND_UP(fb
->height
, tile_height
);
3153 x_offset
= stride
* tile_height
- y
- src_h
;
3155 plane_size
= (src_w
- 1) << 16 | (src_h
- 1);
3157 stride
= fb
->pitches
[0] / stride_div
;
3160 plane_size
= (src_h
- 1) << 16 | (src_w
- 1);
3162 plane_offset
= y_offset
<< 16 | x_offset
;
3164 intel_crtc
->adjusted_x
= x_offset
;
3165 intel_crtc
->adjusted_y
= y_offset
;
3167 I915_WRITE(PLANE_CTL(pipe
, 0), plane_ctl
);
3168 I915_WRITE(PLANE_OFFSET(pipe
, 0), plane_offset
);
3169 I915_WRITE(PLANE_SIZE(pipe
, 0), plane_size
);
3170 I915_WRITE(PLANE_STRIDE(pipe
, 0), stride
);
3172 if (scaler_id
>= 0) {
3173 uint32_t ps_ctrl
= 0;
3175 WARN_ON(!dst_w
|| !dst_h
);
3176 ps_ctrl
= PS_SCALER_EN
| PS_PLANE_SEL(0) |
3177 crtc_state
->scaler_state
.scalers
[scaler_id
].mode
;
3178 I915_WRITE(SKL_PS_CTRL(pipe
, scaler_id
), ps_ctrl
);
3179 I915_WRITE(SKL_PS_PWR_GATE(pipe
, scaler_id
), 0);
3180 I915_WRITE(SKL_PS_WIN_POS(pipe
, scaler_id
), (dst_x
<< 16) | dst_y
);
3181 I915_WRITE(SKL_PS_WIN_SZ(pipe
, scaler_id
), (dst_w
<< 16) | dst_h
);
3182 I915_WRITE(PLANE_POS(pipe
, 0), 0);
3184 I915_WRITE(PLANE_POS(pipe
, 0), (dst_y
<< 16) | dst_x
);
3187 I915_WRITE(PLANE_SURF(pipe
, 0), surf_addr
);
3189 POSTING_READ(PLANE_SURF(pipe
, 0));
3192 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3194 intel_pipe_set_base_atomic(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
3195 int x
, int y
, enum mode_set_atomic state
)
3197 struct drm_device
*dev
= crtc
->dev
;
3198 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3200 if (dev_priv
->fbc
.disable_fbc
)
3201 dev_priv
->fbc
.disable_fbc(dev_priv
);
3203 dev_priv
->display
.update_primary_plane(crtc
, fb
, x
, y
);
3208 static void intel_complete_page_flips(struct drm_device
*dev
)
3210 struct drm_crtc
*crtc
;
3212 for_each_crtc(dev
, crtc
) {
3213 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3214 enum plane plane
= intel_crtc
->plane
;
3216 intel_prepare_page_flip(dev
, plane
);
3217 intel_finish_page_flip_plane(dev
, plane
);
3221 static void intel_update_primary_planes(struct drm_device
*dev
)
3223 struct drm_crtc
*crtc
;
3225 for_each_crtc(dev
, crtc
) {
3226 struct intel_plane
*plane
= to_intel_plane(crtc
->primary
);
3227 struct intel_plane_state
*plane_state
;
3229 drm_modeset_lock_crtc(crtc
, &plane
->base
);
3231 plane_state
= to_intel_plane_state(plane
->base
.state
);
3233 if (plane_state
->base
.fb
)
3234 plane
->commit_plane(&plane
->base
, plane_state
);
3236 drm_modeset_unlock_crtc(crtc
);
3240 void intel_prepare_reset(struct drm_device
*dev
)
3242 /* no reset support for gen2 */
3246 /* reset doesn't touch the display */
3247 if (INTEL_INFO(dev
)->gen
>= 5 || IS_G4X(dev
))
3250 drm_modeset_lock_all(dev
);
3252 * Disabling the crtcs gracefully seems nicer. Also the
3253 * g33 docs say we should at least disable all the planes.
3255 intel_display_suspend(dev
);
3258 void intel_finish_reset(struct drm_device
*dev
)
3260 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3263 * Flips in the rings will be nuked by the reset,
3264 * so complete all pending flips so that user space
3265 * will get its events and not get stuck.
3267 intel_complete_page_flips(dev
);
3269 /* no reset support for gen2 */
3273 /* reset doesn't touch the display */
3274 if (INTEL_INFO(dev
)->gen
>= 5 || IS_G4X(dev
)) {
3276 * Flips in the rings have been nuked by the reset,
3277 * so update the base address of all primary
3278 * planes to the the last fb to make sure we're
3279 * showing the correct fb after a reset.
3281 * FIXME: Atomic will make this obsolete since we won't schedule
3282 * CS-based flips (which might get lost in gpu resets) any more.
3284 intel_update_primary_planes(dev
);
3289 * The display has been reset as well,
3290 * so need a full re-initialization.
3292 intel_runtime_pm_disable_interrupts(dev_priv
);
3293 intel_runtime_pm_enable_interrupts(dev_priv
);
3295 intel_modeset_init_hw(dev
);
3297 spin_lock_irq(&dev_priv
->irq_lock
);
3298 if (dev_priv
->display
.hpd_irq_setup
)
3299 dev_priv
->display
.hpd_irq_setup(dev
);
3300 spin_unlock_irq(&dev_priv
->irq_lock
);
3302 intel_display_resume(dev
);
3304 intel_hpd_init(dev_priv
);
3306 drm_modeset_unlock_all(dev
);
3310 intel_finish_fb(struct drm_framebuffer
*old_fb
)
3312 struct drm_i915_gem_object
*obj
= intel_fb_obj(old_fb
);
3313 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
3314 bool was_interruptible
= dev_priv
->mm
.interruptible
;
3317 /* Big Hammer, we also need to ensure that any pending
3318 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3319 * current scanout is retired before unpinning the old
3320 * framebuffer. Note that we rely on userspace rendering
3321 * into the buffer attached to the pipe they are waiting
3322 * on. If not, userspace generates a GPU hang with IPEHR
3323 * point to the MI_WAIT_FOR_EVENT.
3325 * This should only fail upon a hung GPU, in which case we
3326 * can safely continue.
3328 dev_priv
->mm
.interruptible
= false;
3329 ret
= i915_gem_object_wait_rendering(obj
, true);
3330 dev_priv
->mm
.interruptible
= was_interruptible
;
3335 static bool intel_crtc_has_pending_flip(struct drm_crtc
*crtc
)
3337 struct drm_device
*dev
= crtc
->dev
;
3338 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3339 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3342 if (i915_reset_in_progress(&dev_priv
->gpu_error
) ||
3343 intel_crtc
->reset_counter
!= atomic_read(&dev_priv
->gpu_error
.reset_counter
))
3346 spin_lock_irq(&dev
->event_lock
);
3347 pending
= to_intel_crtc(crtc
)->unpin_work
!= NULL
;
3348 spin_unlock_irq(&dev
->event_lock
);
3353 static void intel_update_pipe_config(struct intel_crtc
*crtc
,
3354 struct intel_crtc_state
*old_crtc_state
)
3356 struct drm_device
*dev
= crtc
->base
.dev
;
3357 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3358 struct intel_crtc_state
*pipe_config
=
3359 to_intel_crtc_state(crtc
->base
.state
);
3361 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3362 crtc
->base
.mode
= crtc
->base
.state
->mode
;
3364 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3365 old_crtc_state
->pipe_src_w
, old_crtc_state
->pipe_src_h
,
3366 pipe_config
->pipe_src_w
, pipe_config
->pipe_src_h
);
3369 intel_set_pipe_csc(&crtc
->base
);
3372 * Update pipe size and adjust fitter if needed: the reason for this is
3373 * that in compute_mode_changes we check the native mode (not the pfit
3374 * mode) to see if we can flip rather than do a full mode set. In the
3375 * fastboot case, we'll flip, but if we don't update the pipesrc and
3376 * pfit state, we'll end up with a big fb scanned out into the wrong
3380 I915_WRITE(PIPESRC(crtc
->pipe
),
3381 ((pipe_config
->pipe_src_w
- 1) << 16) |
3382 (pipe_config
->pipe_src_h
- 1));
3384 /* on skylake this is done by detaching scalers */
3385 if (INTEL_INFO(dev
)->gen
>= 9) {
3386 skl_detach_scalers(crtc
);
3388 if (pipe_config
->pch_pfit
.enabled
)
3389 skylake_pfit_enable(crtc
);
3390 } else if (HAS_PCH_SPLIT(dev
)) {
3391 if (pipe_config
->pch_pfit
.enabled
)
3392 ironlake_pfit_enable(crtc
);
3393 else if (old_crtc_state
->pch_pfit
.enabled
)
3394 ironlake_pfit_disable(crtc
, true);
3398 static void intel_fdi_normal_train(struct drm_crtc
*crtc
)
3400 struct drm_device
*dev
= crtc
->dev
;
3401 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3402 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3403 int pipe
= intel_crtc
->pipe
;
3406 /* enable normal train */
3407 reg
= FDI_TX_CTL(pipe
);
3408 temp
= I915_READ(reg
);
3409 if (IS_IVYBRIDGE(dev
)) {
3410 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
3411 temp
|= FDI_LINK_TRAIN_NONE_IVB
| FDI_TX_ENHANCE_FRAME_ENABLE
;
3413 temp
&= ~FDI_LINK_TRAIN_NONE
;
3414 temp
|= FDI_LINK_TRAIN_NONE
| FDI_TX_ENHANCE_FRAME_ENABLE
;
3416 I915_WRITE(reg
, temp
);
3418 reg
= FDI_RX_CTL(pipe
);
3419 temp
= I915_READ(reg
);
3420 if (HAS_PCH_CPT(dev
)) {
3421 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
3422 temp
|= FDI_LINK_TRAIN_NORMAL_CPT
;
3424 temp
&= ~FDI_LINK_TRAIN_NONE
;
3425 temp
|= FDI_LINK_TRAIN_NONE
;
3427 I915_WRITE(reg
, temp
| FDI_RX_ENHANCE_FRAME_ENABLE
);
3429 /* wait one idle pattern time */
3433 /* IVB wants error correction enabled */
3434 if (IS_IVYBRIDGE(dev
))
3435 I915_WRITE(reg
, I915_READ(reg
) | FDI_FS_ERRC_ENABLE
|
3436 FDI_FE_ERRC_ENABLE
);
3439 /* The FDI link training functions for ILK/Ibexpeak. */
3440 static void ironlake_fdi_link_train(struct drm_crtc
*crtc
)
3442 struct drm_device
*dev
= crtc
->dev
;
3443 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3444 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3445 int pipe
= intel_crtc
->pipe
;
3446 u32 reg
, temp
, tries
;
3448 /* FDI needs bits from pipe first */
3449 assert_pipe_enabled(dev_priv
, pipe
);
3451 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3453 reg
= FDI_RX_IMR(pipe
);
3454 temp
= I915_READ(reg
);
3455 temp
&= ~FDI_RX_SYMBOL_LOCK
;
3456 temp
&= ~FDI_RX_BIT_LOCK
;
3457 I915_WRITE(reg
, temp
);
3461 /* enable CPU FDI TX and PCH FDI RX */
3462 reg
= FDI_TX_CTL(pipe
);
3463 temp
= I915_READ(reg
);
3464 temp
&= ~FDI_DP_PORT_WIDTH_MASK
;
3465 temp
|= FDI_DP_PORT_WIDTH(intel_crtc
->config
->fdi_lanes
);
3466 temp
&= ~FDI_LINK_TRAIN_NONE
;
3467 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3468 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
3470 reg
= FDI_RX_CTL(pipe
);
3471 temp
= I915_READ(reg
);
3472 temp
&= ~FDI_LINK_TRAIN_NONE
;
3473 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3474 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
3479 /* Ironlake workaround, enable clock pointer after FDI enable*/
3480 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
3481 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
|
3482 FDI_RX_PHASE_SYNC_POINTER_EN
);
3484 reg
= FDI_RX_IIR(pipe
);
3485 for (tries
= 0; tries
< 5; tries
++) {
3486 temp
= I915_READ(reg
);
3487 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3489 if ((temp
& FDI_RX_BIT_LOCK
)) {
3490 DRM_DEBUG_KMS("FDI train 1 done.\n");
3491 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
3496 DRM_ERROR("FDI train 1 fail!\n");
3499 reg
= FDI_TX_CTL(pipe
);
3500 temp
= I915_READ(reg
);
3501 temp
&= ~FDI_LINK_TRAIN_NONE
;
3502 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
3503 I915_WRITE(reg
, temp
);
3505 reg
= FDI_RX_CTL(pipe
);
3506 temp
= I915_READ(reg
);
3507 temp
&= ~FDI_LINK_TRAIN_NONE
;
3508 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
3509 I915_WRITE(reg
, temp
);
3514 reg
= FDI_RX_IIR(pipe
);
3515 for (tries
= 0; tries
< 5; tries
++) {
3516 temp
= I915_READ(reg
);
3517 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3519 if (temp
& FDI_RX_SYMBOL_LOCK
) {
3520 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
3521 DRM_DEBUG_KMS("FDI train 2 done.\n");
3526 DRM_ERROR("FDI train 2 fail!\n");
3528 DRM_DEBUG_KMS("FDI train done\n");
3532 static const int snb_b_fdi_train_param
[] = {
3533 FDI_LINK_TRAIN_400MV_0DB_SNB_B
,
3534 FDI_LINK_TRAIN_400MV_6DB_SNB_B
,
3535 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B
,
3536 FDI_LINK_TRAIN_800MV_0DB_SNB_B
,
3539 /* The FDI link training functions for SNB/Cougarpoint. */
3540 static void gen6_fdi_link_train(struct drm_crtc
*crtc
)
3542 struct drm_device
*dev
= crtc
->dev
;
3543 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3544 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3545 int pipe
= intel_crtc
->pipe
;
3546 u32 reg
, temp
, i
, retry
;
3548 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3550 reg
= FDI_RX_IMR(pipe
);
3551 temp
= I915_READ(reg
);
3552 temp
&= ~FDI_RX_SYMBOL_LOCK
;
3553 temp
&= ~FDI_RX_BIT_LOCK
;
3554 I915_WRITE(reg
, temp
);
3559 /* enable CPU FDI TX and PCH FDI RX */
3560 reg
= FDI_TX_CTL(pipe
);
3561 temp
= I915_READ(reg
);
3562 temp
&= ~FDI_DP_PORT_WIDTH_MASK
;
3563 temp
|= FDI_DP_PORT_WIDTH(intel_crtc
->config
->fdi_lanes
);
3564 temp
&= ~FDI_LINK_TRAIN_NONE
;
3565 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3566 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
3568 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
3569 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
3571 I915_WRITE(FDI_RX_MISC(pipe
),
3572 FDI_RX_TP1_TO_TP2_48
| FDI_RX_FDI_DELAY_90
);
3574 reg
= FDI_RX_CTL(pipe
);
3575 temp
= I915_READ(reg
);
3576 if (HAS_PCH_CPT(dev
)) {
3577 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
3578 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
3580 temp
&= ~FDI_LINK_TRAIN_NONE
;
3581 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3583 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
3588 for (i
= 0; i
< 4; i
++) {
3589 reg
= FDI_TX_CTL(pipe
);
3590 temp
= I915_READ(reg
);
3591 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
3592 temp
|= snb_b_fdi_train_param
[i
];
3593 I915_WRITE(reg
, temp
);
3598 for (retry
= 0; retry
< 5; retry
++) {
3599 reg
= FDI_RX_IIR(pipe
);
3600 temp
= I915_READ(reg
);
3601 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3602 if (temp
& FDI_RX_BIT_LOCK
) {
3603 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
3604 DRM_DEBUG_KMS("FDI train 1 done.\n");
3613 DRM_ERROR("FDI train 1 fail!\n");
3616 reg
= FDI_TX_CTL(pipe
);
3617 temp
= I915_READ(reg
);
3618 temp
&= ~FDI_LINK_TRAIN_NONE
;
3619 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
3621 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
3623 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
3625 I915_WRITE(reg
, temp
);
3627 reg
= FDI_RX_CTL(pipe
);
3628 temp
= I915_READ(reg
);
3629 if (HAS_PCH_CPT(dev
)) {
3630 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
3631 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
3633 temp
&= ~FDI_LINK_TRAIN_NONE
;
3634 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
3636 I915_WRITE(reg
, temp
);
3641 for (i
= 0; i
< 4; i
++) {
3642 reg
= FDI_TX_CTL(pipe
);
3643 temp
= I915_READ(reg
);
3644 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
3645 temp
|= snb_b_fdi_train_param
[i
];
3646 I915_WRITE(reg
, temp
);
3651 for (retry
= 0; retry
< 5; retry
++) {
3652 reg
= FDI_RX_IIR(pipe
);
3653 temp
= I915_READ(reg
);
3654 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3655 if (temp
& FDI_RX_SYMBOL_LOCK
) {
3656 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
3657 DRM_DEBUG_KMS("FDI train 2 done.\n");
3666 DRM_ERROR("FDI train 2 fail!\n");
3668 DRM_DEBUG_KMS("FDI train done.\n");
3671 /* Manual link training for Ivy Bridge A0 parts */
3672 static void ivb_manual_fdi_link_train(struct drm_crtc
*crtc
)
3674 struct drm_device
*dev
= crtc
->dev
;
3675 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3676 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3677 int pipe
= intel_crtc
->pipe
;
3678 u32 reg
, temp
, i
, j
;
3680 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3682 reg
= FDI_RX_IMR(pipe
);
3683 temp
= I915_READ(reg
);
3684 temp
&= ~FDI_RX_SYMBOL_LOCK
;
3685 temp
&= ~FDI_RX_BIT_LOCK
;
3686 I915_WRITE(reg
, temp
);
3691 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3692 I915_READ(FDI_RX_IIR(pipe
)));
3694 /* Try each vswing and preemphasis setting twice before moving on */
3695 for (j
= 0; j
< ARRAY_SIZE(snb_b_fdi_train_param
) * 2; j
++) {
3696 /* disable first in case we need to retry */
3697 reg
= FDI_TX_CTL(pipe
);
3698 temp
= I915_READ(reg
);
3699 temp
&= ~(FDI_LINK_TRAIN_AUTO
| FDI_LINK_TRAIN_NONE_IVB
);
3700 temp
&= ~FDI_TX_ENABLE
;
3701 I915_WRITE(reg
, temp
);
3703 reg
= FDI_RX_CTL(pipe
);
3704 temp
= I915_READ(reg
);
3705 temp
&= ~FDI_LINK_TRAIN_AUTO
;
3706 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
3707 temp
&= ~FDI_RX_ENABLE
;
3708 I915_WRITE(reg
, temp
);
3710 /* enable CPU FDI TX and PCH FDI RX */
3711 reg
= FDI_TX_CTL(pipe
);
3712 temp
= I915_READ(reg
);
3713 temp
&= ~FDI_DP_PORT_WIDTH_MASK
;
3714 temp
|= FDI_DP_PORT_WIDTH(intel_crtc
->config
->fdi_lanes
);
3715 temp
|= FDI_LINK_TRAIN_PATTERN_1_IVB
;
3716 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
3717 temp
|= snb_b_fdi_train_param
[j
/2];
3718 temp
|= FDI_COMPOSITE_SYNC
;
3719 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
3721 I915_WRITE(FDI_RX_MISC(pipe
),
3722 FDI_RX_TP1_TO_TP2_48
| FDI_RX_FDI_DELAY_90
);
3724 reg
= FDI_RX_CTL(pipe
);
3725 temp
= I915_READ(reg
);
3726 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
3727 temp
|= FDI_COMPOSITE_SYNC
;
3728 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
3731 udelay(1); /* should be 0.5us */
3733 for (i
= 0; i
< 4; i
++) {
3734 reg
= FDI_RX_IIR(pipe
);
3735 temp
= I915_READ(reg
);
3736 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3738 if (temp
& FDI_RX_BIT_LOCK
||
3739 (I915_READ(reg
) & FDI_RX_BIT_LOCK
)) {
3740 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
3741 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3745 udelay(1); /* should be 0.5us */
3748 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j
/ 2);
3753 reg
= FDI_TX_CTL(pipe
);
3754 temp
= I915_READ(reg
);
3755 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
3756 temp
|= FDI_LINK_TRAIN_PATTERN_2_IVB
;
3757 I915_WRITE(reg
, temp
);
3759 reg
= FDI_RX_CTL(pipe
);
3760 temp
= I915_READ(reg
);
3761 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
3762 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
3763 I915_WRITE(reg
, temp
);
3766 udelay(2); /* should be 1.5us */
3768 for (i
= 0; i
< 4; i
++) {
3769 reg
= FDI_RX_IIR(pipe
);
3770 temp
= I915_READ(reg
);
3771 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3773 if (temp
& FDI_RX_SYMBOL_LOCK
||
3774 (I915_READ(reg
) & FDI_RX_SYMBOL_LOCK
)) {
3775 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
3776 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3780 udelay(2); /* should be 1.5us */
3783 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j
/ 2);
3787 DRM_DEBUG_KMS("FDI train done.\n");
3790 static void ironlake_fdi_pll_enable(struct intel_crtc
*intel_crtc
)
3792 struct drm_device
*dev
= intel_crtc
->base
.dev
;
3793 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3794 int pipe
= intel_crtc
->pipe
;
3798 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3799 reg
= FDI_RX_CTL(pipe
);
3800 temp
= I915_READ(reg
);
3801 temp
&= ~(FDI_DP_PORT_WIDTH_MASK
| (0x7 << 16));
3802 temp
|= FDI_DP_PORT_WIDTH(intel_crtc
->config
->fdi_lanes
);
3803 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPECONF_BPC_MASK
) << 11;
3804 I915_WRITE(reg
, temp
| FDI_RX_PLL_ENABLE
);
3809 /* Switch from Rawclk to PCDclk */
3810 temp
= I915_READ(reg
);
3811 I915_WRITE(reg
, temp
| FDI_PCDCLK
);
3816 /* Enable CPU FDI TX PLL, always on for Ironlake */
3817 reg
= FDI_TX_CTL(pipe
);
3818 temp
= I915_READ(reg
);
3819 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
3820 I915_WRITE(reg
, temp
| FDI_TX_PLL_ENABLE
);
3827 static void ironlake_fdi_pll_disable(struct intel_crtc
*intel_crtc
)
3829 struct drm_device
*dev
= intel_crtc
->base
.dev
;
3830 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3831 int pipe
= intel_crtc
->pipe
;
3834 /* Switch from PCDclk to Rawclk */
3835 reg
= FDI_RX_CTL(pipe
);
3836 temp
= I915_READ(reg
);
3837 I915_WRITE(reg
, temp
& ~FDI_PCDCLK
);
3839 /* Disable CPU FDI TX PLL */
3840 reg
= FDI_TX_CTL(pipe
);
3841 temp
= I915_READ(reg
);
3842 I915_WRITE(reg
, temp
& ~FDI_TX_PLL_ENABLE
);
3847 reg
= FDI_RX_CTL(pipe
);
3848 temp
= I915_READ(reg
);
3849 I915_WRITE(reg
, temp
& ~FDI_RX_PLL_ENABLE
);
3851 /* Wait for the clocks to turn off. */
3856 static void ironlake_fdi_disable(struct drm_crtc
*crtc
)
3858 struct drm_device
*dev
= crtc
->dev
;
3859 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3860 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3861 int pipe
= intel_crtc
->pipe
;
3864 /* disable CPU FDI tx and PCH FDI rx */
3865 reg
= FDI_TX_CTL(pipe
);
3866 temp
= I915_READ(reg
);
3867 I915_WRITE(reg
, temp
& ~FDI_TX_ENABLE
);
3870 reg
= FDI_RX_CTL(pipe
);
3871 temp
= I915_READ(reg
);
3872 temp
&= ~(0x7 << 16);
3873 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPECONF_BPC_MASK
) << 11;
3874 I915_WRITE(reg
, temp
& ~FDI_RX_ENABLE
);
3879 /* Ironlake workaround, disable clock pointer after downing FDI */
3880 if (HAS_PCH_IBX(dev
))
3881 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
3883 /* still set train pattern 1 */
3884 reg
= FDI_TX_CTL(pipe
);
3885 temp
= I915_READ(reg
);
3886 temp
&= ~FDI_LINK_TRAIN_NONE
;
3887 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3888 I915_WRITE(reg
, temp
);
3890 reg
= FDI_RX_CTL(pipe
);
3891 temp
= I915_READ(reg
);
3892 if (HAS_PCH_CPT(dev
)) {
3893 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
3894 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
3896 temp
&= ~FDI_LINK_TRAIN_NONE
;
3897 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3899 /* BPC in FDI rx is consistent with that in PIPECONF */
3900 temp
&= ~(0x07 << 16);
3901 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPECONF_BPC_MASK
) << 11;
3902 I915_WRITE(reg
, temp
);
3908 bool intel_has_pending_fb_unpin(struct drm_device
*dev
)
3910 struct intel_crtc
*crtc
;
3912 /* Note that we don't need to be called with mode_config.lock here
3913 * as our list of CRTC objects is static for the lifetime of the
3914 * device and so cannot disappear as we iterate. Similarly, we can
3915 * happily treat the predicates as racy, atomic checks as userspace
3916 * cannot claim and pin a new fb without at least acquring the
3917 * struct_mutex and so serialising with us.
3919 for_each_intel_crtc(dev
, crtc
) {
3920 if (atomic_read(&crtc
->unpin_work_count
) == 0)
3923 if (crtc
->unpin_work
)
3924 intel_wait_for_vblank(dev
, crtc
->pipe
);
3932 static void page_flip_completed(struct intel_crtc
*intel_crtc
)
3934 struct drm_i915_private
*dev_priv
= to_i915(intel_crtc
->base
.dev
);
3935 struct intel_unpin_work
*work
= intel_crtc
->unpin_work
;
3937 /* ensure that the unpin work is consistent wrt ->pending. */
3939 intel_crtc
->unpin_work
= NULL
;
3942 drm_send_vblank_event(intel_crtc
->base
.dev
,
3946 drm_crtc_vblank_put(&intel_crtc
->base
);
3948 wake_up_all(&dev_priv
->pending_flip_queue
);
3949 queue_work(dev_priv
->wq
, &work
->work
);
3951 trace_i915_flip_complete(intel_crtc
->plane
,
3952 work
->pending_flip_obj
);
3955 void intel_crtc_wait_for_pending_flips(struct drm_crtc
*crtc
)
3957 struct drm_device
*dev
= crtc
->dev
;
3958 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3960 WARN_ON(waitqueue_active(&dev_priv
->pending_flip_queue
));
3961 if (WARN_ON(wait_event_timeout(dev_priv
->pending_flip_queue
,
3962 !intel_crtc_has_pending_flip(crtc
),
3964 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3966 spin_lock_irq(&dev
->event_lock
);
3967 if (intel_crtc
->unpin_work
) {
3968 WARN_ONCE(1, "Removing stuck page flip\n");
3969 page_flip_completed(intel_crtc
);
3971 spin_unlock_irq(&dev
->event_lock
);
3974 if (crtc
->primary
->fb
) {
3975 mutex_lock(&dev
->struct_mutex
);
3976 intel_finish_fb(crtc
->primary
->fb
);
3977 mutex_unlock(&dev
->struct_mutex
);
3981 /* Program iCLKIP clock to the desired frequency */
3982 static void lpt_program_iclkip(struct drm_crtc
*crtc
)
3984 struct drm_device
*dev
= crtc
->dev
;
3985 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3986 int clock
= to_intel_crtc(crtc
)->config
->base
.adjusted_mode
.crtc_clock
;
3987 u32 divsel
, phaseinc
, auxdiv
, phasedir
= 0;
3990 mutex_lock(&dev_priv
->sb_lock
);
3992 /* It is necessary to ungate the pixclk gate prior to programming
3993 * the divisors, and gate it back when it is done.
3995 I915_WRITE(PIXCLK_GATE
, PIXCLK_GATE_GATE
);
3997 /* Disable SSCCTL */
3998 intel_sbi_write(dev_priv
, SBI_SSCCTL6
,
3999 intel_sbi_read(dev_priv
, SBI_SSCCTL6
, SBI_ICLK
) |
4003 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
4004 if (clock
== 20000) {
4009 /* The iCLK virtual clock root frequency is in MHz,
4010 * but the adjusted_mode->crtc_clock in in KHz. To get the
4011 * divisors, it is necessary to divide one by another, so we
4012 * convert the virtual clock precision to KHz here for higher
4015 u32 iclk_virtual_root_freq
= 172800 * 1000;
4016 u32 iclk_pi_range
= 64;
4017 u32 desired_divisor
, msb_divisor_value
, pi_value
;
4019 desired_divisor
= (iclk_virtual_root_freq
/ clock
);
4020 msb_divisor_value
= desired_divisor
/ iclk_pi_range
;
4021 pi_value
= desired_divisor
% iclk_pi_range
;
4024 divsel
= msb_divisor_value
- 2;
4025 phaseinc
= pi_value
;
4028 /* This should not happen with any sane values */
4029 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel
) &
4030 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK
);
4031 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir
) &
4032 ~SBI_SSCDIVINTPHASE_INCVAL_MASK
);
4034 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4041 /* Program SSCDIVINTPHASE6 */
4042 temp
= intel_sbi_read(dev_priv
, SBI_SSCDIVINTPHASE6
, SBI_ICLK
);
4043 temp
&= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK
;
4044 temp
|= SBI_SSCDIVINTPHASE_DIVSEL(divsel
);
4045 temp
&= ~SBI_SSCDIVINTPHASE_INCVAL_MASK
;
4046 temp
|= SBI_SSCDIVINTPHASE_INCVAL(phaseinc
);
4047 temp
|= SBI_SSCDIVINTPHASE_DIR(phasedir
);
4048 temp
|= SBI_SSCDIVINTPHASE_PROPAGATE
;
4049 intel_sbi_write(dev_priv
, SBI_SSCDIVINTPHASE6
, temp
, SBI_ICLK
);
4051 /* Program SSCAUXDIV */
4052 temp
= intel_sbi_read(dev_priv
, SBI_SSCAUXDIV6
, SBI_ICLK
);
4053 temp
&= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4054 temp
|= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv
);
4055 intel_sbi_write(dev_priv
, SBI_SSCAUXDIV6
, temp
, SBI_ICLK
);
4057 /* Enable modulator and associated divider */
4058 temp
= intel_sbi_read(dev_priv
, SBI_SSCCTL6
, SBI_ICLK
);
4059 temp
&= ~SBI_SSCCTL_DISABLE
;
4060 intel_sbi_write(dev_priv
, SBI_SSCCTL6
, temp
, SBI_ICLK
);
4062 /* Wait for initialization time */
4065 I915_WRITE(PIXCLK_GATE
, PIXCLK_GATE_UNGATE
);
4067 mutex_unlock(&dev_priv
->sb_lock
);
4070 static void ironlake_pch_transcoder_set_timings(struct intel_crtc
*crtc
,
4071 enum pipe pch_transcoder
)
4073 struct drm_device
*dev
= crtc
->base
.dev
;
4074 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4075 enum transcoder cpu_transcoder
= crtc
->config
->cpu_transcoder
;
4077 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder
),
4078 I915_READ(HTOTAL(cpu_transcoder
)));
4079 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder
),
4080 I915_READ(HBLANK(cpu_transcoder
)));
4081 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder
),
4082 I915_READ(HSYNC(cpu_transcoder
)));
4084 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder
),
4085 I915_READ(VTOTAL(cpu_transcoder
)));
4086 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder
),
4087 I915_READ(VBLANK(cpu_transcoder
)));
4088 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder
),
4089 I915_READ(VSYNC(cpu_transcoder
)));
4090 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder
),
4091 I915_READ(VSYNCSHIFT(cpu_transcoder
)));
4094 static void cpt_set_fdi_bc_bifurcation(struct drm_device
*dev
, bool enable
)
4096 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4099 temp
= I915_READ(SOUTH_CHICKEN1
);
4100 if (!!(temp
& FDI_BC_BIFURCATION_SELECT
) == enable
)
4103 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B
)) & FDI_RX_ENABLE
);
4104 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C
)) & FDI_RX_ENABLE
);
4106 temp
&= ~FDI_BC_BIFURCATION_SELECT
;
4108 temp
|= FDI_BC_BIFURCATION_SELECT
;
4110 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable
? "en" : "dis");
4111 I915_WRITE(SOUTH_CHICKEN1
, temp
);
4112 POSTING_READ(SOUTH_CHICKEN1
);
4115 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc
*intel_crtc
)
4117 struct drm_device
*dev
= intel_crtc
->base
.dev
;
4119 switch (intel_crtc
->pipe
) {
4123 if (intel_crtc
->config
->fdi_lanes
> 2)
4124 cpt_set_fdi_bc_bifurcation(dev
, false);
4126 cpt_set_fdi_bc_bifurcation(dev
, true);
4130 cpt_set_fdi_bc_bifurcation(dev
, true);
4139 * Enable PCH resources required for PCH ports:
4141 * - FDI training & RX/TX
4142 * - update transcoder timings
4143 * - DP transcoding bits
4146 static void ironlake_pch_enable(struct drm_crtc
*crtc
)
4148 struct drm_device
*dev
= crtc
->dev
;
4149 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4150 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4151 int pipe
= intel_crtc
->pipe
;
4154 assert_pch_transcoder_disabled(dev_priv
, pipe
);
4156 if (IS_IVYBRIDGE(dev
))
4157 ivybridge_update_fdi_bc_bifurcation(intel_crtc
);
4159 /* Write the TU size bits before fdi link training, so that error
4160 * detection works. */
4161 I915_WRITE(FDI_RX_TUSIZE1(pipe
),
4162 I915_READ(PIPE_DATA_M1(pipe
)) & TU_SIZE_MASK
);
4164 /* For PCH output, training FDI link */
4165 dev_priv
->display
.fdi_link_train(crtc
);
4167 /* We need to program the right clock selection before writing the pixel
4168 * mutliplier into the DPLL. */
4169 if (HAS_PCH_CPT(dev
)) {
4172 temp
= I915_READ(PCH_DPLL_SEL
);
4173 temp
|= TRANS_DPLL_ENABLE(pipe
);
4174 sel
= TRANS_DPLLB_SEL(pipe
);
4175 if (intel_crtc
->config
->shared_dpll
== DPLL_ID_PCH_PLL_B
)
4179 I915_WRITE(PCH_DPLL_SEL
, temp
);
4182 /* XXX: pch pll's can be enabled any time before we enable the PCH
4183 * transcoder, and we actually should do this to not upset any PCH
4184 * transcoder that already use the clock when we share it.
4186 * Note that enable_shared_dpll tries to do the right thing, but
4187 * get_shared_dpll unconditionally resets the pll - we need that to have
4188 * the right LVDS enable sequence. */
4189 intel_enable_shared_dpll(intel_crtc
);
4191 /* set transcoder timing, panel must allow it */
4192 assert_panel_unlocked(dev_priv
, pipe
);
4193 ironlake_pch_transcoder_set_timings(intel_crtc
, pipe
);
4195 intel_fdi_normal_train(crtc
);
4197 /* For PCH DP, enable TRANS_DP_CTL */
4198 if (HAS_PCH_CPT(dev
) && intel_crtc
->config
->has_dp_encoder
) {
4199 u32 bpc
= (I915_READ(PIPECONF(pipe
)) & PIPECONF_BPC_MASK
) >> 5;
4200 reg
= TRANS_DP_CTL(pipe
);
4201 temp
= I915_READ(reg
);
4202 temp
&= ~(TRANS_DP_PORT_SEL_MASK
|
4203 TRANS_DP_SYNC_MASK
|
4205 temp
|= TRANS_DP_OUTPUT_ENABLE
;
4206 temp
|= bpc
<< 9; /* same format but at 11:9 */
4208 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PHSYNC
)
4209 temp
|= TRANS_DP_HSYNC_ACTIVE_HIGH
;
4210 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PVSYNC
)
4211 temp
|= TRANS_DP_VSYNC_ACTIVE_HIGH
;
4213 switch (intel_trans_dp_port_sel(crtc
)) {
4215 temp
|= TRANS_DP_PORT_SEL_B
;
4218 temp
|= TRANS_DP_PORT_SEL_C
;
4221 temp
|= TRANS_DP_PORT_SEL_D
;
4227 I915_WRITE(reg
, temp
);
4230 ironlake_enable_pch_transcoder(dev_priv
, pipe
);
4233 static void lpt_pch_enable(struct drm_crtc
*crtc
)
4235 struct drm_device
*dev
= crtc
->dev
;
4236 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4237 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4238 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
4240 assert_pch_transcoder_disabled(dev_priv
, TRANSCODER_A
);
4242 lpt_program_iclkip(crtc
);
4244 /* Set transcoder timing. */
4245 ironlake_pch_transcoder_set_timings(intel_crtc
, PIPE_A
);
4247 lpt_enable_pch_transcoder(dev_priv
, cpu_transcoder
);
4250 struct intel_shared_dpll
*intel_get_shared_dpll(struct intel_crtc
*crtc
,
4251 struct intel_crtc_state
*crtc_state
)
4253 struct drm_i915_private
*dev_priv
= crtc
->base
.dev
->dev_private
;
4254 struct intel_shared_dpll
*pll
;
4255 struct intel_shared_dpll_config
*shared_dpll
;
4256 enum intel_dpll_id i
;
4257 int max
= dev_priv
->num_shared_dpll
;
4259 shared_dpll
= intel_atomic_get_shared_dpll_state(crtc_state
->base
.state
);
4261 if (HAS_PCH_IBX(dev_priv
->dev
)) {
4262 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4263 i
= (enum intel_dpll_id
) crtc
->pipe
;
4264 pll
= &dev_priv
->shared_dplls
[i
];
4266 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4267 crtc
->base
.base
.id
, pll
->name
);
4269 WARN_ON(shared_dpll
[i
].crtc_mask
);
4274 if (IS_BROXTON(dev_priv
->dev
)) {
4275 /* PLL is attached to port in bxt */
4276 struct intel_encoder
*encoder
;
4277 struct intel_digital_port
*intel_dig_port
;
4279 encoder
= intel_ddi_get_crtc_new_encoder(crtc_state
);
4280 if (WARN_ON(!encoder
))
4283 intel_dig_port
= enc_to_dig_port(&encoder
->base
);
4284 /* 1:1 mapping between ports and PLLs */
4285 i
= (enum intel_dpll_id
)intel_dig_port
->port
;
4286 pll
= &dev_priv
->shared_dplls
[i
];
4287 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4288 crtc
->base
.base
.id
, pll
->name
);
4289 WARN_ON(shared_dpll
[i
].crtc_mask
);
4292 } else if (INTEL_INFO(dev_priv
)->gen
< 9 && HAS_DDI(dev_priv
))
4293 /* Do not consider SPLL */
4296 for (i
= 0; i
< max
; i
++) {
4297 pll
= &dev_priv
->shared_dplls
[i
];
4299 /* Only want to check enabled timings first */
4300 if (shared_dpll
[i
].crtc_mask
== 0)
4303 if (memcmp(&crtc_state
->dpll_hw_state
,
4304 &shared_dpll
[i
].hw_state
,
4305 sizeof(crtc_state
->dpll_hw_state
)) == 0) {
4306 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4307 crtc
->base
.base
.id
, pll
->name
,
4308 shared_dpll
[i
].crtc_mask
,
4314 /* Ok no matching timings, maybe there's a free one? */
4315 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++) {
4316 pll
= &dev_priv
->shared_dplls
[i
];
4317 if (shared_dpll
[i
].crtc_mask
== 0) {
4318 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4319 crtc
->base
.base
.id
, pll
->name
);
4327 if (shared_dpll
[i
].crtc_mask
== 0)
4328 shared_dpll
[i
].hw_state
=
4329 crtc_state
->dpll_hw_state
;
4331 crtc_state
->shared_dpll
= i
;
4332 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll
->name
,
4333 pipe_name(crtc
->pipe
));
4335 shared_dpll
[i
].crtc_mask
|= 1 << crtc
->pipe
;
4340 static void intel_shared_dpll_commit(struct drm_atomic_state
*state
)
4342 struct drm_i915_private
*dev_priv
= to_i915(state
->dev
);
4343 struct intel_shared_dpll_config
*shared_dpll
;
4344 struct intel_shared_dpll
*pll
;
4345 enum intel_dpll_id i
;
4347 if (!to_intel_atomic_state(state
)->dpll_set
)
4350 shared_dpll
= to_intel_atomic_state(state
)->shared_dpll
;
4351 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++) {
4352 pll
= &dev_priv
->shared_dplls
[i
];
4353 pll
->config
= shared_dpll
[i
];
4357 static void cpt_verify_modeset(struct drm_device
*dev
, int pipe
)
4359 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4360 int dslreg
= PIPEDSL(pipe
);
4363 temp
= I915_READ(dslreg
);
4365 if (wait_for(I915_READ(dslreg
) != temp
, 5)) {
4366 if (wait_for(I915_READ(dslreg
) != temp
, 5))
4367 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe
));
4372 skl_update_scaler(struct intel_crtc_state
*crtc_state
, bool force_detach
,
4373 unsigned scaler_user
, int *scaler_id
, unsigned int rotation
,
4374 int src_w
, int src_h
, int dst_w
, int dst_h
)
4376 struct intel_crtc_scaler_state
*scaler_state
=
4377 &crtc_state
->scaler_state
;
4378 struct intel_crtc
*intel_crtc
=
4379 to_intel_crtc(crtc_state
->base
.crtc
);
4382 need_scaling
= intel_rotation_90_or_270(rotation
) ?
4383 (src_h
!= dst_w
|| src_w
!= dst_h
):
4384 (src_w
!= dst_w
|| src_h
!= dst_h
);
4387 * if plane is being disabled or scaler is no more required or force detach
4388 * - free scaler binded to this plane/crtc
4389 * - in order to do this, update crtc->scaler_usage
4391 * Here scaler state in crtc_state is set free so that
4392 * scaler can be assigned to other user. Actual register
4393 * update to free the scaler is done in plane/panel-fit programming.
4394 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4396 if (force_detach
|| !need_scaling
) {
4397 if (*scaler_id
>= 0) {
4398 scaler_state
->scaler_users
&= ~(1 << scaler_user
);
4399 scaler_state
->scalers
[*scaler_id
].in_use
= 0;
4401 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4402 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4403 intel_crtc
->pipe
, scaler_user
, *scaler_id
,
4404 scaler_state
->scaler_users
);
4411 if (src_w
< SKL_MIN_SRC_W
|| src_h
< SKL_MIN_SRC_H
||
4412 dst_w
< SKL_MIN_DST_W
|| dst_h
< SKL_MIN_DST_H
||
4414 src_w
> SKL_MAX_SRC_W
|| src_h
> SKL_MAX_SRC_H
||
4415 dst_w
> SKL_MAX_DST_W
|| dst_h
> SKL_MAX_DST_H
) {
4416 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4417 "size is out of scaler range\n",
4418 intel_crtc
->pipe
, scaler_user
, src_w
, src_h
, dst_w
, dst_h
);
4422 /* mark this plane as a scaler user in crtc_state */
4423 scaler_state
->scaler_users
|= (1 << scaler_user
);
4424 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4425 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4426 intel_crtc
->pipe
, scaler_user
, src_w
, src_h
, dst_w
, dst_h
,
4427 scaler_state
->scaler_users
);
4433 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4435 * @state: crtc's scaler state
4438 * 0 - scaler_usage updated successfully
4439 * error - requested scaling cannot be supported or other error condition
4441 int skl_update_scaler_crtc(struct intel_crtc_state
*state
)
4443 struct intel_crtc
*intel_crtc
= to_intel_crtc(state
->base
.crtc
);
4444 const struct drm_display_mode
*adjusted_mode
= &state
->base
.adjusted_mode
;
4446 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4447 intel_crtc
->base
.base
.id
, intel_crtc
->pipe
, SKL_CRTC_INDEX
);
4449 return skl_update_scaler(state
, !state
->base
.active
, SKL_CRTC_INDEX
,
4450 &state
->scaler_state
.scaler_id
, DRM_ROTATE_0
,
4451 state
->pipe_src_w
, state
->pipe_src_h
,
4452 adjusted_mode
->crtc_hdisplay
, adjusted_mode
->crtc_vdisplay
);
4456 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4458 * @state: crtc's scaler state
4459 * @plane_state: atomic plane state to update
4462 * 0 - scaler_usage updated successfully
4463 * error - requested scaling cannot be supported or other error condition
4465 static int skl_update_scaler_plane(struct intel_crtc_state
*crtc_state
,
4466 struct intel_plane_state
*plane_state
)
4469 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
4470 struct intel_plane
*intel_plane
=
4471 to_intel_plane(plane_state
->base
.plane
);
4472 struct drm_framebuffer
*fb
= plane_state
->base
.fb
;
4475 bool force_detach
= !fb
|| !plane_state
->visible
;
4477 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4478 intel_plane
->base
.base
.id
, intel_crtc
->pipe
,
4479 drm_plane_index(&intel_plane
->base
));
4481 ret
= skl_update_scaler(crtc_state
, force_detach
,
4482 drm_plane_index(&intel_plane
->base
),
4483 &plane_state
->scaler_id
,
4484 plane_state
->base
.rotation
,
4485 drm_rect_width(&plane_state
->src
) >> 16,
4486 drm_rect_height(&plane_state
->src
) >> 16,
4487 drm_rect_width(&plane_state
->dst
),
4488 drm_rect_height(&plane_state
->dst
));
4490 if (ret
|| plane_state
->scaler_id
< 0)
4493 /* check colorkey */
4494 if (plane_state
->ckey
.flags
!= I915_SET_COLORKEY_NONE
) {
4495 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4496 intel_plane
->base
.base
.id
);
4500 /* Check src format */
4501 switch (fb
->pixel_format
) {
4502 case DRM_FORMAT_RGB565
:
4503 case DRM_FORMAT_XBGR8888
:
4504 case DRM_FORMAT_XRGB8888
:
4505 case DRM_FORMAT_ABGR8888
:
4506 case DRM_FORMAT_ARGB8888
:
4507 case DRM_FORMAT_XRGB2101010
:
4508 case DRM_FORMAT_XBGR2101010
:
4509 case DRM_FORMAT_YUYV
:
4510 case DRM_FORMAT_YVYU
:
4511 case DRM_FORMAT_UYVY
:
4512 case DRM_FORMAT_VYUY
:
4515 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4516 intel_plane
->base
.base
.id
, fb
->base
.id
, fb
->pixel_format
);
4523 static void skylake_scaler_disable(struct intel_crtc
*crtc
)
4527 for (i
= 0; i
< crtc
->num_scalers
; i
++)
4528 skl_detach_scaler(crtc
, i
);
4531 static void skylake_pfit_enable(struct intel_crtc
*crtc
)
4533 struct drm_device
*dev
= crtc
->base
.dev
;
4534 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4535 int pipe
= crtc
->pipe
;
4536 struct intel_crtc_scaler_state
*scaler_state
=
4537 &crtc
->config
->scaler_state
;
4539 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc
->config
);
4541 if (crtc
->config
->pch_pfit
.enabled
) {
4544 if (WARN_ON(crtc
->config
->scaler_state
.scaler_id
< 0)) {
4545 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4549 id
= scaler_state
->scaler_id
;
4550 I915_WRITE(SKL_PS_CTRL(pipe
, id
), PS_SCALER_EN
|
4551 PS_FILTER_MEDIUM
| scaler_state
->scalers
[id
].mode
);
4552 I915_WRITE(SKL_PS_WIN_POS(pipe
, id
), crtc
->config
->pch_pfit
.pos
);
4553 I915_WRITE(SKL_PS_WIN_SZ(pipe
, id
), crtc
->config
->pch_pfit
.size
);
4555 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc
->config
, id
);
4559 static void ironlake_pfit_enable(struct intel_crtc
*crtc
)
4561 struct drm_device
*dev
= crtc
->base
.dev
;
4562 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4563 int pipe
= crtc
->pipe
;
4565 if (crtc
->config
->pch_pfit
.enabled
) {
4566 /* Force use of hard-coded filter coefficients
4567 * as some pre-programmed values are broken,
4570 if (IS_IVYBRIDGE(dev
) || IS_HASWELL(dev
))
4571 I915_WRITE(PF_CTL(pipe
), PF_ENABLE
| PF_FILTER_MED_3x3
|
4572 PF_PIPE_SEL_IVB(pipe
));
4574 I915_WRITE(PF_CTL(pipe
), PF_ENABLE
| PF_FILTER_MED_3x3
);
4575 I915_WRITE(PF_WIN_POS(pipe
), crtc
->config
->pch_pfit
.pos
);
4576 I915_WRITE(PF_WIN_SZ(pipe
), crtc
->config
->pch_pfit
.size
);
4580 void hsw_enable_ips(struct intel_crtc
*crtc
)
4582 struct drm_device
*dev
= crtc
->base
.dev
;
4583 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4585 if (!crtc
->config
->ips_enabled
)
4588 /* We can only enable IPS after we enable a plane and wait for a vblank */
4589 intel_wait_for_vblank(dev
, crtc
->pipe
);
4591 assert_plane_enabled(dev_priv
, crtc
->plane
);
4592 if (IS_BROADWELL(dev
)) {
4593 mutex_lock(&dev_priv
->rps
.hw_lock
);
4594 WARN_ON(sandybridge_pcode_write(dev_priv
, DISPLAY_IPS_CONTROL
, 0xc0000000));
4595 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4596 /* Quoting Art Runyan: "its not safe to expect any particular
4597 * value in IPS_CTL bit 31 after enabling IPS through the
4598 * mailbox." Moreover, the mailbox may return a bogus state,
4599 * so we need to just enable it and continue on.
4602 I915_WRITE(IPS_CTL
, IPS_ENABLE
);
4603 /* The bit only becomes 1 in the next vblank, so this wait here
4604 * is essentially intel_wait_for_vblank. If we don't have this
4605 * and don't wait for vblanks until the end of crtc_enable, then
4606 * the HW state readout code will complain that the expected
4607 * IPS_CTL value is not the one we read. */
4608 if (wait_for(I915_READ_NOTRACE(IPS_CTL
) & IPS_ENABLE
, 50))
4609 DRM_ERROR("Timed out waiting for IPS enable\n");
4613 void hsw_disable_ips(struct intel_crtc
*crtc
)
4615 struct drm_device
*dev
= crtc
->base
.dev
;
4616 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4618 if (!crtc
->config
->ips_enabled
)
4621 assert_plane_enabled(dev_priv
, crtc
->plane
);
4622 if (IS_BROADWELL(dev
)) {
4623 mutex_lock(&dev_priv
->rps
.hw_lock
);
4624 WARN_ON(sandybridge_pcode_write(dev_priv
, DISPLAY_IPS_CONTROL
, 0));
4625 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4626 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4627 if (wait_for((I915_READ(IPS_CTL
) & IPS_ENABLE
) == 0, 42))
4628 DRM_ERROR("Timed out waiting for IPS disable\n");
4630 I915_WRITE(IPS_CTL
, 0);
4631 POSTING_READ(IPS_CTL
);
4634 /* We need to wait for a vblank before we can disable the plane. */
4635 intel_wait_for_vblank(dev
, crtc
->pipe
);
4638 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4639 static void intel_crtc_load_lut(struct drm_crtc
*crtc
)
4641 struct drm_device
*dev
= crtc
->dev
;
4642 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4643 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4644 enum pipe pipe
= intel_crtc
->pipe
;
4646 bool reenable_ips
= false;
4648 /* The clocks have to be on to load the palette. */
4649 if (!crtc
->state
->active
)
4652 if (HAS_GMCH_DISPLAY(dev_priv
->dev
)) {
4653 if (intel_pipe_has_type(intel_crtc
, INTEL_OUTPUT_DSI
))
4654 assert_dsi_pll_enabled(dev_priv
);
4656 assert_pll_enabled(dev_priv
, pipe
);
4659 /* Workaround : Do not read or write the pipe palette/gamma data while
4660 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4662 if (IS_HASWELL(dev
) && intel_crtc
->config
->ips_enabled
&&
4663 ((I915_READ(GAMMA_MODE(pipe
)) & GAMMA_MODE_MODE_MASK
) ==
4664 GAMMA_MODE_MODE_SPLIT
)) {
4665 hsw_disable_ips(intel_crtc
);
4666 reenable_ips
= true;
4669 for (i
= 0; i
< 256; i
++) {
4672 if (HAS_GMCH_DISPLAY(dev
))
4673 palreg
= PALETTE(pipe
, i
);
4675 palreg
= LGC_PALETTE(pipe
, i
);
4678 (intel_crtc
->lut_r
[i
] << 16) |
4679 (intel_crtc
->lut_g
[i
] << 8) |
4680 intel_crtc
->lut_b
[i
]);
4684 hsw_enable_ips(intel_crtc
);
4687 static void intel_crtc_dpms_overlay_disable(struct intel_crtc
*intel_crtc
)
4689 if (intel_crtc
->overlay
) {
4690 struct drm_device
*dev
= intel_crtc
->base
.dev
;
4691 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4693 mutex_lock(&dev
->struct_mutex
);
4694 dev_priv
->mm
.interruptible
= false;
4695 (void) intel_overlay_switch_off(intel_crtc
->overlay
);
4696 dev_priv
->mm
.interruptible
= true;
4697 mutex_unlock(&dev
->struct_mutex
);
4700 /* Let userspace switch the overlay on again. In most cases userspace
4701 * has to recompute where to put it anyway.
4706 * intel_post_enable_primary - Perform operations after enabling primary plane
4707 * @crtc: the CRTC whose primary plane was just enabled
4709 * Performs potentially sleeping operations that must be done after the primary
4710 * plane is enabled, such as updating FBC and IPS. Note that this may be
4711 * called due to an explicit primary plane update, or due to an implicit
4712 * re-enable that is caused when a sprite plane is updated to no longer
4713 * completely hide the primary plane.
4716 intel_post_enable_primary(struct drm_crtc
*crtc
)
4718 struct drm_device
*dev
= crtc
->dev
;
4719 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4720 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4721 int pipe
= intel_crtc
->pipe
;
4724 * BDW signals flip done immediately if the plane
4725 * is disabled, even if the plane enable is already
4726 * armed to occur at the next vblank :(
4728 if (IS_BROADWELL(dev
))
4729 intel_wait_for_vblank(dev
, pipe
);
4732 * FIXME IPS should be fine as long as one plane is
4733 * enabled, but in practice it seems to have problems
4734 * when going from primary only to sprite only and vice
4737 hsw_enable_ips(intel_crtc
);
4740 * Gen2 reports pipe underruns whenever all planes are disabled.
4741 * So don't enable underrun reporting before at least some planes
4743 * FIXME: Need to fix the logic to work when we turn off all planes
4744 * but leave the pipe running.
4747 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
4749 /* Underruns don't raise interrupts, so check manually. */
4750 if (HAS_GMCH_DISPLAY(dev
))
4751 i9xx_check_fifo_underruns(dev_priv
);
4755 * intel_pre_disable_primary - Perform operations before disabling primary plane
4756 * @crtc: the CRTC whose primary plane is to be disabled
4758 * Performs potentially sleeping operations that must be done before the
4759 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4760 * be called due to an explicit primary plane update, or due to an implicit
4761 * disable that is caused when a sprite plane completely hides the primary
4765 intel_pre_disable_primary(struct drm_crtc
*crtc
)
4767 struct drm_device
*dev
= crtc
->dev
;
4768 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4769 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4770 int pipe
= intel_crtc
->pipe
;
4773 * Gen2 reports pipe underruns whenever all planes are disabled.
4774 * So diasble underrun reporting before all the planes get disabled.
4775 * FIXME: Need to fix the logic to work when we turn off all planes
4776 * but leave the pipe running.
4779 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, false);
4782 * Vblank time updates from the shadow to live plane control register
4783 * are blocked if the memory self-refresh mode is active at that
4784 * moment. So to make sure the plane gets truly disabled, disable
4785 * first the self-refresh mode. The self-refresh enable bit in turn
4786 * will be checked/applied by the HW only at the next frame start
4787 * event which is after the vblank start event, so we need to have a
4788 * wait-for-vblank between disabling the plane and the pipe.
4790 if (HAS_GMCH_DISPLAY(dev
)) {
4791 intel_set_memory_cxsr(dev_priv
, false);
4792 dev_priv
->wm
.vlv
.cxsr
= false;
4793 intel_wait_for_vblank(dev
, pipe
);
4797 * FIXME IPS should be fine as long as one plane is
4798 * enabled, but in practice it seems to have problems
4799 * when going from primary only to sprite only and vice
4802 hsw_disable_ips(intel_crtc
);
4805 static void intel_post_plane_update(struct intel_crtc
*crtc
)
4807 struct intel_crtc_atomic_commit
*atomic
= &crtc
->atomic
;
4808 struct drm_device
*dev
= crtc
->base
.dev
;
4809 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4810 struct drm_plane
*plane
;
4812 if (atomic
->wait_vblank
)
4813 intel_wait_for_vblank(dev
, crtc
->pipe
);
4815 intel_frontbuffer_flip(dev
, atomic
->fb_bits
);
4817 if (atomic
->disable_cxsr
)
4818 crtc
->wm
.cxsr_allowed
= true;
4820 if (crtc
->atomic
.update_wm_post
)
4821 intel_update_watermarks(&crtc
->base
);
4823 if (atomic
->update_fbc
)
4824 intel_fbc_update(dev_priv
);
4826 if (atomic
->post_enable_primary
)
4827 intel_post_enable_primary(&crtc
->base
);
4829 drm_for_each_plane_mask(plane
, dev
, atomic
->update_sprite_watermarks
)
4830 intel_update_sprite_watermarks(plane
, &crtc
->base
,
4831 0, 0, 0, false, false);
4833 memset(atomic
, 0, sizeof(*atomic
));
4836 static void intel_pre_plane_update(struct intel_crtc
*crtc
)
4838 struct drm_device
*dev
= crtc
->base
.dev
;
4839 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4840 struct intel_crtc_atomic_commit
*atomic
= &crtc
->atomic
;
4841 struct drm_plane
*p
;
4843 /* Track fb's for any planes being disabled */
4844 drm_for_each_plane_mask(p
, dev
, atomic
->disabled_planes
) {
4845 struct intel_plane
*plane
= to_intel_plane(p
);
4847 mutex_lock(&dev
->struct_mutex
);
4848 i915_gem_track_fb(intel_fb_obj(plane
->base
.fb
), NULL
,
4849 plane
->frontbuffer_bit
);
4850 mutex_unlock(&dev
->struct_mutex
);
4853 if (atomic
->wait_for_flips
)
4854 intel_crtc_wait_for_pending_flips(&crtc
->base
);
4856 if (atomic
->disable_fbc
)
4857 intel_fbc_disable_crtc(crtc
);
4859 if (crtc
->atomic
.disable_ips
)
4860 hsw_disable_ips(crtc
);
4862 if (atomic
->pre_disable_primary
)
4863 intel_pre_disable_primary(&crtc
->base
);
4865 if (atomic
->disable_cxsr
) {
4866 crtc
->wm
.cxsr_allowed
= false;
4867 intel_set_memory_cxsr(dev_priv
, false);
4871 static void intel_crtc_disable_planes(struct drm_crtc
*crtc
, unsigned plane_mask
)
4873 struct drm_device
*dev
= crtc
->dev
;
4874 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4875 struct drm_plane
*p
;
4876 int pipe
= intel_crtc
->pipe
;
4878 intel_crtc_dpms_overlay_disable(intel_crtc
);
4880 drm_for_each_plane_mask(p
, dev
, plane_mask
)
4881 to_intel_plane(p
)->disable_plane(p
, crtc
);
4884 * FIXME: Once we grow proper nuclear flip support out of this we need
4885 * to compute the mask of flip planes precisely. For the time being
4886 * consider this a flip to a NULL plane.
4888 intel_frontbuffer_flip(dev
, INTEL_FRONTBUFFER_ALL_MASK(pipe
));
4891 static void ironlake_crtc_enable(struct drm_crtc
*crtc
)
4893 struct drm_device
*dev
= crtc
->dev
;
4894 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4895 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4896 struct intel_encoder
*encoder
;
4897 int pipe
= intel_crtc
->pipe
;
4899 if (WARN_ON(intel_crtc
->active
))
4902 if (intel_crtc
->config
->has_pch_encoder
)
4903 intel_prepare_shared_dpll(intel_crtc
);
4905 if (intel_crtc
->config
->has_dp_encoder
)
4906 intel_dp_set_m_n(intel_crtc
, M1_N1
);
4908 intel_set_pipe_timings(intel_crtc
);
4910 if (intel_crtc
->config
->has_pch_encoder
) {
4911 intel_cpu_transcoder_set_m_n(intel_crtc
,
4912 &intel_crtc
->config
->fdi_m_n
, NULL
);
4915 ironlake_set_pipeconf(crtc
);
4917 intel_crtc
->active
= true;
4919 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
4920 intel_set_pch_fifo_underrun_reporting(dev_priv
, pipe
, true);
4922 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
4923 if (encoder
->pre_enable
)
4924 encoder
->pre_enable(encoder
);
4926 if (intel_crtc
->config
->has_pch_encoder
) {
4927 /* Note: FDI PLL enabling _must_ be done before we enable the
4928 * cpu pipes, hence this is separate from all the other fdi/pch
4930 ironlake_fdi_pll_enable(intel_crtc
);
4932 assert_fdi_tx_disabled(dev_priv
, pipe
);
4933 assert_fdi_rx_disabled(dev_priv
, pipe
);
4936 ironlake_pfit_enable(intel_crtc
);
4939 * On ILK+ LUT must be loaded before the pipe is running but with
4942 intel_crtc_load_lut(crtc
);
4944 intel_update_watermarks(crtc
);
4945 intel_enable_pipe(intel_crtc
);
4947 if (intel_crtc
->config
->has_pch_encoder
)
4948 ironlake_pch_enable(crtc
);
4950 assert_vblank_disabled(crtc
);
4951 drm_crtc_vblank_on(crtc
);
4953 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
4954 encoder
->enable(encoder
);
4956 if (HAS_PCH_CPT(dev
))
4957 cpt_verify_modeset(dev
, intel_crtc
->pipe
);
4960 /* IPS only exists on ULT machines and is tied to pipe A. */
4961 static bool hsw_crtc_supports_ips(struct intel_crtc
*crtc
)
4963 return HAS_IPS(crtc
->base
.dev
) && crtc
->pipe
== PIPE_A
;
4966 static void haswell_crtc_enable(struct drm_crtc
*crtc
)
4968 struct drm_device
*dev
= crtc
->dev
;
4969 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4970 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4971 struct intel_encoder
*encoder
;
4972 int pipe
= intel_crtc
->pipe
, hsw_workaround_pipe
;
4973 struct intel_crtc_state
*pipe_config
=
4974 to_intel_crtc_state(crtc
->state
);
4975 bool is_dsi
= intel_pipe_has_type(intel_crtc
, INTEL_OUTPUT_DSI
);
4977 if (WARN_ON(intel_crtc
->active
))
4980 if (intel_crtc_to_shared_dpll(intel_crtc
))
4981 intel_enable_shared_dpll(intel_crtc
);
4983 if (intel_crtc
->config
->has_dp_encoder
)
4984 intel_dp_set_m_n(intel_crtc
, M1_N1
);
4986 intel_set_pipe_timings(intel_crtc
);
4988 if (intel_crtc
->config
->cpu_transcoder
!= TRANSCODER_EDP
) {
4989 I915_WRITE(PIPE_MULT(intel_crtc
->config
->cpu_transcoder
),
4990 intel_crtc
->config
->pixel_multiplier
- 1);
4993 if (intel_crtc
->config
->has_pch_encoder
) {
4994 intel_cpu_transcoder_set_m_n(intel_crtc
,
4995 &intel_crtc
->config
->fdi_m_n
, NULL
);
4998 haswell_set_pipeconf(crtc
);
5000 intel_set_pipe_csc(crtc
);
5002 intel_crtc
->active
= true;
5004 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
5005 for_each_encoder_on_crtc(dev
, crtc
, encoder
) {
5006 if (encoder
->pre_pll_enable
)
5007 encoder
->pre_pll_enable(encoder
);
5008 if (encoder
->pre_enable
)
5009 encoder
->pre_enable(encoder
);
5012 if (intel_crtc
->config
->has_pch_encoder
) {
5013 intel_set_pch_fifo_underrun_reporting(dev_priv
, TRANSCODER_A
,
5015 dev_priv
->display
.fdi_link_train(crtc
);
5019 intel_ddi_enable_pipe_clock(intel_crtc
);
5021 if (INTEL_INFO(dev
)->gen
>= 9)
5022 skylake_pfit_enable(intel_crtc
);
5024 ironlake_pfit_enable(intel_crtc
);
5027 * On ILK+ LUT must be loaded before the pipe is running but with
5030 intel_crtc_load_lut(crtc
);
5032 intel_ddi_set_pipe_settings(crtc
);
5034 intel_ddi_enable_transcoder_func(crtc
);
5036 intel_update_watermarks(crtc
);
5037 intel_enable_pipe(intel_crtc
);
5039 if (intel_crtc
->config
->has_pch_encoder
)
5040 lpt_pch_enable(crtc
);
5042 if (intel_crtc
->config
->dp_encoder_is_mst
&& !is_dsi
)
5043 intel_ddi_set_vc_payload_alloc(crtc
, true);
5045 assert_vblank_disabled(crtc
);
5046 drm_crtc_vblank_on(crtc
);
5048 for_each_encoder_on_crtc(dev
, crtc
, encoder
) {
5049 encoder
->enable(encoder
);
5050 intel_opregion_notify_encoder(encoder
, true);
5053 /* If we change the relative order between pipe/planes enabling, we need
5054 * to change the workaround. */
5055 hsw_workaround_pipe
= pipe_config
->hsw_workaround_pipe
;
5056 if (IS_HASWELL(dev
) && hsw_workaround_pipe
!= INVALID_PIPE
) {
5057 intel_wait_for_vblank(dev
, hsw_workaround_pipe
);
5058 intel_wait_for_vblank(dev
, hsw_workaround_pipe
);
5062 static void ironlake_pfit_disable(struct intel_crtc
*crtc
, bool force
)
5064 struct drm_device
*dev
= crtc
->base
.dev
;
5065 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5066 int pipe
= crtc
->pipe
;
5068 /* To avoid upsetting the power well on haswell only disable the pfit if
5069 * it's in use. The hw state code will make sure we get this right. */
5070 if (force
|| crtc
->config
->pch_pfit
.enabled
) {
5071 I915_WRITE(PF_CTL(pipe
), 0);
5072 I915_WRITE(PF_WIN_POS(pipe
), 0);
5073 I915_WRITE(PF_WIN_SZ(pipe
), 0);
5077 static void ironlake_crtc_disable(struct drm_crtc
*crtc
)
5079 struct drm_device
*dev
= crtc
->dev
;
5080 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5081 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5082 struct intel_encoder
*encoder
;
5083 int pipe
= intel_crtc
->pipe
;
5086 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
5087 encoder
->disable(encoder
);
5089 drm_crtc_vblank_off(crtc
);
5090 assert_vblank_disabled(crtc
);
5092 if (intel_crtc
->config
->has_pch_encoder
)
5093 intel_set_pch_fifo_underrun_reporting(dev_priv
, pipe
, false);
5095 intel_disable_pipe(intel_crtc
);
5097 ironlake_pfit_disable(intel_crtc
, false);
5099 if (intel_crtc
->config
->has_pch_encoder
)
5100 ironlake_fdi_disable(crtc
);
5102 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
5103 if (encoder
->post_disable
)
5104 encoder
->post_disable(encoder
);
5106 if (intel_crtc
->config
->has_pch_encoder
) {
5107 ironlake_disable_pch_transcoder(dev_priv
, pipe
);
5109 if (HAS_PCH_CPT(dev
)) {
5110 /* disable TRANS_DP_CTL */
5111 reg
= TRANS_DP_CTL(pipe
);
5112 temp
= I915_READ(reg
);
5113 temp
&= ~(TRANS_DP_OUTPUT_ENABLE
|
5114 TRANS_DP_PORT_SEL_MASK
);
5115 temp
|= TRANS_DP_PORT_SEL_NONE
;
5116 I915_WRITE(reg
, temp
);
5118 /* disable DPLL_SEL */
5119 temp
= I915_READ(PCH_DPLL_SEL
);
5120 temp
&= ~(TRANS_DPLL_ENABLE(pipe
) | TRANS_DPLLB_SEL(pipe
));
5121 I915_WRITE(PCH_DPLL_SEL
, temp
);
5124 ironlake_fdi_pll_disable(intel_crtc
);
5128 static void haswell_crtc_disable(struct drm_crtc
*crtc
)
5130 struct drm_device
*dev
= crtc
->dev
;
5131 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5132 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5133 struct intel_encoder
*encoder
;
5134 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
5135 bool is_dsi
= intel_pipe_has_type(intel_crtc
, INTEL_OUTPUT_DSI
);
5137 for_each_encoder_on_crtc(dev
, crtc
, encoder
) {
5138 intel_opregion_notify_encoder(encoder
, false);
5139 encoder
->disable(encoder
);
5142 drm_crtc_vblank_off(crtc
);
5143 assert_vblank_disabled(crtc
);
5145 if (intel_crtc
->config
->has_pch_encoder
)
5146 intel_set_pch_fifo_underrun_reporting(dev_priv
, TRANSCODER_A
,
5148 intel_disable_pipe(intel_crtc
);
5150 if (intel_crtc
->config
->dp_encoder_is_mst
)
5151 intel_ddi_set_vc_payload_alloc(crtc
, false);
5154 intel_ddi_disable_transcoder_func(dev_priv
, cpu_transcoder
);
5156 if (INTEL_INFO(dev
)->gen
>= 9)
5157 skylake_scaler_disable(intel_crtc
);
5159 ironlake_pfit_disable(intel_crtc
, false);
5162 intel_ddi_disable_pipe_clock(intel_crtc
);
5164 if (intel_crtc
->config
->has_pch_encoder
) {
5165 lpt_disable_pch_transcoder(dev_priv
);
5166 intel_ddi_fdi_disable(crtc
);
5169 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
5170 if (encoder
->post_disable
)
5171 encoder
->post_disable(encoder
);
5174 static void i9xx_pfit_enable(struct intel_crtc
*crtc
)
5176 struct drm_device
*dev
= crtc
->base
.dev
;
5177 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5178 struct intel_crtc_state
*pipe_config
= crtc
->config
;
5180 if (!pipe_config
->gmch_pfit
.control
)
5184 * The panel fitter should only be adjusted whilst the pipe is disabled,
5185 * according to register description and PRM.
5187 WARN_ON(I915_READ(PFIT_CONTROL
) & PFIT_ENABLE
);
5188 assert_pipe_disabled(dev_priv
, crtc
->pipe
);
5190 I915_WRITE(PFIT_PGM_RATIOS
, pipe_config
->gmch_pfit
.pgm_ratios
);
5191 I915_WRITE(PFIT_CONTROL
, pipe_config
->gmch_pfit
.control
);
5193 /* Border color in case we don't scale up to the full screen. Black by
5194 * default, change to something else for debugging. */
5195 I915_WRITE(BCLRPAT(crtc
->pipe
), 0);
5198 static enum intel_display_power_domain
port_to_power_domain(enum port port
)
5202 return POWER_DOMAIN_PORT_DDI_A_4_LANES
;
5204 return POWER_DOMAIN_PORT_DDI_B_4_LANES
;
5206 return POWER_DOMAIN_PORT_DDI_C_4_LANES
;
5208 return POWER_DOMAIN_PORT_DDI_D_4_LANES
;
5210 return POWER_DOMAIN_PORT_DDI_E_2_LANES
;
5213 return POWER_DOMAIN_PORT_OTHER
;
5217 static enum intel_display_power_domain
port_to_aux_power_domain(enum port port
)
5221 return POWER_DOMAIN_AUX_A
;
5223 return POWER_DOMAIN_AUX_B
;
5225 return POWER_DOMAIN_AUX_C
;
5227 return POWER_DOMAIN_AUX_D
;
5229 /* FIXME: Check VBT for actual wiring of PORT E */
5230 return POWER_DOMAIN_AUX_D
;
5233 return POWER_DOMAIN_AUX_A
;
5237 #define for_each_power_domain(domain, mask) \
5238 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5239 if ((1 << (domain)) & (mask))
5241 enum intel_display_power_domain
5242 intel_display_port_power_domain(struct intel_encoder
*intel_encoder
)
5244 struct drm_device
*dev
= intel_encoder
->base
.dev
;
5245 struct intel_digital_port
*intel_dig_port
;
5247 switch (intel_encoder
->type
) {
5248 case INTEL_OUTPUT_UNKNOWN
:
5249 /* Only DDI platforms should ever use this output type */
5250 WARN_ON_ONCE(!HAS_DDI(dev
));
5251 case INTEL_OUTPUT_DISPLAYPORT
:
5252 case INTEL_OUTPUT_HDMI
:
5253 case INTEL_OUTPUT_EDP
:
5254 intel_dig_port
= enc_to_dig_port(&intel_encoder
->base
);
5255 return port_to_power_domain(intel_dig_port
->port
);
5256 case INTEL_OUTPUT_DP_MST
:
5257 intel_dig_port
= enc_to_mst(&intel_encoder
->base
)->primary
;
5258 return port_to_power_domain(intel_dig_port
->port
);
5259 case INTEL_OUTPUT_ANALOG
:
5260 return POWER_DOMAIN_PORT_CRT
;
5261 case INTEL_OUTPUT_DSI
:
5262 return POWER_DOMAIN_PORT_DSI
;
5264 return POWER_DOMAIN_PORT_OTHER
;
5268 enum intel_display_power_domain
5269 intel_display_port_aux_power_domain(struct intel_encoder
*intel_encoder
)
5271 struct drm_device
*dev
= intel_encoder
->base
.dev
;
5272 struct intel_digital_port
*intel_dig_port
;
5274 switch (intel_encoder
->type
) {
5275 case INTEL_OUTPUT_UNKNOWN
:
5276 case INTEL_OUTPUT_HDMI
:
5278 * Only DDI platforms should ever use these output types.
5279 * We can get here after the HDMI detect code has already set
5280 * the type of the shared encoder. Since we can't be sure
5281 * what's the status of the given connectors, play safe and
5282 * run the DP detection too.
5284 WARN_ON_ONCE(!HAS_DDI(dev
));
5285 case INTEL_OUTPUT_DISPLAYPORT
:
5286 case INTEL_OUTPUT_EDP
:
5287 intel_dig_port
= enc_to_dig_port(&intel_encoder
->base
);
5288 return port_to_aux_power_domain(intel_dig_port
->port
);
5289 case INTEL_OUTPUT_DP_MST
:
5290 intel_dig_port
= enc_to_mst(&intel_encoder
->base
)->primary
;
5291 return port_to_aux_power_domain(intel_dig_port
->port
);
5293 MISSING_CASE(intel_encoder
->type
);
5294 return POWER_DOMAIN_AUX_A
;
5298 static unsigned long get_crtc_power_domains(struct drm_crtc
*crtc
)
5300 struct drm_device
*dev
= crtc
->dev
;
5301 struct intel_encoder
*intel_encoder
;
5302 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5303 enum pipe pipe
= intel_crtc
->pipe
;
5305 enum transcoder transcoder
;
5307 if (!crtc
->state
->active
)
5310 transcoder
= intel_pipe_to_cpu_transcoder(dev
->dev_private
, pipe
);
5312 mask
= BIT(POWER_DOMAIN_PIPE(pipe
));
5313 mask
|= BIT(POWER_DOMAIN_TRANSCODER(transcoder
));
5314 if (intel_crtc
->config
->pch_pfit
.enabled
||
5315 intel_crtc
->config
->pch_pfit
.force_thru
)
5316 mask
|= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe
));
5318 for_each_encoder_on_crtc(dev
, crtc
, intel_encoder
)
5319 mask
|= BIT(intel_display_port_power_domain(intel_encoder
));
5324 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc
*crtc
)
5326 struct drm_i915_private
*dev_priv
= crtc
->dev
->dev_private
;
5327 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5328 enum intel_display_power_domain domain
;
5329 unsigned long domains
, new_domains
, old_domains
;
5331 old_domains
= intel_crtc
->enabled_power_domains
;
5332 intel_crtc
->enabled_power_domains
= new_domains
= get_crtc_power_domains(crtc
);
5334 domains
= new_domains
& ~old_domains
;
5336 for_each_power_domain(domain
, domains
)
5337 intel_display_power_get(dev_priv
, domain
);
5339 return old_domains
& ~new_domains
;
5342 static void modeset_put_power_domains(struct drm_i915_private
*dev_priv
,
5343 unsigned long domains
)
5345 enum intel_display_power_domain domain
;
5347 for_each_power_domain(domain
, domains
)
5348 intel_display_power_put(dev_priv
, domain
);
5351 static void modeset_update_crtc_power_domains(struct drm_atomic_state
*state
)
5353 struct drm_device
*dev
= state
->dev
;
5354 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5355 unsigned long put_domains
[I915_MAX_PIPES
] = {};
5356 struct drm_crtc_state
*crtc_state
;
5357 struct drm_crtc
*crtc
;
5360 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
5361 if (needs_modeset(crtc
->state
))
5362 put_domains
[to_intel_crtc(crtc
)->pipe
] =
5363 modeset_get_crtc_power_domains(crtc
);
5366 if (dev_priv
->display
.modeset_commit_cdclk
) {
5367 unsigned int cdclk
= to_intel_atomic_state(state
)->cdclk
;
5369 if (cdclk
!= dev_priv
->cdclk_freq
&&
5370 !WARN_ON(!state
->allow_modeset
))
5371 dev_priv
->display
.modeset_commit_cdclk(state
);
5374 for (i
= 0; i
< I915_MAX_PIPES
; i
++)
5376 modeset_put_power_domains(dev_priv
, put_domains
[i
]);
5379 static int intel_compute_max_dotclk(struct drm_i915_private
*dev_priv
)
5381 int max_cdclk_freq
= dev_priv
->max_cdclk_freq
;
5383 if (INTEL_INFO(dev_priv
)->gen
>= 9 ||
5384 IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
5385 return max_cdclk_freq
;
5386 else if (IS_CHERRYVIEW(dev_priv
))
5387 return max_cdclk_freq
*95/100;
5388 else if (INTEL_INFO(dev_priv
)->gen
< 4)
5389 return 2*max_cdclk_freq
*90/100;
5391 return max_cdclk_freq
*90/100;
5394 static void intel_update_max_cdclk(struct drm_device
*dev
)
5396 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5398 if (IS_SKYLAKE(dev
)) {
5399 u32 limit
= I915_READ(SKL_DFSM
) & SKL_DFSM_CDCLK_LIMIT_MASK
;
5401 if (limit
== SKL_DFSM_CDCLK_LIMIT_675
)
5402 dev_priv
->max_cdclk_freq
= 675000;
5403 else if (limit
== SKL_DFSM_CDCLK_LIMIT_540
)
5404 dev_priv
->max_cdclk_freq
= 540000;
5405 else if (limit
== SKL_DFSM_CDCLK_LIMIT_450
)
5406 dev_priv
->max_cdclk_freq
= 450000;
5408 dev_priv
->max_cdclk_freq
= 337500;
5409 } else if (IS_BROADWELL(dev
)) {
5411 * FIXME with extra cooling we can allow
5412 * 540 MHz for ULX and 675 Mhz for ULT.
5413 * How can we know if extra cooling is
5414 * available? PCI ID, VTB, something else?
5416 if (I915_READ(FUSE_STRAP
) & HSW_CDCLK_LIMIT
)
5417 dev_priv
->max_cdclk_freq
= 450000;
5418 else if (IS_BDW_ULX(dev
))
5419 dev_priv
->max_cdclk_freq
= 450000;
5420 else if (IS_BDW_ULT(dev
))
5421 dev_priv
->max_cdclk_freq
= 540000;
5423 dev_priv
->max_cdclk_freq
= 675000;
5424 } else if (IS_CHERRYVIEW(dev
)) {
5425 dev_priv
->max_cdclk_freq
= 320000;
5426 } else if (IS_VALLEYVIEW(dev
)) {
5427 dev_priv
->max_cdclk_freq
= 400000;
5429 /* otherwise assume cdclk is fixed */
5430 dev_priv
->max_cdclk_freq
= dev_priv
->cdclk_freq
;
5433 dev_priv
->max_dotclk_freq
= intel_compute_max_dotclk(dev_priv
);
5435 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5436 dev_priv
->max_cdclk_freq
);
5438 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5439 dev_priv
->max_dotclk_freq
);
5442 static void intel_update_cdclk(struct drm_device
*dev
)
5444 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5446 dev_priv
->cdclk_freq
= dev_priv
->display
.get_display_clock_speed(dev
);
5447 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5448 dev_priv
->cdclk_freq
);
5451 * Program the gmbus_freq based on the cdclk frequency.
5452 * BSpec erroneously claims we should aim for 4MHz, but
5453 * in fact 1MHz is the correct frequency.
5455 if (IS_VALLEYVIEW(dev
)) {
5457 * Program the gmbus_freq based on the cdclk frequency.
5458 * BSpec erroneously claims we should aim for 4MHz, but
5459 * in fact 1MHz is the correct frequency.
5461 I915_WRITE(GMBUSFREQ_VLV
, DIV_ROUND_UP(dev_priv
->cdclk_freq
, 1000));
5464 if (dev_priv
->max_cdclk_freq
== 0)
5465 intel_update_max_cdclk(dev
);
5468 static void broxton_set_cdclk(struct drm_device
*dev
, int frequency
)
5470 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5473 uint32_t current_freq
;
5476 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5477 switch (frequency
) {
5479 divider
= BXT_CDCLK_CD2X_DIV_SEL_4
;
5480 ratio
= BXT_DE_PLL_RATIO(60);
5483 divider
= BXT_CDCLK_CD2X_DIV_SEL_2
;
5484 ratio
= BXT_DE_PLL_RATIO(60);
5487 divider
= BXT_CDCLK_CD2X_DIV_SEL_1_5
;
5488 ratio
= BXT_DE_PLL_RATIO(60);
5491 divider
= BXT_CDCLK_CD2X_DIV_SEL_1
;
5492 ratio
= BXT_DE_PLL_RATIO(60);
5495 divider
= BXT_CDCLK_CD2X_DIV_SEL_1
;
5496 ratio
= BXT_DE_PLL_RATIO(65);
5500 * Bypass frequency with DE PLL disabled. Init ratio, divider
5501 * to suppress GCC warning.
5507 DRM_ERROR("unsupported CDCLK freq %d", frequency
);
5512 mutex_lock(&dev_priv
->rps
.hw_lock
);
5513 /* Inform power controller of upcoming frequency change */
5514 ret
= sandybridge_pcode_write(dev_priv
, HSW_PCODE_DE_WRITE_FREQ_REQ
,
5516 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5519 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5524 current_freq
= I915_READ(CDCLK_CTL
) & CDCLK_FREQ_DECIMAL_MASK
;
5525 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5526 current_freq
= current_freq
* 500 + 1000;
5529 * DE PLL has to be disabled when
5530 * - setting to 19.2MHz (bypass, PLL isn't used)
5531 * - before setting to 624MHz (PLL needs toggling)
5532 * - before setting to any frequency from 624MHz (PLL needs toggling)
5534 if (frequency
== 19200 || frequency
== 624000 ||
5535 current_freq
== 624000) {
5536 I915_WRITE(BXT_DE_PLL_ENABLE
, ~BXT_DE_PLL_PLL_ENABLE
);
5538 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE
) & BXT_DE_PLL_LOCK
),
5540 DRM_ERROR("timout waiting for DE PLL unlock\n");
5543 if (frequency
!= 19200) {
5546 val
= I915_READ(BXT_DE_PLL_CTL
);
5547 val
&= ~BXT_DE_PLL_RATIO_MASK
;
5549 I915_WRITE(BXT_DE_PLL_CTL
, val
);
5551 I915_WRITE(BXT_DE_PLL_ENABLE
, BXT_DE_PLL_PLL_ENABLE
);
5553 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE
) & BXT_DE_PLL_LOCK
, 1))
5554 DRM_ERROR("timeout waiting for DE PLL lock\n");
5556 val
= I915_READ(CDCLK_CTL
);
5557 val
&= ~BXT_CDCLK_CD2X_DIV_SEL_MASK
;
5560 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5563 val
&= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE
;
5564 if (frequency
>= 500000)
5565 val
|= BXT_CDCLK_SSA_PRECHARGE_ENABLE
;
5567 val
&= ~CDCLK_FREQ_DECIMAL_MASK
;
5568 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5569 val
|= (frequency
- 1000) / 500;
5570 I915_WRITE(CDCLK_CTL
, val
);
5573 mutex_lock(&dev_priv
->rps
.hw_lock
);
5574 ret
= sandybridge_pcode_write(dev_priv
, HSW_PCODE_DE_WRITE_FREQ_REQ
,
5575 DIV_ROUND_UP(frequency
, 25000));
5576 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5579 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5584 intel_update_cdclk(dev
);
5587 void broxton_init_cdclk(struct drm_device
*dev
)
5589 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5593 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5594 * or else the reset will hang because there is no PCH to respond.
5595 * Move the handshake programming to initialization sequence.
5596 * Previously was left up to BIOS.
5598 val
= I915_READ(HSW_NDE_RSTWRN_OPT
);
5599 val
&= ~RESET_PCH_HANDSHAKE_ENABLE
;
5600 I915_WRITE(HSW_NDE_RSTWRN_OPT
, val
);
5602 /* Enable PG1 for cdclk */
5603 intel_display_power_get(dev_priv
, POWER_DOMAIN_PLLS
);
5605 /* check if cd clock is enabled */
5606 if (I915_READ(BXT_DE_PLL_ENABLE
) & BXT_DE_PLL_PLL_ENABLE
) {
5607 DRM_DEBUG_KMS("Display already initialized\n");
5613 * - The initial CDCLK needs to be read from VBT.
5614 * Need to make this change after VBT has changes for BXT.
5615 * - check if setting the max (or any) cdclk freq is really necessary
5616 * here, it belongs to modeset time
5618 broxton_set_cdclk(dev
, 624000);
5620 I915_WRITE(DBUF_CTL
, I915_READ(DBUF_CTL
) | DBUF_POWER_REQUEST
);
5621 POSTING_READ(DBUF_CTL
);
5625 if (!(I915_READ(DBUF_CTL
) & DBUF_POWER_STATE
))
5626 DRM_ERROR("DBuf power enable timeout!\n");
5629 void broxton_uninit_cdclk(struct drm_device
*dev
)
5631 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5633 I915_WRITE(DBUF_CTL
, I915_READ(DBUF_CTL
) & ~DBUF_POWER_REQUEST
);
5634 POSTING_READ(DBUF_CTL
);
5638 if (I915_READ(DBUF_CTL
) & DBUF_POWER_STATE
)
5639 DRM_ERROR("DBuf power disable timeout!\n");
5641 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5642 broxton_set_cdclk(dev
, 19200);
5644 intel_display_power_put(dev_priv
, POWER_DOMAIN_PLLS
);
5647 static const struct skl_cdclk_entry
{
5650 } skl_cdclk_frequencies
[] = {
5651 { .freq
= 308570, .vco
= 8640 },
5652 { .freq
= 337500, .vco
= 8100 },
5653 { .freq
= 432000, .vco
= 8640 },
5654 { .freq
= 450000, .vco
= 8100 },
5655 { .freq
= 540000, .vco
= 8100 },
5656 { .freq
= 617140, .vco
= 8640 },
5657 { .freq
= 675000, .vco
= 8100 },
5660 static unsigned int skl_cdclk_decimal(unsigned int freq
)
5662 return (freq
- 1000) / 500;
5665 static unsigned int skl_cdclk_get_vco(unsigned int freq
)
5669 for (i
= 0; i
< ARRAY_SIZE(skl_cdclk_frequencies
); i
++) {
5670 const struct skl_cdclk_entry
*e
= &skl_cdclk_frequencies
[i
];
5672 if (e
->freq
== freq
)
5680 skl_dpll0_enable(struct drm_i915_private
*dev_priv
, unsigned int required_vco
)
5682 unsigned int min_freq
;
5685 /* select the minimum CDCLK before enabling DPLL 0 */
5686 val
= I915_READ(CDCLK_CTL
);
5687 val
&= ~CDCLK_FREQ_SEL_MASK
| ~CDCLK_FREQ_DECIMAL_MASK
;
5688 val
|= CDCLK_FREQ_337_308
;
5690 if (required_vco
== 8640)
5695 val
= CDCLK_FREQ_337_308
| skl_cdclk_decimal(min_freq
);
5697 I915_WRITE(CDCLK_CTL
, val
);
5698 POSTING_READ(CDCLK_CTL
);
5701 * We always enable DPLL0 with the lowest link rate possible, but still
5702 * taking into account the VCO required to operate the eDP panel at the
5703 * desired frequency. The usual DP link rates operate with a VCO of
5704 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5705 * The modeset code is responsible for the selection of the exact link
5706 * rate later on, with the constraint of choosing a frequency that
5707 * works with required_vco.
5709 val
= I915_READ(DPLL_CTRL1
);
5711 val
&= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0
) | DPLL_CTRL1_SSC(SKL_DPLL0
) |
5712 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0
));
5713 val
|= DPLL_CTRL1_OVERRIDE(SKL_DPLL0
);
5714 if (required_vco
== 8640)
5715 val
|= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080
,
5718 val
|= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810
,
5721 I915_WRITE(DPLL_CTRL1
, val
);
5722 POSTING_READ(DPLL_CTRL1
);
5724 I915_WRITE(LCPLL1_CTL
, I915_READ(LCPLL1_CTL
) | LCPLL_PLL_ENABLE
);
5726 if (wait_for(I915_READ(LCPLL1_CTL
) & LCPLL_PLL_LOCK
, 5))
5727 DRM_ERROR("DPLL0 not locked\n");
5730 static bool skl_cdclk_pcu_ready(struct drm_i915_private
*dev_priv
)
5735 /* inform PCU we want to change CDCLK */
5736 val
= SKL_CDCLK_PREPARE_FOR_CHANGE
;
5737 mutex_lock(&dev_priv
->rps
.hw_lock
);
5738 ret
= sandybridge_pcode_read(dev_priv
, SKL_PCODE_CDCLK_CONTROL
, &val
);
5739 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5741 return ret
== 0 && (val
& SKL_CDCLK_READY_FOR_CHANGE
);
5744 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private
*dev_priv
)
5748 for (i
= 0; i
< 15; i
++) {
5749 if (skl_cdclk_pcu_ready(dev_priv
))
5757 static void skl_set_cdclk(struct drm_i915_private
*dev_priv
, unsigned int freq
)
5759 struct drm_device
*dev
= dev_priv
->dev
;
5760 u32 freq_select
, pcu_ack
;
5762 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq
);
5764 if (!skl_cdclk_wait_for_pcu_ready(dev_priv
)) {
5765 DRM_ERROR("failed to inform PCU about cdclk change\n");
5773 freq_select
= CDCLK_FREQ_450_432
;
5777 freq_select
= CDCLK_FREQ_540
;
5783 freq_select
= CDCLK_FREQ_337_308
;
5788 freq_select
= CDCLK_FREQ_675_617
;
5793 I915_WRITE(CDCLK_CTL
, freq_select
| skl_cdclk_decimal(freq
));
5794 POSTING_READ(CDCLK_CTL
);
5796 /* inform PCU of the change */
5797 mutex_lock(&dev_priv
->rps
.hw_lock
);
5798 sandybridge_pcode_write(dev_priv
, SKL_PCODE_CDCLK_CONTROL
, pcu_ack
);
5799 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5801 intel_update_cdclk(dev
);
5804 void skl_uninit_cdclk(struct drm_i915_private
*dev_priv
)
5806 /* disable DBUF power */
5807 I915_WRITE(DBUF_CTL
, I915_READ(DBUF_CTL
) & ~DBUF_POWER_REQUEST
);
5808 POSTING_READ(DBUF_CTL
);
5812 if (I915_READ(DBUF_CTL
) & DBUF_POWER_STATE
)
5813 DRM_ERROR("DBuf power disable timeout\n");
5816 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5818 if (dev_priv
->csr
.dmc_payload
) {
5820 I915_WRITE(LCPLL1_CTL
, I915_READ(LCPLL1_CTL
) &
5822 if (wait_for(!(I915_READ(LCPLL1_CTL
) & LCPLL_PLL_LOCK
), 1))
5823 DRM_ERROR("Couldn't disable DPLL0\n");
5826 intel_display_power_put(dev_priv
, POWER_DOMAIN_PLLS
);
5829 void skl_init_cdclk(struct drm_i915_private
*dev_priv
)
5832 unsigned int required_vco
;
5834 /* enable PCH reset handshake */
5835 val
= I915_READ(HSW_NDE_RSTWRN_OPT
);
5836 I915_WRITE(HSW_NDE_RSTWRN_OPT
, val
| RESET_PCH_HANDSHAKE_ENABLE
);
5838 /* enable PG1 and Misc I/O */
5839 intel_display_power_get(dev_priv
, POWER_DOMAIN_PLLS
);
5841 /* DPLL0 not enabled (happens on early BIOS versions) */
5842 if (!(I915_READ(LCPLL1_CTL
) & LCPLL_PLL_ENABLE
)) {
5844 required_vco
= skl_cdclk_get_vco(dev_priv
->skl_boot_cdclk
);
5845 skl_dpll0_enable(dev_priv
, required_vco
);
5848 /* set CDCLK to the frequency the BIOS chose */
5849 skl_set_cdclk(dev_priv
, dev_priv
->skl_boot_cdclk
);
5851 /* enable DBUF power */
5852 I915_WRITE(DBUF_CTL
, I915_READ(DBUF_CTL
) | DBUF_POWER_REQUEST
);
5853 POSTING_READ(DBUF_CTL
);
5857 if (!(I915_READ(DBUF_CTL
) & DBUF_POWER_STATE
))
5858 DRM_ERROR("DBuf power enable timeout\n");
5861 /* Adjust CDclk dividers to allow high res or save power if possible */
5862 static void valleyview_set_cdclk(struct drm_device
*dev
, int cdclk
)
5864 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5867 WARN_ON(dev_priv
->display
.get_display_clock_speed(dev
)
5868 != dev_priv
->cdclk_freq
);
5870 if (cdclk
>= 320000) /* jump to highest voltage for 400MHz too */
5872 else if (cdclk
== 266667)
5877 mutex_lock(&dev_priv
->rps
.hw_lock
);
5878 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
);
5879 val
&= ~DSPFREQGUAR_MASK
;
5880 val
|= (cmd
<< DSPFREQGUAR_SHIFT
);
5881 vlv_punit_write(dev_priv
, PUNIT_REG_DSPFREQ
, val
);
5882 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
) &
5883 DSPFREQSTAT_MASK
) == (cmd
<< DSPFREQSTAT_SHIFT
),
5885 DRM_ERROR("timed out waiting for CDclk change\n");
5887 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5889 mutex_lock(&dev_priv
->sb_lock
);
5891 if (cdclk
== 400000) {
5894 divider
= DIV_ROUND_CLOSEST(dev_priv
->hpll_freq
<< 1, cdclk
) - 1;
5896 /* adjust cdclk divider */
5897 val
= vlv_cck_read(dev_priv
, CCK_DISPLAY_CLOCK_CONTROL
);
5898 val
&= ~CCK_FREQUENCY_VALUES
;
5900 vlv_cck_write(dev_priv
, CCK_DISPLAY_CLOCK_CONTROL
, val
);
5902 if (wait_for((vlv_cck_read(dev_priv
, CCK_DISPLAY_CLOCK_CONTROL
) &
5903 CCK_FREQUENCY_STATUS
) == (divider
<< CCK_FREQUENCY_STATUS_SHIFT
),
5905 DRM_ERROR("timed out waiting for CDclk change\n");
5908 /* adjust self-refresh exit latency value */
5909 val
= vlv_bunit_read(dev_priv
, BUNIT_REG_BISOC
);
5913 * For high bandwidth configs, we set a higher latency in the bunit
5914 * so that the core display fetch happens in time to avoid underruns.
5916 if (cdclk
== 400000)
5917 val
|= 4500 / 250; /* 4.5 usec */
5919 val
|= 3000 / 250; /* 3.0 usec */
5920 vlv_bunit_write(dev_priv
, BUNIT_REG_BISOC
, val
);
5922 mutex_unlock(&dev_priv
->sb_lock
);
5924 intel_update_cdclk(dev
);
5927 static void cherryview_set_cdclk(struct drm_device
*dev
, int cdclk
)
5929 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5932 WARN_ON(dev_priv
->display
.get_display_clock_speed(dev
)
5933 != dev_priv
->cdclk_freq
);
5942 MISSING_CASE(cdclk
);
5947 * Specs are full of misinformation, but testing on actual
5948 * hardware has shown that we just need to write the desired
5949 * CCK divider into the Punit register.
5951 cmd
= DIV_ROUND_CLOSEST(dev_priv
->hpll_freq
<< 1, cdclk
) - 1;
5953 mutex_lock(&dev_priv
->rps
.hw_lock
);
5954 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
);
5955 val
&= ~DSPFREQGUAR_MASK_CHV
;
5956 val
|= (cmd
<< DSPFREQGUAR_SHIFT_CHV
);
5957 vlv_punit_write(dev_priv
, PUNIT_REG_DSPFREQ
, val
);
5958 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
) &
5959 DSPFREQSTAT_MASK_CHV
) == (cmd
<< DSPFREQSTAT_SHIFT_CHV
),
5961 DRM_ERROR("timed out waiting for CDclk change\n");
5963 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5965 intel_update_cdclk(dev
);
5968 static int valleyview_calc_cdclk(struct drm_i915_private
*dev_priv
,
5971 int freq_320
= (dev_priv
->hpll_freq
<< 1) % 320000 != 0 ? 333333 : 320000;
5972 int limit
= IS_CHERRYVIEW(dev_priv
) ? 95 : 90;
5975 * Really only a few cases to deal with, as only 4 CDclks are supported:
5978 * 320/333MHz (depends on HPLL freq)
5980 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5981 * of the lower bin and adjust if needed.
5983 * We seem to get an unstable or solid color picture at 200MHz.
5984 * Not sure what's wrong. For now use 200MHz only when all pipes
5987 if (!IS_CHERRYVIEW(dev_priv
) &&
5988 max_pixclk
> freq_320
*limit
/100)
5990 else if (max_pixclk
> 266667*limit
/100)
5992 else if (max_pixclk
> 0)
5998 static int broxton_calc_cdclk(struct drm_i915_private
*dev_priv
,
6003 * - remove the guardband, it's not needed on BXT
6004 * - set 19.2MHz bypass frequency if there are no active pipes
6006 if (max_pixclk
> 576000*9/10)
6008 else if (max_pixclk
> 384000*9/10)
6010 else if (max_pixclk
> 288000*9/10)
6012 else if (max_pixclk
> 144000*9/10)
6018 /* Compute the max pixel clock for new configuration. Uses atomic state if
6019 * that's non-NULL, look at current state otherwise. */
6020 static int intel_mode_max_pixclk(struct drm_device
*dev
,
6021 struct drm_atomic_state
*state
)
6023 struct intel_crtc
*intel_crtc
;
6024 struct intel_crtc_state
*crtc_state
;
6027 for_each_intel_crtc(dev
, intel_crtc
) {
6028 crtc_state
= intel_atomic_get_crtc_state(state
, intel_crtc
);
6029 if (IS_ERR(crtc_state
))
6030 return PTR_ERR(crtc_state
);
6032 if (!crtc_state
->base
.enable
)
6035 max_pixclk
= max(max_pixclk
,
6036 crtc_state
->base
.adjusted_mode
.crtc_clock
);
6042 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state
*state
)
6044 struct drm_device
*dev
= state
->dev
;
6045 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6046 int max_pixclk
= intel_mode_max_pixclk(dev
, state
);
6051 to_intel_atomic_state(state
)->cdclk
=
6052 valleyview_calc_cdclk(dev_priv
, max_pixclk
);
6057 static int broxton_modeset_calc_cdclk(struct drm_atomic_state
*state
)
6059 struct drm_device
*dev
= state
->dev
;
6060 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6061 int max_pixclk
= intel_mode_max_pixclk(dev
, state
);
6066 to_intel_atomic_state(state
)->cdclk
=
6067 broxton_calc_cdclk(dev_priv
, max_pixclk
);
6072 static void vlv_program_pfi_credits(struct drm_i915_private
*dev_priv
)
6074 unsigned int credits
, default_credits
;
6076 if (IS_CHERRYVIEW(dev_priv
))
6077 default_credits
= PFI_CREDIT(12);
6079 default_credits
= PFI_CREDIT(8);
6081 if (dev_priv
->cdclk_freq
>= dev_priv
->czclk_freq
) {
6082 /* CHV suggested value is 31 or 63 */
6083 if (IS_CHERRYVIEW(dev_priv
))
6084 credits
= PFI_CREDIT_63
;
6086 credits
= PFI_CREDIT(15);
6088 credits
= default_credits
;
6092 * WA - write default credits before re-programming
6093 * FIXME: should we also set the resend bit here?
6095 I915_WRITE(GCI_CONTROL
, VGA_FAST_MODE_DISABLE
|
6098 I915_WRITE(GCI_CONTROL
, VGA_FAST_MODE_DISABLE
|
6099 credits
| PFI_CREDIT_RESEND
);
6102 * FIXME is this guaranteed to clear
6103 * immediately or should we poll for it?
6105 WARN_ON(I915_READ(GCI_CONTROL
) & PFI_CREDIT_RESEND
);
6108 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state
*old_state
)
6110 struct drm_device
*dev
= old_state
->dev
;
6111 unsigned int req_cdclk
= to_intel_atomic_state(old_state
)->cdclk
;
6112 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6115 * FIXME: We can end up here with all power domains off, yet
6116 * with a CDCLK frequency other than the minimum. To account
6117 * for this take the PIPE-A power domain, which covers the HW
6118 * blocks needed for the following programming. This can be
6119 * removed once it's guaranteed that we get here either with
6120 * the minimum CDCLK set, or the required power domains
6123 intel_display_power_get(dev_priv
, POWER_DOMAIN_PIPE_A
);
6125 if (IS_CHERRYVIEW(dev
))
6126 cherryview_set_cdclk(dev
, req_cdclk
);
6128 valleyview_set_cdclk(dev
, req_cdclk
);
6130 vlv_program_pfi_credits(dev_priv
);
6132 intel_display_power_put(dev_priv
, POWER_DOMAIN_PIPE_A
);
6135 static void valleyview_crtc_enable(struct drm_crtc
*crtc
)
6137 struct drm_device
*dev
= crtc
->dev
;
6138 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6139 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6140 struct intel_encoder
*encoder
;
6141 int pipe
= intel_crtc
->pipe
;
6144 if (WARN_ON(intel_crtc
->active
))
6147 is_dsi
= intel_pipe_has_type(intel_crtc
, INTEL_OUTPUT_DSI
);
6149 if (intel_crtc
->config
->has_dp_encoder
)
6150 intel_dp_set_m_n(intel_crtc
, M1_N1
);
6152 intel_set_pipe_timings(intel_crtc
);
6154 if (IS_CHERRYVIEW(dev
) && pipe
== PIPE_B
) {
6155 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6157 I915_WRITE(CHV_BLEND(pipe
), CHV_BLEND_LEGACY
);
6158 I915_WRITE(CHV_CANVAS(pipe
), 0);
6161 i9xx_set_pipeconf(intel_crtc
);
6163 intel_crtc
->active
= true;
6165 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
6167 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
6168 if (encoder
->pre_pll_enable
)
6169 encoder
->pre_pll_enable(encoder
);
6172 if (IS_CHERRYVIEW(dev
)) {
6173 chv_prepare_pll(intel_crtc
, intel_crtc
->config
);
6174 chv_enable_pll(intel_crtc
, intel_crtc
->config
);
6176 vlv_prepare_pll(intel_crtc
, intel_crtc
->config
);
6177 vlv_enable_pll(intel_crtc
, intel_crtc
->config
);
6181 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
6182 if (encoder
->pre_enable
)
6183 encoder
->pre_enable(encoder
);
6185 i9xx_pfit_enable(intel_crtc
);
6187 intel_crtc_load_lut(crtc
);
6189 intel_enable_pipe(intel_crtc
);
6191 assert_vblank_disabled(crtc
);
6192 drm_crtc_vblank_on(crtc
);
6194 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
6195 encoder
->enable(encoder
);
6198 static void i9xx_set_pll_dividers(struct intel_crtc
*crtc
)
6200 struct drm_device
*dev
= crtc
->base
.dev
;
6201 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6203 I915_WRITE(FP0(crtc
->pipe
), crtc
->config
->dpll_hw_state
.fp0
);
6204 I915_WRITE(FP1(crtc
->pipe
), crtc
->config
->dpll_hw_state
.fp1
);
6207 static void i9xx_crtc_enable(struct drm_crtc
*crtc
)
6209 struct drm_device
*dev
= crtc
->dev
;
6210 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6211 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6212 struct intel_encoder
*encoder
;
6213 int pipe
= intel_crtc
->pipe
;
6215 if (WARN_ON(intel_crtc
->active
))
6218 i9xx_set_pll_dividers(intel_crtc
);
6220 if (intel_crtc
->config
->has_dp_encoder
)
6221 intel_dp_set_m_n(intel_crtc
, M1_N1
);
6223 intel_set_pipe_timings(intel_crtc
);
6225 i9xx_set_pipeconf(intel_crtc
);
6227 intel_crtc
->active
= true;
6230 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
6232 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
6233 if (encoder
->pre_enable
)
6234 encoder
->pre_enable(encoder
);
6236 i9xx_enable_pll(intel_crtc
);
6238 i9xx_pfit_enable(intel_crtc
);
6240 intel_crtc_load_lut(crtc
);
6242 intel_update_watermarks(crtc
);
6243 intel_enable_pipe(intel_crtc
);
6245 assert_vblank_disabled(crtc
);
6246 drm_crtc_vblank_on(crtc
);
6248 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
6249 encoder
->enable(encoder
);
6252 static void i9xx_pfit_disable(struct intel_crtc
*crtc
)
6254 struct drm_device
*dev
= crtc
->base
.dev
;
6255 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6257 if (!crtc
->config
->gmch_pfit
.control
)
6260 assert_pipe_disabled(dev_priv
, crtc
->pipe
);
6262 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6263 I915_READ(PFIT_CONTROL
));
6264 I915_WRITE(PFIT_CONTROL
, 0);
6267 static void i9xx_crtc_disable(struct drm_crtc
*crtc
)
6269 struct drm_device
*dev
= crtc
->dev
;
6270 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6271 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6272 struct intel_encoder
*encoder
;
6273 int pipe
= intel_crtc
->pipe
;
6276 * On gen2 planes are double buffered but the pipe isn't, so we must
6277 * wait for planes to fully turn off before disabling the pipe.
6278 * We also need to wait on all gmch platforms because of the
6279 * self-refresh mode constraint explained above.
6281 intel_wait_for_vblank(dev
, pipe
);
6283 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
6284 encoder
->disable(encoder
);
6286 drm_crtc_vblank_off(crtc
);
6287 assert_vblank_disabled(crtc
);
6289 intel_disable_pipe(intel_crtc
);
6291 i9xx_pfit_disable(intel_crtc
);
6293 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
6294 if (encoder
->post_disable
)
6295 encoder
->post_disable(encoder
);
6297 if (!intel_pipe_has_type(intel_crtc
, INTEL_OUTPUT_DSI
)) {
6298 if (IS_CHERRYVIEW(dev
))
6299 chv_disable_pll(dev_priv
, pipe
);
6300 else if (IS_VALLEYVIEW(dev
))
6301 vlv_disable_pll(dev_priv
, pipe
);
6303 i9xx_disable_pll(intel_crtc
);
6306 for_each_encoder_on_crtc(dev
, crtc
, encoder
)
6307 if (encoder
->post_pll_disable
)
6308 encoder
->post_pll_disable(encoder
);
6311 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, false);
6314 static void intel_crtc_disable_noatomic(struct drm_crtc
*crtc
)
6316 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6317 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
6318 enum intel_display_power_domain domain
;
6319 unsigned long domains
;
6321 if (!intel_crtc
->active
)
6324 if (to_intel_plane_state(crtc
->primary
->state
)->visible
) {
6325 intel_crtc_wait_for_pending_flips(crtc
);
6326 intel_pre_disable_primary(crtc
);
6328 intel_crtc_disable_planes(crtc
, 1 << drm_plane_index(crtc
->primary
));
6329 to_intel_plane_state(crtc
->primary
->state
)->visible
= false;
6332 dev_priv
->display
.crtc_disable(crtc
);
6333 intel_crtc
->active
= false;
6334 intel_update_watermarks(crtc
);
6335 intel_disable_shared_dpll(intel_crtc
);
6337 domains
= intel_crtc
->enabled_power_domains
;
6338 for_each_power_domain(domain
, domains
)
6339 intel_display_power_put(dev_priv
, domain
);
6340 intel_crtc
->enabled_power_domains
= 0;
6344 * turn all crtc's off, but do not adjust state
6345 * This has to be paired with a call to intel_modeset_setup_hw_state.
6347 int intel_display_suspend(struct drm_device
*dev
)
6349 struct drm_mode_config
*config
= &dev
->mode_config
;
6350 struct drm_modeset_acquire_ctx
*ctx
= config
->acquire_ctx
;
6351 struct drm_atomic_state
*state
;
6352 struct drm_crtc
*crtc
;
6353 unsigned crtc_mask
= 0;
6359 lockdep_assert_held(&ctx
->ww_ctx
);
6360 state
= drm_atomic_state_alloc(dev
);
6361 if (WARN_ON(!state
))
6364 state
->acquire_ctx
= ctx
;
6365 state
->allow_modeset
= true;
6367 for_each_crtc(dev
, crtc
) {
6368 struct drm_crtc_state
*crtc_state
=
6369 drm_atomic_get_crtc_state(state
, crtc
);
6371 ret
= PTR_ERR_OR_ZERO(crtc_state
);
6375 if (!crtc_state
->active
)
6378 crtc_state
->active
= false;
6379 crtc_mask
|= 1 << drm_crtc_index(crtc
);
6383 ret
= drm_atomic_commit(state
);
6386 for_each_crtc(dev
, crtc
)
6387 if (crtc_mask
& (1 << drm_crtc_index(crtc
)))
6388 crtc
->state
->active
= true;
6396 DRM_ERROR("Suspending crtc's failed with %i\n", ret
);
6397 drm_atomic_state_free(state
);
6401 void intel_encoder_destroy(struct drm_encoder
*encoder
)
6403 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
6405 drm_encoder_cleanup(encoder
);
6406 kfree(intel_encoder
);
6409 /* Cross check the actual hw state with our own modeset state tracking (and it's
6410 * internal consistency). */
6411 static void intel_connector_check_state(struct intel_connector
*connector
)
6413 struct drm_crtc
*crtc
= connector
->base
.state
->crtc
;
6415 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6416 connector
->base
.base
.id
,
6417 connector
->base
.name
);
6419 if (connector
->get_hw_state(connector
)) {
6420 struct intel_encoder
*encoder
= connector
->encoder
;
6421 struct drm_connector_state
*conn_state
= connector
->base
.state
;
6423 I915_STATE_WARN(!crtc
,
6424 "connector enabled without attached crtc\n");
6429 I915_STATE_WARN(!crtc
->state
->active
,
6430 "connector is active, but attached crtc isn't\n");
6432 if (!encoder
|| encoder
->type
== INTEL_OUTPUT_DP_MST
)
6435 I915_STATE_WARN(conn_state
->best_encoder
!= &encoder
->base
,
6436 "atomic encoder doesn't match attached encoder\n");
6438 I915_STATE_WARN(conn_state
->crtc
!= encoder
->base
.crtc
,
6439 "attached encoder crtc differs from connector crtc\n");
6441 I915_STATE_WARN(crtc
&& crtc
->state
->active
,
6442 "attached crtc is active, but connector isn't\n");
6443 I915_STATE_WARN(!crtc
&& connector
->base
.state
->best_encoder
,
6444 "best encoder set without crtc!\n");
6448 int intel_connector_init(struct intel_connector
*connector
)
6450 struct drm_connector_state
*connector_state
;
6452 connector_state
= kzalloc(sizeof *connector_state
, GFP_KERNEL
);
6453 if (!connector_state
)
6456 connector
->base
.state
= connector_state
;
6460 struct intel_connector
*intel_connector_alloc(void)
6462 struct intel_connector
*connector
;
6464 connector
= kzalloc(sizeof *connector
, GFP_KERNEL
);
6468 if (intel_connector_init(connector
) < 0) {
6476 /* Simple connector->get_hw_state implementation for encoders that support only
6477 * one connector and no cloning and hence the encoder state determines the state
6478 * of the connector. */
6479 bool intel_connector_get_hw_state(struct intel_connector
*connector
)
6482 struct intel_encoder
*encoder
= connector
->encoder
;
6484 return encoder
->get_hw_state(encoder
, &pipe
);
6487 static int pipe_required_fdi_lanes(struct intel_crtc_state
*crtc_state
)
6489 if (crtc_state
->base
.enable
&& crtc_state
->has_pch_encoder
)
6490 return crtc_state
->fdi_lanes
;
6495 static int ironlake_check_fdi_lanes(struct drm_device
*dev
, enum pipe pipe
,
6496 struct intel_crtc_state
*pipe_config
)
6498 struct drm_atomic_state
*state
= pipe_config
->base
.state
;
6499 struct intel_crtc
*other_crtc
;
6500 struct intel_crtc_state
*other_crtc_state
;
6502 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6503 pipe_name(pipe
), pipe_config
->fdi_lanes
);
6504 if (pipe_config
->fdi_lanes
> 4) {
6505 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6506 pipe_name(pipe
), pipe_config
->fdi_lanes
);
6510 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
)) {
6511 if (pipe_config
->fdi_lanes
> 2) {
6512 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6513 pipe_config
->fdi_lanes
);
6520 if (INTEL_INFO(dev
)->num_pipes
== 2)
6523 /* Ivybridge 3 pipe is really complicated */
6528 if (pipe_config
->fdi_lanes
<= 2)
6531 other_crtc
= to_intel_crtc(intel_get_crtc_for_pipe(dev
, PIPE_C
));
6533 intel_atomic_get_crtc_state(state
, other_crtc
);
6534 if (IS_ERR(other_crtc_state
))
6535 return PTR_ERR(other_crtc_state
);
6537 if (pipe_required_fdi_lanes(other_crtc_state
) > 0) {
6538 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6539 pipe_name(pipe
), pipe_config
->fdi_lanes
);
6544 if (pipe_config
->fdi_lanes
> 2) {
6545 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6546 pipe_name(pipe
), pipe_config
->fdi_lanes
);
6550 other_crtc
= to_intel_crtc(intel_get_crtc_for_pipe(dev
, PIPE_B
));
6552 intel_atomic_get_crtc_state(state
, other_crtc
);
6553 if (IS_ERR(other_crtc_state
))
6554 return PTR_ERR(other_crtc_state
);
6556 if (pipe_required_fdi_lanes(other_crtc_state
) > 2) {
6557 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6567 static int ironlake_fdi_compute_config(struct intel_crtc
*intel_crtc
,
6568 struct intel_crtc_state
*pipe_config
)
6570 struct drm_device
*dev
= intel_crtc
->base
.dev
;
6571 const struct drm_display_mode
*adjusted_mode
= &pipe_config
->base
.adjusted_mode
;
6572 int lane
, link_bw
, fdi_dotclock
, ret
;
6573 bool needs_recompute
= false;
6576 /* FDI is a binary signal running at ~2.7GHz, encoding
6577 * each output octet as 10 bits. The actual frequency
6578 * is stored as a divider into a 100MHz clock, and the
6579 * mode pixel clock is stored in units of 1KHz.
6580 * Hence the bw of each lane in terms of the mode signal
6583 link_bw
= intel_fdi_link_freq(dev
) * MHz(100)/KHz(1)/10;
6585 fdi_dotclock
= adjusted_mode
->crtc_clock
;
6587 lane
= ironlake_get_lanes_required(fdi_dotclock
, link_bw
,
6588 pipe_config
->pipe_bpp
);
6590 pipe_config
->fdi_lanes
= lane
;
6592 intel_link_compute_m_n(pipe_config
->pipe_bpp
, lane
, fdi_dotclock
,
6593 link_bw
, &pipe_config
->fdi_m_n
);
6595 ret
= ironlake_check_fdi_lanes(intel_crtc
->base
.dev
,
6596 intel_crtc
->pipe
, pipe_config
);
6597 if (ret
== -EINVAL
&& pipe_config
->pipe_bpp
> 6*3) {
6598 pipe_config
->pipe_bpp
-= 2*3;
6599 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6600 pipe_config
->pipe_bpp
);
6601 needs_recompute
= true;
6602 pipe_config
->bw_constrained
= true;
6607 if (needs_recompute
)
6613 static bool pipe_config_supports_ips(struct drm_i915_private
*dev_priv
,
6614 struct intel_crtc_state
*pipe_config
)
6616 if (pipe_config
->pipe_bpp
> 24)
6619 /* HSW can handle pixel rate up to cdclk? */
6620 if (IS_HASWELL(dev_priv
->dev
))
6624 * We compare against max which means we must take
6625 * the increased cdclk requirement into account when
6626 * calculating the new cdclk.
6628 * Should measure whether using a lower cdclk w/o IPS
6630 return ilk_pipe_pixel_rate(pipe_config
) <=
6631 dev_priv
->max_cdclk_freq
* 95 / 100;
6634 static void hsw_compute_ips_config(struct intel_crtc
*crtc
,
6635 struct intel_crtc_state
*pipe_config
)
6637 struct drm_device
*dev
= crtc
->base
.dev
;
6638 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6640 pipe_config
->ips_enabled
= i915
.enable_ips
&&
6641 hsw_crtc_supports_ips(crtc
) &&
6642 pipe_config_supports_ips(dev_priv
, pipe_config
);
6645 static int intel_crtc_compute_config(struct intel_crtc
*crtc
,
6646 struct intel_crtc_state
*pipe_config
)
6648 struct drm_device
*dev
= crtc
->base
.dev
;
6649 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6650 const struct drm_display_mode
*adjusted_mode
= &pipe_config
->base
.adjusted_mode
;
6652 /* FIXME should check pixel clock limits on all platforms */
6653 if (INTEL_INFO(dev
)->gen
< 4) {
6654 int clock_limit
= dev_priv
->max_cdclk_freq
;
6657 * Enable pixel doubling when the dot clock
6658 * is > 90% of the (display) core speed.
6660 * GDG double wide on either pipe,
6661 * otherwise pipe A only.
6663 if ((crtc
->pipe
== PIPE_A
|| IS_I915G(dev
)) &&
6664 adjusted_mode
->crtc_clock
> clock_limit
* 9 / 10) {
6666 pipe_config
->double_wide
= true;
6669 if (adjusted_mode
->crtc_clock
> clock_limit
* 9 / 10)
6674 * Pipe horizontal size must be even in:
6676 * - LVDS dual channel mode
6677 * - Double wide pipe
6679 if ((intel_pipe_will_have_type(pipe_config
, INTEL_OUTPUT_LVDS
) &&
6680 intel_is_dual_link_lvds(dev
)) || pipe_config
->double_wide
)
6681 pipe_config
->pipe_src_w
&= ~1;
6683 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6684 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6686 if ((INTEL_INFO(dev
)->gen
> 4 || IS_G4X(dev
)) &&
6687 adjusted_mode
->crtc_hsync_start
== adjusted_mode
->crtc_hdisplay
)
6691 hsw_compute_ips_config(crtc
, pipe_config
);
6693 if (pipe_config
->has_pch_encoder
)
6694 return ironlake_fdi_compute_config(crtc
, pipe_config
);
6699 static int skylake_get_display_clock_speed(struct drm_device
*dev
)
6701 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6702 uint32_t lcpll1
= I915_READ(LCPLL1_CTL
);
6703 uint32_t cdctl
= I915_READ(CDCLK_CTL
);
6706 if (!(lcpll1
& LCPLL_PLL_ENABLE
))
6707 return 24000; /* 24MHz is the cd freq with NSSC ref */
6709 if ((cdctl
& CDCLK_FREQ_SEL_MASK
) == CDCLK_FREQ_540
)
6712 linkrate
= (I915_READ(DPLL_CTRL1
) &
6713 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0
)) >> 1;
6715 if (linkrate
== DPLL_CTRL1_LINK_RATE_2160
||
6716 linkrate
== DPLL_CTRL1_LINK_RATE_1080
) {
6718 switch (cdctl
& CDCLK_FREQ_SEL_MASK
) {
6719 case CDCLK_FREQ_450_432
:
6721 case CDCLK_FREQ_337_308
:
6723 case CDCLK_FREQ_675_617
:
6726 WARN(1, "Unknown cd freq selection\n");
6730 switch (cdctl
& CDCLK_FREQ_SEL_MASK
) {
6731 case CDCLK_FREQ_450_432
:
6733 case CDCLK_FREQ_337_308
:
6735 case CDCLK_FREQ_675_617
:
6738 WARN(1, "Unknown cd freq selection\n");
6742 /* error case, do as if DPLL0 isn't enabled */
6746 static int broxton_get_display_clock_speed(struct drm_device
*dev
)
6748 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6749 uint32_t cdctl
= I915_READ(CDCLK_CTL
);
6750 uint32_t pll_ratio
= I915_READ(BXT_DE_PLL_CTL
) & BXT_DE_PLL_RATIO_MASK
;
6751 uint32_t pll_enab
= I915_READ(BXT_DE_PLL_ENABLE
);
6754 if (!(pll_enab
& BXT_DE_PLL_PLL_ENABLE
))
6757 cdclk
= 19200 * pll_ratio
/ 2;
6759 switch (cdctl
& BXT_CDCLK_CD2X_DIV_SEL_MASK
) {
6760 case BXT_CDCLK_CD2X_DIV_SEL_1
:
6761 return cdclk
; /* 576MHz or 624MHz */
6762 case BXT_CDCLK_CD2X_DIV_SEL_1_5
:
6763 return cdclk
* 2 / 3; /* 384MHz */
6764 case BXT_CDCLK_CD2X_DIV_SEL_2
:
6765 return cdclk
/ 2; /* 288MHz */
6766 case BXT_CDCLK_CD2X_DIV_SEL_4
:
6767 return cdclk
/ 4; /* 144MHz */
6770 /* error case, do as if DE PLL isn't enabled */
6774 static int broadwell_get_display_clock_speed(struct drm_device
*dev
)
6776 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6777 uint32_t lcpll
= I915_READ(LCPLL_CTL
);
6778 uint32_t freq
= lcpll
& LCPLL_CLK_FREQ_MASK
;
6780 if (lcpll
& LCPLL_CD_SOURCE_FCLK
)
6782 else if (I915_READ(FUSE_STRAP
) & HSW_CDCLK_LIMIT
)
6784 else if (freq
== LCPLL_CLK_FREQ_450
)
6786 else if (freq
== LCPLL_CLK_FREQ_54O_BDW
)
6788 else if (freq
== LCPLL_CLK_FREQ_337_5_BDW
)
6794 static int haswell_get_display_clock_speed(struct drm_device
*dev
)
6796 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6797 uint32_t lcpll
= I915_READ(LCPLL_CTL
);
6798 uint32_t freq
= lcpll
& LCPLL_CLK_FREQ_MASK
;
6800 if (lcpll
& LCPLL_CD_SOURCE_FCLK
)
6802 else if (I915_READ(FUSE_STRAP
) & HSW_CDCLK_LIMIT
)
6804 else if (freq
== LCPLL_CLK_FREQ_450
)
6806 else if (IS_HSW_ULT(dev
))
6812 static int valleyview_get_display_clock_speed(struct drm_device
*dev
)
6814 return vlv_get_cck_clock_hpll(to_i915(dev
), "cdclk",
6815 CCK_DISPLAY_CLOCK_CONTROL
);
6818 static int ilk_get_display_clock_speed(struct drm_device
*dev
)
6823 static int i945_get_display_clock_speed(struct drm_device
*dev
)
6828 static int i915_get_display_clock_speed(struct drm_device
*dev
)
6833 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
6838 static int pnv_get_display_clock_speed(struct drm_device
*dev
)
6842 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
6844 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
6845 case GC_DISPLAY_CLOCK_267_MHZ_PNV
:
6847 case GC_DISPLAY_CLOCK_333_MHZ_PNV
:
6849 case GC_DISPLAY_CLOCK_444_MHZ_PNV
:
6851 case GC_DISPLAY_CLOCK_200_MHZ_PNV
:
6854 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc
);
6855 case GC_DISPLAY_CLOCK_133_MHZ_PNV
:
6857 case GC_DISPLAY_CLOCK_167_MHZ_PNV
:
6862 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
6866 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
6868 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
6871 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
6872 case GC_DISPLAY_CLOCK_333_MHZ
:
6875 case GC_DISPLAY_CLOCK_190_200_MHZ
:
6881 static int i865_get_display_clock_speed(struct drm_device
*dev
)
6886 static int i85x_get_display_clock_speed(struct drm_device
*dev
)
6891 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6892 * encoding is different :(
6893 * FIXME is this the right way to detect 852GM/852GMV?
6895 if (dev
->pdev
->revision
== 0x1)
6898 pci_bus_read_config_word(dev
->pdev
->bus
,
6899 PCI_DEVFN(0, 3), HPLLCC
, &hpllcc
);
6901 /* Assume that the hardware is in the high speed state. This
6902 * should be the default.
6904 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
6905 case GC_CLOCK_133_200
:
6906 case GC_CLOCK_133_200_2
:
6907 case GC_CLOCK_100_200
:
6909 case GC_CLOCK_166_250
:
6911 case GC_CLOCK_100_133
:
6913 case GC_CLOCK_133_266
:
6914 case GC_CLOCK_133_266_2
:
6915 case GC_CLOCK_166_266
:
6919 /* Shouldn't happen */
6923 static int i830_get_display_clock_speed(struct drm_device
*dev
)
6928 static unsigned int intel_hpll_vco(struct drm_device
*dev
)
6930 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6931 static const unsigned int blb_vco
[8] = {
6938 static const unsigned int pnv_vco
[8] = {
6945 static const unsigned int cl_vco
[8] = {
6954 static const unsigned int elk_vco
[8] = {
6960 static const unsigned int ctg_vco
[8] = {
6968 const unsigned int *vco_table
;
6972 /* FIXME other chipsets? */
6974 vco_table
= ctg_vco
;
6975 else if (IS_G4X(dev
))
6976 vco_table
= elk_vco
;
6977 else if (IS_CRESTLINE(dev
))
6979 else if (IS_PINEVIEW(dev
))
6980 vco_table
= pnv_vco
;
6981 else if (IS_G33(dev
))
6982 vco_table
= blb_vco
;
6986 tmp
= I915_READ(IS_MOBILE(dev
) ? HPLLVCO_MOBILE
: HPLLVCO
);
6988 vco
= vco_table
[tmp
& 0x7];
6990 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp
);
6992 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco
);
6997 static int gm45_get_display_clock_speed(struct drm_device
*dev
)
6999 unsigned int cdclk_sel
, vco
= intel_hpll_vco(dev
);
7002 pci_read_config_word(dev
->pdev
, GCFGC
, &tmp
);
7004 cdclk_sel
= (tmp
>> 12) & 0x1;
7010 return cdclk_sel
? 333333 : 222222;
7012 return cdclk_sel
? 320000 : 228571;
7014 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco
, tmp
);
7019 static int i965gm_get_display_clock_speed(struct drm_device
*dev
)
7021 static const uint8_t div_3200
[] = { 16, 10, 8 };
7022 static const uint8_t div_4000
[] = { 20, 12, 10 };
7023 static const uint8_t div_5333
[] = { 24, 16, 14 };
7024 const uint8_t *div_table
;
7025 unsigned int cdclk_sel
, vco
= intel_hpll_vco(dev
);
7028 pci_read_config_word(dev
->pdev
, GCFGC
, &tmp
);
7030 cdclk_sel
= ((tmp
>> 8) & 0x1f) - 1;
7032 if (cdclk_sel
>= ARRAY_SIZE(div_3200
))
7037 div_table
= div_3200
;
7040 div_table
= div_4000
;
7043 div_table
= div_5333
;
7049 return DIV_ROUND_CLOSEST(vco
, div_table
[cdclk_sel
]);
7052 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco
, tmp
);
7056 static int g33_get_display_clock_speed(struct drm_device
*dev
)
7058 static const uint8_t div_3200
[] = { 12, 10, 8, 7, 5, 16 };
7059 static const uint8_t div_4000
[] = { 14, 12, 10, 8, 6, 20 };
7060 static const uint8_t div_4800
[] = { 20, 14, 12, 10, 8, 24 };
7061 static const uint8_t div_5333
[] = { 20, 16, 12, 12, 8, 28 };
7062 const uint8_t *div_table
;
7063 unsigned int cdclk_sel
, vco
= intel_hpll_vco(dev
);
7066 pci_read_config_word(dev
->pdev
, GCFGC
, &tmp
);
7068 cdclk_sel
= (tmp
>> 4) & 0x7;
7070 if (cdclk_sel
>= ARRAY_SIZE(div_3200
))
7075 div_table
= div_3200
;
7078 div_table
= div_4000
;
7081 div_table
= div_4800
;
7084 div_table
= div_5333
;
7090 return DIV_ROUND_CLOSEST(vco
, div_table
[cdclk_sel
]);
7093 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco
, tmp
);
7098 intel_reduce_m_n_ratio(uint32_t *num
, uint32_t *den
)
7100 while (*num
> DATA_LINK_M_N_MASK
||
7101 *den
> DATA_LINK_M_N_MASK
) {
7107 static void compute_m_n(unsigned int m
, unsigned int n
,
7108 uint32_t *ret_m
, uint32_t *ret_n
)
7110 *ret_n
= min_t(unsigned int, roundup_pow_of_two(n
), DATA_LINK_N_MAX
);
7111 *ret_m
= div_u64((uint64_t) m
* *ret_n
, n
);
7112 intel_reduce_m_n_ratio(ret_m
, ret_n
);
7116 intel_link_compute_m_n(int bits_per_pixel
, int nlanes
,
7117 int pixel_clock
, int link_clock
,
7118 struct intel_link_m_n
*m_n
)
7122 compute_m_n(bits_per_pixel
* pixel_clock
,
7123 link_clock
* nlanes
* 8,
7124 &m_n
->gmch_m
, &m_n
->gmch_n
);
7126 compute_m_n(pixel_clock
, link_clock
,
7127 &m_n
->link_m
, &m_n
->link_n
);
7130 static inline bool intel_panel_use_ssc(struct drm_i915_private
*dev_priv
)
7132 if (i915
.panel_use_ssc
>= 0)
7133 return i915
.panel_use_ssc
!= 0;
7134 return dev_priv
->vbt
.lvds_use_ssc
7135 && !(dev_priv
->quirks
& QUIRK_LVDS_SSC_DISABLE
);
7138 static int i9xx_get_refclk(const struct intel_crtc_state
*crtc_state
,
7141 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
7142 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7145 WARN_ON(!crtc_state
->base
.state
);
7147 if (IS_VALLEYVIEW(dev
) || IS_BROXTON(dev
)) {
7149 } else if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
) &&
7150 intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
7151 refclk
= dev_priv
->vbt
.lvds_ssc_freq
;
7152 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk
);
7153 } else if (!IS_GEN2(dev
)) {
7162 static uint32_t pnv_dpll_compute_fp(struct dpll
*dpll
)
7164 return (1 << dpll
->n
) << 16 | dpll
->m2
;
7167 static uint32_t i9xx_dpll_compute_fp(struct dpll
*dpll
)
7169 return dpll
->n
<< 16 | dpll
->m1
<< 8 | dpll
->m2
;
7172 static void i9xx_update_pll_dividers(struct intel_crtc
*crtc
,
7173 struct intel_crtc_state
*crtc_state
,
7174 intel_clock_t
*reduced_clock
)
7176 struct drm_device
*dev
= crtc
->base
.dev
;
7179 if (IS_PINEVIEW(dev
)) {
7180 fp
= pnv_dpll_compute_fp(&crtc_state
->dpll
);
7182 fp2
= pnv_dpll_compute_fp(reduced_clock
);
7184 fp
= i9xx_dpll_compute_fp(&crtc_state
->dpll
);
7186 fp2
= i9xx_dpll_compute_fp(reduced_clock
);
7189 crtc_state
->dpll_hw_state
.fp0
= fp
;
7191 crtc
->lowfreq_avail
= false;
7192 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
) &&
7194 crtc_state
->dpll_hw_state
.fp1
= fp2
;
7195 crtc
->lowfreq_avail
= true;
7197 crtc_state
->dpll_hw_state
.fp1
= fp
;
7201 static void vlv_pllb_recal_opamp(struct drm_i915_private
*dev_priv
, enum pipe
7207 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7208 * and set it to a reasonable value instead.
7210 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW9(1));
7211 reg_val
&= 0xffffff00;
7212 reg_val
|= 0x00000030;
7213 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW9(1), reg_val
);
7215 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_REF_DW13
);
7216 reg_val
&= 0x8cffffff;
7217 reg_val
= 0x8c000000;
7218 vlv_dpio_write(dev_priv
, pipe
, VLV_REF_DW13
, reg_val
);
7220 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW9(1));
7221 reg_val
&= 0xffffff00;
7222 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW9(1), reg_val
);
7224 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_REF_DW13
);
7225 reg_val
&= 0x00ffffff;
7226 reg_val
|= 0xb0000000;
7227 vlv_dpio_write(dev_priv
, pipe
, VLV_REF_DW13
, reg_val
);
7230 static void intel_pch_transcoder_set_m_n(struct intel_crtc
*crtc
,
7231 struct intel_link_m_n
*m_n
)
7233 struct drm_device
*dev
= crtc
->base
.dev
;
7234 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7235 int pipe
= crtc
->pipe
;
7237 I915_WRITE(PCH_TRANS_DATA_M1(pipe
), TU_SIZE(m_n
->tu
) | m_n
->gmch_m
);
7238 I915_WRITE(PCH_TRANS_DATA_N1(pipe
), m_n
->gmch_n
);
7239 I915_WRITE(PCH_TRANS_LINK_M1(pipe
), m_n
->link_m
);
7240 I915_WRITE(PCH_TRANS_LINK_N1(pipe
), m_n
->link_n
);
7243 static void intel_cpu_transcoder_set_m_n(struct intel_crtc
*crtc
,
7244 struct intel_link_m_n
*m_n
,
7245 struct intel_link_m_n
*m2_n2
)
7247 struct drm_device
*dev
= crtc
->base
.dev
;
7248 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7249 int pipe
= crtc
->pipe
;
7250 enum transcoder transcoder
= crtc
->config
->cpu_transcoder
;
7252 if (INTEL_INFO(dev
)->gen
>= 5) {
7253 I915_WRITE(PIPE_DATA_M1(transcoder
), TU_SIZE(m_n
->tu
) | m_n
->gmch_m
);
7254 I915_WRITE(PIPE_DATA_N1(transcoder
), m_n
->gmch_n
);
7255 I915_WRITE(PIPE_LINK_M1(transcoder
), m_n
->link_m
);
7256 I915_WRITE(PIPE_LINK_N1(transcoder
), m_n
->link_n
);
7257 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7258 * for gen < 8) and if DRRS is supported (to make sure the
7259 * registers are not unnecessarily accessed).
7261 if (m2_n2
&& (IS_CHERRYVIEW(dev
) || INTEL_INFO(dev
)->gen
< 8) &&
7262 crtc
->config
->has_drrs
) {
7263 I915_WRITE(PIPE_DATA_M2(transcoder
),
7264 TU_SIZE(m2_n2
->tu
) | m2_n2
->gmch_m
);
7265 I915_WRITE(PIPE_DATA_N2(transcoder
), m2_n2
->gmch_n
);
7266 I915_WRITE(PIPE_LINK_M2(transcoder
), m2_n2
->link_m
);
7267 I915_WRITE(PIPE_LINK_N2(transcoder
), m2_n2
->link_n
);
7270 I915_WRITE(PIPE_DATA_M_G4X(pipe
), TU_SIZE(m_n
->tu
) | m_n
->gmch_m
);
7271 I915_WRITE(PIPE_DATA_N_G4X(pipe
), m_n
->gmch_n
);
7272 I915_WRITE(PIPE_LINK_M_G4X(pipe
), m_n
->link_m
);
7273 I915_WRITE(PIPE_LINK_N_G4X(pipe
), m_n
->link_n
);
7277 void intel_dp_set_m_n(struct intel_crtc
*crtc
, enum link_m_n_set m_n
)
7279 struct intel_link_m_n
*dp_m_n
, *dp_m2_n2
= NULL
;
7282 dp_m_n
= &crtc
->config
->dp_m_n
;
7283 dp_m2_n2
= &crtc
->config
->dp_m2_n2
;
7284 } else if (m_n
== M2_N2
) {
7287 * M2_N2 registers are not supported. Hence m2_n2 divider value
7288 * needs to be programmed into M1_N1.
7290 dp_m_n
= &crtc
->config
->dp_m2_n2
;
7292 DRM_ERROR("Unsupported divider value\n");
7296 if (crtc
->config
->has_pch_encoder
)
7297 intel_pch_transcoder_set_m_n(crtc
, &crtc
->config
->dp_m_n
);
7299 intel_cpu_transcoder_set_m_n(crtc
, dp_m_n
, dp_m2_n2
);
7302 static void vlv_compute_dpll(struct intel_crtc
*crtc
,
7303 struct intel_crtc_state
*pipe_config
)
7308 * Enable DPIO clock input. We should never disable the reference
7309 * clock for pipe B, since VGA hotplug / manual detection depends
7312 dpll
= DPLL_EXT_BUFFER_ENABLE_VLV
| DPLL_REF_CLK_ENABLE_VLV
|
7313 DPLL_VGA_MODE_DIS
| DPLL_INTEGRATED_REF_CLK_VLV
;
7314 /* We should never disable this, set it here for state tracking */
7315 if (crtc
->pipe
== PIPE_B
)
7316 dpll
|= DPLL_INTEGRATED_CRI_CLK_VLV
;
7317 dpll
|= DPLL_VCO_ENABLE
;
7318 pipe_config
->dpll_hw_state
.dpll
= dpll
;
7320 dpll_md
= (pipe_config
->pixel_multiplier
- 1)
7321 << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
7322 pipe_config
->dpll_hw_state
.dpll_md
= dpll_md
;
7325 static void vlv_prepare_pll(struct intel_crtc
*crtc
,
7326 const struct intel_crtc_state
*pipe_config
)
7328 struct drm_device
*dev
= crtc
->base
.dev
;
7329 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7330 int pipe
= crtc
->pipe
;
7332 u32 bestn
, bestm1
, bestm2
, bestp1
, bestp2
;
7333 u32 coreclk
, reg_val
;
7335 mutex_lock(&dev_priv
->sb_lock
);
7337 bestn
= pipe_config
->dpll
.n
;
7338 bestm1
= pipe_config
->dpll
.m1
;
7339 bestm2
= pipe_config
->dpll
.m2
;
7340 bestp1
= pipe_config
->dpll
.p1
;
7341 bestp2
= pipe_config
->dpll
.p2
;
7343 /* See eDP HDMI DPIO driver vbios notes doc */
7345 /* PLL B needs special handling */
7347 vlv_pllb_recal_opamp(dev_priv
, pipe
);
7349 /* Set up Tx target for periodic Rcomp update */
7350 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW9_BCAST
, 0x0100000f);
7352 /* Disable target IRef on PLL */
7353 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW8(pipe
));
7354 reg_val
&= 0x00ffffff;
7355 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW8(pipe
), reg_val
);
7357 /* Disable fast lock */
7358 vlv_dpio_write(dev_priv
, pipe
, VLV_CMN_DW0
, 0x610);
7360 /* Set idtafcrecal before PLL is enabled */
7361 mdiv
= ((bestm1
<< DPIO_M1DIV_SHIFT
) | (bestm2
& DPIO_M2DIV_MASK
));
7362 mdiv
|= ((bestp1
<< DPIO_P1_SHIFT
) | (bestp2
<< DPIO_P2_SHIFT
));
7363 mdiv
|= ((bestn
<< DPIO_N_SHIFT
));
7364 mdiv
|= (1 << DPIO_K_SHIFT
);
7367 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7368 * but we don't support that).
7369 * Note: don't use the DAC post divider as it seems unstable.
7371 mdiv
|= (DPIO_POST_DIV_HDMIDP
<< DPIO_POST_DIV_SHIFT
);
7372 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW3(pipe
), mdiv
);
7374 mdiv
|= DPIO_ENABLE_CALIBRATION
;
7375 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW3(pipe
), mdiv
);
7377 /* Set HBR and RBR LPF coefficients */
7378 if (pipe_config
->port_clock
== 162000 ||
7379 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
) ||
7380 intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
))
7381 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW10(pipe
),
7384 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW10(pipe
),
7387 if (pipe_config
->has_dp_encoder
) {
7388 /* Use SSC source */
7390 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW5(pipe
),
7393 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW5(pipe
),
7395 } else { /* HDMI or VGA */
7396 /* Use bend source */
7398 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW5(pipe
),
7401 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW5(pipe
),
7405 coreclk
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW7(pipe
));
7406 coreclk
= (coreclk
& 0x0000ff00) | 0x01c00000;
7407 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
7408 intel_pipe_has_type(crtc
, INTEL_OUTPUT_EDP
))
7409 coreclk
|= 0x01000000;
7410 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW7(pipe
), coreclk
);
7412 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW11(pipe
), 0x87871000);
7413 mutex_unlock(&dev_priv
->sb_lock
);
7416 static void chv_compute_dpll(struct intel_crtc
*crtc
,
7417 struct intel_crtc_state
*pipe_config
)
7419 pipe_config
->dpll_hw_state
.dpll
= DPLL_SSC_REF_CLK_CHV
|
7420 DPLL_REF_CLK_ENABLE_VLV
| DPLL_VGA_MODE_DIS
|
7422 if (crtc
->pipe
!= PIPE_A
)
7423 pipe_config
->dpll_hw_state
.dpll
|= DPLL_INTEGRATED_CRI_CLK_VLV
;
7425 pipe_config
->dpll_hw_state
.dpll_md
=
7426 (pipe_config
->pixel_multiplier
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
7429 static void chv_prepare_pll(struct intel_crtc
*crtc
,
7430 const struct intel_crtc_state
*pipe_config
)
7432 struct drm_device
*dev
= crtc
->base
.dev
;
7433 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7434 int pipe
= crtc
->pipe
;
7435 int dpll_reg
= DPLL(crtc
->pipe
);
7436 enum dpio_channel port
= vlv_pipe_to_channel(pipe
);
7437 u32 loopfilter
, tribuf_calcntr
;
7438 u32 bestn
, bestm1
, bestm2
, bestp1
, bestp2
, bestm2_frac
;
7442 bestn
= pipe_config
->dpll
.n
;
7443 bestm2_frac
= pipe_config
->dpll
.m2
& 0x3fffff;
7444 bestm1
= pipe_config
->dpll
.m1
;
7445 bestm2
= pipe_config
->dpll
.m2
>> 22;
7446 bestp1
= pipe_config
->dpll
.p1
;
7447 bestp2
= pipe_config
->dpll
.p2
;
7448 vco
= pipe_config
->dpll
.vco
;
7453 * Enable Refclk and SSC
7455 I915_WRITE(dpll_reg
,
7456 pipe_config
->dpll_hw_state
.dpll
& ~DPLL_VCO_ENABLE
);
7458 mutex_lock(&dev_priv
->sb_lock
);
7460 /* p1 and p2 divider */
7461 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW13(port
),
7462 5 << DPIO_CHV_S1_DIV_SHIFT
|
7463 bestp1
<< DPIO_CHV_P1_DIV_SHIFT
|
7464 bestp2
<< DPIO_CHV_P2_DIV_SHIFT
|
7465 1 << DPIO_CHV_K_DIV_SHIFT
);
7467 /* Feedback post-divider - m2 */
7468 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW0(port
), bestm2
);
7470 /* Feedback refclk divider - n and m1 */
7471 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW1(port
),
7472 DPIO_CHV_M1_DIV_BY_2
|
7473 1 << DPIO_CHV_N_DIV_SHIFT
);
7475 /* M2 fraction division */
7476 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW2(port
), bestm2_frac
);
7478 /* M2 fraction division enable */
7479 dpio_val
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW3(port
));
7480 dpio_val
&= ~(DPIO_CHV_FEEDFWD_GAIN_MASK
| DPIO_CHV_FRAC_DIV_EN
);
7481 dpio_val
|= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT
);
7483 dpio_val
|= DPIO_CHV_FRAC_DIV_EN
;
7484 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW3(port
), dpio_val
);
7486 /* Program digital lock detect threshold */
7487 dpio_val
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW9(port
));
7488 dpio_val
&= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK
|
7489 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE
);
7490 dpio_val
|= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT
);
7492 dpio_val
|= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE
;
7493 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW9(port
), dpio_val
);
7496 if (vco
== 5400000) {
7497 loopfilter
|= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT
);
7498 loopfilter
|= (0x8 << DPIO_CHV_INT_COEFF_SHIFT
);
7499 loopfilter
|= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT
);
7500 tribuf_calcntr
= 0x9;
7501 } else if (vco
<= 6200000) {
7502 loopfilter
|= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT
);
7503 loopfilter
|= (0xB << DPIO_CHV_INT_COEFF_SHIFT
);
7504 loopfilter
|= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT
);
7505 tribuf_calcntr
= 0x9;
7506 } else if (vco
<= 6480000) {
7507 loopfilter
|= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT
);
7508 loopfilter
|= (0x9 << DPIO_CHV_INT_COEFF_SHIFT
);
7509 loopfilter
|= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT
);
7510 tribuf_calcntr
= 0x8;
7512 /* Not supported. Apply the same limits as in the max case */
7513 loopfilter
|= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT
);
7514 loopfilter
|= (0x9 << DPIO_CHV_INT_COEFF_SHIFT
);
7515 loopfilter
|= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT
);
7518 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW6(port
), loopfilter
);
7520 dpio_val
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW8(port
));
7521 dpio_val
&= ~DPIO_CHV_TDC_TARGET_CNT_MASK
;
7522 dpio_val
|= (tribuf_calcntr
<< DPIO_CHV_TDC_TARGET_CNT_SHIFT
);
7523 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW8(port
), dpio_val
);
7526 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW14(port
),
7527 vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW14(port
)) |
7530 mutex_unlock(&dev_priv
->sb_lock
);
7534 * vlv_force_pll_on - forcibly enable just the PLL
7535 * @dev_priv: i915 private structure
7536 * @pipe: pipe PLL to enable
7537 * @dpll: PLL configuration
7539 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7540 * in cases where we need the PLL enabled even when @pipe is not going to
7543 void vlv_force_pll_on(struct drm_device
*dev
, enum pipe pipe
,
7544 const struct dpll
*dpll
)
7546 struct intel_crtc
*crtc
=
7547 to_intel_crtc(intel_get_crtc_for_pipe(dev
, pipe
));
7548 struct intel_crtc_state pipe_config
= {
7549 .base
.crtc
= &crtc
->base
,
7550 .pixel_multiplier
= 1,
7554 if (IS_CHERRYVIEW(dev
)) {
7555 chv_compute_dpll(crtc
, &pipe_config
);
7556 chv_prepare_pll(crtc
, &pipe_config
);
7557 chv_enable_pll(crtc
, &pipe_config
);
7559 vlv_compute_dpll(crtc
, &pipe_config
);
7560 vlv_prepare_pll(crtc
, &pipe_config
);
7561 vlv_enable_pll(crtc
, &pipe_config
);
7566 * vlv_force_pll_off - forcibly disable just the PLL
7567 * @dev_priv: i915 private structure
7568 * @pipe: pipe PLL to disable
7570 * Disable the PLL for @pipe. To be used in cases where we need
7571 * the PLL enabled even when @pipe is not going to be enabled.
7573 void vlv_force_pll_off(struct drm_device
*dev
, enum pipe pipe
)
7575 if (IS_CHERRYVIEW(dev
))
7576 chv_disable_pll(to_i915(dev
), pipe
);
7578 vlv_disable_pll(to_i915(dev
), pipe
);
7581 static void i9xx_compute_dpll(struct intel_crtc
*crtc
,
7582 struct intel_crtc_state
*crtc_state
,
7583 intel_clock_t
*reduced_clock
,
7586 struct drm_device
*dev
= crtc
->base
.dev
;
7587 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7590 struct dpll
*clock
= &crtc_state
->dpll
;
7592 i9xx_update_pll_dividers(crtc
, crtc_state
, reduced_clock
);
7594 is_sdvo
= intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_SDVO
) ||
7595 intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_HDMI
);
7597 dpll
= DPLL_VGA_MODE_DIS
;
7599 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
))
7600 dpll
|= DPLLB_MODE_LVDS
;
7602 dpll
|= DPLLB_MODE_DAC_SERIAL
;
7604 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
)) {
7605 dpll
|= (crtc_state
->pixel_multiplier
- 1)
7606 << SDVO_MULTIPLIER_SHIFT_HIRES
;
7610 dpll
|= DPLL_SDVO_HIGH_SPEED
;
7612 if (crtc_state
->has_dp_encoder
)
7613 dpll
|= DPLL_SDVO_HIGH_SPEED
;
7615 /* compute bitmask from p1 value */
7616 if (IS_PINEVIEW(dev
))
7617 dpll
|= (1 << (clock
->p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
7619 dpll
|= (1 << (clock
->p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
7620 if (IS_G4X(dev
) && reduced_clock
)
7621 dpll
|= (1 << (reduced_clock
->p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
7623 switch (clock
->p2
) {
7625 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
7628 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
7631 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
7634 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
7637 if (INTEL_INFO(dev
)->gen
>= 4)
7638 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
7640 if (crtc_state
->sdvo_tv_clock
)
7641 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
7642 else if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
) &&
7643 intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
7644 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
7646 dpll
|= PLL_REF_INPUT_DREFCLK
;
7648 dpll
|= DPLL_VCO_ENABLE
;
7649 crtc_state
->dpll_hw_state
.dpll
= dpll
;
7651 if (INTEL_INFO(dev
)->gen
>= 4) {
7652 u32 dpll_md
= (crtc_state
->pixel_multiplier
- 1)
7653 << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
7654 crtc_state
->dpll_hw_state
.dpll_md
= dpll_md
;
7658 static void i8xx_compute_dpll(struct intel_crtc
*crtc
,
7659 struct intel_crtc_state
*crtc_state
,
7660 intel_clock_t
*reduced_clock
,
7663 struct drm_device
*dev
= crtc
->base
.dev
;
7664 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7666 struct dpll
*clock
= &crtc_state
->dpll
;
7668 i9xx_update_pll_dividers(crtc
, crtc_state
, reduced_clock
);
7670 dpll
= DPLL_VGA_MODE_DIS
;
7672 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
7673 dpll
|= (1 << (clock
->p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
7676 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
7678 dpll
|= (clock
->p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
7680 dpll
|= PLL_P2_DIVIDE_BY_4
;
7683 if (!IS_I830(dev
) && intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_DVO
))
7684 dpll
|= DPLL_DVO_2X_MODE
;
7686 if (intel_pipe_will_have_type(crtc_state
, INTEL_OUTPUT_LVDS
) &&
7687 intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
7688 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
7690 dpll
|= PLL_REF_INPUT_DREFCLK
;
7692 dpll
|= DPLL_VCO_ENABLE
;
7693 crtc_state
->dpll_hw_state
.dpll
= dpll
;
7696 static void intel_set_pipe_timings(struct intel_crtc
*intel_crtc
)
7698 struct drm_device
*dev
= intel_crtc
->base
.dev
;
7699 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7700 enum pipe pipe
= intel_crtc
->pipe
;
7701 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
7702 const struct drm_display_mode
*adjusted_mode
= &intel_crtc
->config
->base
.adjusted_mode
;
7703 uint32_t crtc_vtotal
, crtc_vblank_end
;
7706 /* We need to be careful not to changed the adjusted mode, for otherwise
7707 * the hw state checker will get angry at the mismatch. */
7708 crtc_vtotal
= adjusted_mode
->crtc_vtotal
;
7709 crtc_vblank_end
= adjusted_mode
->crtc_vblank_end
;
7711 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
7712 /* the chip adds 2 halflines automatically */
7714 crtc_vblank_end
-= 1;
7716 if (intel_pipe_has_type(intel_crtc
, INTEL_OUTPUT_SDVO
))
7717 vsyncshift
= (adjusted_mode
->crtc_htotal
- 1) / 2;
7719 vsyncshift
= adjusted_mode
->crtc_hsync_start
-
7720 adjusted_mode
->crtc_htotal
/ 2;
7722 vsyncshift
+= adjusted_mode
->crtc_htotal
;
7725 if (INTEL_INFO(dev
)->gen
> 3)
7726 I915_WRITE(VSYNCSHIFT(cpu_transcoder
), vsyncshift
);
7728 I915_WRITE(HTOTAL(cpu_transcoder
),
7729 (adjusted_mode
->crtc_hdisplay
- 1) |
7730 ((adjusted_mode
->crtc_htotal
- 1) << 16));
7731 I915_WRITE(HBLANK(cpu_transcoder
),
7732 (adjusted_mode
->crtc_hblank_start
- 1) |
7733 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
7734 I915_WRITE(HSYNC(cpu_transcoder
),
7735 (adjusted_mode
->crtc_hsync_start
- 1) |
7736 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
7738 I915_WRITE(VTOTAL(cpu_transcoder
),
7739 (adjusted_mode
->crtc_vdisplay
- 1) |
7740 ((crtc_vtotal
- 1) << 16));
7741 I915_WRITE(VBLANK(cpu_transcoder
),
7742 (adjusted_mode
->crtc_vblank_start
- 1) |
7743 ((crtc_vblank_end
- 1) << 16));
7744 I915_WRITE(VSYNC(cpu_transcoder
),
7745 (adjusted_mode
->crtc_vsync_start
- 1) |
7746 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
7748 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7749 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7750 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7752 if (IS_HASWELL(dev
) && cpu_transcoder
== TRANSCODER_EDP
&&
7753 (pipe
== PIPE_B
|| pipe
== PIPE_C
))
7754 I915_WRITE(VTOTAL(pipe
), I915_READ(VTOTAL(cpu_transcoder
)));
7756 /* pipesrc controls the size that is scaled from, which should
7757 * always be the user's requested size.
7759 I915_WRITE(PIPESRC(pipe
),
7760 ((intel_crtc
->config
->pipe_src_w
- 1) << 16) |
7761 (intel_crtc
->config
->pipe_src_h
- 1));
7764 static void intel_get_pipe_timings(struct intel_crtc
*crtc
,
7765 struct intel_crtc_state
*pipe_config
)
7767 struct drm_device
*dev
= crtc
->base
.dev
;
7768 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7769 enum transcoder cpu_transcoder
= pipe_config
->cpu_transcoder
;
7772 tmp
= I915_READ(HTOTAL(cpu_transcoder
));
7773 pipe_config
->base
.adjusted_mode
.crtc_hdisplay
= (tmp
& 0xffff) + 1;
7774 pipe_config
->base
.adjusted_mode
.crtc_htotal
= ((tmp
>> 16) & 0xffff) + 1;
7775 tmp
= I915_READ(HBLANK(cpu_transcoder
));
7776 pipe_config
->base
.adjusted_mode
.crtc_hblank_start
= (tmp
& 0xffff) + 1;
7777 pipe_config
->base
.adjusted_mode
.crtc_hblank_end
= ((tmp
>> 16) & 0xffff) + 1;
7778 tmp
= I915_READ(HSYNC(cpu_transcoder
));
7779 pipe_config
->base
.adjusted_mode
.crtc_hsync_start
= (tmp
& 0xffff) + 1;
7780 pipe_config
->base
.adjusted_mode
.crtc_hsync_end
= ((tmp
>> 16) & 0xffff) + 1;
7782 tmp
= I915_READ(VTOTAL(cpu_transcoder
));
7783 pipe_config
->base
.adjusted_mode
.crtc_vdisplay
= (tmp
& 0xffff) + 1;
7784 pipe_config
->base
.adjusted_mode
.crtc_vtotal
= ((tmp
>> 16) & 0xffff) + 1;
7785 tmp
= I915_READ(VBLANK(cpu_transcoder
));
7786 pipe_config
->base
.adjusted_mode
.crtc_vblank_start
= (tmp
& 0xffff) + 1;
7787 pipe_config
->base
.adjusted_mode
.crtc_vblank_end
= ((tmp
>> 16) & 0xffff) + 1;
7788 tmp
= I915_READ(VSYNC(cpu_transcoder
));
7789 pipe_config
->base
.adjusted_mode
.crtc_vsync_start
= (tmp
& 0xffff) + 1;
7790 pipe_config
->base
.adjusted_mode
.crtc_vsync_end
= ((tmp
>> 16) & 0xffff) + 1;
7792 if (I915_READ(PIPECONF(cpu_transcoder
)) & PIPECONF_INTERLACE_MASK
) {
7793 pipe_config
->base
.adjusted_mode
.flags
|= DRM_MODE_FLAG_INTERLACE
;
7794 pipe_config
->base
.adjusted_mode
.crtc_vtotal
+= 1;
7795 pipe_config
->base
.adjusted_mode
.crtc_vblank_end
+= 1;
7798 tmp
= I915_READ(PIPESRC(crtc
->pipe
));
7799 pipe_config
->pipe_src_h
= (tmp
& 0xffff) + 1;
7800 pipe_config
->pipe_src_w
= ((tmp
>> 16) & 0xffff) + 1;
7802 pipe_config
->base
.mode
.vdisplay
= pipe_config
->pipe_src_h
;
7803 pipe_config
->base
.mode
.hdisplay
= pipe_config
->pipe_src_w
;
7806 void intel_mode_from_pipe_config(struct drm_display_mode
*mode
,
7807 struct intel_crtc_state
*pipe_config
)
7809 mode
->hdisplay
= pipe_config
->base
.adjusted_mode
.crtc_hdisplay
;
7810 mode
->htotal
= pipe_config
->base
.adjusted_mode
.crtc_htotal
;
7811 mode
->hsync_start
= pipe_config
->base
.adjusted_mode
.crtc_hsync_start
;
7812 mode
->hsync_end
= pipe_config
->base
.adjusted_mode
.crtc_hsync_end
;
7814 mode
->vdisplay
= pipe_config
->base
.adjusted_mode
.crtc_vdisplay
;
7815 mode
->vtotal
= pipe_config
->base
.adjusted_mode
.crtc_vtotal
;
7816 mode
->vsync_start
= pipe_config
->base
.adjusted_mode
.crtc_vsync_start
;
7817 mode
->vsync_end
= pipe_config
->base
.adjusted_mode
.crtc_vsync_end
;
7819 mode
->flags
= pipe_config
->base
.adjusted_mode
.flags
;
7820 mode
->type
= DRM_MODE_TYPE_DRIVER
;
7822 mode
->clock
= pipe_config
->base
.adjusted_mode
.crtc_clock
;
7823 mode
->flags
|= pipe_config
->base
.adjusted_mode
.flags
;
7825 mode
->hsync
= drm_mode_hsync(mode
);
7826 mode
->vrefresh
= drm_mode_vrefresh(mode
);
7827 drm_mode_set_name(mode
);
7830 static void i9xx_set_pipeconf(struct intel_crtc
*intel_crtc
)
7832 struct drm_device
*dev
= intel_crtc
->base
.dev
;
7833 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7838 if ((intel_crtc
->pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
7839 (intel_crtc
->pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
7840 pipeconf
|= I915_READ(PIPECONF(intel_crtc
->pipe
)) & PIPECONF_ENABLE
;
7842 if (intel_crtc
->config
->double_wide
)
7843 pipeconf
|= PIPECONF_DOUBLE_WIDE
;
7845 /* only g4x and later have fancy bpc/dither controls */
7846 if (IS_G4X(dev
) || IS_VALLEYVIEW(dev
)) {
7847 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7848 if (intel_crtc
->config
->dither
&& intel_crtc
->config
->pipe_bpp
!= 30)
7849 pipeconf
|= PIPECONF_DITHER_EN
|
7850 PIPECONF_DITHER_TYPE_SP
;
7852 switch (intel_crtc
->config
->pipe_bpp
) {
7854 pipeconf
|= PIPECONF_6BPC
;
7857 pipeconf
|= PIPECONF_8BPC
;
7860 pipeconf
|= PIPECONF_10BPC
;
7863 /* Case prevented by intel_choose_pipe_bpp_dither. */
7868 if (HAS_PIPE_CXSR(dev
)) {
7869 if (intel_crtc
->lowfreq_avail
) {
7870 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7871 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
7873 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7877 if (intel_crtc
->config
->base
.adjusted_mode
.flags
& DRM_MODE_FLAG_INTERLACE
) {
7878 if (INTEL_INFO(dev
)->gen
< 4 ||
7879 intel_pipe_has_type(intel_crtc
, INTEL_OUTPUT_SDVO
))
7880 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
7882 pipeconf
|= PIPECONF_INTERLACE_W_SYNC_SHIFT
;
7884 pipeconf
|= PIPECONF_PROGRESSIVE
;
7886 if (IS_VALLEYVIEW(dev
) && intel_crtc
->config
->limited_color_range
)
7887 pipeconf
|= PIPECONF_COLOR_RANGE_SELECT
;
7889 I915_WRITE(PIPECONF(intel_crtc
->pipe
), pipeconf
);
7890 POSTING_READ(PIPECONF(intel_crtc
->pipe
));
7893 static int i9xx_crtc_compute_clock(struct intel_crtc
*crtc
,
7894 struct intel_crtc_state
*crtc_state
)
7896 struct drm_device
*dev
= crtc
->base
.dev
;
7897 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7898 int refclk
, num_connectors
= 0;
7899 intel_clock_t clock
;
7901 bool is_dsi
= false;
7902 struct intel_encoder
*encoder
;
7903 const intel_limit_t
*limit
;
7904 struct drm_atomic_state
*state
= crtc_state
->base
.state
;
7905 struct drm_connector
*connector
;
7906 struct drm_connector_state
*connector_state
;
7909 memset(&crtc_state
->dpll_hw_state
, 0,
7910 sizeof(crtc_state
->dpll_hw_state
));
7912 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
7913 if (connector_state
->crtc
!= &crtc
->base
)
7916 encoder
= to_intel_encoder(connector_state
->best_encoder
);
7918 switch (encoder
->type
) {
7919 case INTEL_OUTPUT_DSI
:
7932 if (!crtc_state
->clock_set
) {
7933 refclk
= i9xx_get_refclk(crtc_state
, num_connectors
);
7936 * Returns a set of divisors for the desired target clock with
7937 * the given refclk, or FALSE. The returned values represent
7938 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7941 limit
= intel_limit(crtc_state
, refclk
);
7942 ok
= dev_priv
->display
.find_dpll(limit
, crtc_state
,
7943 crtc_state
->port_clock
,
7944 refclk
, NULL
, &clock
);
7946 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7950 /* Compat-code for transition, will disappear. */
7951 crtc_state
->dpll
.n
= clock
.n
;
7952 crtc_state
->dpll
.m1
= clock
.m1
;
7953 crtc_state
->dpll
.m2
= clock
.m2
;
7954 crtc_state
->dpll
.p1
= clock
.p1
;
7955 crtc_state
->dpll
.p2
= clock
.p2
;
7959 i8xx_compute_dpll(crtc
, crtc_state
, NULL
,
7961 } else if (IS_CHERRYVIEW(dev
)) {
7962 chv_compute_dpll(crtc
, crtc_state
);
7963 } else if (IS_VALLEYVIEW(dev
)) {
7964 vlv_compute_dpll(crtc
, crtc_state
);
7966 i9xx_compute_dpll(crtc
, crtc_state
, NULL
,
7973 static void i9xx_get_pfit_config(struct intel_crtc
*crtc
,
7974 struct intel_crtc_state
*pipe_config
)
7976 struct drm_device
*dev
= crtc
->base
.dev
;
7977 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7980 if (INTEL_INFO(dev
)->gen
<= 3 && (IS_I830(dev
) || !IS_MOBILE(dev
)))
7983 tmp
= I915_READ(PFIT_CONTROL
);
7984 if (!(tmp
& PFIT_ENABLE
))
7987 /* Check whether the pfit is attached to our pipe. */
7988 if (INTEL_INFO(dev
)->gen
< 4) {
7989 if (crtc
->pipe
!= PIPE_B
)
7992 if ((tmp
& PFIT_PIPE_MASK
) != (crtc
->pipe
<< PFIT_PIPE_SHIFT
))
7996 pipe_config
->gmch_pfit
.control
= tmp
;
7997 pipe_config
->gmch_pfit
.pgm_ratios
= I915_READ(PFIT_PGM_RATIOS
);
7998 if (INTEL_INFO(dev
)->gen
< 5)
7999 pipe_config
->gmch_pfit
.lvds_border_bits
=
8000 I915_READ(LVDS
) & LVDS_BORDER_ENABLE
;
8003 static void vlv_crtc_clock_get(struct intel_crtc
*crtc
,
8004 struct intel_crtc_state
*pipe_config
)
8006 struct drm_device
*dev
= crtc
->base
.dev
;
8007 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8008 int pipe
= pipe_config
->cpu_transcoder
;
8009 intel_clock_t clock
;
8011 int refclk
= 100000;
8013 /* In case of MIPI DPLL will not even be used */
8014 if (!(pipe_config
->dpll_hw_state
.dpll
& DPLL_VCO_ENABLE
))
8017 mutex_lock(&dev_priv
->sb_lock
);
8018 mdiv
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW3(pipe
));
8019 mutex_unlock(&dev_priv
->sb_lock
);
8021 clock
.m1
= (mdiv
>> DPIO_M1DIV_SHIFT
) & 7;
8022 clock
.m2
= mdiv
& DPIO_M2DIV_MASK
;
8023 clock
.n
= (mdiv
>> DPIO_N_SHIFT
) & 0xf;
8024 clock
.p1
= (mdiv
>> DPIO_P1_SHIFT
) & 7;
8025 clock
.p2
= (mdiv
>> DPIO_P2_SHIFT
) & 0x1f;
8027 pipe_config
->port_clock
= vlv_calc_dpll_params(refclk
, &clock
);
8031 i9xx_get_initial_plane_config(struct intel_crtc
*crtc
,
8032 struct intel_initial_plane_config
*plane_config
)
8034 struct drm_device
*dev
= crtc
->base
.dev
;
8035 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8036 u32 val
, base
, offset
;
8037 int pipe
= crtc
->pipe
, plane
= crtc
->plane
;
8038 int fourcc
, pixel_format
;
8039 unsigned int aligned_height
;
8040 struct drm_framebuffer
*fb
;
8041 struct intel_framebuffer
*intel_fb
;
8043 val
= I915_READ(DSPCNTR(plane
));
8044 if (!(val
& DISPLAY_PLANE_ENABLE
))
8047 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
8049 DRM_DEBUG_KMS("failed to alloc fb\n");
8053 fb
= &intel_fb
->base
;
8055 if (INTEL_INFO(dev
)->gen
>= 4) {
8056 if (val
& DISPPLANE_TILED
) {
8057 plane_config
->tiling
= I915_TILING_X
;
8058 fb
->modifier
[0] = I915_FORMAT_MOD_X_TILED
;
8062 pixel_format
= val
& DISPPLANE_PIXFORMAT_MASK
;
8063 fourcc
= i9xx_format_to_fourcc(pixel_format
);
8064 fb
->pixel_format
= fourcc
;
8065 fb
->bits_per_pixel
= drm_format_plane_cpp(fourcc
, 0) * 8;
8067 if (INTEL_INFO(dev
)->gen
>= 4) {
8068 if (plane_config
->tiling
)
8069 offset
= I915_READ(DSPTILEOFF(plane
));
8071 offset
= I915_READ(DSPLINOFF(plane
));
8072 base
= I915_READ(DSPSURF(plane
)) & 0xfffff000;
8074 base
= I915_READ(DSPADDR(plane
));
8076 plane_config
->base
= base
;
8078 val
= I915_READ(PIPESRC(pipe
));
8079 fb
->width
= ((val
>> 16) & 0xfff) + 1;
8080 fb
->height
= ((val
>> 0) & 0xfff) + 1;
8082 val
= I915_READ(DSPSTRIDE(pipe
));
8083 fb
->pitches
[0] = val
& 0xffffffc0;
8085 aligned_height
= intel_fb_align_height(dev
, fb
->height
,
8089 plane_config
->size
= fb
->pitches
[0] * aligned_height
;
8091 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8092 pipe_name(pipe
), plane
, fb
->width
, fb
->height
,
8093 fb
->bits_per_pixel
, base
, fb
->pitches
[0],
8094 plane_config
->size
);
8096 plane_config
->fb
= intel_fb
;
8099 static void chv_crtc_clock_get(struct intel_crtc
*crtc
,
8100 struct intel_crtc_state
*pipe_config
)
8102 struct drm_device
*dev
= crtc
->base
.dev
;
8103 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8104 int pipe
= pipe_config
->cpu_transcoder
;
8105 enum dpio_channel port
= vlv_pipe_to_channel(pipe
);
8106 intel_clock_t clock
;
8107 u32 cmn_dw13
, pll_dw0
, pll_dw1
, pll_dw2
, pll_dw3
;
8108 int refclk
= 100000;
8110 mutex_lock(&dev_priv
->sb_lock
);
8111 cmn_dw13
= vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW13(port
));
8112 pll_dw0
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW0(port
));
8113 pll_dw1
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW1(port
));
8114 pll_dw2
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW2(port
));
8115 pll_dw3
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW3(port
));
8116 mutex_unlock(&dev_priv
->sb_lock
);
8118 clock
.m1
= (pll_dw1
& 0x7) == DPIO_CHV_M1_DIV_BY_2
? 2 : 0;
8119 clock
.m2
= (pll_dw0
& 0xff) << 22;
8120 if (pll_dw3
& DPIO_CHV_FRAC_DIV_EN
)
8121 clock
.m2
|= pll_dw2
& 0x3fffff;
8122 clock
.n
= (pll_dw1
>> DPIO_CHV_N_DIV_SHIFT
) & 0xf;
8123 clock
.p1
= (cmn_dw13
>> DPIO_CHV_P1_DIV_SHIFT
) & 0x7;
8124 clock
.p2
= (cmn_dw13
>> DPIO_CHV_P2_DIV_SHIFT
) & 0x1f;
8126 pipe_config
->port_clock
= chv_calc_dpll_params(refclk
, &clock
);
8129 static bool i9xx_get_pipe_config(struct intel_crtc
*crtc
,
8130 struct intel_crtc_state
*pipe_config
)
8132 struct drm_device
*dev
= crtc
->base
.dev
;
8133 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8136 if (!intel_display_power_is_enabled(dev_priv
,
8137 POWER_DOMAIN_PIPE(crtc
->pipe
)))
8140 pipe_config
->cpu_transcoder
= (enum transcoder
) crtc
->pipe
;
8141 pipe_config
->shared_dpll
= DPLL_ID_PRIVATE
;
8143 tmp
= I915_READ(PIPECONF(crtc
->pipe
));
8144 if (!(tmp
& PIPECONF_ENABLE
))
8147 if (IS_G4X(dev
) || IS_VALLEYVIEW(dev
)) {
8148 switch (tmp
& PIPECONF_BPC_MASK
) {
8150 pipe_config
->pipe_bpp
= 18;
8153 pipe_config
->pipe_bpp
= 24;
8155 case PIPECONF_10BPC
:
8156 pipe_config
->pipe_bpp
= 30;
8163 if (IS_VALLEYVIEW(dev
) && (tmp
& PIPECONF_COLOR_RANGE_SELECT
))
8164 pipe_config
->limited_color_range
= true;
8166 if (INTEL_INFO(dev
)->gen
< 4)
8167 pipe_config
->double_wide
= tmp
& PIPECONF_DOUBLE_WIDE
;
8169 intel_get_pipe_timings(crtc
, pipe_config
);
8171 i9xx_get_pfit_config(crtc
, pipe_config
);
8173 if (INTEL_INFO(dev
)->gen
>= 4) {
8174 tmp
= I915_READ(DPLL_MD(crtc
->pipe
));
8175 pipe_config
->pixel_multiplier
=
8176 ((tmp
& DPLL_MD_UDI_MULTIPLIER_MASK
)
8177 >> DPLL_MD_UDI_MULTIPLIER_SHIFT
) + 1;
8178 pipe_config
->dpll_hw_state
.dpll_md
= tmp
;
8179 } else if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
)) {
8180 tmp
= I915_READ(DPLL(crtc
->pipe
));
8181 pipe_config
->pixel_multiplier
=
8182 ((tmp
& SDVO_MULTIPLIER_MASK
)
8183 >> SDVO_MULTIPLIER_SHIFT_HIRES
) + 1;
8185 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8186 * port and will be fixed up in the encoder->get_config
8188 pipe_config
->pixel_multiplier
= 1;
8190 pipe_config
->dpll_hw_state
.dpll
= I915_READ(DPLL(crtc
->pipe
));
8191 if (!IS_VALLEYVIEW(dev
)) {
8193 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8194 * on 830. Filter it out here so that we don't
8195 * report errors due to that.
8198 pipe_config
->dpll_hw_state
.dpll
&= ~DPLL_DVO_2X_MODE
;
8200 pipe_config
->dpll_hw_state
.fp0
= I915_READ(FP0(crtc
->pipe
));
8201 pipe_config
->dpll_hw_state
.fp1
= I915_READ(FP1(crtc
->pipe
));
8203 /* Mask out read-only status bits. */
8204 pipe_config
->dpll_hw_state
.dpll
&= ~(DPLL_LOCK_VLV
|
8205 DPLL_PORTC_READY_MASK
|
8206 DPLL_PORTB_READY_MASK
);
8209 if (IS_CHERRYVIEW(dev
))
8210 chv_crtc_clock_get(crtc
, pipe_config
);
8211 else if (IS_VALLEYVIEW(dev
))
8212 vlv_crtc_clock_get(crtc
, pipe_config
);
8214 i9xx_crtc_clock_get(crtc
, pipe_config
);
8217 * Normally the dotclock is filled in by the encoder .get_config()
8218 * but in case the pipe is enabled w/o any ports we need a sane
8221 pipe_config
->base
.adjusted_mode
.crtc_clock
=
8222 pipe_config
->port_clock
/ pipe_config
->pixel_multiplier
;
8227 static void ironlake_init_pch_refclk(struct drm_device
*dev
)
8229 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8230 struct intel_encoder
*encoder
;
8232 bool has_lvds
= false;
8233 bool has_cpu_edp
= false;
8234 bool has_panel
= false;
8235 bool has_ck505
= false;
8236 bool can_ssc
= false;
8238 /* We need to take the global config into account */
8239 for_each_intel_encoder(dev
, encoder
) {
8240 switch (encoder
->type
) {
8241 case INTEL_OUTPUT_LVDS
:
8245 case INTEL_OUTPUT_EDP
:
8247 if (enc_to_dig_port(&encoder
->base
)->port
== PORT_A
)
8255 if (HAS_PCH_IBX(dev
)) {
8256 has_ck505
= dev_priv
->vbt
.display_clock_mode
;
8257 can_ssc
= has_ck505
;
8263 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8264 has_panel
, has_lvds
, has_ck505
);
8266 /* Ironlake: try to setup display ref clock before DPLL
8267 * enabling. This is only under driver's control after
8268 * PCH B stepping, previous chipset stepping should be
8269 * ignoring this setting.
8271 val
= I915_READ(PCH_DREF_CONTROL
);
8273 /* As we must carefully and slowly disable/enable each source in turn,
8274 * compute the final state we want first and check if we need to
8275 * make any changes at all.
8278 final
&= ~DREF_NONSPREAD_SOURCE_MASK
;
8280 final
|= DREF_NONSPREAD_CK505_ENABLE
;
8282 final
|= DREF_NONSPREAD_SOURCE_ENABLE
;
8284 final
&= ~DREF_SSC_SOURCE_MASK
;
8285 final
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
8286 final
&= ~DREF_SSC1_ENABLE
;
8289 final
|= DREF_SSC_SOURCE_ENABLE
;
8291 if (intel_panel_use_ssc(dev_priv
) && can_ssc
)
8292 final
|= DREF_SSC1_ENABLE
;
8295 if (intel_panel_use_ssc(dev_priv
) && can_ssc
)
8296 final
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
8298 final
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
8300 final
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
8302 final
|= DREF_SSC_SOURCE_DISABLE
;
8303 final
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
8309 /* Always enable nonspread source */
8310 val
&= ~DREF_NONSPREAD_SOURCE_MASK
;
8313 val
|= DREF_NONSPREAD_CK505_ENABLE
;
8315 val
|= DREF_NONSPREAD_SOURCE_ENABLE
;
8318 val
&= ~DREF_SSC_SOURCE_MASK
;
8319 val
|= DREF_SSC_SOURCE_ENABLE
;
8321 /* SSC must be turned on before enabling the CPU output */
8322 if (intel_panel_use_ssc(dev_priv
) && can_ssc
) {
8323 DRM_DEBUG_KMS("Using SSC on panel\n");
8324 val
|= DREF_SSC1_ENABLE
;
8326 val
&= ~DREF_SSC1_ENABLE
;
8328 /* Get SSC going before enabling the outputs */
8329 I915_WRITE(PCH_DREF_CONTROL
, val
);
8330 POSTING_READ(PCH_DREF_CONTROL
);
8333 val
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
8335 /* Enable CPU source on CPU attached eDP */
8337 if (intel_panel_use_ssc(dev_priv
) && can_ssc
) {
8338 DRM_DEBUG_KMS("Using SSC on eDP\n");
8339 val
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
8341 val
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
8343 val
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
8345 I915_WRITE(PCH_DREF_CONTROL
, val
);
8346 POSTING_READ(PCH_DREF_CONTROL
);
8349 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8351 val
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
8353 /* Turn off CPU output */
8354 val
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
8356 I915_WRITE(PCH_DREF_CONTROL
, val
);
8357 POSTING_READ(PCH_DREF_CONTROL
);
8360 /* Turn off the SSC source */
8361 val
&= ~DREF_SSC_SOURCE_MASK
;
8362 val
|= DREF_SSC_SOURCE_DISABLE
;
8365 val
&= ~DREF_SSC1_ENABLE
;
8367 I915_WRITE(PCH_DREF_CONTROL
, val
);
8368 POSTING_READ(PCH_DREF_CONTROL
);
8372 BUG_ON(val
!= final
);
8375 static void lpt_reset_fdi_mphy(struct drm_i915_private
*dev_priv
)
8379 tmp
= I915_READ(SOUTH_CHICKEN2
);
8380 tmp
|= FDI_MPHY_IOSFSB_RESET_CTL
;
8381 I915_WRITE(SOUTH_CHICKEN2
, tmp
);
8383 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2
) &
8384 FDI_MPHY_IOSFSB_RESET_STATUS
, 100))
8385 DRM_ERROR("FDI mPHY reset assert timeout\n");
8387 tmp
= I915_READ(SOUTH_CHICKEN2
);
8388 tmp
&= ~FDI_MPHY_IOSFSB_RESET_CTL
;
8389 I915_WRITE(SOUTH_CHICKEN2
, tmp
);
8391 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2
) &
8392 FDI_MPHY_IOSFSB_RESET_STATUS
) == 0, 100))
8393 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8396 /* WaMPhyProgramming:hsw */
8397 static void lpt_program_fdi_mphy(struct drm_i915_private
*dev_priv
)
8401 tmp
= intel_sbi_read(dev_priv
, 0x8008, SBI_MPHY
);
8402 tmp
&= ~(0xFF << 24);
8403 tmp
|= (0x12 << 24);
8404 intel_sbi_write(dev_priv
, 0x8008, tmp
, SBI_MPHY
);
8406 tmp
= intel_sbi_read(dev_priv
, 0x2008, SBI_MPHY
);
8408 intel_sbi_write(dev_priv
, 0x2008, tmp
, SBI_MPHY
);
8410 tmp
= intel_sbi_read(dev_priv
, 0x2108, SBI_MPHY
);
8412 intel_sbi_write(dev_priv
, 0x2108, tmp
, SBI_MPHY
);
8414 tmp
= intel_sbi_read(dev_priv
, 0x206C, SBI_MPHY
);
8415 tmp
|= (1 << 24) | (1 << 21) | (1 << 18);
8416 intel_sbi_write(dev_priv
, 0x206C, tmp
, SBI_MPHY
);
8418 tmp
= intel_sbi_read(dev_priv
, 0x216C, SBI_MPHY
);
8419 tmp
|= (1 << 24) | (1 << 21) | (1 << 18);
8420 intel_sbi_write(dev_priv
, 0x216C, tmp
, SBI_MPHY
);
8422 tmp
= intel_sbi_read(dev_priv
, 0x2080, SBI_MPHY
);
8425 intel_sbi_write(dev_priv
, 0x2080, tmp
, SBI_MPHY
);
8427 tmp
= intel_sbi_read(dev_priv
, 0x2180, SBI_MPHY
);
8430 intel_sbi_write(dev_priv
, 0x2180, tmp
, SBI_MPHY
);
8432 tmp
= intel_sbi_read(dev_priv
, 0x208C, SBI_MPHY
);
8435 intel_sbi_write(dev_priv
, 0x208C, tmp
, SBI_MPHY
);
8437 tmp
= intel_sbi_read(dev_priv
, 0x218C, SBI_MPHY
);
8440 intel_sbi_write(dev_priv
, 0x218C, tmp
, SBI_MPHY
);
8442 tmp
= intel_sbi_read(dev_priv
, 0x2098, SBI_MPHY
);
8443 tmp
&= ~(0xFF << 16);
8444 tmp
|= (0x1C << 16);
8445 intel_sbi_write(dev_priv
, 0x2098, tmp
, SBI_MPHY
);
8447 tmp
= intel_sbi_read(dev_priv
, 0x2198, SBI_MPHY
);
8448 tmp
&= ~(0xFF << 16);
8449 tmp
|= (0x1C << 16);
8450 intel_sbi_write(dev_priv
, 0x2198, tmp
, SBI_MPHY
);
8452 tmp
= intel_sbi_read(dev_priv
, 0x20C4, SBI_MPHY
);
8454 intel_sbi_write(dev_priv
, 0x20C4, tmp
, SBI_MPHY
);
8456 tmp
= intel_sbi_read(dev_priv
, 0x21C4, SBI_MPHY
);
8458 intel_sbi_write(dev_priv
, 0x21C4, tmp
, SBI_MPHY
);
8460 tmp
= intel_sbi_read(dev_priv
, 0x20EC, SBI_MPHY
);
8461 tmp
&= ~(0xF << 28);
8463 intel_sbi_write(dev_priv
, 0x20EC, tmp
, SBI_MPHY
);
8465 tmp
= intel_sbi_read(dev_priv
, 0x21EC, SBI_MPHY
);
8466 tmp
&= ~(0xF << 28);
8468 intel_sbi_write(dev_priv
, 0x21EC, tmp
, SBI_MPHY
);
8471 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8472 * Programming" based on the parameters passed:
8473 * - Sequence to enable CLKOUT_DP
8474 * - Sequence to enable CLKOUT_DP without spread
8475 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8477 static void lpt_enable_clkout_dp(struct drm_device
*dev
, bool with_spread
,
8480 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8483 if (WARN(with_fdi
&& !with_spread
, "FDI requires downspread\n"))
8485 if (WARN(HAS_PCH_LPT_LP(dev
) && with_fdi
, "LP PCH doesn't have FDI\n"))
8488 mutex_lock(&dev_priv
->sb_lock
);
8490 tmp
= intel_sbi_read(dev_priv
, SBI_SSCCTL
, SBI_ICLK
);
8491 tmp
&= ~SBI_SSCCTL_DISABLE
;
8492 tmp
|= SBI_SSCCTL_PATHALT
;
8493 intel_sbi_write(dev_priv
, SBI_SSCCTL
, tmp
, SBI_ICLK
);
8498 tmp
= intel_sbi_read(dev_priv
, SBI_SSCCTL
, SBI_ICLK
);
8499 tmp
&= ~SBI_SSCCTL_PATHALT
;
8500 intel_sbi_write(dev_priv
, SBI_SSCCTL
, tmp
, SBI_ICLK
);
8503 lpt_reset_fdi_mphy(dev_priv
);
8504 lpt_program_fdi_mphy(dev_priv
);
8508 reg
= HAS_PCH_LPT_LP(dev
) ? SBI_GEN0
: SBI_DBUFF0
;
8509 tmp
= intel_sbi_read(dev_priv
, reg
, SBI_ICLK
);
8510 tmp
|= SBI_GEN0_CFG_BUFFENABLE_DISABLE
;
8511 intel_sbi_write(dev_priv
, reg
, tmp
, SBI_ICLK
);
8513 mutex_unlock(&dev_priv
->sb_lock
);
8516 /* Sequence to disable CLKOUT_DP */
8517 static void lpt_disable_clkout_dp(struct drm_device
*dev
)
8519 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8522 mutex_lock(&dev_priv
->sb_lock
);
8524 reg
= HAS_PCH_LPT_LP(dev
) ? SBI_GEN0
: SBI_DBUFF0
;
8525 tmp
= intel_sbi_read(dev_priv
, reg
, SBI_ICLK
);
8526 tmp
&= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE
;
8527 intel_sbi_write(dev_priv
, reg
, tmp
, SBI_ICLK
);
8529 tmp
= intel_sbi_read(dev_priv
, SBI_SSCCTL
, SBI_ICLK
);
8530 if (!(tmp
& SBI_SSCCTL_DISABLE
)) {
8531 if (!(tmp
& SBI_SSCCTL_PATHALT
)) {
8532 tmp
|= SBI_SSCCTL_PATHALT
;
8533 intel_sbi_write(dev_priv
, SBI_SSCCTL
, tmp
, SBI_ICLK
);
8536 tmp
|= SBI_SSCCTL_DISABLE
;
8537 intel_sbi_write(dev_priv
, SBI_SSCCTL
, tmp
, SBI_ICLK
);
8540 mutex_unlock(&dev_priv
->sb_lock
);
8543 static void lpt_init_pch_refclk(struct drm_device
*dev
)
8545 struct intel_encoder
*encoder
;
8546 bool has_vga
= false;
8548 for_each_intel_encoder(dev
, encoder
) {
8549 switch (encoder
->type
) {
8550 case INTEL_OUTPUT_ANALOG
:
8559 lpt_enable_clkout_dp(dev
, true, true);
8561 lpt_disable_clkout_dp(dev
);
8565 * Initialize reference clocks when the driver loads
8567 void intel_init_pch_refclk(struct drm_device
*dev
)
8569 if (HAS_PCH_IBX(dev
) || HAS_PCH_CPT(dev
))
8570 ironlake_init_pch_refclk(dev
);
8571 else if (HAS_PCH_LPT(dev
))
8572 lpt_init_pch_refclk(dev
);
8575 static int ironlake_get_refclk(struct intel_crtc_state
*crtc_state
)
8577 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
8578 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8579 struct drm_atomic_state
*state
= crtc_state
->base
.state
;
8580 struct drm_connector
*connector
;
8581 struct drm_connector_state
*connector_state
;
8582 struct intel_encoder
*encoder
;
8583 int num_connectors
= 0, i
;
8584 bool is_lvds
= false;
8586 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
8587 if (connector_state
->crtc
!= crtc_state
->base
.crtc
)
8590 encoder
= to_intel_encoder(connector_state
->best_encoder
);
8592 switch (encoder
->type
) {
8593 case INTEL_OUTPUT_LVDS
:
8602 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
8603 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8604 dev_priv
->vbt
.lvds_ssc_freq
);
8605 return dev_priv
->vbt
.lvds_ssc_freq
;
8611 static void ironlake_set_pipeconf(struct drm_crtc
*crtc
)
8613 struct drm_i915_private
*dev_priv
= crtc
->dev
->dev_private
;
8614 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
8615 int pipe
= intel_crtc
->pipe
;
8620 switch (intel_crtc
->config
->pipe_bpp
) {
8622 val
|= PIPECONF_6BPC
;
8625 val
|= PIPECONF_8BPC
;
8628 val
|= PIPECONF_10BPC
;
8631 val
|= PIPECONF_12BPC
;
8634 /* Case prevented by intel_choose_pipe_bpp_dither. */
8638 if (intel_crtc
->config
->dither
)
8639 val
|= (PIPECONF_DITHER_EN
| PIPECONF_DITHER_TYPE_SP
);
8641 if (intel_crtc
->config
->base
.adjusted_mode
.flags
& DRM_MODE_FLAG_INTERLACE
)
8642 val
|= PIPECONF_INTERLACED_ILK
;
8644 val
|= PIPECONF_PROGRESSIVE
;
8646 if (intel_crtc
->config
->limited_color_range
)
8647 val
|= PIPECONF_COLOR_RANGE_SELECT
;
8649 I915_WRITE(PIPECONF(pipe
), val
);
8650 POSTING_READ(PIPECONF(pipe
));
8654 * Set up the pipe CSC unit.
8656 * Currently only full range RGB to limited range RGB conversion
8657 * is supported, but eventually this should handle various
8658 * RGB<->YCbCr scenarios as well.
8660 static void intel_set_pipe_csc(struct drm_crtc
*crtc
)
8662 struct drm_device
*dev
= crtc
->dev
;
8663 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8664 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
8665 int pipe
= intel_crtc
->pipe
;
8666 uint16_t coeff
= 0x7800; /* 1.0 */
8669 * TODO: Check what kind of values actually come out of the pipe
8670 * with these coeff/postoff values and adjust to get the best
8671 * accuracy. Perhaps we even need to take the bpc value into
8675 if (intel_crtc
->config
->limited_color_range
)
8676 coeff
= ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8679 * GY/GU and RY/RU should be the other way around according
8680 * to BSpec, but reality doesn't agree. Just set them up in
8681 * a way that results in the correct picture.
8683 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe
), coeff
<< 16);
8684 I915_WRITE(PIPE_CSC_COEFF_BY(pipe
), 0);
8686 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe
), coeff
);
8687 I915_WRITE(PIPE_CSC_COEFF_BU(pipe
), 0);
8689 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe
), 0);
8690 I915_WRITE(PIPE_CSC_COEFF_BV(pipe
), coeff
<< 16);
8692 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe
), 0);
8693 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe
), 0);
8694 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe
), 0);
8696 if (INTEL_INFO(dev
)->gen
> 6) {
8697 uint16_t postoff
= 0;
8699 if (intel_crtc
->config
->limited_color_range
)
8700 postoff
= (16 * (1 << 12) / 255) & 0x1fff;
8702 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe
), postoff
);
8703 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe
), postoff
);
8704 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe
), postoff
);
8706 I915_WRITE(PIPE_CSC_MODE(pipe
), 0);
8708 uint32_t mode
= CSC_MODE_YUV_TO_RGB
;
8710 if (intel_crtc
->config
->limited_color_range
)
8711 mode
|= CSC_BLACK_SCREEN_OFFSET
;
8713 I915_WRITE(PIPE_CSC_MODE(pipe
), mode
);
8717 static void haswell_set_pipeconf(struct drm_crtc
*crtc
)
8719 struct drm_device
*dev
= crtc
->dev
;
8720 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8721 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
8722 enum pipe pipe
= intel_crtc
->pipe
;
8723 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
8728 if (IS_HASWELL(dev
) && intel_crtc
->config
->dither
)
8729 val
|= (PIPECONF_DITHER_EN
| PIPECONF_DITHER_TYPE_SP
);
8731 if (intel_crtc
->config
->base
.adjusted_mode
.flags
& DRM_MODE_FLAG_INTERLACE
)
8732 val
|= PIPECONF_INTERLACED_ILK
;
8734 val
|= PIPECONF_PROGRESSIVE
;
8736 I915_WRITE(PIPECONF(cpu_transcoder
), val
);
8737 POSTING_READ(PIPECONF(cpu_transcoder
));
8739 I915_WRITE(GAMMA_MODE(intel_crtc
->pipe
), GAMMA_MODE_MODE_8BIT
);
8740 POSTING_READ(GAMMA_MODE(intel_crtc
->pipe
));
8742 if (IS_BROADWELL(dev
) || INTEL_INFO(dev
)->gen
>= 9) {
8745 switch (intel_crtc
->config
->pipe_bpp
) {
8747 val
|= PIPEMISC_DITHER_6_BPC
;
8750 val
|= PIPEMISC_DITHER_8_BPC
;
8753 val
|= PIPEMISC_DITHER_10_BPC
;
8756 val
|= PIPEMISC_DITHER_12_BPC
;
8759 /* Case prevented by pipe_config_set_bpp. */
8763 if (intel_crtc
->config
->dither
)
8764 val
|= PIPEMISC_DITHER_ENABLE
| PIPEMISC_DITHER_TYPE_SP
;
8766 I915_WRITE(PIPEMISC(pipe
), val
);
8770 static bool ironlake_compute_clocks(struct drm_crtc
*crtc
,
8771 struct intel_crtc_state
*crtc_state
,
8772 intel_clock_t
*clock
,
8773 bool *has_reduced_clock
,
8774 intel_clock_t
*reduced_clock
)
8776 struct drm_device
*dev
= crtc
->dev
;
8777 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8779 const intel_limit_t
*limit
;
8782 refclk
= ironlake_get_refclk(crtc_state
);
8785 * Returns a set of divisors for the desired target clock with the given
8786 * refclk, or FALSE. The returned values represent the clock equation:
8787 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8789 limit
= intel_limit(crtc_state
, refclk
);
8790 ret
= dev_priv
->display
.find_dpll(limit
, crtc_state
,
8791 crtc_state
->port_clock
,
8792 refclk
, NULL
, clock
);
8799 int ironlake_get_lanes_required(int target_clock
, int link_bw
, int bpp
)
8802 * Account for spread spectrum to avoid
8803 * oversubscribing the link. Max center spread
8804 * is 2.5%; use 5% for safety's sake.
8806 u32 bps
= target_clock
* bpp
* 21 / 20;
8807 return DIV_ROUND_UP(bps
, link_bw
* 8);
8810 static bool ironlake_needs_fb_cb_tune(struct dpll
*dpll
, int factor
)
8812 return i9xx_dpll_compute_m(dpll
) < factor
* dpll
->n
;
8815 static uint32_t ironlake_compute_dpll(struct intel_crtc
*intel_crtc
,
8816 struct intel_crtc_state
*crtc_state
,
8818 intel_clock_t
*reduced_clock
, u32
*fp2
)
8820 struct drm_crtc
*crtc
= &intel_crtc
->base
;
8821 struct drm_device
*dev
= crtc
->dev
;
8822 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8823 struct drm_atomic_state
*state
= crtc_state
->base
.state
;
8824 struct drm_connector
*connector
;
8825 struct drm_connector_state
*connector_state
;
8826 struct intel_encoder
*encoder
;
8828 int factor
, num_connectors
= 0, i
;
8829 bool is_lvds
= false, is_sdvo
= false;
8831 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
8832 if (connector_state
->crtc
!= crtc_state
->base
.crtc
)
8835 encoder
= to_intel_encoder(connector_state
->best_encoder
);
8837 switch (encoder
->type
) {
8838 case INTEL_OUTPUT_LVDS
:
8841 case INTEL_OUTPUT_SDVO
:
8842 case INTEL_OUTPUT_HDMI
:
8852 /* Enable autotuning of the PLL clock (if permissible) */
8855 if ((intel_panel_use_ssc(dev_priv
) &&
8856 dev_priv
->vbt
.lvds_ssc_freq
== 100000) ||
8857 (HAS_PCH_IBX(dev
) && intel_is_dual_link_lvds(dev
)))
8859 } else if (crtc_state
->sdvo_tv_clock
)
8862 if (ironlake_needs_fb_cb_tune(&crtc_state
->dpll
, factor
))
8865 if (fp2
&& (reduced_clock
->m
< factor
* reduced_clock
->n
))
8871 dpll
|= DPLLB_MODE_LVDS
;
8873 dpll
|= DPLLB_MODE_DAC_SERIAL
;
8875 dpll
|= (crtc_state
->pixel_multiplier
- 1)
8876 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
8879 dpll
|= DPLL_SDVO_HIGH_SPEED
;
8880 if (crtc_state
->has_dp_encoder
)
8881 dpll
|= DPLL_SDVO_HIGH_SPEED
;
8883 /* compute bitmask from p1 value */
8884 dpll
|= (1 << (crtc_state
->dpll
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
8886 dpll
|= (1 << (crtc_state
->dpll
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
8888 switch (crtc_state
->dpll
.p2
) {
8890 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
8893 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
8896 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
8899 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
8903 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
8904 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
8906 dpll
|= PLL_REF_INPUT_DREFCLK
;
8908 return dpll
| DPLL_VCO_ENABLE
;
8911 static int ironlake_crtc_compute_clock(struct intel_crtc
*crtc
,
8912 struct intel_crtc_state
*crtc_state
)
8914 struct drm_device
*dev
= crtc
->base
.dev
;
8915 intel_clock_t clock
, reduced_clock
;
8916 u32 dpll
= 0, fp
= 0, fp2
= 0;
8917 bool ok
, has_reduced_clock
= false;
8918 bool is_lvds
= false;
8919 struct intel_shared_dpll
*pll
;
8921 memset(&crtc_state
->dpll_hw_state
, 0,
8922 sizeof(crtc_state
->dpll_hw_state
));
8924 is_lvds
= intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
);
8926 WARN(!(HAS_PCH_IBX(dev
) || HAS_PCH_CPT(dev
)),
8927 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev
));
8929 ok
= ironlake_compute_clocks(&crtc
->base
, crtc_state
, &clock
,
8930 &has_reduced_clock
, &reduced_clock
);
8931 if (!ok
&& !crtc_state
->clock_set
) {
8932 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8935 /* Compat-code for transition, will disappear. */
8936 if (!crtc_state
->clock_set
) {
8937 crtc_state
->dpll
.n
= clock
.n
;
8938 crtc_state
->dpll
.m1
= clock
.m1
;
8939 crtc_state
->dpll
.m2
= clock
.m2
;
8940 crtc_state
->dpll
.p1
= clock
.p1
;
8941 crtc_state
->dpll
.p2
= clock
.p2
;
8944 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8945 if (crtc_state
->has_pch_encoder
) {
8946 fp
= i9xx_dpll_compute_fp(&crtc_state
->dpll
);
8947 if (has_reduced_clock
)
8948 fp2
= i9xx_dpll_compute_fp(&reduced_clock
);
8950 dpll
= ironlake_compute_dpll(crtc
, crtc_state
,
8951 &fp
, &reduced_clock
,
8952 has_reduced_clock
? &fp2
: NULL
);
8954 crtc_state
->dpll_hw_state
.dpll
= dpll
;
8955 crtc_state
->dpll_hw_state
.fp0
= fp
;
8956 if (has_reduced_clock
)
8957 crtc_state
->dpll_hw_state
.fp1
= fp2
;
8959 crtc_state
->dpll_hw_state
.fp1
= fp
;
8961 pll
= intel_get_shared_dpll(crtc
, crtc_state
);
8963 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8964 pipe_name(crtc
->pipe
));
8969 if (is_lvds
&& has_reduced_clock
)
8970 crtc
->lowfreq_avail
= true;
8972 crtc
->lowfreq_avail
= false;
8977 static void intel_pch_transcoder_get_m_n(struct intel_crtc
*crtc
,
8978 struct intel_link_m_n
*m_n
)
8980 struct drm_device
*dev
= crtc
->base
.dev
;
8981 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8982 enum pipe pipe
= crtc
->pipe
;
8984 m_n
->link_m
= I915_READ(PCH_TRANS_LINK_M1(pipe
));
8985 m_n
->link_n
= I915_READ(PCH_TRANS_LINK_N1(pipe
));
8986 m_n
->gmch_m
= I915_READ(PCH_TRANS_DATA_M1(pipe
))
8988 m_n
->gmch_n
= I915_READ(PCH_TRANS_DATA_N1(pipe
));
8989 m_n
->tu
= ((I915_READ(PCH_TRANS_DATA_M1(pipe
))
8990 & TU_SIZE_MASK
) >> TU_SIZE_SHIFT
) + 1;
8993 static void intel_cpu_transcoder_get_m_n(struct intel_crtc
*crtc
,
8994 enum transcoder transcoder
,
8995 struct intel_link_m_n
*m_n
,
8996 struct intel_link_m_n
*m2_n2
)
8998 struct drm_device
*dev
= crtc
->base
.dev
;
8999 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9000 enum pipe pipe
= crtc
->pipe
;
9002 if (INTEL_INFO(dev
)->gen
>= 5) {
9003 m_n
->link_m
= I915_READ(PIPE_LINK_M1(transcoder
));
9004 m_n
->link_n
= I915_READ(PIPE_LINK_N1(transcoder
));
9005 m_n
->gmch_m
= I915_READ(PIPE_DATA_M1(transcoder
))
9007 m_n
->gmch_n
= I915_READ(PIPE_DATA_N1(transcoder
));
9008 m_n
->tu
= ((I915_READ(PIPE_DATA_M1(transcoder
))
9009 & TU_SIZE_MASK
) >> TU_SIZE_SHIFT
) + 1;
9010 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9011 * gen < 8) and if DRRS is supported (to make sure the
9012 * registers are not unnecessarily read).
9014 if (m2_n2
&& INTEL_INFO(dev
)->gen
< 8 &&
9015 crtc
->config
->has_drrs
) {
9016 m2_n2
->link_m
= I915_READ(PIPE_LINK_M2(transcoder
));
9017 m2_n2
->link_n
= I915_READ(PIPE_LINK_N2(transcoder
));
9018 m2_n2
->gmch_m
= I915_READ(PIPE_DATA_M2(transcoder
))
9020 m2_n2
->gmch_n
= I915_READ(PIPE_DATA_N2(transcoder
));
9021 m2_n2
->tu
= ((I915_READ(PIPE_DATA_M2(transcoder
))
9022 & TU_SIZE_MASK
) >> TU_SIZE_SHIFT
) + 1;
9025 m_n
->link_m
= I915_READ(PIPE_LINK_M_G4X(pipe
));
9026 m_n
->link_n
= I915_READ(PIPE_LINK_N_G4X(pipe
));
9027 m_n
->gmch_m
= I915_READ(PIPE_DATA_M_G4X(pipe
))
9029 m_n
->gmch_n
= I915_READ(PIPE_DATA_N_G4X(pipe
));
9030 m_n
->tu
= ((I915_READ(PIPE_DATA_M_G4X(pipe
))
9031 & TU_SIZE_MASK
) >> TU_SIZE_SHIFT
) + 1;
9035 void intel_dp_get_m_n(struct intel_crtc
*crtc
,
9036 struct intel_crtc_state
*pipe_config
)
9038 if (pipe_config
->has_pch_encoder
)
9039 intel_pch_transcoder_get_m_n(crtc
, &pipe_config
->dp_m_n
);
9041 intel_cpu_transcoder_get_m_n(crtc
, pipe_config
->cpu_transcoder
,
9042 &pipe_config
->dp_m_n
,
9043 &pipe_config
->dp_m2_n2
);
9046 static void ironlake_get_fdi_m_n_config(struct intel_crtc
*crtc
,
9047 struct intel_crtc_state
*pipe_config
)
9049 intel_cpu_transcoder_get_m_n(crtc
, pipe_config
->cpu_transcoder
,
9050 &pipe_config
->fdi_m_n
, NULL
);
9053 static void skylake_get_pfit_config(struct intel_crtc
*crtc
,
9054 struct intel_crtc_state
*pipe_config
)
9056 struct drm_device
*dev
= crtc
->base
.dev
;
9057 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9058 struct intel_crtc_scaler_state
*scaler_state
= &pipe_config
->scaler_state
;
9059 uint32_t ps_ctrl
= 0;
9063 /* find scaler attached to this pipe */
9064 for (i
= 0; i
< crtc
->num_scalers
; i
++) {
9065 ps_ctrl
= I915_READ(SKL_PS_CTRL(crtc
->pipe
, i
));
9066 if (ps_ctrl
& PS_SCALER_EN
&& !(ps_ctrl
& PS_PLANE_SEL_MASK
)) {
9068 pipe_config
->pch_pfit
.enabled
= true;
9069 pipe_config
->pch_pfit
.pos
= I915_READ(SKL_PS_WIN_POS(crtc
->pipe
, i
));
9070 pipe_config
->pch_pfit
.size
= I915_READ(SKL_PS_WIN_SZ(crtc
->pipe
, i
));
9075 scaler_state
->scaler_id
= id
;
9077 scaler_state
->scaler_users
|= (1 << SKL_CRTC_INDEX
);
9079 scaler_state
->scaler_users
&= ~(1 << SKL_CRTC_INDEX
);
9084 skylake_get_initial_plane_config(struct intel_crtc
*crtc
,
9085 struct intel_initial_plane_config
*plane_config
)
9087 struct drm_device
*dev
= crtc
->base
.dev
;
9088 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9089 u32 val
, base
, offset
, stride_mult
, tiling
;
9090 int pipe
= crtc
->pipe
;
9091 int fourcc
, pixel_format
;
9092 unsigned int aligned_height
;
9093 struct drm_framebuffer
*fb
;
9094 struct intel_framebuffer
*intel_fb
;
9096 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
9098 DRM_DEBUG_KMS("failed to alloc fb\n");
9102 fb
= &intel_fb
->base
;
9104 val
= I915_READ(PLANE_CTL(pipe
, 0));
9105 if (!(val
& PLANE_CTL_ENABLE
))
9108 pixel_format
= val
& PLANE_CTL_FORMAT_MASK
;
9109 fourcc
= skl_format_to_fourcc(pixel_format
,
9110 val
& PLANE_CTL_ORDER_RGBX
,
9111 val
& PLANE_CTL_ALPHA_MASK
);
9112 fb
->pixel_format
= fourcc
;
9113 fb
->bits_per_pixel
= drm_format_plane_cpp(fourcc
, 0) * 8;
9115 tiling
= val
& PLANE_CTL_TILED_MASK
;
9117 case PLANE_CTL_TILED_LINEAR
:
9118 fb
->modifier
[0] = DRM_FORMAT_MOD_NONE
;
9120 case PLANE_CTL_TILED_X
:
9121 plane_config
->tiling
= I915_TILING_X
;
9122 fb
->modifier
[0] = I915_FORMAT_MOD_X_TILED
;
9124 case PLANE_CTL_TILED_Y
:
9125 fb
->modifier
[0] = I915_FORMAT_MOD_Y_TILED
;
9127 case PLANE_CTL_TILED_YF
:
9128 fb
->modifier
[0] = I915_FORMAT_MOD_Yf_TILED
;
9131 MISSING_CASE(tiling
);
9135 base
= I915_READ(PLANE_SURF(pipe
, 0)) & 0xfffff000;
9136 plane_config
->base
= base
;
9138 offset
= I915_READ(PLANE_OFFSET(pipe
, 0));
9140 val
= I915_READ(PLANE_SIZE(pipe
, 0));
9141 fb
->height
= ((val
>> 16) & 0xfff) + 1;
9142 fb
->width
= ((val
>> 0) & 0x1fff) + 1;
9144 val
= I915_READ(PLANE_STRIDE(pipe
, 0));
9145 stride_mult
= intel_fb_stride_alignment(dev
, fb
->modifier
[0],
9147 fb
->pitches
[0] = (val
& 0x3ff) * stride_mult
;
9149 aligned_height
= intel_fb_align_height(dev
, fb
->height
,
9153 plane_config
->size
= fb
->pitches
[0] * aligned_height
;
9155 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9156 pipe_name(pipe
), fb
->width
, fb
->height
,
9157 fb
->bits_per_pixel
, base
, fb
->pitches
[0],
9158 plane_config
->size
);
9160 plane_config
->fb
= intel_fb
;
9167 static void ironlake_get_pfit_config(struct intel_crtc
*crtc
,
9168 struct intel_crtc_state
*pipe_config
)
9170 struct drm_device
*dev
= crtc
->base
.dev
;
9171 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9174 tmp
= I915_READ(PF_CTL(crtc
->pipe
));
9176 if (tmp
& PF_ENABLE
) {
9177 pipe_config
->pch_pfit
.enabled
= true;
9178 pipe_config
->pch_pfit
.pos
= I915_READ(PF_WIN_POS(crtc
->pipe
));
9179 pipe_config
->pch_pfit
.size
= I915_READ(PF_WIN_SZ(crtc
->pipe
));
9181 /* We currently do not free assignements of panel fitters on
9182 * ivb/hsw (since we don't use the higher upscaling modes which
9183 * differentiates them) so just WARN about this case for now. */
9185 WARN_ON((tmp
& PF_PIPE_SEL_MASK_IVB
) !=
9186 PF_PIPE_SEL_IVB(crtc
->pipe
));
9192 ironlake_get_initial_plane_config(struct intel_crtc
*crtc
,
9193 struct intel_initial_plane_config
*plane_config
)
9195 struct drm_device
*dev
= crtc
->base
.dev
;
9196 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9197 u32 val
, base
, offset
;
9198 int pipe
= crtc
->pipe
;
9199 int fourcc
, pixel_format
;
9200 unsigned int aligned_height
;
9201 struct drm_framebuffer
*fb
;
9202 struct intel_framebuffer
*intel_fb
;
9204 val
= I915_READ(DSPCNTR(pipe
));
9205 if (!(val
& DISPLAY_PLANE_ENABLE
))
9208 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
9210 DRM_DEBUG_KMS("failed to alloc fb\n");
9214 fb
= &intel_fb
->base
;
9216 if (INTEL_INFO(dev
)->gen
>= 4) {
9217 if (val
& DISPPLANE_TILED
) {
9218 plane_config
->tiling
= I915_TILING_X
;
9219 fb
->modifier
[0] = I915_FORMAT_MOD_X_TILED
;
9223 pixel_format
= val
& DISPPLANE_PIXFORMAT_MASK
;
9224 fourcc
= i9xx_format_to_fourcc(pixel_format
);
9225 fb
->pixel_format
= fourcc
;
9226 fb
->bits_per_pixel
= drm_format_plane_cpp(fourcc
, 0) * 8;
9228 base
= I915_READ(DSPSURF(pipe
)) & 0xfffff000;
9229 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
)) {
9230 offset
= I915_READ(DSPOFFSET(pipe
));
9232 if (plane_config
->tiling
)
9233 offset
= I915_READ(DSPTILEOFF(pipe
));
9235 offset
= I915_READ(DSPLINOFF(pipe
));
9237 plane_config
->base
= base
;
9239 val
= I915_READ(PIPESRC(pipe
));
9240 fb
->width
= ((val
>> 16) & 0xfff) + 1;
9241 fb
->height
= ((val
>> 0) & 0xfff) + 1;
9243 val
= I915_READ(DSPSTRIDE(pipe
));
9244 fb
->pitches
[0] = val
& 0xffffffc0;
9246 aligned_height
= intel_fb_align_height(dev
, fb
->height
,
9250 plane_config
->size
= fb
->pitches
[0] * aligned_height
;
9252 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9253 pipe_name(pipe
), fb
->width
, fb
->height
,
9254 fb
->bits_per_pixel
, base
, fb
->pitches
[0],
9255 plane_config
->size
);
9257 plane_config
->fb
= intel_fb
;
9260 static bool ironlake_get_pipe_config(struct intel_crtc
*crtc
,
9261 struct intel_crtc_state
*pipe_config
)
9263 struct drm_device
*dev
= crtc
->base
.dev
;
9264 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9267 if (!intel_display_power_is_enabled(dev_priv
,
9268 POWER_DOMAIN_PIPE(crtc
->pipe
)))
9271 pipe_config
->cpu_transcoder
= (enum transcoder
) crtc
->pipe
;
9272 pipe_config
->shared_dpll
= DPLL_ID_PRIVATE
;
9274 tmp
= I915_READ(PIPECONF(crtc
->pipe
));
9275 if (!(tmp
& PIPECONF_ENABLE
))
9278 switch (tmp
& PIPECONF_BPC_MASK
) {
9280 pipe_config
->pipe_bpp
= 18;
9283 pipe_config
->pipe_bpp
= 24;
9285 case PIPECONF_10BPC
:
9286 pipe_config
->pipe_bpp
= 30;
9288 case PIPECONF_12BPC
:
9289 pipe_config
->pipe_bpp
= 36;
9295 if (tmp
& PIPECONF_COLOR_RANGE_SELECT
)
9296 pipe_config
->limited_color_range
= true;
9298 if (I915_READ(PCH_TRANSCONF(crtc
->pipe
)) & TRANS_ENABLE
) {
9299 struct intel_shared_dpll
*pll
;
9301 pipe_config
->has_pch_encoder
= true;
9303 tmp
= I915_READ(FDI_RX_CTL(crtc
->pipe
));
9304 pipe_config
->fdi_lanes
= ((FDI_DP_PORT_WIDTH_MASK
& tmp
) >>
9305 FDI_DP_PORT_WIDTH_SHIFT
) + 1;
9307 ironlake_get_fdi_m_n_config(crtc
, pipe_config
);
9309 if (HAS_PCH_IBX(dev_priv
->dev
)) {
9310 pipe_config
->shared_dpll
=
9311 (enum intel_dpll_id
) crtc
->pipe
;
9313 tmp
= I915_READ(PCH_DPLL_SEL
);
9314 if (tmp
& TRANS_DPLLB_SEL(crtc
->pipe
))
9315 pipe_config
->shared_dpll
= DPLL_ID_PCH_PLL_B
;
9317 pipe_config
->shared_dpll
= DPLL_ID_PCH_PLL_A
;
9320 pll
= &dev_priv
->shared_dplls
[pipe_config
->shared_dpll
];
9322 WARN_ON(!pll
->get_hw_state(dev_priv
, pll
,
9323 &pipe_config
->dpll_hw_state
));
9325 tmp
= pipe_config
->dpll_hw_state
.dpll
;
9326 pipe_config
->pixel_multiplier
=
9327 ((tmp
& PLL_REF_SDVO_HDMI_MULTIPLIER_MASK
)
9328 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
) + 1;
9330 ironlake_pch_clock_get(crtc
, pipe_config
);
9332 pipe_config
->pixel_multiplier
= 1;
9335 intel_get_pipe_timings(crtc
, pipe_config
);
9337 ironlake_get_pfit_config(crtc
, pipe_config
);
9342 static void assert_can_disable_lcpll(struct drm_i915_private
*dev_priv
)
9344 struct drm_device
*dev
= dev_priv
->dev
;
9345 struct intel_crtc
*crtc
;
9347 for_each_intel_crtc(dev
, crtc
)
9348 I915_STATE_WARN(crtc
->active
, "CRTC for pipe %c enabled\n",
9349 pipe_name(crtc
->pipe
));
9351 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER
), "Power well on\n");
9352 I915_STATE_WARN(I915_READ(SPLL_CTL
) & SPLL_PLL_ENABLE
, "SPLL enabled\n");
9353 I915_STATE_WARN(I915_READ(WRPLL_CTL1
) & WRPLL_PLL_ENABLE
, "WRPLL1 enabled\n");
9354 I915_STATE_WARN(I915_READ(WRPLL_CTL2
) & WRPLL_PLL_ENABLE
, "WRPLL2 enabled\n");
9355 I915_STATE_WARN(I915_READ(PCH_PP_STATUS
) & PP_ON
, "Panel power on\n");
9356 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2
) & BLM_PWM_ENABLE
,
9357 "CPU PWM1 enabled\n");
9358 if (IS_HASWELL(dev
))
9359 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL
) & BLM_PWM_ENABLE
,
9360 "CPU PWM2 enabled\n");
9361 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1
) & BLM_PCH_PWM_ENABLE
,
9362 "PCH PWM1 enabled\n");
9363 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL
) & UTIL_PIN_ENABLE
,
9364 "Utility pin enabled\n");
9365 I915_STATE_WARN(I915_READ(PCH_GTC_CTL
) & PCH_GTC_ENABLE
, "PCH GTC enabled\n");
9368 * In theory we can still leave IRQs enabled, as long as only the HPD
9369 * interrupts remain enabled. We used to check for that, but since it's
9370 * gen-specific and since we only disable LCPLL after we fully disable
9371 * the interrupts, the check below should be enough.
9373 I915_STATE_WARN(intel_irqs_enabled(dev_priv
), "IRQs enabled\n");
9376 static uint32_t hsw_read_dcomp(struct drm_i915_private
*dev_priv
)
9378 struct drm_device
*dev
= dev_priv
->dev
;
9380 if (IS_HASWELL(dev
))
9381 return I915_READ(D_COMP_HSW
);
9383 return I915_READ(D_COMP_BDW
);
9386 static void hsw_write_dcomp(struct drm_i915_private
*dev_priv
, uint32_t val
)
9388 struct drm_device
*dev
= dev_priv
->dev
;
9390 if (IS_HASWELL(dev
)) {
9391 mutex_lock(&dev_priv
->rps
.hw_lock
);
9392 if (sandybridge_pcode_write(dev_priv
, GEN6_PCODE_WRITE_D_COMP
,
9394 DRM_ERROR("Failed to write to D_COMP\n");
9395 mutex_unlock(&dev_priv
->rps
.hw_lock
);
9397 I915_WRITE(D_COMP_BDW
, val
);
9398 POSTING_READ(D_COMP_BDW
);
9403 * This function implements pieces of two sequences from BSpec:
9404 * - Sequence for display software to disable LCPLL
9405 * - Sequence for display software to allow package C8+
9406 * The steps implemented here are just the steps that actually touch the LCPLL
9407 * register. Callers should take care of disabling all the display engine
9408 * functions, doing the mode unset, fixing interrupts, etc.
9410 static void hsw_disable_lcpll(struct drm_i915_private
*dev_priv
,
9411 bool switch_to_fclk
, bool allow_power_down
)
9415 assert_can_disable_lcpll(dev_priv
);
9417 val
= I915_READ(LCPLL_CTL
);
9419 if (switch_to_fclk
) {
9420 val
|= LCPLL_CD_SOURCE_FCLK
;
9421 I915_WRITE(LCPLL_CTL
, val
);
9423 if (wait_for_atomic_us(I915_READ(LCPLL_CTL
) &
9424 LCPLL_CD_SOURCE_FCLK_DONE
, 1))
9425 DRM_ERROR("Switching to FCLK failed\n");
9427 val
= I915_READ(LCPLL_CTL
);
9430 val
|= LCPLL_PLL_DISABLE
;
9431 I915_WRITE(LCPLL_CTL
, val
);
9432 POSTING_READ(LCPLL_CTL
);
9434 if (wait_for((I915_READ(LCPLL_CTL
) & LCPLL_PLL_LOCK
) == 0, 1))
9435 DRM_ERROR("LCPLL still locked\n");
9437 val
= hsw_read_dcomp(dev_priv
);
9438 val
|= D_COMP_COMP_DISABLE
;
9439 hsw_write_dcomp(dev_priv
, val
);
9442 if (wait_for((hsw_read_dcomp(dev_priv
) & D_COMP_RCOMP_IN_PROGRESS
) == 0,
9444 DRM_ERROR("D_COMP RCOMP still in progress\n");
9446 if (allow_power_down
) {
9447 val
= I915_READ(LCPLL_CTL
);
9448 val
|= LCPLL_POWER_DOWN_ALLOW
;
9449 I915_WRITE(LCPLL_CTL
, val
);
9450 POSTING_READ(LCPLL_CTL
);
9455 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9458 static void hsw_restore_lcpll(struct drm_i915_private
*dev_priv
)
9462 val
= I915_READ(LCPLL_CTL
);
9464 if ((val
& (LCPLL_PLL_LOCK
| LCPLL_PLL_DISABLE
| LCPLL_CD_SOURCE_FCLK
|
9465 LCPLL_POWER_DOWN_ALLOW
)) == LCPLL_PLL_LOCK
)
9469 * Make sure we're not on PC8 state before disabling PC8, otherwise
9470 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9472 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
9474 if (val
& LCPLL_POWER_DOWN_ALLOW
) {
9475 val
&= ~LCPLL_POWER_DOWN_ALLOW
;
9476 I915_WRITE(LCPLL_CTL
, val
);
9477 POSTING_READ(LCPLL_CTL
);
9480 val
= hsw_read_dcomp(dev_priv
);
9481 val
|= D_COMP_COMP_FORCE
;
9482 val
&= ~D_COMP_COMP_DISABLE
;
9483 hsw_write_dcomp(dev_priv
, val
);
9485 val
= I915_READ(LCPLL_CTL
);
9486 val
&= ~LCPLL_PLL_DISABLE
;
9487 I915_WRITE(LCPLL_CTL
, val
);
9489 if (wait_for(I915_READ(LCPLL_CTL
) & LCPLL_PLL_LOCK
, 5))
9490 DRM_ERROR("LCPLL not locked yet\n");
9492 if (val
& LCPLL_CD_SOURCE_FCLK
) {
9493 val
= I915_READ(LCPLL_CTL
);
9494 val
&= ~LCPLL_CD_SOURCE_FCLK
;
9495 I915_WRITE(LCPLL_CTL
, val
);
9497 if (wait_for_atomic_us((I915_READ(LCPLL_CTL
) &
9498 LCPLL_CD_SOURCE_FCLK_DONE
) == 0, 1))
9499 DRM_ERROR("Switching back to LCPLL failed\n");
9502 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
9503 intel_update_cdclk(dev_priv
->dev
);
9507 * Package states C8 and deeper are really deep PC states that can only be
9508 * reached when all the devices on the system allow it, so even if the graphics
9509 * device allows PC8+, it doesn't mean the system will actually get to these
9510 * states. Our driver only allows PC8+ when going into runtime PM.
9512 * The requirements for PC8+ are that all the outputs are disabled, the power
9513 * well is disabled and most interrupts are disabled, and these are also
9514 * requirements for runtime PM. When these conditions are met, we manually do
9515 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9516 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9519 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9520 * the state of some registers, so when we come back from PC8+ we need to
9521 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9522 * need to take care of the registers kept by RC6. Notice that this happens even
9523 * if we don't put the device in PCI D3 state (which is what currently happens
9524 * because of the runtime PM support).
9526 * For more, read "Display Sequences for Package C8" on the hardware
9529 void hsw_enable_pc8(struct drm_i915_private
*dev_priv
)
9531 struct drm_device
*dev
= dev_priv
->dev
;
9534 DRM_DEBUG_KMS("Enabling package C8+\n");
9536 if (HAS_PCH_LPT_LP(dev
)) {
9537 val
= I915_READ(SOUTH_DSPCLK_GATE_D
);
9538 val
&= ~PCH_LP_PARTITION_LEVEL_DISABLE
;
9539 I915_WRITE(SOUTH_DSPCLK_GATE_D
, val
);
9542 lpt_disable_clkout_dp(dev
);
9543 hsw_disable_lcpll(dev_priv
, true, true);
9546 void hsw_disable_pc8(struct drm_i915_private
*dev_priv
)
9548 struct drm_device
*dev
= dev_priv
->dev
;
9551 DRM_DEBUG_KMS("Disabling package C8+\n");
9553 hsw_restore_lcpll(dev_priv
);
9554 lpt_init_pch_refclk(dev
);
9556 if (HAS_PCH_LPT_LP(dev
)) {
9557 val
= I915_READ(SOUTH_DSPCLK_GATE_D
);
9558 val
|= PCH_LP_PARTITION_LEVEL_DISABLE
;
9559 I915_WRITE(SOUTH_DSPCLK_GATE_D
, val
);
9562 intel_prepare_ddi(dev
);
9565 static void broxton_modeset_commit_cdclk(struct drm_atomic_state
*old_state
)
9567 struct drm_device
*dev
= old_state
->dev
;
9568 unsigned int req_cdclk
= to_intel_atomic_state(old_state
)->cdclk
;
9570 broxton_set_cdclk(dev
, req_cdclk
);
9573 /* compute the max rate for new configuration */
9574 static int ilk_max_pixel_rate(struct drm_atomic_state
*state
)
9576 struct intel_crtc
*intel_crtc
;
9577 struct intel_crtc_state
*crtc_state
;
9578 int max_pixel_rate
= 0;
9580 for_each_intel_crtc(state
->dev
, intel_crtc
) {
9583 crtc_state
= intel_atomic_get_crtc_state(state
, intel_crtc
);
9584 if (IS_ERR(crtc_state
))
9585 return PTR_ERR(crtc_state
);
9587 if (!crtc_state
->base
.enable
)
9590 pixel_rate
= ilk_pipe_pixel_rate(crtc_state
);
9592 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9593 if (IS_BROADWELL(state
->dev
) && crtc_state
->ips_enabled
)
9594 pixel_rate
= DIV_ROUND_UP(pixel_rate
* 100, 95);
9596 max_pixel_rate
= max(max_pixel_rate
, pixel_rate
);
9599 return max_pixel_rate
;
9602 static void broadwell_set_cdclk(struct drm_device
*dev
, int cdclk
)
9604 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9608 if (WARN((I915_READ(LCPLL_CTL
) &
9609 (LCPLL_PLL_DISABLE
| LCPLL_PLL_LOCK
|
9610 LCPLL_CD_CLOCK_DISABLE
| LCPLL_ROOT_CD_CLOCK_DISABLE
|
9611 LCPLL_CD2X_CLOCK_DISABLE
| LCPLL_POWER_DOWN_ALLOW
|
9612 LCPLL_CD_SOURCE_FCLK
)) != LCPLL_PLL_LOCK
,
9613 "trying to change cdclk frequency with cdclk not enabled\n"))
9616 mutex_lock(&dev_priv
->rps
.hw_lock
);
9617 ret
= sandybridge_pcode_write(dev_priv
,
9618 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ
, 0x0);
9619 mutex_unlock(&dev_priv
->rps
.hw_lock
);
9621 DRM_ERROR("failed to inform pcode about cdclk change\n");
9625 val
= I915_READ(LCPLL_CTL
);
9626 val
|= LCPLL_CD_SOURCE_FCLK
;
9627 I915_WRITE(LCPLL_CTL
, val
);
9629 if (wait_for_atomic_us(I915_READ(LCPLL_CTL
) &
9630 LCPLL_CD_SOURCE_FCLK_DONE
, 1))
9631 DRM_ERROR("Switching to FCLK failed\n");
9633 val
= I915_READ(LCPLL_CTL
);
9634 val
&= ~LCPLL_CLK_FREQ_MASK
;
9638 val
|= LCPLL_CLK_FREQ_450
;
9642 val
|= LCPLL_CLK_FREQ_54O_BDW
;
9646 val
|= LCPLL_CLK_FREQ_337_5_BDW
;
9650 val
|= LCPLL_CLK_FREQ_675_BDW
;
9654 WARN(1, "invalid cdclk frequency\n");
9658 I915_WRITE(LCPLL_CTL
, val
);
9660 val
= I915_READ(LCPLL_CTL
);
9661 val
&= ~LCPLL_CD_SOURCE_FCLK
;
9662 I915_WRITE(LCPLL_CTL
, val
);
9664 if (wait_for_atomic_us((I915_READ(LCPLL_CTL
) &
9665 LCPLL_CD_SOURCE_FCLK_DONE
) == 0, 1))
9666 DRM_ERROR("Switching back to LCPLL failed\n");
9668 mutex_lock(&dev_priv
->rps
.hw_lock
);
9669 sandybridge_pcode_write(dev_priv
, HSW_PCODE_DE_WRITE_FREQ_REQ
, data
);
9670 mutex_unlock(&dev_priv
->rps
.hw_lock
);
9672 intel_update_cdclk(dev
);
9674 WARN(cdclk
!= dev_priv
->cdclk_freq
,
9675 "cdclk requested %d kHz but got %d kHz\n",
9676 cdclk
, dev_priv
->cdclk_freq
);
9679 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state
*state
)
9681 struct drm_i915_private
*dev_priv
= to_i915(state
->dev
);
9682 int max_pixclk
= ilk_max_pixel_rate(state
);
9686 * FIXME should also account for plane ratio
9687 * once 64bpp pixel formats are supported.
9689 if (max_pixclk
> 540000)
9691 else if (max_pixclk
> 450000)
9693 else if (max_pixclk
> 337500)
9699 * FIXME move the cdclk caclulation to
9700 * compute_config() so we can fail gracegully.
9702 if (cdclk
> dev_priv
->max_cdclk_freq
) {
9703 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9704 cdclk
, dev_priv
->max_cdclk_freq
);
9705 cdclk
= dev_priv
->max_cdclk_freq
;
9708 to_intel_atomic_state(state
)->cdclk
= cdclk
;
9713 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state
*old_state
)
9715 struct drm_device
*dev
= old_state
->dev
;
9716 unsigned int req_cdclk
= to_intel_atomic_state(old_state
)->cdclk
;
9718 broadwell_set_cdclk(dev
, req_cdclk
);
9721 static int haswell_crtc_compute_clock(struct intel_crtc
*crtc
,
9722 struct intel_crtc_state
*crtc_state
)
9724 if (!intel_ddi_pll_select(crtc
, crtc_state
))
9727 crtc
->lowfreq_avail
= false;
9732 static void bxt_get_ddi_pll(struct drm_i915_private
*dev_priv
,
9734 struct intel_crtc_state
*pipe_config
)
9738 pipe_config
->ddi_pll_sel
= SKL_DPLL0
;
9739 pipe_config
->shared_dpll
= DPLL_ID_SKL_DPLL1
;
9742 pipe_config
->ddi_pll_sel
= SKL_DPLL1
;
9743 pipe_config
->shared_dpll
= DPLL_ID_SKL_DPLL2
;
9746 pipe_config
->ddi_pll_sel
= SKL_DPLL2
;
9747 pipe_config
->shared_dpll
= DPLL_ID_SKL_DPLL3
;
9750 DRM_ERROR("Incorrect port type\n");
9754 static void skylake_get_ddi_pll(struct drm_i915_private
*dev_priv
,
9756 struct intel_crtc_state
*pipe_config
)
9758 u32 temp
, dpll_ctl1
;
9760 temp
= I915_READ(DPLL_CTRL2
) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port
);
9761 pipe_config
->ddi_pll_sel
= temp
>> (port
* 3 + 1);
9763 switch (pipe_config
->ddi_pll_sel
) {
9766 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9767 * of the shared DPLL framework and thus needs to be read out
9770 dpll_ctl1
= I915_READ(DPLL_CTRL1
);
9771 pipe_config
->dpll_hw_state
.ctrl1
= dpll_ctl1
& 0x3f;
9774 pipe_config
->shared_dpll
= DPLL_ID_SKL_DPLL1
;
9777 pipe_config
->shared_dpll
= DPLL_ID_SKL_DPLL2
;
9780 pipe_config
->shared_dpll
= DPLL_ID_SKL_DPLL3
;
9785 static void haswell_get_ddi_pll(struct drm_i915_private
*dev_priv
,
9787 struct intel_crtc_state
*pipe_config
)
9789 pipe_config
->ddi_pll_sel
= I915_READ(PORT_CLK_SEL(port
));
9791 switch (pipe_config
->ddi_pll_sel
) {
9792 case PORT_CLK_SEL_WRPLL1
:
9793 pipe_config
->shared_dpll
= DPLL_ID_WRPLL1
;
9795 case PORT_CLK_SEL_WRPLL2
:
9796 pipe_config
->shared_dpll
= DPLL_ID_WRPLL2
;
9798 case PORT_CLK_SEL_SPLL
:
9799 pipe_config
->shared_dpll
= DPLL_ID_SPLL
;
9803 static void haswell_get_ddi_port_state(struct intel_crtc
*crtc
,
9804 struct intel_crtc_state
*pipe_config
)
9806 struct drm_device
*dev
= crtc
->base
.dev
;
9807 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9808 struct intel_shared_dpll
*pll
;
9812 tmp
= I915_READ(TRANS_DDI_FUNC_CTL(pipe_config
->cpu_transcoder
));
9814 port
= (tmp
& TRANS_DDI_PORT_MASK
) >> TRANS_DDI_PORT_SHIFT
;
9816 if (IS_SKYLAKE(dev
))
9817 skylake_get_ddi_pll(dev_priv
, port
, pipe_config
);
9818 else if (IS_BROXTON(dev
))
9819 bxt_get_ddi_pll(dev_priv
, port
, pipe_config
);
9821 haswell_get_ddi_pll(dev_priv
, port
, pipe_config
);
9823 if (pipe_config
->shared_dpll
>= 0) {
9824 pll
= &dev_priv
->shared_dplls
[pipe_config
->shared_dpll
];
9826 WARN_ON(!pll
->get_hw_state(dev_priv
, pll
,
9827 &pipe_config
->dpll_hw_state
));
9831 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9832 * DDI E. So just check whether this pipe is wired to DDI E and whether
9833 * the PCH transcoder is on.
9835 if (INTEL_INFO(dev
)->gen
< 9 &&
9836 (port
== PORT_E
) && I915_READ(LPT_TRANSCONF
) & TRANS_ENABLE
) {
9837 pipe_config
->has_pch_encoder
= true;
9839 tmp
= I915_READ(FDI_RX_CTL(PIPE_A
));
9840 pipe_config
->fdi_lanes
= ((FDI_DP_PORT_WIDTH_MASK
& tmp
) >>
9841 FDI_DP_PORT_WIDTH_SHIFT
) + 1;
9843 ironlake_get_fdi_m_n_config(crtc
, pipe_config
);
9847 static bool haswell_get_pipe_config(struct intel_crtc
*crtc
,
9848 struct intel_crtc_state
*pipe_config
)
9850 struct drm_device
*dev
= crtc
->base
.dev
;
9851 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9852 enum intel_display_power_domain pfit_domain
;
9855 if (!intel_display_power_is_enabled(dev_priv
,
9856 POWER_DOMAIN_PIPE(crtc
->pipe
)))
9859 pipe_config
->cpu_transcoder
= (enum transcoder
) crtc
->pipe
;
9860 pipe_config
->shared_dpll
= DPLL_ID_PRIVATE
;
9862 tmp
= I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP
));
9863 if (tmp
& TRANS_DDI_FUNC_ENABLE
) {
9864 enum pipe trans_edp_pipe
;
9865 switch (tmp
& TRANS_DDI_EDP_INPUT_MASK
) {
9867 WARN(1, "unknown pipe linked to edp transcoder\n");
9868 case TRANS_DDI_EDP_INPUT_A_ONOFF
:
9869 case TRANS_DDI_EDP_INPUT_A_ON
:
9870 trans_edp_pipe
= PIPE_A
;
9872 case TRANS_DDI_EDP_INPUT_B_ONOFF
:
9873 trans_edp_pipe
= PIPE_B
;
9875 case TRANS_DDI_EDP_INPUT_C_ONOFF
:
9876 trans_edp_pipe
= PIPE_C
;
9880 if (trans_edp_pipe
== crtc
->pipe
)
9881 pipe_config
->cpu_transcoder
= TRANSCODER_EDP
;
9884 if (!intel_display_power_is_enabled(dev_priv
,
9885 POWER_DOMAIN_TRANSCODER(pipe_config
->cpu_transcoder
)))
9888 tmp
= I915_READ(PIPECONF(pipe_config
->cpu_transcoder
));
9889 if (!(tmp
& PIPECONF_ENABLE
))
9892 haswell_get_ddi_port_state(crtc
, pipe_config
);
9894 intel_get_pipe_timings(crtc
, pipe_config
);
9896 if (INTEL_INFO(dev
)->gen
>= 9) {
9897 skl_init_scalers(dev
, crtc
, pipe_config
);
9900 pfit_domain
= POWER_DOMAIN_PIPE_PANEL_FITTER(crtc
->pipe
);
9902 if (INTEL_INFO(dev
)->gen
>= 9) {
9903 pipe_config
->scaler_state
.scaler_id
= -1;
9904 pipe_config
->scaler_state
.scaler_users
&= ~(1 << SKL_CRTC_INDEX
);
9907 if (intel_display_power_is_enabled(dev_priv
, pfit_domain
)) {
9908 if (INTEL_INFO(dev
)->gen
>= 9)
9909 skylake_get_pfit_config(crtc
, pipe_config
);
9911 ironlake_get_pfit_config(crtc
, pipe_config
);
9914 if (IS_HASWELL(dev
))
9915 pipe_config
->ips_enabled
= hsw_crtc_supports_ips(crtc
) &&
9916 (I915_READ(IPS_CTL
) & IPS_ENABLE
);
9918 if (pipe_config
->cpu_transcoder
!= TRANSCODER_EDP
) {
9919 pipe_config
->pixel_multiplier
=
9920 I915_READ(PIPE_MULT(pipe_config
->cpu_transcoder
)) + 1;
9922 pipe_config
->pixel_multiplier
= 1;
9928 static void i845_update_cursor(struct drm_crtc
*crtc
, u32 base
, bool on
)
9930 struct drm_device
*dev
= crtc
->dev
;
9931 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9932 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
9933 uint32_t cntl
= 0, size
= 0;
9936 unsigned int width
= intel_crtc
->base
.cursor
->state
->crtc_w
;
9937 unsigned int height
= intel_crtc
->base
.cursor
->state
->crtc_h
;
9938 unsigned int stride
= roundup_pow_of_two(width
) * 4;
9942 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9953 cntl
|= CURSOR_ENABLE
|
9954 CURSOR_GAMMA_ENABLE
|
9955 CURSOR_FORMAT_ARGB
|
9956 CURSOR_STRIDE(stride
);
9958 size
= (height
<< 12) | width
;
9961 if (intel_crtc
->cursor_cntl
!= 0 &&
9962 (intel_crtc
->cursor_base
!= base
||
9963 intel_crtc
->cursor_size
!= size
||
9964 intel_crtc
->cursor_cntl
!= cntl
)) {
9965 /* On these chipsets we can only modify the base/size/stride
9966 * whilst the cursor is disabled.
9968 I915_WRITE(CURCNTR(PIPE_A
), 0);
9969 POSTING_READ(CURCNTR(PIPE_A
));
9970 intel_crtc
->cursor_cntl
= 0;
9973 if (intel_crtc
->cursor_base
!= base
) {
9974 I915_WRITE(CURBASE(PIPE_A
), base
);
9975 intel_crtc
->cursor_base
= base
;
9978 if (intel_crtc
->cursor_size
!= size
) {
9979 I915_WRITE(CURSIZE
, size
);
9980 intel_crtc
->cursor_size
= size
;
9983 if (intel_crtc
->cursor_cntl
!= cntl
) {
9984 I915_WRITE(CURCNTR(PIPE_A
), cntl
);
9985 POSTING_READ(CURCNTR(PIPE_A
));
9986 intel_crtc
->cursor_cntl
= cntl
;
9990 static void i9xx_update_cursor(struct drm_crtc
*crtc
, u32 base
, bool on
)
9992 struct drm_device
*dev
= crtc
->dev
;
9993 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
9994 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
9995 int pipe
= intel_crtc
->pipe
;
9999 cntl
= MCURSOR_GAMMA_ENABLE
;
10000 switch (intel_crtc
->base
.cursor
->state
->crtc_w
) {
10002 cntl
|= CURSOR_MODE_64_ARGB_AX
;
10005 cntl
|= CURSOR_MODE_128_ARGB_AX
;
10008 cntl
|= CURSOR_MODE_256_ARGB_AX
;
10011 MISSING_CASE(intel_crtc
->base
.cursor
->state
->crtc_w
);
10014 cntl
|= pipe
<< 28; /* Connect to correct pipe */
10017 cntl
|= CURSOR_PIPE_CSC_ENABLE
;
10020 if (crtc
->cursor
->state
->rotation
== BIT(DRM_ROTATE_180
))
10021 cntl
|= CURSOR_ROTATE_180
;
10023 if (intel_crtc
->cursor_cntl
!= cntl
) {
10024 I915_WRITE(CURCNTR(pipe
), cntl
);
10025 POSTING_READ(CURCNTR(pipe
));
10026 intel_crtc
->cursor_cntl
= cntl
;
10029 /* and commit changes on next vblank */
10030 I915_WRITE(CURBASE(pipe
), base
);
10031 POSTING_READ(CURBASE(pipe
));
10033 intel_crtc
->cursor_base
= base
;
10036 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10037 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
,
10040 struct drm_device
*dev
= crtc
->dev
;
10041 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10042 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10043 int pipe
= intel_crtc
->pipe
;
10044 struct drm_plane_state
*cursor_state
= crtc
->cursor
->state
;
10045 int x
= cursor_state
->crtc_x
;
10046 int y
= cursor_state
->crtc_y
;
10047 u32 base
= 0, pos
= 0;
10049 base
= intel_crtc
->cursor_addr
;
10051 if (x
>= intel_crtc
->config
->pipe_src_w
)
10054 if (y
>= intel_crtc
->config
->pipe_src_h
)
10058 if (x
+ cursor_state
->crtc_w
<= 0)
10061 pos
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
10064 pos
|= x
<< CURSOR_X_SHIFT
;
10067 if (y
+ cursor_state
->crtc_h
<= 0)
10070 pos
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
10073 pos
|= y
<< CURSOR_Y_SHIFT
;
10075 I915_WRITE(CURPOS(pipe
), pos
);
10077 /* ILK+ do this automagically */
10078 if (HAS_GMCH_DISPLAY(dev
) &&
10079 crtc
->cursor
->state
->rotation
== BIT(DRM_ROTATE_180
)) {
10080 base
+= (cursor_state
->crtc_h
*
10081 cursor_state
->crtc_w
- 1) * 4;
10084 if (IS_845G(dev
) || IS_I865G(dev
))
10085 i845_update_cursor(crtc
, base
, on
);
10087 i9xx_update_cursor(crtc
, base
, on
);
10090 static bool cursor_size_ok(struct drm_device
*dev
,
10091 uint32_t width
, uint32_t height
)
10093 if (width
== 0 || height
== 0)
10097 * 845g/865g are special in that they are only limited by
10098 * the width of their cursors, the height is arbitrary up to
10099 * the precision of the register. Everything else requires
10100 * square cursors, limited to a few power-of-two sizes.
10102 if (IS_845G(dev
) || IS_I865G(dev
)) {
10103 if ((width
& 63) != 0)
10106 if (width
> (IS_845G(dev
) ? 64 : 512))
10112 switch (width
| height
) {
10127 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
10128 u16
*blue
, uint32_t start
, uint32_t size
)
10130 int end
= (start
+ size
> 256) ? 256 : start
+ size
, i
;
10131 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10133 for (i
= start
; i
< end
; i
++) {
10134 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
10135 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
10136 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
10139 intel_crtc_load_lut(crtc
);
10142 /* VESA 640x480x72Hz mode to set on the pipe */
10143 static struct drm_display_mode load_detect_mode
= {
10144 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
10145 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
10148 struct drm_framebuffer
*
10149 __intel_framebuffer_create(struct drm_device
*dev
,
10150 struct drm_mode_fb_cmd2
*mode_cmd
,
10151 struct drm_i915_gem_object
*obj
)
10153 struct intel_framebuffer
*intel_fb
;
10156 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
10158 drm_gem_object_unreference(&obj
->base
);
10159 return ERR_PTR(-ENOMEM
);
10162 ret
= intel_framebuffer_init(dev
, intel_fb
, mode_cmd
, obj
);
10166 return &intel_fb
->base
;
10168 drm_gem_object_unreference(&obj
->base
);
10171 return ERR_PTR(ret
);
10174 static struct drm_framebuffer
*
10175 intel_framebuffer_create(struct drm_device
*dev
,
10176 struct drm_mode_fb_cmd2
*mode_cmd
,
10177 struct drm_i915_gem_object
*obj
)
10179 struct drm_framebuffer
*fb
;
10182 ret
= i915_mutex_lock_interruptible(dev
);
10184 return ERR_PTR(ret
);
10185 fb
= __intel_framebuffer_create(dev
, mode_cmd
, obj
);
10186 mutex_unlock(&dev
->struct_mutex
);
10192 intel_framebuffer_pitch_for_width(int width
, int bpp
)
10194 u32 pitch
= DIV_ROUND_UP(width
* bpp
, 8);
10195 return ALIGN(pitch
, 64);
10199 intel_framebuffer_size_for_mode(struct drm_display_mode
*mode
, int bpp
)
10201 u32 pitch
= intel_framebuffer_pitch_for_width(mode
->hdisplay
, bpp
);
10202 return PAGE_ALIGN(pitch
* mode
->vdisplay
);
10205 static struct drm_framebuffer
*
10206 intel_framebuffer_create_for_mode(struct drm_device
*dev
,
10207 struct drm_display_mode
*mode
,
10208 int depth
, int bpp
)
10210 struct drm_i915_gem_object
*obj
;
10211 struct drm_mode_fb_cmd2 mode_cmd
= { 0 };
10213 obj
= i915_gem_alloc_object(dev
,
10214 intel_framebuffer_size_for_mode(mode
, bpp
));
10216 return ERR_PTR(-ENOMEM
);
10218 mode_cmd
.width
= mode
->hdisplay
;
10219 mode_cmd
.height
= mode
->vdisplay
;
10220 mode_cmd
.pitches
[0] = intel_framebuffer_pitch_for_width(mode_cmd
.width
,
10222 mode_cmd
.pixel_format
= drm_mode_legacy_fb_format(bpp
, depth
);
10224 return intel_framebuffer_create(dev
, &mode_cmd
, obj
);
10227 static struct drm_framebuffer
*
10228 mode_fits_in_fbdev(struct drm_device
*dev
,
10229 struct drm_display_mode
*mode
)
10231 #ifdef CONFIG_DRM_FBDEV_EMULATION
10232 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10233 struct drm_i915_gem_object
*obj
;
10234 struct drm_framebuffer
*fb
;
10236 if (!dev_priv
->fbdev
)
10239 if (!dev_priv
->fbdev
->fb
)
10242 obj
= dev_priv
->fbdev
->fb
->obj
;
10245 fb
= &dev_priv
->fbdev
->fb
->base
;
10246 if (fb
->pitches
[0] < intel_framebuffer_pitch_for_width(mode
->hdisplay
,
10247 fb
->bits_per_pixel
))
10250 if (obj
->base
.size
< mode
->vdisplay
* fb
->pitches
[0])
10259 static int intel_modeset_setup_plane_state(struct drm_atomic_state
*state
,
10260 struct drm_crtc
*crtc
,
10261 struct drm_display_mode
*mode
,
10262 struct drm_framebuffer
*fb
,
10265 struct drm_plane_state
*plane_state
;
10266 int hdisplay
, vdisplay
;
10269 plane_state
= drm_atomic_get_plane_state(state
, crtc
->primary
);
10270 if (IS_ERR(plane_state
))
10271 return PTR_ERR(plane_state
);
10274 drm_crtc_get_hv_timing(mode
, &hdisplay
, &vdisplay
);
10276 hdisplay
= vdisplay
= 0;
10278 ret
= drm_atomic_set_crtc_for_plane(plane_state
, fb
? crtc
: NULL
);
10281 drm_atomic_set_fb_for_plane(plane_state
, fb
);
10282 plane_state
->crtc_x
= 0;
10283 plane_state
->crtc_y
= 0;
10284 plane_state
->crtc_w
= hdisplay
;
10285 plane_state
->crtc_h
= vdisplay
;
10286 plane_state
->src_x
= x
<< 16;
10287 plane_state
->src_y
= y
<< 16;
10288 plane_state
->src_w
= hdisplay
<< 16;
10289 plane_state
->src_h
= vdisplay
<< 16;
10294 bool intel_get_load_detect_pipe(struct drm_connector
*connector
,
10295 struct drm_display_mode
*mode
,
10296 struct intel_load_detect_pipe
*old
,
10297 struct drm_modeset_acquire_ctx
*ctx
)
10299 struct intel_crtc
*intel_crtc
;
10300 struct intel_encoder
*intel_encoder
=
10301 intel_attached_encoder(connector
);
10302 struct drm_crtc
*possible_crtc
;
10303 struct drm_encoder
*encoder
= &intel_encoder
->base
;
10304 struct drm_crtc
*crtc
= NULL
;
10305 struct drm_device
*dev
= encoder
->dev
;
10306 struct drm_framebuffer
*fb
;
10307 struct drm_mode_config
*config
= &dev
->mode_config
;
10308 struct drm_atomic_state
*state
= NULL
;
10309 struct drm_connector_state
*connector_state
;
10310 struct intel_crtc_state
*crtc_state
;
10313 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10314 connector
->base
.id
, connector
->name
,
10315 encoder
->base
.id
, encoder
->name
);
10318 ret
= drm_modeset_lock(&config
->connection_mutex
, ctx
);
10323 * Algorithm gets a little messy:
10325 * - if the connector already has an assigned crtc, use it (but make
10326 * sure it's on first)
10328 * - try to find the first unused crtc that can drive this connector,
10329 * and use that if we find one
10332 /* See if we already have a CRTC for this connector */
10333 if (encoder
->crtc
) {
10334 crtc
= encoder
->crtc
;
10336 ret
= drm_modeset_lock(&crtc
->mutex
, ctx
);
10339 ret
= drm_modeset_lock(&crtc
->primary
->mutex
, ctx
);
10343 old
->dpms_mode
= connector
->dpms
;
10344 old
->load_detect_temp
= false;
10346 /* Make sure the crtc and connector are running */
10347 if (connector
->dpms
!= DRM_MODE_DPMS_ON
)
10348 connector
->funcs
->dpms(connector
, DRM_MODE_DPMS_ON
);
10353 /* Find an unused one (if possible) */
10354 for_each_crtc(dev
, possible_crtc
) {
10356 if (!(encoder
->possible_crtcs
& (1 << i
)))
10358 if (possible_crtc
->state
->enable
)
10361 crtc
= possible_crtc
;
10366 * If we didn't find an unused CRTC, don't use any.
10369 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10373 ret
= drm_modeset_lock(&crtc
->mutex
, ctx
);
10376 ret
= drm_modeset_lock(&crtc
->primary
->mutex
, ctx
);
10380 intel_crtc
= to_intel_crtc(crtc
);
10381 old
->dpms_mode
= connector
->dpms
;
10382 old
->load_detect_temp
= true;
10383 old
->release_fb
= NULL
;
10385 state
= drm_atomic_state_alloc(dev
);
10389 state
->acquire_ctx
= ctx
;
10391 connector_state
= drm_atomic_get_connector_state(state
, connector
);
10392 if (IS_ERR(connector_state
)) {
10393 ret
= PTR_ERR(connector_state
);
10397 connector_state
->crtc
= crtc
;
10398 connector_state
->best_encoder
= &intel_encoder
->base
;
10400 crtc_state
= intel_atomic_get_crtc_state(state
, intel_crtc
);
10401 if (IS_ERR(crtc_state
)) {
10402 ret
= PTR_ERR(crtc_state
);
10406 crtc_state
->base
.active
= crtc_state
->base
.enable
= true;
10409 mode
= &load_detect_mode
;
10411 /* We need a framebuffer large enough to accommodate all accesses
10412 * that the plane may generate whilst we perform load detection.
10413 * We can not rely on the fbcon either being present (we get called
10414 * during its initialisation to detect all boot displays, or it may
10415 * not even exist) or that it is large enough to satisfy the
10418 fb
= mode_fits_in_fbdev(dev
, mode
);
10420 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10421 fb
= intel_framebuffer_create_for_mode(dev
, mode
, 24, 32);
10422 old
->release_fb
= fb
;
10424 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10426 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10430 ret
= intel_modeset_setup_plane_state(state
, crtc
, mode
, fb
, 0, 0);
10434 drm_mode_copy(&crtc_state
->base
.mode
, mode
);
10436 if (drm_atomic_commit(state
)) {
10437 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10438 if (old
->release_fb
)
10439 old
->release_fb
->funcs
->destroy(old
->release_fb
);
10442 crtc
->primary
->crtc
= crtc
;
10444 /* let the connector get through one full cycle before testing */
10445 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
10449 drm_atomic_state_free(state
);
10452 if (ret
== -EDEADLK
) {
10453 drm_modeset_backoff(ctx
);
10460 void intel_release_load_detect_pipe(struct drm_connector
*connector
,
10461 struct intel_load_detect_pipe
*old
,
10462 struct drm_modeset_acquire_ctx
*ctx
)
10464 struct drm_device
*dev
= connector
->dev
;
10465 struct intel_encoder
*intel_encoder
=
10466 intel_attached_encoder(connector
);
10467 struct drm_encoder
*encoder
= &intel_encoder
->base
;
10468 struct drm_crtc
*crtc
= encoder
->crtc
;
10469 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10470 struct drm_atomic_state
*state
;
10471 struct drm_connector_state
*connector_state
;
10472 struct intel_crtc_state
*crtc_state
;
10475 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10476 connector
->base
.id
, connector
->name
,
10477 encoder
->base
.id
, encoder
->name
);
10479 if (old
->load_detect_temp
) {
10480 state
= drm_atomic_state_alloc(dev
);
10484 state
->acquire_ctx
= ctx
;
10486 connector_state
= drm_atomic_get_connector_state(state
, connector
);
10487 if (IS_ERR(connector_state
))
10490 crtc_state
= intel_atomic_get_crtc_state(state
, intel_crtc
);
10491 if (IS_ERR(crtc_state
))
10494 connector_state
->best_encoder
= NULL
;
10495 connector_state
->crtc
= NULL
;
10497 crtc_state
->base
.enable
= crtc_state
->base
.active
= false;
10499 ret
= intel_modeset_setup_plane_state(state
, crtc
, NULL
, NULL
,
10504 ret
= drm_atomic_commit(state
);
10508 if (old
->release_fb
) {
10509 drm_framebuffer_unregister_private(old
->release_fb
);
10510 drm_framebuffer_unreference(old
->release_fb
);
10516 /* Switch crtc and encoder back off if necessary */
10517 if (old
->dpms_mode
!= DRM_MODE_DPMS_ON
)
10518 connector
->funcs
->dpms(connector
, old
->dpms_mode
);
10522 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10523 drm_atomic_state_free(state
);
10526 static int i9xx_pll_refclk(struct drm_device
*dev
,
10527 const struct intel_crtc_state
*pipe_config
)
10529 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10530 u32 dpll
= pipe_config
->dpll_hw_state
.dpll
;
10532 if ((dpll
& PLL_REF_INPUT_MASK
) == PLLB_REF_INPUT_SPREADSPECTRUMIN
)
10533 return dev_priv
->vbt
.lvds_ssc_freq
;
10534 else if (HAS_PCH_SPLIT(dev
))
10536 else if (!IS_GEN2(dev
))
10542 /* Returns the clock of the currently programmed mode of the given pipe. */
10543 static void i9xx_crtc_clock_get(struct intel_crtc
*crtc
,
10544 struct intel_crtc_state
*pipe_config
)
10546 struct drm_device
*dev
= crtc
->base
.dev
;
10547 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10548 int pipe
= pipe_config
->cpu_transcoder
;
10549 u32 dpll
= pipe_config
->dpll_hw_state
.dpll
;
10551 intel_clock_t clock
;
10553 int refclk
= i9xx_pll_refclk(dev
, pipe_config
);
10555 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
10556 fp
= pipe_config
->dpll_hw_state
.fp0
;
10558 fp
= pipe_config
->dpll_hw_state
.fp1
;
10560 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
10561 if (IS_PINEVIEW(dev
)) {
10562 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
10563 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
10565 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
10566 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
10569 if (!IS_GEN2(dev
)) {
10570 if (IS_PINEVIEW(dev
))
10571 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
10572 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
10574 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
10575 DPLL_FPA01_P1_POST_DIV_SHIFT
);
10577 switch (dpll
& DPLL_MODE_MASK
) {
10578 case DPLLB_MODE_DAC_SERIAL
:
10579 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
10582 case DPLLB_MODE_LVDS
:
10583 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
10587 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10588 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
10592 if (IS_PINEVIEW(dev
))
10593 port_clock
= pnv_calc_dpll_params(refclk
, &clock
);
10595 port_clock
= i9xx_calc_dpll_params(refclk
, &clock
);
10597 u32 lvds
= IS_I830(dev
) ? 0 : I915_READ(LVDS
);
10598 bool is_lvds
= (pipe
== 1) && (lvds
& LVDS_PORT_EN
);
10601 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
10602 DPLL_FPA01_P1_POST_DIV_SHIFT
);
10604 if (lvds
& LVDS_CLKB_POWER_UP
)
10609 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
10612 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
10613 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
10615 if (dpll
& PLL_P2_DIVIDE_BY_4
)
10621 port_clock
= i9xx_calc_dpll_params(refclk
, &clock
);
10625 * This value includes pixel_multiplier. We will use
10626 * port_clock to compute adjusted_mode.crtc_clock in the
10627 * encoder's get_config() function.
10629 pipe_config
->port_clock
= port_clock
;
10632 int intel_dotclock_calculate(int link_freq
,
10633 const struct intel_link_m_n
*m_n
)
10636 * The calculation for the data clock is:
10637 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10638 * But we want to avoid losing precison if possible, so:
10639 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10641 * and the link clock is simpler:
10642 * link_clock = (m * link_clock) / n
10648 return div_u64((u64
)m_n
->link_m
* link_freq
, m_n
->link_n
);
10651 static void ironlake_pch_clock_get(struct intel_crtc
*crtc
,
10652 struct intel_crtc_state
*pipe_config
)
10654 struct drm_device
*dev
= crtc
->base
.dev
;
10656 /* read out port_clock from the DPLL */
10657 i9xx_crtc_clock_get(crtc
, pipe_config
);
10660 * This value does not include pixel_multiplier.
10661 * We will check that port_clock and adjusted_mode.crtc_clock
10662 * agree once we know their relationship in the encoder's
10663 * get_config() function.
10665 pipe_config
->base
.adjusted_mode
.crtc_clock
=
10666 intel_dotclock_calculate(intel_fdi_link_freq(dev
) * 10000,
10667 &pipe_config
->fdi_m_n
);
10670 /** Returns the currently programmed mode of the given pipe. */
10671 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
10672 struct drm_crtc
*crtc
)
10674 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10675 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10676 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
10677 struct drm_display_mode
*mode
;
10678 struct intel_crtc_state pipe_config
;
10679 int htot
= I915_READ(HTOTAL(cpu_transcoder
));
10680 int hsync
= I915_READ(HSYNC(cpu_transcoder
));
10681 int vtot
= I915_READ(VTOTAL(cpu_transcoder
));
10682 int vsync
= I915_READ(VSYNC(cpu_transcoder
));
10683 enum pipe pipe
= intel_crtc
->pipe
;
10685 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
10690 * Construct a pipe_config sufficient for getting the clock info
10691 * back out of crtc_clock_get.
10693 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10694 * to use a real value here instead.
10696 pipe_config
.cpu_transcoder
= (enum transcoder
) pipe
;
10697 pipe_config
.pixel_multiplier
= 1;
10698 pipe_config
.dpll_hw_state
.dpll
= I915_READ(DPLL(pipe
));
10699 pipe_config
.dpll_hw_state
.fp0
= I915_READ(FP0(pipe
));
10700 pipe_config
.dpll_hw_state
.fp1
= I915_READ(FP1(pipe
));
10701 i9xx_crtc_clock_get(intel_crtc
, &pipe_config
);
10703 mode
->clock
= pipe_config
.port_clock
/ pipe_config
.pixel_multiplier
;
10704 mode
->hdisplay
= (htot
& 0xffff) + 1;
10705 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
10706 mode
->hsync_start
= (hsync
& 0xffff) + 1;
10707 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
10708 mode
->vdisplay
= (vtot
& 0xffff) + 1;
10709 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
10710 mode
->vsync_start
= (vsync
& 0xffff) + 1;
10711 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
10713 drm_mode_set_name(mode
);
10718 void intel_mark_busy(struct drm_device
*dev
)
10720 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10722 if (dev_priv
->mm
.busy
)
10725 intel_runtime_pm_get(dev_priv
);
10726 i915_update_gfx_val(dev_priv
);
10727 if (INTEL_INFO(dev
)->gen
>= 6)
10728 gen6_rps_busy(dev_priv
);
10729 dev_priv
->mm
.busy
= true;
10732 void intel_mark_idle(struct drm_device
*dev
)
10734 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10736 if (!dev_priv
->mm
.busy
)
10739 dev_priv
->mm
.busy
= false;
10741 if (INTEL_INFO(dev
)->gen
>= 6)
10742 gen6_rps_idle(dev
->dev_private
);
10744 intel_runtime_pm_put(dev_priv
);
10747 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
10749 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10750 struct drm_device
*dev
= crtc
->dev
;
10751 struct intel_unpin_work
*work
;
10753 spin_lock_irq(&dev
->event_lock
);
10754 work
= intel_crtc
->unpin_work
;
10755 intel_crtc
->unpin_work
= NULL
;
10756 spin_unlock_irq(&dev
->event_lock
);
10759 cancel_work_sync(&work
->work
);
10763 drm_crtc_cleanup(crtc
);
10768 static void intel_unpin_work_fn(struct work_struct
*__work
)
10770 struct intel_unpin_work
*work
=
10771 container_of(__work
, struct intel_unpin_work
, work
);
10772 struct intel_crtc
*crtc
= to_intel_crtc(work
->crtc
);
10773 struct drm_device
*dev
= crtc
->base
.dev
;
10774 struct drm_plane
*primary
= crtc
->base
.primary
;
10776 mutex_lock(&dev
->struct_mutex
);
10777 intel_unpin_fb_obj(work
->old_fb
, primary
->state
);
10778 drm_gem_object_unreference(&work
->pending_flip_obj
->base
);
10780 if (work
->flip_queued_req
)
10781 i915_gem_request_assign(&work
->flip_queued_req
, NULL
);
10782 mutex_unlock(&dev
->struct_mutex
);
10784 intel_frontbuffer_flip_complete(dev
, to_intel_plane(primary
)->frontbuffer_bit
);
10785 drm_framebuffer_unreference(work
->old_fb
);
10787 BUG_ON(atomic_read(&crtc
->unpin_work_count
) == 0);
10788 atomic_dec(&crtc
->unpin_work_count
);
10793 static void do_intel_finish_page_flip(struct drm_device
*dev
,
10794 struct drm_crtc
*crtc
)
10796 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10797 struct intel_unpin_work
*work
;
10798 unsigned long flags
;
10800 /* Ignore early vblank irqs */
10801 if (intel_crtc
== NULL
)
10805 * This is called both by irq handlers and the reset code (to complete
10806 * lost pageflips) so needs the full irqsave spinlocks.
10808 spin_lock_irqsave(&dev
->event_lock
, flags
);
10809 work
= intel_crtc
->unpin_work
;
10811 /* Ensure we don't miss a work->pending update ... */
10814 if (work
== NULL
|| atomic_read(&work
->pending
) < INTEL_FLIP_COMPLETE
) {
10815 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
10819 page_flip_completed(intel_crtc
);
10821 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
10824 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
10826 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10827 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
10829 do_intel_finish_page_flip(dev
, crtc
);
10832 void intel_finish_page_flip_plane(struct drm_device
*dev
, int plane
)
10834 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10835 struct drm_crtc
*crtc
= dev_priv
->plane_to_crtc_mapping
[plane
];
10837 do_intel_finish_page_flip(dev
, crtc
);
10840 /* Is 'a' after or equal to 'b'? */
10841 static bool g4x_flip_count_after_eq(u32 a
, u32 b
)
10843 return !((a
- b
) & 0x80000000);
10846 static bool page_flip_finished(struct intel_crtc
*crtc
)
10848 struct drm_device
*dev
= crtc
->base
.dev
;
10849 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10851 if (i915_reset_in_progress(&dev_priv
->gpu_error
) ||
10852 crtc
->reset_counter
!= atomic_read(&dev_priv
->gpu_error
.reset_counter
))
10856 * The relevant registers doen't exist on pre-ctg.
10857 * As the flip done interrupt doesn't trigger for mmio
10858 * flips on gmch platforms, a flip count check isn't
10859 * really needed there. But since ctg has the registers,
10860 * include it in the check anyway.
10862 if (INTEL_INFO(dev
)->gen
< 5 && !IS_G4X(dev
))
10866 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10867 * used the same base address. In that case the mmio flip might
10868 * have completed, but the CS hasn't even executed the flip yet.
10870 * A flip count check isn't enough as the CS might have updated
10871 * the base address just after start of vblank, but before we
10872 * managed to process the interrupt. This means we'd complete the
10873 * CS flip too soon.
10875 * Combining both checks should get us a good enough result. It may
10876 * still happen that the CS flip has been executed, but has not
10877 * yet actually completed. But in case the base address is the same
10878 * anyway, we don't really care.
10880 return (I915_READ(DSPSURFLIVE(crtc
->plane
)) & ~0xfff) ==
10881 crtc
->unpin_work
->gtt_offset
&&
10882 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc
->pipe
)),
10883 crtc
->unpin_work
->flip_count
);
10886 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
10888 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10889 struct intel_crtc
*intel_crtc
=
10890 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
10891 unsigned long flags
;
10895 * This is called both by irq handlers and the reset code (to complete
10896 * lost pageflips) so needs the full irqsave spinlocks.
10898 * NB: An MMIO update of the plane base pointer will also
10899 * generate a page-flip completion irq, i.e. every modeset
10900 * is also accompanied by a spurious intel_prepare_page_flip().
10902 spin_lock_irqsave(&dev
->event_lock
, flags
);
10903 if (intel_crtc
->unpin_work
&& page_flip_finished(intel_crtc
))
10904 atomic_inc_not_zero(&intel_crtc
->unpin_work
->pending
);
10905 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
10908 static inline void intel_mark_page_flip_active(struct intel_unpin_work
*work
)
10910 /* Ensure that the work item is consistent when activating it ... */
10912 atomic_set(&work
->pending
, INTEL_FLIP_PENDING
);
10913 /* and that it is marked active as soon as the irq could fire. */
10917 static int intel_gen2_queue_flip(struct drm_device
*dev
,
10918 struct drm_crtc
*crtc
,
10919 struct drm_framebuffer
*fb
,
10920 struct drm_i915_gem_object
*obj
,
10921 struct drm_i915_gem_request
*req
,
10924 struct intel_engine_cs
*ring
= req
->ring
;
10925 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10929 ret
= intel_ring_begin(req
, 6);
10933 /* Can't queue multiple flips, so wait for the previous
10934 * one to finish before executing the next.
10936 if (intel_crtc
->plane
)
10937 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
10939 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
10940 intel_ring_emit(ring
, MI_WAIT_FOR_EVENT
| flip_mask
);
10941 intel_ring_emit(ring
, MI_NOOP
);
10942 intel_ring_emit(ring
, MI_DISPLAY_FLIP
|
10943 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
10944 intel_ring_emit(ring
, fb
->pitches
[0]);
10945 intel_ring_emit(ring
, intel_crtc
->unpin_work
->gtt_offset
);
10946 intel_ring_emit(ring
, 0); /* aux display base address, unused */
10948 intel_mark_page_flip_active(intel_crtc
->unpin_work
);
10952 static int intel_gen3_queue_flip(struct drm_device
*dev
,
10953 struct drm_crtc
*crtc
,
10954 struct drm_framebuffer
*fb
,
10955 struct drm_i915_gem_object
*obj
,
10956 struct drm_i915_gem_request
*req
,
10959 struct intel_engine_cs
*ring
= req
->ring
;
10960 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10964 ret
= intel_ring_begin(req
, 6);
10968 if (intel_crtc
->plane
)
10969 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
10971 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
10972 intel_ring_emit(ring
, MI_WAIT_FOR_EVENT
| flip_mask
);
10973 intel_ring_emit(ring
, MI_NOOP
);
10974 intel_ring_emit(ring
, MI_DISPLAY_FLIP_I915
|
10975 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
10976 intel_ring_emit(ring
, fb
->pitches
[0]);
10977 intel_ring_emit(ring
, intel_crtc
->unpin_work
->gtt_offset
);
10978 intel_ring_emit(ring
, MI_NOOP
);
10980 intel_mark_page_flip_active(intel_crtc
->unpin_work
);
10984 static int intel_gen4_queue_flip(struct drm_device
*dev
,
10985 struct drm_crtc
*crtc
,
10986 struct drm_framebuffer
*fb
,
10987 struct drm_i915_gem_object
*obj
,
10988 struct drm_i915_gem_request
*req
,
10991 struct intel_engine_cs
*ring
= req
->ring
;
10992 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
10993 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10994 uint32_t pf
, pipesrc
;
10997 ret
= intel_ring_begin(req
, 4);
11001 /* i965+ uses the linear or tiled offsets from the
11002 * Display Registers (which do not change across a page-flip)
11003 * so we need only reprogram the base address.
11005 intel_ring_emit(ring
, MI_DISPLAY_FLIP
|
11006 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
11007 intel_ring_emit(ring
, fb
->pitches
[0]);
11008 intel_ring_emit(ring
, intel_crtc
->unpin_work
->gtt_offset
|
11011 /* XXX Enabling the panel-fitter across page-flip is so far
11012 * untested on non-native modes, so ignore it for now.
11013 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11016 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
11017 intel_ring_emit(ring
, pf
| pipesrc
);
11019 intel_mark_page_flip_active(intel_crtc
->unpin_work
);
11023 static int intel_gen6_queue_flip(struct drm_device
*dev
,
11024 struct drm_crtc
*crtc
,
11025 struct drm_framebuffer
*fb
,
11026 struct drm_i915_gem_object
*obj
,
11027 struct drm_i915_gem_request
*req
,
11030 struct intel_engine_cs
*ring
= req
->ring
;
11031 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
11032 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11033 uint32_t pf
, pipesrc
;
11036 ret
= intel_ring_begin(req
, 4);
11040 intel_ring_emit(ring
, MI_DISPLAY_FLIP
|
11041 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
11042 intel_ring_emit(ring
, fb
->pitches
[0] | obj
->tiling_mode
);
11043 intel_ring_emit(ring
, intel_crtc
->unpin_work
->gtt_offset
);
11045 /* Contrary to the suggestions in the documentation,
11046 * "Enable Panel Fitter" does not seem to be required when page
11047 * flipping with a non-native mode, and worse causes a normal
11049 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11052 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
11053 intel_ring_emit(ring
, pf
| pipesrc
);
11055 intel_mark_page_flip_active(intel_crtc
->unpin_work
);
11059 static int intel_gen7_queue_flip(struct drm_device
*dev
,
11060 struct drm_crtc
*crtc
,
11061 struct drm_framebuffer
*fb
,
11062 struct drm_i915_gem_object
*obj
,
11063 struct drm_i915_gem_request
*req
,
11066 struct intel_engine_cs
*ring
= req
->ring
;
11067 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11068 uint32_t plane_bit
= 0;
11071 switch (intel_crtc
->plane
) {
11073 plane_bit
= MI_DISPLAY_FLIP_IVB_PLANE_A
;
11076 plane_bit
= MI_DISPLAY_FLIP_IVB_PLANE_B
;
11079 plane_bit
= MI_DISPLAY_FLIP_IVB_PLANE_C
;
11082 WARN_ONCE(1, "unknown plane in flip command\n");
11087 if (ring
->id
== RCS
) {
11090 * On Gen 8, SRM is now taking an extra dword to accommodate
11091 * 48bits addresses, and we need a NOOP for the batch size to
11099 * BSpec MI_DISPLAY_FLIP for IVB:
11100 * "The full packet must be contained within the same cache line."
11102 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11103 * cacheline, if we ever start emitting more commands before
11104 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11105 * then do the cacheline alignment, and finally emit the
11108 ret
= intel_ring_cacheline_align(req
);
11112 ret
= intel_ring_begin(req
, len
);
11116 /* Unmask the flip-done completion message. Note that the bspec says that
11117 * we should do this for both the BCS and RCS, and that we must not unmask
11118 * more than one flip event at any time (or ensure that one flip message
11119 * can be sent by waiting for flip-done prior to queueing new flips).
11120 * Experimentation says that BCS works despite DERRMR masking all
11121 * flip-done completion events and that unmasking all planes at once
11122 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11123 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11125 if (ring
->id
== RCS
) {
11126 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(1));
11127 intel_ring_emit(ring
, DERRMR
);
11128 intel_ring_emit(ring
, ~(DERRMR_PIPEA_PRI_FLIP_DONE
|
11129 DERRMR_PIPEB_PRI_FLIP_DONE
|
11130 DERRMR_PIPEC_PRI_FLIP_DONE
));
11132 intel_ring_emit(ring
, MI_STORE_REGISTER_MEM_GEN8
|
11133 MI_SRM_LRM_GLOBAL_GTT
);
11135 intel_ring_emit(ring
, MI_STORE_REGISTER_MEM
|
11136 MI_SRM_LRM_GLOBAL_GTT
);
11137 intel_ring_emit(ring
, DERRMR
);
11138 intel_ring_emit(ring
, ring
->scratch
.gtt_offset
+ 256);
11139 if (IS_GEN8(dev
)) {
11140 intel_ring_emit(ring
, 0);
11141 intel_ring_emit(ring
, MI_NOOP
);
11145 intel_ring_emit(ring
, MI_DISPLAY_FLIP_I915
| plane_bit
);
11146 intel_ring_emit(ring
, (fb
->pitches
[0] | obj
->tiling_mode
));
11147 intel_ring_emit(ring
, intel_crtc
->unpin_work
->gtt_offset
);
11148 intel_ring_emit(ring
, (MI_NOOP
));
11150 intel_mark_page_flip_active(intel_crtc
->unpin_work
);
11154 static bool use_mmio_flip(struct intel_engine_cs
*ring
,
11155 struct drm_i915_gem_object
*obj
)
11158 * This is not being used for older platforms, because
11159 * non-availability of flip done interrupt forces us to use
11160 * CS flips. Older platforms derive flip done using some clever
11161 * tricks involving the flip_pending status bits and vblank irqs.
11162 * So using MMIO flips there would disrupt this mechanism.
11168 if (INTEL_INFO(ring
->dev
)->gen
< 5)
11171 if (i915
.use_mmio_flip
< 0)
11173 else if (i915
.use_mmio_flip
> 0)
11175 else if (i915
.enable_execlists
)
11178 return ring
!= i915_gem_request_get_ring(obj
->last_write_req
);
11181 static void skl_do_mmio_flip(struct intel_crtc
*intel_crtc
,
11182 struct intel_unpin_work
*work
)
11184 struct drm_device
*dev
= intel_crtc
->base
.dev
;
11185 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
11186 struct drm_framebuffer
*fb
= intel_crtc
->base
.primary
->fb
;
11187 const enum pipe pipe
= intel_crtc
->pipe
;
11190 ctl
= I915_READ(PLANE_CTL(pipe
, 0));
11191 ctl
&= ~PLANE_CTL_TILED_MASK
;
11192 switch (fb
->modifier
[0]) {
11193 case DRM_FORMAT_MOD_NONE
:
11195 case I915_FORMAT_MOD_X_TILED
:
11196 ctl
|= PLANE_CTL_TILED_X
;
11198 case I915_FORMAT_MOD_Y_TILED
:
11199 ctl
|= PLANE_CTL_TILED_Y
;
11201 case I915_FORMAT_MOD_Yf_TILED
:
11202 ctl
|= PLANE_CTL_TILED_YF
;
11205 MISSING_CASE(fb
->modifier
[0]);
11209 * The stride is either expressed as a multiple of 64 bytes chunks for
11210 * linear buffers or in number of tiles for tiled buffers.
11212 stride
= fb
->pitches
[0] /
11213 intel_fb_stride_alignment(dev
, fb
->modifier
[0],
11217 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11218 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11220 I915_WRITE(PLANE_CTL(pipe
, 0), ctl
);
11221 I915_WRITE(PLANE_STRIDE(pipe
, 0), stride
);
11223 I915_WRITE(PLANE_SURF(pipe
, 0), work
->gtt_offset
);
11224 POSTING_READ(PLANE_SURF(pipe
, 0));
11227 static void ilk_do_mmio_flip(struct intel_crtc
*intel_crtc
,
11228 struct intel_unpin_work
*work
)
11230 struct drm_device
*dev
= intel_crtc
->base
.dev
;
11231 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
11232 struct intel_framebuffer
*intel_fb
=
11233 to_intel_framebuffer(intel_crtc
->base
.primary
->fb
);
11234 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
11238 reg
= DSPCNTR(intel_crtc
->plane
);
11239 dspcntr
= I915_READ(reg
);
11241 if (obj
->tiling_mode
!= I915_TILING_NONE
)
11242 dspcntr
|= DISPPLANE_TILED
;
11244 dspcntr
&= ~DISPPLANE_TILED
;
11246 I915_WRITE(reg
, dspcntr
);
11248 I915_WRITE(DSPSURF(intel_crtc
->plane
), work
->gtt_offset
);
11249 POSTING_READ(DSPSURF(intel_crtc
->plane
));
11253 * XXX: This is the temporary way to update the plane registers until we get
11254 * around to using the usual plane update functions for MMIO flips
11256 static void intel_do_mmio_flip(struct intel_mmio_flip
*mmio_flip
)
11258 struct intel_crtc
*crtc
= mmio_flip
->crtc
;
11259 struct intel_unpin_work
*work
;
11261 spin_lock_irq(&crtc
->base
.dev
->event_lock
);
11262 work
= crtc
->unpin_work
;
11263 spin_unlock_irq(&crtc
->base
.dev
->event_lock
);
11267 intel_mark_page_flip_active(work
);
11269 intel_pipe_update_start(crtc
);
11271 if (INTEL_INFO(mmio_flip
->i915
)->gen
>= 9)
11272 skl_do_mmio_flip(crtc
, work
);
11274 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11275 ilk_do_mmio_flip(crtc
, work
);
11277 intel_pipe_update_end(crtc
);
11280 static void intel_mmio_flip_work_func(struct work_struct
*work
)
11282 struct intel_mmio_flip
*mmio_flip
=
11283 container_of(work
, struct intel_mmio_flip
, work
);
11285 if (mmio_flip
->req
) {
11286 WARN_ON(__i915_wait_request(mmio_flip
->req
,
11287 mmio_flip
->crtc
->reset_counter
,
11289 &mmio_flip
->i915
->rps
.mmioflips
));
11290 i915_gem_request_unreference__unlocked(mmio_flip
->req
);
11293 intel_do_mmio_flip(mmio_flip
);
11297 static int intel_queue_mmio_flip(struct drm_device
*dev
,
11298 struct drm_crtc
*crtc
,
11299 struct drm_framebuffer
*fb
,
11300 struct drm_i915_gem_object
*obj
,
11301 struct intel_engine_cs
*ring
,
11304 struct intel_mmio_flip
*mmio_flip
;
11306 mmio_flip
= kmalloc(sizeof(*mmio_flip
), GFP_KERNEL
);
11307 if (mmio_flip
== NULL
)
11310 mmio_flip
->i915
= to_i915(dev
);
11311 mmio_flip
->req
= i915_gem_request_reference(obj
->last_write_req
);
11312 mmio_flip
->crtc
= to_intel_crtc(crtc
);
11314 INIT_WORK(&mmio_flip
->work
, intel_mmio_flip_work_func
);
11315 schedule_work(&mmio_flip
->work
);
11320 static int intel_default_queue_flip(struct drm_device
*dev
,
11321 struct drm_crtc
*crtc
,
11322 struct drm_framebuffer
*fb
,
11323 struct drm_i915_gem_object
*obj
,
11324 struct drm_i915_gem_request
*req
,
11330 static bool __intel_pageflip_stall_check(struct drm_device
*dev
,
11331 struct drm_crtc
*crtc
)
11333 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
11334 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11335 struct intel_unpin_work
*work
= intel_crtc
->unpin_work
;
11338 if (atomic_read(&work
->pending
) >= INTEL_FLIP_COMPLETE
)
11341 if (atomic_read(&work
->pending
) < INTEL_FLIP_PENDING
)
11344 if (!work
->enable_stall_check
)
11347 if (work
->flip_ready_vblank
== 0) {
11348 if (work
->flip_queued_req
&&
11349 !i915_gem_request_completed(work
->flip_queued_req
, true))
11352 work
->flip_ready_vblank
= drm_crtc_vblank_count(crtc
);
11355 if (drm_crtc_vblank_count(crtc
) - work
->flip_ready_vblank
< 3)
11358 /* Potential stall - if we see that the flip has happened,
11359 * assume a missed interrupt. */
11360 if (INTEL_INFO(dev
)->gen
>= 4)
11361 addr
= I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc
->plane
)));
11363 addr
= I915_READ(DSPADDR(intel_crtc
->plane
));
11365 /* There is a potential issue here with a false positive after a flip
11366 * to the same address. We could address this by checking for a
11367 * non-incrementing frame counter.
11369 return addr
== work
->gtt_offset
;
11372 void intel_check_page_flip(struct drm_device
*dev
, int pipe
)
11374 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
11375 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
11376 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11377 struct intel_unpin_work
*work
;
11379 WARN_ON(!in_interrupt());
11384 spin_lock(&dev
->event_lock
);
11385 work
= intel_crtc
->unpin_work
;
11386 if (work
!= NULL
&& __intel_pageflip_stall_check(dev
, crtc
)) {
11387 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11388 work
->flip_queued_vblank
, drm_vblank_count(dev
, pipe
));
11389 page_flip_completed(intel_crtc
);
11392 if (work
!= NULL
&&
11393 drm_vblank_count(dev
, pipe
) - work
->flip_queued_vblank
> 1)
11394 intel_queue_rps_boost_for_request(dev
, work
->flip_queued_req
);
11395 spin_unlock(&dev
->event_lock
);
11398 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
11399 struct drm_framebuffer
*fb
,
11400 struct drm_pending_vblank_event
*event
,
11401 uint32_t page_flip_flags
)
11403 struct drm_device
*dev
= crtc
->dev
;
11404 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
11405 struct drm_framebuffer
*old_fb
= crtc
->primary
->fb
;
11406 struct drm_i915_gem_object
*obj
= intel_fb_obj(fb
);
11407 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11408 struct drm_plane
*primary
= crtc
->primary
;
11409 enum pipe pipe
= intel_crtc
->pipe
;
11410 struct intel_unpin_work
*work
;
11411 struct intel_engine_cs
*ring
;
11413 struct drm_i915_gem_request
*request
= NULL
;
11417 * drm_mode_page_flip_ioctl() should already catch this, but double
11418 * check to be safe. In the future we may enable pageflipping from
11419 * a disabled primary plane.
11421 if (WARN_ON(intel_fb_obj(old_fb
) == NULL
))
11424 /* Can't change pixel format via MI display flips. */
11425 if (fb
->pixel_format
!= crtc
->primary
->fb
->pixel_format
)
11429 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11430 * Note that pitch changes could also affect these register.
11432 if (INTEL_INFO(dev
)->gen
> 3 &&
11433 (fb
->offsets
[0] != crtc
->primary
->fb
->offsets
[0] ||
11434 fb
->pitches
[0] != crtc
->primary
->fb
->pitches
[0]))
11437 if (i915_terminally_wedged(&dev_priv
->gpu_error
))
11440 work
= kzalloc(sizeof(*work
), GFP_KERNEL
);
11444 work
->event
= event
;
11446 work
->old_fb
= old_fb
;
11447 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
11449 ret
= drm_crtc_vblank_get(crtc
);
11453 /* We borrow the event spin lock for protecting unpin_work */
11454 spin_lock_irq(&dev
->event_lock
);
11455 if (intel_crtc
->unpin_work
) {
11456 /* Before declaring the flip queue wedged, check if
11457 * the hardware completed the operation behind our backs.
11459 if (__intel_pageflip_stall_check(dev
, crtc
)) {
11460 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11461 page_flip_completed(intel_crtc
);
11463 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11464 spin_unlock_irq(&dev
->event_lock
);
11466 drm_crtc_vblank_put(crtc
);
11471 intel_crtc
->unpin_work
= work
;
11472 spin_unlock_irq(&dev
->event_lock
);
11474 if (atomic_read(&intel_crtc
->unpin_work_count
) >= 2)
11475 flush_workqueue(dev_priv
->wq
);
11477 /* Reference the objects for the scheduled work. */
11478 drm_framebuffer_reference(work
->old_fb
);
11479 drm_gem_object_reference(&obj
->base
);
11481 crtc
->primary
->fb
= fb
;
11482 update_state_fb(crtc
->primary
);
11484 work
->pending_flip_obj
= obj
;
11486 ret
= i915_mutex_lock_interruptible(dev
);
11490 atomic_inc(&intel_crtc
->unpin_work_count
);
11491 intel_crtc
->reset_counter
= atomic_read(&dev_priv
->gpu_error
.reset_counter
);
11493 if (INTEL_INFO(dev
)->gen
>= 5 || IS_G4X(dev
))
11494 work
->flip_count
= I915_READ(PIPE_FLIPCOUNT_G4X(pipe
)) + 1;
11496 if (IS_VALLEYVIEW(dev
)) {
11497 ring
= &dev_priv
->ring
[BCS
];
11498 if (obj
->tiling_mode
!= intel_fb_obj(work
->old_fb
)->tiling_mode
)
11499 /* vlv: DISPLAY_FLIP fails to change tiling */
11501 } else if (IS_IVYBRIDGE(dev
) || IS_HASWELL(dev
)) {
11502 ring
= &dev_priv
->ring
[BCS
];
11503 } else if (INTEL_INFO(dev
)->gen
>= 7) {
11504 ring
= i915_gem_request_get_ring(obj
->last_write_req
);
11505 if (ring
== NULL
|| ring
->id
!= RCS
)
11506 ring
= &dev_priv
->ring
[BCS
];
11508 ring
= &dev_priv
->ring
[RCS
];
11511 mmio_flip
= use_mmio_flip(ring
, obj
);
11513 /* When using CS flips, we want to emit semaphores between rings.
11514 * However, when using mmio flips we will create a task to do the
11515 * synchronisation, so all we want here is to pin the framebuffer
11516 * into the display plane and skip any waits.
11518 ret
= intel_pin_and_fence_fb_obj(crtc
->primary
, fb
,
11519 crtc
->primary
->state
,
11520 mmio_flip
? i915_gem_request_get_ring(obj
->last_write_req
) : ring
, &request
);
11522 goto cleanup_pending
;
11524 work
->gtt_offset
= intel_plane_obj_offset(to_intel_plane(primary
),
11526 work
->gtt_offset
+= intel_crtc
->dspaddr_offset
;
11529 ret
= intel_queue_mmio_flip(dev
, crtc
, fb
, obj
, ring
,
11532 goto cleanup_unpin
;
11534 i915_gem_request_assign(&work
->flip_queued_req
,
11535 obj
->last_write_req
);
11538 ret
= i915_gem_request_alloc(ring
, ring
->default_context
, &request
);
11540 goto cleanup_unpin
;
11543 ret
= dev_priv
->display
.queue_flip(dev
, crtc
, fb
, obj
, request
,
11546 goto cleanup_unpin
;
11548 i915_gem_request_assign(&work
->flip_queued_req
, request
);
11552 i915_add_request_no_flush(request
);
11554 work
->flip_queued_vblank
= drm_crtc_vblank_count(crtc
);
11555 work
->enable_stall_check
= true;
11557 i915_gem_track_fb(intel_fb_obj(work
->old_fb
), obj
,
11558 to_intel_plane(primary
)->frontbuffer_bit
);
11559 mutex_unlock(&dev
->struct_mutex
);
11561 intel_fbc_disable_crtc(intel_crtc
);
11562 intel_frontbuffer_flip_prepare(dev
,
11563 to_intel_plane(primary
)->frontbuffer_bit
);
11565 trace_i915_flip_request(intel_crtc
->plane
, obj
);
11570 intel_unpin_fb_obj(fb
, crtc
->primary
->state
);
11573 i915_gem_request_cancel(request
);
11574 atomic_dec(&intel_crtc
->unpin_work_count
);
11575 mutex_unlock(&dev
->struct_mutex
);
11577 crtc
->primary
->fb
= old_fb
;
11578 update_state_fb(crtc
->primary
);
11580 drm_gem_object_unreference_unlocked(&obj
->base
);
11581 drm_framebuffer_unreference(work
->old_fb
);
11583 spin_lock_irq(&dev
->event_lock
);
11584 intel_crtc
->unpin_work
= NULL
;
11585 spin_unlock_irq(&dev
->event_lock
);
11587 drm_crtc_vblank_put(crtc
);
11592 struct drm_atomic_state
*state
;
11593 struct drm_plane_state
*plane_state
;
11596 state
= drm_atomic_state_alloc(dev
);
11599 state
->acquire_ctx
= drm_modeset_legacy_acquire_ctx(crtc
);
11602 plane_state
= drm_atomic_get_plane_state(state
, primary
);
11603 ret
= PTR_ERR_OR_ZERO(plane_state
);
11605 drm_atomic_set_fb_for_plane(plane_state
, fb
);
11607 ret
= drm_atomic_set_crtc_for_plane(plane_state
, crtc
);
11609 ret
= drm_atomic_commit(state
);
11612 if (ret
== -EDEADLK
) {
11613 drm_modeset_backoff(state
->acquire_ctx
);
11614 drm_atomic_state_clear(state
);
11619 drm_atomic_state_free(state
);
11621 if (ret
== 0 && event
) {
11622 spin_lock_irq(&dev
->event_lock
);
11623 drm_send_vblank_event(dev
, pipe
, event
);
11624 spin_unlock_irq(&dev
->event_lock
);
11632 * intel_wm_need_update - Check whether watermarks need updating
11633 * @plane: drm plane
11634 * @state: new plane state
11636 * Check current plane state versus the new one to determine whether
11637 * watermarks need to be recalculated.
11639 * Returns true or false.
11641 static bool intel_wm_need_update(struct drm_plane
*plane
,
11642 struct drm_plane_state
*state
)
11644 /* Update watermarks on tiling changes. */
11645 if (!plane
->state
->fb
|| !state
->fb
||
11646 plane
->state
->fb
->modifier
[0] != state
->fb
->modifier
[0] ||
11647 plane
->state
->rotation
!= state
->rotation
)
11650 if (plane
->state
->crtc_w
!= state
->crtc_w
)
11656 int intel_plane_atomic_calc_changes(struct drm_crtc_state
*crtc_state
,
11657 struct drm_plane_state
*plane_state
)
11659 struct drm_crtc
*crtc
= crtc_state
->crtc
;
11660 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11661 struct drm_plane
*plane
= plane_state
->plane
;
11662 struct drm_device
*dev
= crtc
->dev
;
11663 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
11664 struct intel_plane_state
*old_plane_state
=
11665 to_intel_plane_state(plane
->state
);
11666 int idx
= intel_crtc
->base
.base
.id
, ret
;
11667 int i
= drm_plane_index(plane
);
11668 bool mode_changed
= needs_modeset(crtc_state
);
11669 bool was_crtc_enabled
= crtc
->state
->active
;
11670 bool is_crtc_enabled
= crtc_state
->active
;
11672 bool turn_off
, turn_on
, visible
, was_visible
;
11673 struct drm_framebuffer
*fb
= plane_state
->fb
;
11675 if (crtc_state
&& INTEL_INFO(dev
)->gen
>= 9 &&
11676 plane
->type
!= DRM_PLANE_TYPE_CURSOR
) {
11677 ret
= skl_update_scaler_plane(
11678 to_intel_crtc_state(crtc_state
),
11679 to_intel_plane_state(plane_state
));
11685 * Disabling a plane is always okay; we just need to update
11686 * fb tracking in a special way since cleanup_fb() won't
11687 * get called by the plane helpers.
11689 if (old_plane_state
->base
.fb
&& !fb
)
11690 intel_crtc
->atomic
.disabled_planes
|= 1 << i
;
11692 was_visible
= old_plane_state
->visible
;
11693 visible
= to_intel_plane_state(plane_state
)->visible
;
11695 if (!was_crtc_enabled
&& WARN_ON(was_visible
))
11696 was_visible
= false;
11698 if (!is_crtc_enabled
&& WARN_ON(visible
))
11701 if (!was_visible
&& !visible
)
11704 turn_off
= was_visible
&& (!visible
|| mode_changed
);
11705 turn_on
= visible
&& (!was_visible
|| mode_changed
);
11707 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx
,
11708 plane
->base
.id
, fb
? fb
->base
.id
: -1);
11710 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11711 plane
->base
.id
, was_visible
, visible
,
11712 turn_off
, turn_on
, mode_changed
);
11715 intel_crtc
->atomic
.update_wm_pre
= true;
11716 /* must disable cxsr around plane enable/disable */
11717 if (plane
->type
!= DRM_PLANE_TYPE_CURSOR
) {
11718 intel_crtc
->atomic
.disable_cxsr
= true;
11719 /* to potentially re-enable cxsr */
11720 intel_crtc
->atomic
.wait_vblank
= true;
11721 intel_crtc
->atomic
.update_wm_post
= true;
11723 } else if (turn_off
) {
11724 intel_crtc
->atomic
.update_wm_post
= true;
11725 /* must disable cxsr around plane enable/disable */
11726 if (plane
->type
!= DRM_PLANE_TYPE_CURSOR
) {
11727 if (is_crtc_enabled
)
11728 intel_crtc
->atomic
.wait_vblank
= true;
11729 intel_crtc
->atomic
.disable_cxsr
= true;
11731 } else if (intel_wm_need_update(plane
, plane_state
)) {
11732 intel_crtc
->atomic
.update_wm_pre
= true;
11735 if (visible
|| was_visible
)
11736 intel_crtc
->atomic
.fb_bits
|=
11737 to_intel_plane(plane
)->frontbuffer_bit
;
11739 switch (plane
->type
) {
11740 case DRM_PLANE_TYPE_PRIMARY
:
11741 intel_crtc
->atomic
.wait_for_flips
= true;
11742 intel_crtc
->atomic
.pre_disable_primary
= turn_off
;
11743 intel_crtc
->atomic
.post_enable_primary
= turn_on
;
11747 * FIXME: Actually if we will still have any other
11748 * plane enabled on the pipe we could let IPS enabled
11749 * still, but for now lets consider that when we make
11750 * primary invisible by setting DSPCNTR to 0 on
11751 * update_primary_plane function IPS needs to be
11754 intel_crtc
->atomic
.disable_ips
= true;
11756 intel_crtc
->atomic
.disable_fbc
= true;
11760 * FBC does not work on some platforms for rotated
11761 * planes, so disable it when rotation is not 0 and
11762 * update it when rotation is set back to 0.
11764 * FIXME: This is redundant with the fbc update done in
11765 * the primary plane enable function except that that
11766 * one is done too late. We eventually need to unify
11771 INTEL_INFO(dev
)->gen
<= 4 && !IS_G4X(dev
) &&
11772 dev_priv
->fbc
.crtc
== intel_crtc
&&
11773 plane_state
->rotation
!= BIT(DRM_ROTATE_0
))
11774 intel_crtc
->atomic
.disable_fbc
= true;
11777 * BDW signals flip done immediately if the plane
11778 * is disabled, even if the plane enable is already
11779 * armed to occur at the next vblank :(
11781 if (turn_on
&& IS_BROADWELL(dev
))
11782 intel_crtc
->atomic
.wait_vblank
= true;
11784 intel_crtc
->atomic
.update_fbc
|= visible
|| mode_changed
;
11786 case DRM_PLANE_TYPE_CURSOR
:
11788 case DRM_PLANE_TYPE_OVERLAY
:
11789 if (turn_off
&& !mode_changed
) {
11790 intel_crtc
->atomic
.wait_vblank
= true;
11791 intel_crtc
->atomic
.update_sprite_watermarks
|=
11798 static bool encoders_cloneable(const struct intel_encoder
*a
,
11799 const struct intel_encoder
*b
)
11801 /* masks could be asymmetric, so check both ways */
11802 return a
== b
|| (a
->cloneable
& (1 << b
->type
) &&
11803 b
->cloneable
& (1 << a
->type
));
11806 static bool check_single_encoder_cloning(struct drm_atomic_state
*state
,
11807 struct intel_crtc
*crtc
,
11808 struct intel_encoder
*encoder
)
11810 struct intel_encoder
*source_encoder
;
11811 struct drm_connector
*connector
;
11812 struct drm_connector_state
*connector_state
;
11815 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
11816 if (connector_state
->crtc
!= &crtc
->base
)
11820 to_intel_encoder(connector_state
->best_encoder
);
11821 if (!encoders_cloneable(encoder
, source_encoder
))
11828 static bool check_encoder_cloning(struct drm_atomic_state
*state
,
11829 struct intel_crtc
*crtc
)
11831 struct intel_encoder
*encoder
;
11832 struct drm_connector
*connector
;
11833 struct drm_connector_state
*connector_state
;
11836 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
11837 if (connector_state
->crtc
!= &crtc
->base
)
11840 encoder
= to_intel_encoder(connector_state
->best_encoder
);
11841 if (!check_single_encoder_cloning(state
, crtc
, encoder
))
11848 static int intel_crtc_atomic_check(struct drm_crtc
*crtc
,
11849 struct drm_crtc_state
*crtc_state
)
11851 struct drm_device
*dev
= crtc
->dev
;
11852 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
11853 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11854 struct intel_crtc_state
*pipe_config
=
11855 to_intel_crtc_state(crtc_state
);
11856 struct drm_atomic_state
*state
= crtc_state
->state
;
11858 bool mode_changed
= needs_modeset(crtc_state
);
11860 if (mode_changed
&& !check_encoder_cloning(state
, intel_crtc
)) {
11861 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11865 if (mode_changed
&& !crtc_state
->active
)
11866 intel_crtc
->atomic
.update_wm_post
= true;
11868 if (mode_changed
&& crtc_state
->enable
&&
11869 dev_priv
->display
.crtc_compute_clock
&&
11870 !WARN_ON(pipe_config
->shared_dpll
!= DPLL_ID_PRIVATE
)) {
11871 ret
= dev_priv
->display
.crtc_compute_clock(intel_crtc
,
11878 if (INTEL_INFO(dev
)->gen
>= 9) {
11880 ret
= skl_update_scaler_crtc(pipe_config
);
11883 ret
= intel_atomic_setup_scalers(dev
, intel_crtc
,
11890 static const struct drm_crtc_helper_funcs intel_helper_funcs
= {
11891 .mode_set_base_atomic
= intel_pipe_set_base_atomic
,
11892 .load_lut
= intel_crtc_load_lut
,
11893 .atomic_begin
= intel_begin_crtc_commit
,
11894 .atomic_flush
= intel_finish_crtc_commit
,
11895 .atomic_check
= intel_crtc_atomic_check
,
11898 static void intel_modeset_update_connector_atomic_state(struct drm_device
*dev
)
11900 struct intel_connector
*connector
;
11902 for_each_intel_connector(dev
, connector
) {
11903 if (connector
->base
.encoder
) {
11904 connector
->base
.state
->best_encoder
=
11905 connector
->base
.encoder
;
11906 connector
->base
.state
->crtc
=
11907 connector
->base
.encoder
->crtc
;
11909 connector
->base
.state
->best_encoder
= NULL
;
11910 connector
->base
.state
->crtc
= NULL
;
11916 connected_sink_compute_bpp(struct intel_connector
*connector
,
11917 struct intel_crtc_state
*pipe_config
)
11919 int bpp
= pipe_config
->pipe_bpp
;
11921 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11922 connector
->base
.base
.id
,
11923 connector
->base
.name
);
11925 /* Don't use an invalid EDID bpc value */
11926 if (connector
->base
.display_info
.bpc
&&
11927 connector
->base
.display_info
.bpc
* 3 < bpp
) {
11928 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11929 bpp
, connector
->base
.display_info
.bpc
*3);
11930 pipe_config
->pipe_bpp
= connector
->base
.display_info
.bpc
*3;
11933 /* Clamp bpp to 8 on screens without EDID 1.4 */
11934 if (connector
->base
.display_info
.bpc
== 0 && bpp
> 24) {
11935 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11937 pipe_config
->pipe_bpp
= 24;
11942 compute_baseline_pipe_bpp(struct intel_crtc
*crtc
,
11943 struct intel_crtc_state
*pipe_config
)
11945 struct drm_device
*dev
= crtc
->base
.dev
;
11946 struct drm_atomic_state
*state
;
11947 struct drm_connector
*connector
;
11948 struct drm_connector_state
*connector_state
;
11951 if ((IS_G4X(dev
) || IS_VALLEYVIEW(dev
)))
11953 else if (INTEL_INFO(dev
)->gen
>= 5)
11959 pipe_config
->pipe_bpp
= bpp
;
11961 state
= pipe_config
->base
.state
;
11963 /* Clamp display bpp to EDID value */
11964 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
11965 if (connector_state
->crtc
!= &crtc
->base
)
11968 connected_sink_compute_bpp(to_intel_connector(connector
),
11975 static void intel_dump_crtc_timings(const struct drm_display_mode
*mode
)
11977 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11978 "type: 0x%x flags: 0x%x\n",
11980 mode
->crtc_hdisplay
, mode
->crtc_hsync_start
,
11981 mode
->crtc_hsync_end
, mode
->crtc_htotal
,
11982 mode
->crtc_vdisplay
, mode
->crtc_vsync_start
,
11983 mode
->crtc_vsync_end
, mode
->crtc_vtotal
, mode
->type
, mode
->flags
);
11986 static void intel_dump_pipe_config(struct intel_crtc
*crtc
,
11987 struct intel_crtc_state
*pipe_config
,
11988 const char *context
)
11990 struct drm_device
*dev
= crtc
->base
.dev
;
11991 struct drm_plane
*plane
;
11992 struct intel_plane
*intel_plane
;
11993 struct intel_plane_state
*state
;
11994 struct drm_framebuffer
*fb
;
11996 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc
->base
.base
.id
,
11997 context
, pipe_config
, pipe_name(crtc
->pipe
));
11999 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config
->cpu_transcoder
));
12000 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12001 pipe_config
->pipe_bpp
, pipe_config
->dither
);
12002 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12003 pipe_config
->has_pch_encoder
,
12004 pipe_config
->fdi_lanes
,
12005 pipe_config
->fdi_m_n
.gmch_m
, pipe_config
->fdi_m_n
.gmch_n
,
12006 pipe_config
->fdi_m_n
.link_m
, pipe_config
->fdi_m_n
.link_n
,
12007 pipe_config
->fdi_m_n
.tu
);
12008 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12009 pipe_config
->has_dp_encoder
,
12010 pipe_config
->lane_count
,
12011 pipe_config
->dp_m_n
.gmch_m
, pipe_config
->dp_m_n
.gmch_n
,
12012 pipe_config
->dp_m_n
.link_m
, pipe_config
->dp_m_n
.link_n
,
12013 pipe_config
->dp_m_n
.tu
);
12015 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12016 pipe_config
->has_dp_encoder
,
12017 pipe_config
->lane_count
,
12018 pipe_config
->dp_m2_n2
.gmch_m
,
12019 pipe_config
->dp_m2_n2
.gmch_n
,
12020 pipe_config
->dp_m2_n2
.link_m
,
12021 pipe_config
->dp_m2_n2
.link_n
,
12022 pipe_config
->dp_m2_n2
.tu
);
12024 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12025 pipe_config
->has_audio
,
12026 pipe_config
->has_infoframe
);
12028 DRM_DEBUG_KMS("requested mode:\n");
12029 drm_mode_debug_printmodeline(&pipe_config
->base
.mode
);
12030 DRM_DEBUG_KMS("adjusted mode:\n");
12031 drm_mode_debug_printmodeline(&pipe_config
->base
.adjusted_mode
);
12032 intel_dump_crtc_timings(&pipe_config
->base
.adjusted_mode
);
12033 DRM_DEBUG_KMS("port clock: %d\n", pipe_config
->port_clock
);
12034 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12035 pipe_config
->pipe_src_w
, pipe_config
->pipe_src_h
);
12036 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12038 pipe_config
->scaler_state
.scaler_users
,
12039 pipe_config
->scaler_state
.scaler_id
);
12040 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12041 pipe_config
->gmch_pfit
.control
,
12042 pipe_config
->gmch_pfit
.pgm_ratios
,
12043 pipe_config
->gmch_pfit
.lvds_border_bits
);
12044 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12045 pipe_config
->pch_pfit
.pos
,
12046 pipe_config
->pch_pfit
.size
,
12047 pipe_config
->pch_pfit
.enabled
? "enabled" : "disabled");
12048 DRM_DEBUG_KMS("ips: %i\n", pipe_config
->ips_enabled
);
12049 DRM_DEBUG_KMS("double wide: %i\n", pipe_config
->double_wide
);
12051 if (IS_BROXTON(dev
)) {
12052 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12053 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12054 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12055 pipe_config
->ddi_pll_sel
,
12056 pipe_config
->dpll_hw_state
.ebb0
,
12057 pipe_config
->dpll_hw_state
.ebb4
,
12058 pipe_config
->dpll_hw_state
.pll0
,
12059 pipe_config
->dpll_hw_state
.pll1
,
12060 pipe_config
->dpll_hw_state
.pll2
,
12061 pipe_config
->dpll_hw_state
.pll3
,
12062 pipe_config
->dpll_hw_state
.pll6
,
12063 pipe_config
->dpll_hw_state
.pll8
,
12064 pipe_config
->dpll_hw_state
.pll9
,
12065 pipe_config
->dpll_hw_state
.pll10
,
12066 pipe_config
->dpll_hw_state
.pcsdw12
);
12067 } else if (IS_SKYLAKE(dev
)) {
12068 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12069 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12070 pipe_config
->ddi_pll_sel
,
12071 pipe_config
->dpll_hw_state
.ctrl1
,
12072 pipe_config
->dpll_hw_state
.cfgcr1
,
12073 pipe_config
->dpll_hw_state
.cfgcr2
);
12074 } else if (HAS_DDI(dev
)) {
12075 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12076 pipe_config
->ddi_pll_sel
,
12077 pipe_config
->dpll_hw_state
.wrpll
,
12078 pipe_config
->dpll_hw_state
.spll
);
12080 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12081 "fp0: 0x%x, fp1: 0x%x\n",
12082 pipe_config
->dpll_hw_state
.dpll
,
12083 pipe_config
->dpll_hw_state
.dpll_md
,
12084 pipe_config
->dpll_hw_state
.fp0
,
12085 pipe_config
->dpll_hw_state
.fp1
);
12088 DRM_DEBUG_KMS("planes on this crtc\n");
12089 list_for_each_entry(plane
, &dev
->mode_config
.plane_list
, head
) {
12090 intel_plane
= to_intel_plane(plane
);
12091 if (intel_plane
->pipe
!= crtc
->pipe
)
12094 state
= to_intel_plane_state(plane
->state
);
12095 fb
= state
->base
.fb
;
12097 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12098 "disabled, scaler_id = %d\n",
12099 plane
->type
== DRM_PLANE_TYPE_CURSOR
? "CURSOR" : "STANDARD",
12100 plane
->base
.id
, intel_plane
->pipe
,
12101 (crtc
->base
.primary
== plane
) ? 0 : intel_plane
->plane
+ 1,
12102 drm_plane_index(plane
), state
->scaler_id
);
12106 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12107 plane
->type
== DRM_PLANE_TYPE_CURSOR
? "CURSOR" : "STANDARD",
12108 plane
->base
.id
, intel_plane
->pipe
,
12109 crtc
->base
.primary
== plane
? 0 : intel_plane
->plane
+ 1,
12110 drm_plane_index(plane
));
12111 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12112 fb
->base
.id
, fb
->width
, fb
->height
, fb
->pixel_format
);
12113 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12115 state
->src
.x1
>> 16, state
->src
.y1
>> 16,
12116 drm_rect_width(&state
->src
) >> 16,
12117 drm_rect_height(&state
->src
) >> 16,
12118 state
->dst
.x1
, state
->dst
.y1
,
12119 drm_rect_width(&state
->dst
), drm_rect_height(&state
->dst
));
12123 static bool check_digital_port_conflicts(struct drm_atomic_state
*state
)
12125 struct drm_device
*dev
= state
->dev
;
12126 struct intel_encoder
*encoder
;
12127 struct drm_connector
*connector
;
12128 struct drm_connector_state
*connector_state
;
12129 unsigned int used_ports
= 0;
12133 * Walk the connector list instead of the encoder
12134 * list to detect the problem on ddi platforms
12135 * where there's just one encoder per digital port.
12137 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
12138 if (!connector_state
->best_encoder
)
12141 encoder
= to_intel_encoder(connector_state
->best_encoder
);
12143 WARN_ON(!connector_state
->crtc
);
12145 switch (encoder
->type
) {
12146 unsigned int port_mask
;
12147 case INTEL_OUTPUT_UNKNOWN
:
12148 if (WARN_ON(!HAS_DDI(dev
)))
12150 case INTEL_OUTPUT_DISPLAYPORT
:
12151 case INTEL_OUTPUT_HDMI
:
12152 case INTEL_OUTPUT_EDP
:
12153 port_mask
= 1 << enc_to_dig_port(&encoder
->base
)->port
;
12155 /* the same port mustn't appear more than once */
12156 if (used_ports
& port_mask
)
12159 used_ports
|= port_mask
;
12169 clear_intel_crtc_state(struct intel_crtc_state
*crtc_state
)
12171 struct drm_crtc_state tmp_state
;
12172 struct intel_crtc_scaler_state scaler_state
;
12173 struct intel_dpll_hw_state dpll_hw_state
;
12174 enum intel_dpll_id shared_dpll
;
12175 uint32_t ddi_pll_sel
;
12178 /* FIXME: before the switch to atomic started, a new pipe_config was
12179 * kzalloc'd. Code that depends on any field being zero should be
12180 * fixed, so that the crtc_state can be safely duplicated. For now,
12181 * only fields that are know to not cause problems are preserved. */
12183 tmp_state
= crtc_state
->base
;
12184 scaler_state
= crtc_state
->scaler_state
;
12185 shared_dpll
= crtc_state
->shared_dpll
;
12186 dpll_hw_state
= crtc_state
->dpll_hw_state
;
12187 ddi_pll_sel
= crtc_state
->ddi_pll_sel
;
12188 force_thru
= crtc_state
->pch_pfit
.force_thru
;
12190 memset(crtc_state
, 0, sizeof *crtc_state
);
12192 crtc_state
->base
= tmp_state
;
12193 crtc_state
->scaler_state
= scaler_state
;
12194 crtc_state
->shared_dpll
= shared_dpll
;
12195 crtc_state
->dpll_hw_state
= dpll_hw_state
;
12196 crtc_state
->ddi_pll_sel
= ddi_pll_sel
;
12197 crtc_state
->pch_pfit
.force_thru
= force_thru
;
12201 intel_modeset_pipe_config(struct drm_crtc
*crtc
,
12202 struct intel_crtc_state
*pipe_config
)
12204 struct drm_atomic_state
*state
= pipe_config
->base
.state
;
12205 struct intel_encoder
*encoder
;
12206 struct drm_connector
*connector
;
12207 struct drm_connector_state
*connector_state
;
12208 int base_bpp
, ret
= -EINVAL
;
12212 clear_intel_crtc_state(pipe_config
);
12214 pipe_config
->cpu_transcoder
=
12215 (enum transcoder
) to_intel_crtc(crtc
)->pipe
;
12218 * Sanitize sync polarity flags based on requested ones. If neither
12219 * positive or negative polarity is requested, treat this as meaning
12220 * negative polarity.
12222 if (!(pipe_config
->base
.adjusted_mode
.flags
&
12223 (DRM_MODE_FLAG_PHSYNC
| DRM_MODE_FLAG_NHSYNC
)))
12224 pipe_config
->base
.adjusted_mode
.flags
|= DRM_MODE_FLAG_NHSYNC
;
12226 if (!(pipe_config
->base
.adjusted_mode
.flags
&
12227 (DRM_MODE_FLAG_PVSYNC
| DRM_MODE_FLAG_NVSYNC
)))
12228 pipe_config
->base
.adjusted_mode
.flags
|= DRM_MODE_FLAG_NVSYNC
;
12230 base_bpp
= compute_baseline_pipe_bpp(to_intel_crtc(crtc
),
12236 * Determine the real pipe dimensions. Note that stereo modes can
12237 * increase the actual pipe size due to the frame doubling and
12238 * insertion of additional space for blanks between the frame. This
12239 * is stored in the crtc timings. We use the requested mode to do this
12240 * computation to clearly distinguish it from the adjusted mode, which
12241 * can be changed by the connectors in the below retry loop.
12243 drm_crtc_get_hv_timing(&pipe_config
->base
.mode
,
12244 &pipe_config
->pipe_src_w
,
12245 &pipe_config
->pipe_src_h
);
12248 /* Ensure the port clock defaults are reset when retrying. */
12249 pipe_config
->port_clock
= 0;
12250 pipe_config
->pixel_multiplier
= 1;
12252 /* Fill in default crtc timings, allow encoders to overwrite them. */
12253 drm_mode_set_crtcinfo(&pipe_config
->base
.adjusted_mode
,
12254 CRTC_STEREO_DOUBLE
);
12256 /* Pass our mode to the connectors and the CRTC to give them a chance to
12257 * adjust it according to limitations or connector properties, and also
12258 * a chance to reject the mode entirely.
12260 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
12261 if (connector_state
->crtc
!= crtc
)
12264 encoder
= to_intel_encoder(connector_state
->best_encoder
);
12266 if (!(encoder
->compute_config(encoder
, pipe_config
))) {
12267 DRM_DEBUG_KMS("Encoder config failure\n");
12272 /* Set default port clock if not overwritten by the encoder. Needs to be
12273 * done afterwards in case the encoder adjusts the mode. */
12274 if (!pipe_config
->port_clock
)
12275 pipe_config
->port_clock
= pipe_config
->base
.adjusted_mode
.crtc_clock
12276 * pipe_config
->pixel_multiplier
;
12278 ret
= intel_crtc_compute_config(to_intel_crtc(crtc
), pipe_config
);
12280 DRM_DEBUG_KMS("CRTC fixup failed\n");
12284 if (ret
== RETRY
) {
12285 if (WARN(!retry
, "loop in pipe configuration computation\n")) {
12290 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12292 goto encoder_retry
;
12295 /* Dithering seems to not pass-through bits correctly when it should, so
12296 * only enable it on 6bpc panels. */
12297 pipe_config
->dither
= pipe_config
->pipe_bpp
== 6*3;
12298 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12299 base_bpp
, pipe_config
->pipe_bpp
, pipe_config
->dither
);
12306 intel_modeset_update_crtc_state(struct drm_atomic_state
*state
)
12308 struct drm_crtc
*crtc
;
12309 struct drm_crtc_state
*crtc_state
;
12312 /* Double check state. */
12313 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
12314 to_intel_crtc(crtc
)->config
= to_intel_crtc_state(crtc
->state
);
12316 /* Update hwmode for vblank functions */
12317 if (crtc
->state
->active
)
12318 crtc
->hwmode
= crtc
->state
->adjusted_mode
;
12320 crtc
->hwmode
.crtc_clock
= 0;
12324 static bool intel_fuzzy_clock_check(int clock1
, int clock2
)
12328 if (clock1
== clock2
)
12331 if (!clock1
|| !clock2
)
12334 diff
= abs(clock1
- clock2
);
12336 if (((((diff
+ clock1
+ clock2
) * 100)) / (clock1
+ clock2
)) < 105)
12342 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12343 list_for_each_entry((intel_crtc), \
12344 &(dev)->mode_config.crtc_list, \
12346 if (mask & (1 <<(intel_crtc)->pipe))
12349 intel_compare_m_n(unsigned int m
, unsigned int n
,
12350 unsigned int m2
, unsigned int n2
,
12353 if (m
== m2
&& n
== n2
)
12356 if (exact
|| !m
|| !n
|| !m2
|| !n2
)
12359 BUILD_BUG_ON(DATA_LINK_M_N_MASK
> INT_MAX
);
12366 } else if (m
< m2
) {
12373 return m
== m2
&& n
== n2
;
12377 intel_compare_link_m_n(const struct intel_link_m_n
*m_n
,
12378 struct intel_link_m_n
*m2_n2
,
12381 if (m_n
->tu
== m2_n2
->tu
&&
12382 intel_compare_m_n(m_n
->gmch_m
, m_n
->gmch_n
,
12383 m2_n2
->gmch_m
, m2_n2
->gmch_n
, !adjust
) &&
12384 intel_compare_m_n(m_n
->link_m
, m_n
->link_n
,
12385 m2_n2
->link_m
, m2_n2
->link_n
, !adjust
)) {
12396 intel_pipe_config_compare(struct drm_device
*dev
,
12397 struct intel_crtc_state
*current_config
,
12398 struct intel_crtc_state
*pipe_config
,
12403 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12406 DRM_ERROR(fmt, ##__VA_ARGS__); \
12408 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12411 #define PIPE_CONF_CHECK_X(name) \
12412 if (current_config->name != pipe_config->name) { \
12413 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12414 "(expected 0x%08x, found 0x%08x)\n", \
12415 current_config->name, \
12416 pipe_config->name); \
12420 #define PIPE_CONF_CHECK_I(name) \
12421 if (current_config->name != pipe_config->name) { \
12422 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12423 "(expected %i, found %i)\n", \
12424 current_config->name, \
12425 pipe_config->name); \
12429 #define PIPE_CONF_CHECK_M_N(name) \
12430 if (!intel_compare_link_m_n(¤t_config->name, \
12431 &pipe_config->name,\
12433 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12434 "(expected tu %i gmch %i/%i link %i/%i, " \
12435 "found tu %i, gmch %i/%i link %i/%i)\n", \
12436 current_config->name.tu, \
12437 current_config->name.gmch_m, \
12438 current_config->name.gmch_n, \
12439 current_config->name.link_m, \
12440 current_config->name.link_n, \
12441 pipe_config->name.tu, \
12442 pipe_config->name.gmch_m, \
12443 pipe_config->name.gmch_n, \
12444 pipe_config->name.link_m, \
12445 pipe_config->name.link_n); \
12449 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12450 if (!intel_compare_link_m_n(¤t_config->name, \
12451 &pipe_config->name, adjust) && \
12452 !intel_compare_link_m_n(¤t_config->alt_name, \
12453 &pipe_config->name, adjust)) { \
12454 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12455 "(expected tu %i gmch %i/%i link %i/%i, " \
12456 "or tu %i gmch %i/%i link %i/%i, " \
12457 "found tu %i, gmch %i/%i link %i/%i)\n", \
12458 current_config->name.tu, \
12459 current_config->name.gmch_m, \
12460 current_config->name.gmch_n, \
12461 current_config->name.link_m, \
12462 current_config->name.link_n, \
12463 current_config->alt_name.tu, \
12464 current_config->alt_name.gmch_m, \
12465 current_config->alt_name.gmch_n, \
12466 current_config->alt_name.link_m, \
12467 current_config->alt_name.link_n, \
12468 pipe_config->name.tu, \
12469 pipe_config->name.gmch_m, \
12470 pipe_config->name.gmch_n, \
12471 pipe_config->name.link_m, \
12472 pipe_config->name.link_n); \
12476 /* This is required for BDW+ where there is only one set of registers for
12477 * switching between high and low RR.
12478 * This macro can be used whenever a comparison has to be made between one
12479 * hw state and multiple sw state variables.
12481 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12482 if ((current_config->name != pipe_config->name) && \
12483 (current_config->alt_name != pipe_config->name)) { \
12484 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12485 "(expected %i or %i, found %i)\n", \
12486 current_config->name, \
12487 current_config->alt_name, \
12488 pipe_config->name); \
12492 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12493 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12494 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12495 "(expected %i, found %i)\n", \
12496 current_config->name & (mask), \
12497 pipe_config->name & (mask)); \
12501 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12502 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12503 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12504 "(expected %i, found %i)\n", \
12505 current_config->name, \
12506 pipe_config->name); \
12510 #define PIPE_CONF_QUIRK(quirk) \
12511 ((current_config->quirks | pipe_config->quirks) & (quirk))
12513 PIPE_CONF_CHECK_I(cpu_transcoder
);
12515 PIPE_CONF_CHECK_I(has_pch_encoder
);
12516 PIPE_CONF_CHECK_I(fdi_lanes
);
12517 PIPE_CONF_CHECK_M_N(fdi_m_n
);
12519 PIPE_CONF_CHECK_I(has_dp_encoder
);
12520 PIPE_CONF_CHECK_I(lane_count
);
12522 if (INTEL_INFO(dev
)->gen
< 8) {
12523 PIPE_CONF_CHECK_M_N(dp_m_n
);
12525 if (current_config
->has_drrs
)
12526 PIPE_CONF_CHECK_M_N(dp_m2_n2
);
12528 PIPE_CONF_CHECK_M_N_ALT(dp_m_n
, dp_m2_n2
);
12530 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hdisplay
);
12531 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_htotal
);
12532 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hblank_start
);
12533 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hblank_end
);
12534 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hsync_start
);
12535 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hsync_end
);
12537 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vdisplay
);
12538 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vtotal
);
12539 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vblank_start
);
12540 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vblank_end
);
12541 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vsync_start
);
12542 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vsync_end
);
12544 PIPE_CONF_CHECK_I(pixel_multiplier
);
12545 PIPE_CONF_CHECK_I(has_hdmi_sink
);
12546 if ((INTEL_INFO(dev
)->gen
< 8 && !IS_HASWELL(dev
)) ||
12547 IS_VALLEYVIEW(dev
))
12548 PIPE_CONF_CHECK_I(limited_color_range
);
12549 PIPE_CONF_CHECK_I(has_infoframe
);
12551 PIPE_CONF_CHECK_I(has_audio
);
12553 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
12554 DRM_MODE_FLAG_INTERLACE
);
12556 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS
)) {
12557 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
12558 DRM_MODE_FLAG_PHSYNC
);
12559 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
12560 DRM_MODE_FLAG_NHSYNC
);
12561 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
12562 DRM_MODE_FLAG_PVSYNC
);
12563 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
12564 DRM_MODE_FLAG_NVSYNC
);
12567 PIPE_CONF_CHECK_X(gmch_pfit
.control
);
12568 /* pfit ratios are autocomputed by the hw on gen4+ */
12569 if (INTEL_INFO(dev
)->gen
< 4)
12570 PIPE_CONF_CHECK_I(gmch_pfit
.pgm_ratios
);
12571 PIPE_CONF_CHECK_X(gmch_pfit
.lvds_border_bits
);
12574 PIPE_CONF_CHECK_I(pipe_src_w
);
12575 PIPE_CONF_CHECK_I(pipe_src_h
);
12577 PIPE_CONF_CHECK_I(pch_pfit
.enabled
);
12578 if (current_config
->pch_pfit
.enabled
) {
12579 PIPE_CONF_CHECK_X(pch_pfit
.pos
);
12580 PIPE_CONF_CHECK_X(pch_pfit
.size
);
12583 PIPE_CONF_CHECK_I(scaler_state
.scaler_id
);
12586 /* BDW+ don't expose a synchronous way to read the state */
12587 if (IS_HASWELL(dev
))
12588 PIPE_CONF_CHECK_I(ips_enabled
);
12590 PIPE_CONF_CHECK_I(double_wide
);
12592 PIPE_CONF_CHECK_X(ddi_pll_sel
);
12594 PIPE_CONF_CHECK_I(shared_dpll
);
12595 PIPE_CONF_CHECK_X(dpll_hw_state
.dpll
);
12596 PIPE_CONF_CHECK_X(dpll_hw_state
.dpll_md
);
12597 PIPE_CONF_CHECK_X(dpll_hw_state
.fp0
);
12598 PIPE_CONF_CHECK_X(dpll_hw_state
.fp1
);
12599 PIPE_CONF_CHECK_X(dpll_hw_state
.wrpll
);
12600 PIPE_CONF_CHECK_X(dpll_hw_state
.spll
);
12601 PIPE_CONF_CHECK_X(dpll_hw_state
.ctrl1
);
12602 PIPE_CONF_CHECK_X(dpll_hw_state
.cfgcr1
);
12603 PIPE_CONF_CHECK_X(dpll_hw_state
.cfgcr2
);
12605 if (IS_G4X(dev
) || INTEL_INFO(dev
)->gen
>= 5)
12606 PIPE_CONF_CHECK_I(pipe_bpp
);
12608 PIPE_CONF_CHECK_CLOCK_FUZZY(base
.adjusted_mode
.crtc_clock
);
12609 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock
);
12611 #undef PIPE_CONF_CHECK_X
12612 #undef PIPE_CONF_CHECK_I
12613 #undef PIPE_CONF_CHECK_I_ALT
12614 #undef PIPE_CONF_CHECK_FLAGS
12615 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12616 #undef PIPE_CONF_QUIRK
12617 #undef INTEL_ERR_OR_DBG_KMS
12622 static void check_wm_state(struct drm_device
*dev
)
12624 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
12625 struct skl_ddb_allocation hw_ddb
, *sw_ddb
;
12626 struct intel_crtc
*intel_crtc
;
12629 if (INTEL_INFO(dev
)->gen
< 9)
12632 skl_ddb_get_hw_state(dev_priv
, &hw_ddb
);
12633 sw_ddb
= &dev_priv
->wm
.skl_hw
.ddb
;
12635 for_each_intel_crtc(dev
, intel_crtc
) {
12636 struct skl_ddb_entry
*hw_entry
, *sw_entry
;
12637 const enum pipe pipe
= intel_crtc
->pipe
;
12639 if (!intel_crtc
->active
)
12643 for_each_plane(dev_priv
, pipe
, plane
) {
12644 hw_entry
= &hw_ddb
.plane
[pipe
][plane
];
12645 sw_entry
= &sw_ddb
->plane
[pipe
][plane
];
12647 if (skl_ddb_entry_equal(hw_entry
, sw_entry
))
12650 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12651 "(expected (%u,%u), found (%u,%u))\n",
12652 pipe_name(pipe
), plane
+ 1,
12653 sw_entry
->start
, sw_entry
->end
,
12654 hw_entry
->start
, hw_entry
->end
);
12658 hw_entry
= &hw_ddb
.plane
[pipe
][PLANE_CURSOR
];
12659 sw_entry
= &sw_ddb
->plane
[pipe
][PLANE_CURSOR
];
12661 if (skl_ddb_entry_equal(hw_entry
, sw_entry
))
12664 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12665 "(expected (%u,%u), found (%u,%u))\n",
12667 sw_entry
->start
, sw_entry
->end
,
12668 hw_entry
->start
, hw_entry
->end
);
12673 check_connector_state(struct drm_device
*dev
,
12674 struct drm_atomic_state
*old_state
)
12676 struct drm_connector_state
*old_conn_state
;
12677 struct drm_connector
*connector
;
12680 for_each_connector_in_state(old_state
, connector
, old_conn_state
, i
) {
12681 struct drm_encoder
*encoder
= connector
->encoder
;
12682 struct drm_connector_state
*state
= connector
->state
;
12684 /* This also checks the encoder/connector hw state with the
12685 * ->get_hw_state callbacks. */
12686 intel_connector_check_state(to_intel_connector(connector
));
12688 I915_STATE_WARN(state
->best_encoder
!= encoder
,
12689 "connector's atomic encoder doesn't match legacy encoder\n");
12694 check_encoder_state(struct drm_device
*dev
)
12696 struct intel_encoder
*encoder
;
12697 struct intel_connector
*connector
;
12699 for_each_intel_encoder(dev
, encoder
) {
12700 bool enabled
= false;
12703 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12704 encoder
->base
.base
.id
,
12705 encoder
->base
.name
);
12707 for_each_intel_connector(dev
, connector
) {
12708 if (connector
->base
.state
->best_encoder
!= &encoder
->base
)
12712 I915_STATE_WARN(connector
->base
.state
->crtc
!=
12713 encoder
->base
.crtc
,
12714 "connector's crtc doesn't match encoder crtc\n");
12717 I915_STATE_WARN(!!encoder
->base
.crtc
!= enabled
,
12718 "encoder's enabled state mismatch "
12719 "(expected %i, found %i)\n",
12720 !!encoder
->base
.crtc
, enabled
);
12722 if (!encoder
->base
.crtc
) {
12725 active
= encoder
->get_hw_state(encoder
, &pipe
);
12726 I915_STATE_WARN(active
,
12727 "encoder detached but still enabled on pipe %c.\n",
12734 check_crtc_state(struct drm_device
*dev
, struct drm_atomic_state
*old_state
)
12736 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
12737 struct intel_encoder
*encoder
;
12738 struct drm_crtc_state
*old_crtc_state
;
12739 struct drm_crtc
*crtc
;
12742 for_each_crtc_in_state(old_state
, crtc
, old_crtc_state
, i
) {
12743 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
12744 struct intel_crtc_state
*pipe_config
, *sw_config
;
12747 if (!needs_modeset(crtc
->state
) &&
12748 !to_intel_crtc_state(crtc
->state
)->update_pipe
)
12751 __drm_atomic_helper_crtc_destroy_state(crtc
, old_crtc_state
);
12752 pipe_config
= to_intel_crtc_state(old_crtc_state
);
12753 memset(pipe_config
, 0, sizeof(*pipe_config
));
12754 pipe_config
->base
.crtc
= crtc
;
12755 pipe_config
->base
.state
= old_state
;
12757 DRM_DEBUG_KMS("[CRTC:%d]\n",
12760 active
= dev_priv
->display
.get_pipe_config(intel_crtc
,
12763 /* hw state is inconsistent with the pipe quirk */
12764 if ((intel_crtc
->pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
12765 (intel_crtc
->pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
12766 active
= crtc
->state
->active
;
12768 I915_STATE_WARN(crtc
->state
->active
!= active
,
12769 "crtc active state doesn't match with hw state "
12770 "(expected %i, found %i)\n", crtc
->state
->active
, active
);
12772 I915_STATE_WARN(intel_crtc
->active
!= crtc
->state
->active
,
12773 "transitional active state does not match atomic hw state "
12774 "(expected %i, found %i)\n", crtc
->state
->active
, intel_crtc
->active
);
12776 for_each_encoder_on_crtc(dev
, crtc
, encoder
) {
12779 active
= encoder
->get_hw_state(encoder
, &pipe
);
12780 I915_STATE_WARN(active
!= crtc
->state
->active
,
12781 "[ENCODER:%i] active %i with crtc active %i\n",
12782 encoder
->base
.base
.id
, active
, crtc
->state
->active
);
12784 I915_STATE_WARN(active
&& intel_crtc
->pipe
!= pipe
,
12785 "Encoder connected to wrong pipe %c\n",
12789 encoder
->get_config(encoder
, pipe_config
);
12792 if (!crtc
->state
->active
)
12795 sw_config
= to_intel_crtc_state(crtc
->state
);
12796 if (!intel_pipe_config_compare(dev
, sw_config
,
12797 pipe_config
, false)) {
12798 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12799 intel_dump_pipe_config(intel_crtc
, pipe_config
,
12801 intel_dump_pipe_config(intel_crtc
, sw_config
,
12808 check_shared_dpll_state(struct drm_device
*dev
)
12810 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
12811 struct intel_crtc
*crtc
;
12812 struct intel_dpll_hw_state dpll_hw_state
;
12815 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++) {
12816 struct intel_shared_dpll
*pll
= &dev_priv
->shared_dplls
[i
];
12817 int enabled_crtcs
= 0, active_crtcs
= 0;
12820 memset(&dpll_hw_state
, 0, sizeof(dpll_hw_state
));
12822 DRM_DEBUG_KMS("%s\n", pll
->name
);
12824 active
= pll
->get_hw_state(dev_priv
, pll
, &dpll_hw_state
);
12826 I915_STATE_WARN(pll
->active
> hweight32(pll
->config
.crtc_mask
),
12827 "more active pll users than references: %i vs %i\n",
12828 pll
->active
, hweight32(pll
->config
.crtc_mask
));
12829 I915_STATE_WARN(pll
->active
&& !pll
->on
,
12830 "pll in active use but not on in sw tracking\n");
12831 I915_STATE_WARN(pll
->on
&& !pll
->active
,
12832 "pll in on but not on in use in sw tracking\n");
12833 I915_STATE_WARN(pll
->on
!= active
,
12834 "pll on state mismatch (expected %i, found %i)\n",
12837 for_each_intel_crtc(dev
, crtc
) {
12838 if (crtc
->base
.state
->enable
&& intel_crtc_to_shared_dpll(crtc
) == pll
)
12840 if (crtc
->active
&& intel_crtc_to_shared_dpll(crtc
) == pll
)
12843 I915_STATE_WARN(pll
->active
!= active_crtcs
,
12844 "pll active crtcs mismatch (expected %i, found %i)\n",
12845 pll
->active
, active_crtcs
);
12846 I915_STATE_WARN(hweight32(pll
->config
.crtc_mask
) != enabled_crtcs
,
12847 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12848 hweight32(pll
->config
.crtc_mask
), enabled_crtcs
);
12850 I915_STATE_WARN(pll
->on
&& memcmp(&pll
->config
.hw_state
, &dpll_hw_state
,
12851 sizeof(dpll_hw_state
)),
12852 "pll hw state mismatch\n");
12857 intel_modeset_check_state(struct drm_device
*dev
,
12858 struct drm_atomic_state
*old_state
)
12860 check_wm_state(dev
);
12861 check_connector_state(dev
, old_state
);
12862 check_encoder_state(dev
);
12863 check_crtc_state(dev
, old_state
);
12864 check_shared_dpll_state(dev
);
12867 void ironlake_check_encoder_dotclock(const struct intel_crtc_state
*pipe_config
,
12871 * FDI already provided one idea for the dotclock.
12872 * Yell if the encoder disagrees.
12874 WARN(!intel_fuzzy_clock_check(pipe_config
->base
.adjusted_mode
.crtc_clock
, dotclock
),
12875 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12876 pipe_config
->base
.adjusted_mode
.crtc_clock
, dotclock
);
12879 static void update_scanline_offset(struct intel_crtc
*crtc
)
12881 struct drm_device
*dev
= crtc
->base
.dev
;
12884 * The scanline counter increments at the leading edge of hsync.
12886 * On most platforms it starts counting from vtotal-1 on the
12887 * first active line. That means the scanline counter value is
12888 * always one less than what we would expect. Ie. just after
12889 * start of vblank, which also occurs at start of hsync (on the
12890 * last active line), the scanline counter will read vblank_start-1.
12892 * On gen2 the scanline counter starts counting from 1 instead
12893 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12894 * to keep the value positive), instead of adding one.
12896 * On HSW+ the behaviour of the scanline counter depends on the output
12897 * type. For DP ports it behaves like most other platforms, but on HDMI
12898 * there's an extra 1 line difference. So we need to add two instead of
12899 * one to the value.
12901 if (IS_GEN2(dev
)) {
12902 const struct drm_display_mode
*adjusted_mode
= &crtc
->config
->base
.adjusted_mode
;
12905 vtotal
= adjusted_mode
->crtc_vtotal
;
12906 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
12909 crtc
->scanline_offset
= vtotal
- 1;
12910 } else if (HAS_DDI(dev
) &&
12911 intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
)) {
12912 crtc
->scanline_offset
= 2;
12914 crtc
->scanline_offset
= 1;
12917 static void intel_modeset_clear_plls(struct drm_atomic_state
*state
)
12919 struct drm_device
*dev
= state
->dev
;
12920 struct drm_i915_private
*dev_priv
= to_i915(dev
);
12921 struct intel_shared_dpll_config
*shared_dpll
= NULL
;
12922 struct intel_crtc
*intel_crtc
;
12923 struct intel_crtc_state
*intel_crtc_state
;
12924 struct drm_crtc
*crtc
;
12925 struct drm_crtc_state
*crtc_state
;
12928 if (!dev_priv
->display
.crtc_compute_clock
)
12931 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
12934 intel_crtc
= to_intel_crtc(crtc
);
12935 intel_crtc_state
= to_intel_crtc_state(crtc_state
);
12936 dpll
= intel_crtc_state
->shared_dpll
;
12938 if (!needs_modeset(crtc_state
) || dpll
== DPLL_ID_PRIVATE
)
12941 intel_crtc_state
->shared_dpll
= DPLL_ID_PRIVATE
;
12944 shared_dpll
= intel_atomic_get_shared_dpll_state(state
);
12946 shared_dpll
[dpll
].crtc_mask
&= ~(1 << intel_crtc
->pipe
);
12951 * This implements the workaround described in the "notes" section of the mode
12952 * set sequence documentation. When going from no pipes or single pipe to
12953 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12954 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12956 static int haswell_mode_set_planes_workaround(struct drm_atomic_state
*state
)
12958 struct drm_crtc_state
*crtc_state
;
12959 struct intel_crtc
*intel_crtc
;
12960 struct drm_crtc
*crtc
;
12961 struct intel_crtc_state
*first_crtc_state
= NULL
;
12962 struct intel_crtc_state
*other_crtc_state
= NULL
;
12963 enum pipe first_pipe
= INVALID_PIPE
, enabled_pipe
= INVALID_PIPE
;
12966 /* look at all crtc's that are going to be enabled in during modeset */
12967 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
12968 intel_crtc
= to_intel_crtc(crtc
);
12970 if (!crtc_state
->active
|| !needs_modeset(crtc_state
))
12973 if (first_crtc_state
) {
12974 other_crtc_state
= to_intel_crtc_state(crtc_state
);
12977 first_crtc_state
= to_intel_crtc_state(crtc_state
);
12978 first_pipe
= intel_crtc
->pipe
;
12982 /* No workaround needed? */
12983 if (!first_crtc_state
)
12986 /* w/a possibly needed, check how many crtc's are already enabled. */
12987 for_each_intel_crtc(state
->dev
, intel_crtc
) {
12988 struct intel_crtc_state
*pipe_config
;
12990 pipe_config
= intel_atomic_get_crtc_state(state
, intel_crtc
);
12991 if (IS_ERR(pipe_config
))
12992 return PTR_ERR(pipe_config
);
12994 pipe_config
->hsw_workaround_pipe
= INVALID_PIPE
;
12996 if (!pipe_config
->base
.active
||
12997 needs_modeset(&pipe_config
->base
))
13000 /* 2 or more enabled crtcs means no need for w/a */
13001 if (enabled_pipe
!= INVALID_PIPE
)
13004 enabled_pipe
= intel_crtc
->pipe
;
13007 if (enabled_pipe
!= INVALID_PIPE
)
13008 first_crtc_state
->hsw_workaround_pipe
= enabled_pipe
;
13009 else if (other_crtc_state
)
13010 other_crtc_state
->hsw_workaround_pipe
= first_pipe
;
13015 static int intel_modeset_all_pipes(struct drm_atomic_state
*state
)
13017 struct drm_crtc
*crtc
;
13018 struct drm_crtc_state
*crtc_state
;
13021 /* add all active pipes to the state */
13022 for_each_crtc(state
->dev
, crtc
) {
13023 crtc_state
= drm_atomic_get_crtc_state(state
, crtc
);
13024 if (IS_ERR(crtc_state
))
13025 return PTR_ERR(crtc_state
);
13027 if (!crtc_state
->active
|| needs_modeset(crtc_state
))
13030 crtc_state
->mode_changed
= true;
13032 ret
= drm_atomic_add_affected_connectors(state
, crtc
);
13036 ret
= drm_atomic_add_affected_planes(state
, crtc
);
13044 static int intel_modeset_checks(struct drm_atomic_state
*state
)
13046 struct drm_device
*dev
= state
->dev
;
13047 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
13050 if (!check_digital_port_conflicts(state
)) {
13051 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13056 * See if the config requires any additional preparation, e.g.
13057 * to adjust global state with pipes off. We need to do this
13058 * here so we can get the modeset_pipe updated config for the new
13059 * mode set on this crtc. For other crtcs we need to use the
13060 * adjusted_mode bits in the crtc directly.
13062 if (dev_priv
->display
.modeset_calc_cdclk
) {
13063 unsigned int cdclk
;
13065 ret
= dev_priv
->display
.modeset_calc_cdclk(state
);
13067 cdclk
= to_intel_atomic_state(state
)->cdclk
;
13068 if (!ret
&& cdclk
!= dev_priv
->cdclk_freq
)
13069 ret
= intel_modeset_all_pipes(state
);
13074 to_intel_atomic_state(state
)->cdclk
= dev_priv
->cdclk_freq
;
13076 intel_modeset_clear_plls(state
);
13078 if (IS_HASWELL(dev
))
13079 return haswell_mode_set_planes_workaround(state
);
13085 * intel_atomic_check - validate state object
13087 * @state: state to validate
13089 static int intel_atomic_check(struct drm_device
*dev
,
13090 struct drm_atomic_state
*state
)
13092 struct drm_crtc
*crtc
;
13093 struct drm_crtc_state
*crtc_state
;
13095 bool any_ms
= false;
13097 ret
= drm_atomic_helper_check_modeset(dev
, state
);
13101 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
13102 struct intel_crtc_state
*pipe_config
=
13103 to_intel_crtc_state(crtc_state
);
13105 memset(&to_intel_crtc(crtc
)->atomic
, 0,
13106 sizeof(struct intel_crtc_atomic_commit
));
13108 /* Catch I915_MODE_FLAG_INHERITED */
13109 if (crtc_state
->mode
.private_flags
!= crtc
->state
->mode
.private_flags
)
13110 crtc_state
->mode_changed
= true;
13112 if (!crtc_state
->enable
) {
13113 if (needs_modeset(crtc_state
))
13118 if (!needs_modeset(crtc_state
))
13121 /* FIXME: For only active_changed we shouldn't need to do any
13122 * state recomputation at all. */
13124 ret
= drm_atomic_add_affected_connectors(state
, crtc
);
13128 ret
= intel_modeset_pipe_config(crtc
, pipe_config
);
13132 if (i915
.fastboot
&&
13133 intel_pipe_config_compare(state
->dev
,
13134 to_intel_crtc_state(crtc
->state
),
13135 pipe_config
, true)) {
13136 crtc_state
->mode_changed
= false;
13137 to_intel_crtc_state(crtc_state
)->update_pipe
= true;
13140 if (needs_modeset(crtc_state
)) {
13143 ret
= drm_atomic_add_affected_planes(state
, crtc
);
13148 intel_dump_pipe_config(to_intel_crtc(crtc
), pipe_config
,
13149 needs_modeset(crtc_state
) ?
13150 "[modeset]" : "[fastset]");
13154 ret
= intel_modeset_checks(state
);
13159 to_intel_atomic_state(state
)->cdclk
=
13160 to_i915(state
->dev
)->cdclk_freq
;
13162 return drm_atomic_helper_check_planes(state
->dev
, state
);
13166 * intel_atomic_commit - commit validated state object
13168 * @state: the top-level driver state object
13169 * @async: asynchronous commit
13171 * This function commits a top-level state object that has been validated
13172 * with drm_atomic_helper_check().
13174 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13175 * we can only handle plane-related operations and do not yet support
13176 * asynchronous commit.
13179 * Zero for success or -errno.
13181 static int intel_atomic_commit(struct drm_device
*dev
,
13182 struct drm_atomic_state
*state
,
13185 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
13186 struct drm_crtc
*crtc
;
13187 struct drm_crtc_state
*crtc_state
;
13190 bool any_ms
= false;
13193 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13197 ret
= drm_atomic_helper_prepare_planes(dev
, state
);
13201 drm_atomic_helper_swap_state(dev
, state
);
13203 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
13204 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
13206 if (!needs_modeset(crtc
->state
))
13210 intel_pre_plane_update(intel_crtc
);
13212 if (crtc_state
->active
) {
13213 intel_crtc_disable_planes(crtc
, crtc_state
->plane_mask
);
13214 dev_priv
->display
.crtc_disable(crtc
);
13215 intel_crtc
->active
= false;
13216 intel_disable_shared_dpll(intel_crtc
);
13220 /* Only after disabling all output pipelines that will be changed can we
13221 * update the the output configuration. */
13222 intel_modeset_update_crtc_state(state
);
13225 intel_shared_dpll_commit(state
);
13227 drm_atomic_helper_update_legacy_modeset_state(state
->dev
, state
);
13228 modeset_update_crtc_power_domains(state
);
13231 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13232 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
13233 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
13234 bool modeset
= needs_modeset(crtc
->state
);
13235 bool update_pipe
= !modeset
&&
13236 to_intel_crtc_state(crtc
->state
)->update_pipe
;
13237 unsigned long put_domains
= 0;
13239 if (modeset
&& crtc
->state
->active
) {
13240 update_scanline_offset(to_intel_crtc(crtc
));
13241 dev_priv
->display
.crtc_enable(crtc
);
13245 put_domains
= modeset_get_crtc_power_domains(crtc
);
13247 /* make sure intel_modeset_check_state runs */
13252 intel_pre_plane_update(intel_crtc
);
13254 drm_atomic_helper_commit_planes_on_crtc(crtc_state
);
13257 modeset_put_power_domains(dev_priv
, put_domains
);
13259 intel_post_plane_update(intel_crtc
);
13262 /* FIXME: add subpixel order */
13264 drm_atomic_helper_wait_for_vblanks(dev
, state
);
13265 drm_atomic_helper_cleanup_planes(dev
, state
);
13268 intel_modeset_check_state(dev
, state
);
13270 drm_atomic_state_free(state
);
13275 void intel_crtc_restore_mode(struct drm_crtc
*crtc
)
13277 struct drm_device
*dev
= crtc
->dev
;
13278 struct drm_atomic_state
*state
;
13279 struct drm_crtc_state
*crtc_state
;
13282 state
= drm_atomic_state_alloc(dev
);
13284 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13289 state
->acquire_ctx
= drm_modeset_legacy_acquire_ctx(crtc
);
13292 crtc_state
= drm_atomic_get_crtc_state(state
, crtc
);
13293 ret
= PTR_ERR_OR_ZERO(crtc_state
);
13295 if (!crtc_state
->active
)
13298 crtc_state
->mode_changed
= true;
13299 ret
= drm_atomic_commit(state
);
13302 if (ret
== -EDEADLK
) {
13303 drm_atomic_state_clear(state
);
13304 drm_modeset_backoff(state
->acquire_ctx
);
13310 drm_atomic_state_free(state
);
13313 #undef for_each_intel_crtc_masked
13315 static const struct drm_crtc_funcs intel_crtc_funcs
= {
13316 .gamma_set
= intel_crtc_gamma_set
,
13317 .set_config
= drm_atomic_helper_set_config
,
13318 .destroy
= intel_crtc_destroy
,
13319 .page_flip
= intel_crtc_page_flip
,
13320 .atomic_duplicate_state
= intel_crtc_duplicate_state
,
13321 .atomic_destroy_state
= intel_crtc_destroy_state
,
13324 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private
*dev_priv
,
13325 struct intel_shared_dpll
*pll
,
13326 struct intel_dpll_hw_state
*hw_state
)
13330 if (!intel_display_power_is_enabled(dev_priv
, POWER_DOMAIN_PLLS
))
13333 val
= I915_READ(PCH_DPLL(pll
->id
));
13334 hw_state
->dpll
= val
;
13335 hw_state
->fp0
= I915_READ(PCH_FP0(pll
->id
));
13336 hw_state
->fp1
= I915_READ(PCH_FP1(pll
->id
));
13338 return val
& DPLL_VCO_ENABLE
;
13341 static void ibx_pch_dpll_mode_set(struct drm_i915_private
*dev_priv
,
13342 struct intel_shared_dpll
*pll
)
13344 I915_WRITE(PCH_FP0(pll
->id
), pll
->config
.hw_state
.fp0
);
13345 I915_WRITE(PCH_FP1(pll
->id
), pll
->config
.hw_state
.fp1
);
13348 static void ibx_pch_dpll_enable(struct drm_i915_private
*dev_priv
,
13349 struct intel_shared_dpll
*pll
)
13351 /* PCH refclock must be enabled first */
13352 ibx_assert_pch_refclk_enabled(dev_priv
);
13354 I915_WRITE(PCH_DPLL(pll
->id
), pll
->config
.hw_state
.dpll
);
13356 /* Wait for the clocks to stabilize. */
13357 POSTING_READ(PCH_DPLL(pll
->id
));
13360 /* The pixel multiplier can only be updated once the
13361 * DPLL is enabled and the clocks are stable.
13363 * So write it again.
13365 I915_WRITE(PCH_DPLL(pll
->id
), pll
->config
.hw_state
.dpll
);
13366 POSTING_READ(PCH_DPLL(pll
->id
));
13370 static void ibx_pch_dpll_disable(struct drm_i915_private
*dev_priv
,
13371 struct intel_shared_dpll
*pll
)
13373 struct drm_device
*dev
= dev_priv
->dev
;
13374 struct intel_crtc
*crtc
;
13376 /* Make sure no transcoder isn't still depending on us. */
13377 for_each_intel_crtc(dev
, crtc
) {
13378 if (intel_crtc_to_shared_dpll(crtc
) == pll
)
13379 assert_pch_transcoder_disabled(dev_priv
, crtc
->pipe
);
13382 I915_WRITE(PCH_DPLL(pll
->id
), 0);
13383 POSTING_READ(PCH_DPLL(pll
->id
));
13387 static char *ibx_pch_dpll_names
[] = {
13392 static void ibx_pch_dpll_init(struct drm_device
*dev
)
13394 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
13397 dev_priv
->num_shared_dpll
= 2;
13399 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++) {
13400 dev_priv
->shared_dplls
[i
].id
= i
;
13401 dev_priv
->shared_dplls
[i
].name
= ibx_pch_dpll_names
[i
];
13402 dev_priv
->shared_dplls
[i
].mode_set
= ibx_pch_dpll_mode_set
;
13403 dev_priv
->shared_dplls
[i
].enable
= ibx_pch_dpll_enable
;
13404 dev_priv
->shared_dplls
[i
].disable
= ibx_pch_dpll_disable
;
13405 dev_priv
->shared_dplls
[i
].get_hw_state
=
13406 ibx_pch_dpll_get_hw_state
;
13410 static void intel_shared_dpll_init(struct drm_device
*dev
)
13412 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
13415 intel_ddi_pll_init(dev
);
13416 else if (HAS_PCH_IBX(dev
) || HAS_PCH_CPT(dev
))
13417 ibx_pch_dpll_init(dev
);
13419 dev_priv
->num_shared_dpll
= 0;
13421 BUG_ON(dev_priv
->num_shared_dpll
> I915_NUM_PLLS
);
13425 * intel_prepare_plane_fb - Prepare fb for usage on plane
13426 * @plane: drm plane to prepare for
13427 * @fb: framebuffer to prepare for presentation
13429 * Prepares a framebuffer for usage on a display plane. Generally this
13430 * involves pinning the underlying object and updating the frontbuffer tracking
13431 * bits. Some older platforms need special physical address handling for
13434 * Returns 0 on success, negative error code on failure.
13437 intel_prepare_plane_fb(struct drm_plane
*plane
,
13438 const struct drm_plane_state
*new_state
)
13440 struct drm_device
*dev
= plane
->dev
;
13441 struct drm_framebuffer
*fb
= new_state
->fb
;
13442 struct intel_plane
*intel_plane
= to_intel_plane(plane
);
13443 struct drm_i915_gem_object
*obj
= intel_fb_obj(fb
);
13444 struct drm_i915_gem_object
*old_obj
= intel_fb_obj(plane
->fb
);
13450 mutex_lock(&dev
->struct_mutex
);
13452 if (plane
->type
== DRM_PLANE_TYPE_CURSOR
&&
13453 INTEL_INFO(dev
)->cursor_needs_physical
) {
13454 int align
= IS_I830(dev
) ? 16 * 1024 : 256;
13455 ret
= i915_gem_object_attach_phys(obj
, align
);
13457 DRM_DEBUG_KMS("failed to attach phys object\n");
13459 ret
= intel_pin_and_fence_fb_obj(plane
, fb
, new_state
, NULL
, NULL
);
13463 i915_gem_track_fb(old_obj
, obj
, intel_plane
->frontbuffer_bit
);
13465 mutex_unlock(&dev
->struct_mutex
);
13471 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13472 * @plane: drm plane to clean up for
13473 * @fb: old framebuffer that was on plane
13475 * Cleans up a framebuffer that has just been removed from a plane.
13478 intel_cleanup_plane_fb(struct drm_plane
*plane
,
13479 const struct drm_plane_state
*old_state
)
13481 struct drm_device
*dev
= plane
->dev
;
13482 struct drm_i915_gem_object
*obj
= intel_fb_obj(old_state
->fb
);
13487 if (plane
->type
!= DRM_PLANE_TYPE_CURSOR
||
13488 !INTEL_INFO(dev
)->cursor_needs_physical
) {
13489 mutex_lock(&dev
->struct_mutex
);
13490 intel_unpin_fb_obj(old_state
->fb
, old_state
);
13491 mutex_unlock(&dev
->struct_mutex
);
13496 skl_max_scale(struct intel_crtc
*intel_crtc
, struct intel_crtc_state
*crtc_state
)
13499 struct drm_device
*dev
;
13500 struct drm_i915_private
*dev_priv
;
13501 int crtc_clock
, cdclk
;
13503 if (!intel_crtc
|| !crtc_state
)
13504 return DRM_PLANE_HELPER_NO_SCALING
;
13506 dev
= intel_crtc
->base
.dev
;
13507 dev_priv
= dev
->dev_private
;
13508 crtc_clock
= crtc_state
->base
.adjusted_mode
.crtc_clock
;
13509 cdclk
= to_intel_atomic_state(crtc_state
->base
.state
)->cdclk
;
13511 if (!crtc_clock
|| !cdclk
)
13512 return DRM_PLANE_HELPER_NO_SCALING
;
13515 * skl max scale is lower of:
13516 * close to 3 but not 3, -1 is for that purpose
13520 max_scale
= min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk
<< 8) / crtc_clock
));
13526 intel_check_primary_plane(struct drm_plane
*plane
,
13527 struct intel_crtc_state
*crtc_state
,
13528 struct intel_plane_state
*state
)
13530 struct drm_crtc
*crtc
= state
->base
.crtc
;
13531 struct drm_framebuffer
*fb
= state
->base
.fb
;
13532 int min_scale
= DRM_PLANE_HELPER_NO_SCALING
;
13533 int max_scale
= DRM_PLANE_HELPER_NO_SCALING
;
13534 bool can_position
= false;
13536 /* use scaler when colorkey is not required */
13537 if (INTEL_INFO(plane
->dev
)->gen
>= 9 &&
13538 state
->ckey
.flags
== I915_SET_COLORKEY_NONE
) {
13540 max_scale
= skl_max_scale(to_intel_crtc(crtc
), crtc_state
);
13541 can_position
= true;
13544 return drm_plane_helper_check_update(plane
, crtc
, fb
, &state
->src
,
13545 &state
->dst
, &state
->clip
,
13546 min_scale
, max_scale
,
13547 can_position
, true,
13552 intel_commit_primary_plane(struct drm_plane
*plane
,
13553 struct intel_plane_state
*state
)
13555 struct drm_crtc
*crtc
= state
->base
.crtc
;
13556 struct drm_framebuffer
*fb
= state
->base
.fb
;
13557 struct drm_device
*dev
= plane
->dev
;
13558 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
13559 struct intel_crtc
*intel_crtc
;
13560 struct drm_rect
*src
= &state
->src
;
13562 crtc
= crtc
? crtc
: plane
->crtc
;
13563 intel_crtc
= to_intel_crtc(crtc
);
13566 crtc
->x
= src
->x1
>> 16;
13567 crtc
->y
= src
->y1
>> 16;
13569 if (!crtc
->state
->active
)
13572 dev_priv
->display
.update_primary_plane(crtc
, fb
,
13573 state
->src
.x1
>> 16,
13574 state
->src
.y1
>> 16);
13578 intel_disable_primary_plane(struct drm_plane
*plane
,
13579 struct drm_crtc
*crtc
)
13581 struct drm_device
*dev
= plane
->dev
;
13582 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
13584 dev_priv
->display
.update_primary_plane(crtc
, NULL
, 0, 0);
13587 static void intel_begin_crtc_commit(struct drm_crtc
*crtc
,
13588 struct drm_crtc_state
*old_crtc_state
)
13590 struct drm_device
*dev
= crtc
->dev
;
13591 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
13592 struct intel_crtc_state
*old_intel_state
=
13593 to_intel_crtc_state(old_crtc_state
);
13594 bool modeset
= needs_modeset(crtc
->state
);
13596 if (intel_crtc
->atomic
.update_wm_pre
)
13597 intel_update_watermarks(crtc
);
13599 /* Perform vblank evasion around commit operation */
13600 if (crtc
->state
->active
)
13601 intel_pipe_update_start(intel_crtc
);
13606 if (to_intel_crtc_state(crtc
->state
)->update_pipe
)
13607 intel_update_pipe_config(intel_crtc
, old_intel_state
);
13608 else if (INTEL_INFO(dev
)->gen
>= 9)
13609 skl_detach_scalers(intel_crtc
);
13612 static void intel_finish_crtc_commit(struct drm_crtc
*crtc
,
13613 struct drm_crtc_state
*old_crtc_state
)
13615 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
13617 if (crtc
->state
->active
)
13618 intel_pipe_update_end(intel_crtc
);
13622 * intel_plane_destroy - destroy a plane
13623 * @plane: plane to destroy
13625 * Common destruction function for all types of planes (primary, cursor,
13628 void intel_plane_destroy(struct drm_plane
*plane
)
13630 struct intel_plane
*intel_plane
= to_intel_plane(plane
);
13631 drm_plane_cleanup(plane
);
13632 kfree(intel_plane
);
13635 const struct drm_plane_funcs intel_plane_funcs
= {
13636 .update_plane
= drm_atomic_helper_update_plane
,
13637 .disable_plane
= drm_atomic_helper_disable_plane
,
13638 .destroy
= intel_plane_destroy
,
13639 .set_property
= drm_atomic_helper_plane_set_property
,
13640 .atomic_get_property
= intel_plane_atomic_get_property
,
13641 .atomic_set_property
= intel_plane_atomic_set_property
,
13642 .atomic_duplicate_state
= intel_plane_duplicate_state
,
13643 .atomic_destroy_state
= intel_plane_destroy_state
,
13647 static struct drm_plane
*intel_primary_plane_create(struct drm_device
*dev
,
13650 struct intel_plane
*primary
;
13651 struct intel_plane_state
*state
;
13652 const uint32_t *intel_primary_formats
;
13653 unsigned int num_formats
;
13655 primary
= kzalloc(sizeof(*primary
), GFP_KERNEL
);
13656 if (primary
== NULL
)
13659 state
= intel_create_plane_state(&primary
->base
);
13664 primary
->base
.state
= &state
->base
;
13666 primary
->can_scale
= false;
13667 primary
->max_downscale
= 1;
13668 if (INTEL_INFO(dev
)->gen
>= 9) {
13669 primary
->can_scale
= true;
13670 state
->scaler_id
= -1;
13672 primary
->pipe
= pipe
;
13673 primary
->plane
= pipe
;
13674 primary
->frontbuffer_bit
= INTEL_FRONTBUFFER_PRIMARY(pipe
);
13675 primary
->check_plane
= intel_check_primary_plane
;
13676 primary
->commit_plane
= intel_commit_primary_plane
;
13677 primary
->disable_plane
= intel_disable_primary_plane
;
13678 if (HAS_FBC(dev
) && INTEL_INFO(dev
)->gen
< 4)
13679 primary
->plane
= !pipe
;
13681 if (INTEL_INFO(dev
)->gen
>= 9) {
13682 intel_primary_formats
= skl_primary_formats
;
13683 num_formats
= ARRAY_SIZE(skl_primary_formats
);
13684 } else if (INTEL_INFO(dev
)->gen
>= 4) {
13685 intel_primary_formats
= i965_primary_formats
;
13686 num_formats
= ARRAY_SIZE(i965_primary_formats
);
13688 intel_primary_formats
= i8xx_primary_formats
;
13689 num_formats
= ARRAY_SIZE(i8xx_primary_formats
);
13692 drm_universal_plane_init(dev
, &primary
->base
, 0,
13693 &intel_plane_funcs
,
13694 intel_primary_formats
, num_formats
,
13695 DRM_PLANE_TYPE_PRIMARY
);
13697 if (INTEL_INFO(dev
)->gen
>= 4)
13698 intel_create_rotation_property(dev
, primary
);
13700 drm_plane_helper_add(&primary
->base
, &intel_plane_helper_funcs
);
13702 return &primary
->base
;
13705 void intel_create_rotation_property(struct drm_device
*dev
, struct intel_plane
*plane
)
13707 if (!dev
->mode_config
.rotation_property
) {
13708 unsigned long flags
= BIT(DRM_ROTATE_0
) |
13709 BIT(DRM_ROTATE_180
);
13711 if (INTEL_INFO(dev
)->gen
>= 9)
13712 flags
|= BIT(DRM_ROTATE_90
) | BIT(DRM_ROTATE_270
);
13714 dev
->mode_config
.rotation_property
=
13715 drm_mode_create_rotation_property(dev
, flags
);
13717 if (dev
->mode_config
.rotation_property
)
13718 drm_object_attach_property(&plane
->base
.base
,
13719 dev
->mode_config
.rotation_property
,
13720 plane
->base
.state
->rotation
);
13724 intel_check_cursor_plane(struct drm_plane
*plane
,
13725 struct intel_crtc_state
*crtc_state
,
13726 struct intel_plane_state
*state
)
13728 struct drm_crtc
*crtc
= crtc_state
->base
.crtc
;
13729 struct drm_framebuffer
*fb
= state
->base
.fb
;
13730 struct drm_i915_gem_object
*obj
= intel_fb_obj(fb
);
13731 enum pipe pipe
= to_intel_plane(plane
)->pipe
;
13735 ret
= drm_plane_helper_check_update(plane
, crtc
, fb
, &state
->src
,
13736 &state
->dst
, &state
->clip
,
13737 DRM_PLANE_HELPER_NO_SCALING
,
13738 DRM_PLANE_HELPER_NO_SCALING
,
13739 true, true, &state
->visible
);
13743 /* if we want to turn off the cursor ignore width and height */
13747 /* Check for which cursor types we support */
13748 if (!cursor_size_ok(plane
->dev
, state
->base
.crtc_w
, state
->base
.crtc_h
)) {
13749 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13750 state
->base
.crtc_w
, state
->base
.crtc_h
);
13754 stride
= roundup_pow_of_two(state
->base
.crtc_w
) * 4;
13755 if (obj
->base
.size
< stride
* state
->base
.crtc_h
) {
13756 DRM_DEBUG_KMS("buffer is too small\n");
13760 if (fb
->modifier
[0] != DRM_FORMAT_MOD_NONE
) {
13761 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13766 * There's something wrong with the cursor on CHV pipe C.
13767 * If it straddles the left edge of the screen then
13768 * moving it away from the edge or disabling it often
13769 * results in a pipe underrun, and often that can lead to
13770 * dead pipe (constant underrun reported, and it scans
13771 * out just a solid color). To recover from that, the
13772 * display power well must be turned off and on again.
13773 * Refuse the put the cursor into that compromised position.
13775 if (IS_CHERRYVIEW(plane
->dev
) && pipe
== PIPE_C
&&
13776 state
->visible
&& state
->base
.crtc_x
< 0) {
13777 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13785 intel_disable_cursor_plane(struct drm_plane
*plane
,
13786 struct drm_crtc
*crtc
)
13788 intel_crtc_update_cursor(crtc
, false);
13792 intel_commit_cursor_plane(struct drm_plane
*plane
,
13793 struct intel_plane_state
*state
)
13795 struct drm_crtc
*crtc
= state
->base
.crtc
;
13796 struct drm_device
*dev
= plane
->dev
;
13797 struct intel_crtc
*intel_crtc
;
13798 struct drm_i915_gem_object
*obj
= intel_fb_obj(state
->base
.fb
);
13801 crtc
= crtc
? crtc
: plane
->crtc
;
13802 intel_crtc
= to_intel_crtc(crtc
);
13806 else if (!INTEL_INFO(dev
)->cursor_needs_physical
)
13807 addr
= i915_gem_obj_ggtt_offset(obj
);
13809 addr
= obj
->phys_handle
->busaddr
;
13811 intel_crtc
->cursor_addr
= addr
;
13813 if (crtc
->state
->active
)
13814 intel_crtc_update_cursor(crtc
, state
->visible
);
13817 static struct drm_plane
*intel_cursor_plane_create(struct drm_device
*dev
,
13820 struct intel_plane
*cursor
;
13821 struct intel_plane_state
*state
;
13823 cursor
= kzalloc(sizeof(*cursor
), GFP_KERNEL
);
13824 if (cursor
== NULL
)
13827 state
= intel_create_plane_state(&cursor
->base
);
13832 cursor
->base
.state
= &state
->base
;
13834 cursor
->can_scale
= false;
13835 cursor
->max_downscale
= 1;
13836 cursor
->pipe
= pipe
;
13837 cursor
->plane
= pipe
;
13838 cursor
->frontbuffer_bit
= INTEL_FRONTBUFFER_CURSOR(pipe
);
13839 cursor
->check_plane
= intel_check_cursor_plane
;
13840 cursor
->commit_plane
= intel_commit_cursor_plane
;
13841 cursor
->disable_plane
= intel_disable_cursor_plane
;
13843 drm_universal_plane_init(dev
, &cursor
->base
, 0,
13844 &intel_plane_funcs
,
13845 intel_cursor_formats
,
13846 ARRAY_SIZE(intel_cursor_formats
),
13847 DRM_PLANE_TYPE_CURSOR
);
13849 if (INTEL_INFO(dev
)->gen
>= 4) {
13850 if (!dev
->mode_config
.rotation_property
)
13851 dev
->mode_config
.rotation_property
=
13852 drm_mode_create_rotation_property(dev
,
13853 BIT(DRM_ROTATE_0
) |
13854 BIT(DRM_ROTATE_180
));
13855 if (dev
->mode_config
.rotation_property
)
13856 drm_object_attach_property(&cursor
->base
.base
,
13857 dev
->mode_config
.rotation_property
,
13858 state
->base
.rotation
);
13861 if (INTEL_INFO(dev
)->gen
>=9)
13862 state
->scaler_id
= -1;
13864 drm_plane_helper_add(&cursor
->base
, &intel_plane_helper_funcs
);
13866 return &cursor
->base
;
13869 static void skl_init_scalers(struct drm_device
*dev
, struct intel_crtc
*intel_crtc
,
13870 struct intel_crtc_state
*crtc_state
)
13873 struct intel_scaler
*intel_scaler
;
13874 struct intel_crtc_scaler_state
*scaler_state
= &crtc_state
->scaler_state
;
13876 for (i
= 0; i
< intel_crtc
->num_scalers
; i
++) {
13877 intel_scaler
= &scaler_state
->scalers
[i
];
13878 intel_scaler
->in_use
= 0;
13879 intel_scaler
->mode
= PS_SCALER_MODE_DYN
;
13882 scaler_state
->scaler_id
= -1;
13885 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
13887 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
13888 struct intel_crtc
*intel_crtc
;
13889 struct intel_crtc_state
*crtc_state
= NULL
;
13890 struct drm_plane
*primary
= NULL
;
13891 struct drm_plane
*cursor
= NULL
;
13894 intel_crtc
= kzalloc(sizeof(*intel_crtc
), GFP_KERNEL
);
13895 if (intel_crtc
== NULL
)
13898 crtc_state
= kzalloc(sizeof(*crtc_state
), GFP_KERNEL
);
13901 intel_crtc
->config
= crtc_state
;
13902 intel_crtc
->base
.state
= &crtc_state
->base
;
13903 crtc_state
->base
.crtc
= &intel_crtc
->base
;
13905 /* initialize shared scalers */
13906 if (INTEL_INFO(dev
)->gen
>= 9) {
13907 if (pipe
== PIPE_C
)
13908 intel_crtc
->num_scalers
= 1;
13910 intel_crtc
->num_scalers
= SKL_NUM_SCALERS
;
13912 skl_init_scalers(dev
, intel_crtc
, crtc_state
);
13915 primary
= intel_primary_plane_create(dev
, pipe
);
13919 cursor
= intel_cursor_plane_create(dev
, pipe
);
13923 ret
= drm_crtc_init_with_planes(dev
, &intel_crtc
->base
, primary
,
13924 cursor
, &intel_crtc_funcs
);
13928 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
13929 for (i
= 0; i
< 256; i
++) {
13930 intel_crtc
->lut_r
[i
] = i
;
13931 intel_crtc
->lut_g
[i
] = i
;
13932 intel_crtc
->lut_b
[i
] = i
;
13936 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13937 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13939 intel_crtc
->pipe
= pipe
;
13940 intel_crtc
->plane
= pipe
;
13941 if (HAS_FBC(dev
) && INTEL_INFO(dev
)->gen
< 4) {
13942 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13943 intel_crtc
->plane
= !pipe
;
13946 intel_crtc
->cursor_base
= ~0;
13947 intel_crtc
->cursor_cntl
= ~0;
13948 intel_crtc
->cursor_size
= ~0;
13950 intel_crtc
->wm
.cxsr_allowed
= true;
13952 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
13953 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
13954 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
13955 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
13957 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
13959 WARN_ON(drm_crtc_index(&intel_crtc
->base
) != intel_crtc
->pipe
);
13964 drm_plane_cleanup(primary
);
13966 drm_plane_cleanup(cursor
);
13971 enum pipe
intel_get_pipe_from_connector(struct intel_connector
*connector
)
13973 struct drm_encoder
*encoder
= connector
->base
.encoder
;
13974 struct drm_device
*dev
= connector
->base
.dev
;
13976 WARN_ON(!drm_modeset_is_locked(&dev
->mode_config
.connection_mutex
));
13978 if (!encoder
|| WARN_ON(!encoder
->crtc
))
13979 return INVALID_PIPE
;
13981 return to_intel_crtc(encoder
->crtc
)->pipe
;
13984 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
13985 struct drm_file
*file
)
13987 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
13988 struct drm_crtc
*drmmode_crtc
;
13989 struct intel_crtc
*crtc
;
13991 drmmode_crtc
= drm_crtc_find(dev
, pipe_from_crtc_id
->crtc_id
);
13993 if (!drmmode_crtc
) {
13994 DRM_ERROR("no such CRTC id\n");
13998 crtc
= to_intel_crtc(drmmode_crtc
);
13999 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
14004 static int intel_encoder_clones(struct intel_encoder
*encoder
)
14006 struct drm_device
*dev
= encoder
->base
.dev
;
14007 struct intel_encoder
*source_encoder
;
14008 int index_mask
= 0;
14011 for_each_intel_encoder(dev
, source_encoder
) {
14012 if (encoders_cloneable(encoder
, source_encoder
))
14013 index_mask
|= (1 << entry
);
14021 static bool has_edp_a(struct drm_device
*dev
)
14023 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14025 if (!IS_MOBILE(dev
))
14028 if ((I915_READ(DP_A
) & DP_DETECTED
) == 0)
14031 if (IS_GEN5(dev
) && (I915_READ(FUSE_STRAP
) & ILK_eDP_A_DISABLE
))
14037 static bool intel_crt_present(struct drm_device
*dev
)
14039 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14041 if (INTEL_INFO(dev
)->gen
>= 9)
14044 if (IS_HSW_ULT(dev
) || IS_BDW_ULT(dev
))
14047 if (IS_CHERRYVIEW(dev
))
14050 if (IS_VALLEYVIEW(dev
) && !dev_priv
->vbt
.int_crt_support
)
14056 static void intel_setup_outputs(struct drm_device
*dev
)
14058 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14059 struct intel_encoder
*encoder
;
14060 bool dpd_is_edp
= false;
14062 intel_lvds_init(dev
);
14064 if (intel_crt_present(dev
))
14065 intel_crt_init(dev
);
14067 if (IS_BROXTON(dev
)) {
14069 * FIXME: Broxton doesn't support port detection via the
14070 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14071 * detect the ports.
14073 intel_ddi_init(dev
, PORT_A
);
14074 intel_ddi_init(dev
, PORT_B
);
14075 intel_ddi_init(dev
, PORT_C
);
14076 } else if (HAS_DDI(dev
)) {
14080 * Haswell uses DDI functions to detect digital outputs.
14081 * On SKL pre-D0 the strap isn't connected, so we assume
14084 found
= I915_READ(DDI_BUF_CTL(PORT_A
)) & DDI_INIT_DISPLAY_DETECTED
;
14085 /* WaIgnoreDDIAStrap: skl */
14086 if (found
|| IS_SKYLAKE(dev
))
14087 intel_ddi_init(dev
, PORT_A
);
14089 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14091 found
= I915_READ(SFUSE_STRAP
);
14093 if (found
& SFUSE_STRAP_DDIB_DETECTED
)
14094 intel_ddi_init(dev
, PORT_B
);
14095 if (found
& SFUSE_STRAP_DDIC_DETECTED
)
14096 intel_ddi_init(dev
, PORT_C
);
14097 if (found
& SFUSE_STRAP_DDID_DETECTED
)
14098 intel_ddi_init(dev
, PORT_D
);
14100 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14102 if (IS_SKYLAKE(dev
) &&
14103 (dev_priv
->vbt
.ddi_port_info
[PORT_E
].supports_dp
||
14104 dev_priv
->vbt
.ddi_port_info
[PORT_E
].supports_dvi
||
14105 dev_priv
->vbt
.ddi_port_info
[PORT_E
].supports_hdmi
))
14106 intel_ddi_init(dev
, PORT_E
);
14108 } else if (HAS_PCH_SPLIT(dev
)) {
14110 dpd_is_edp
= intel_dp_is_edp(dev
, PORT_D
);
14112 if (has_edp_a(dev
))
14113 intel_dp_init(dev
, DP_A
, PORT_A
);
14115 if (I915_READ(PCH_HDMIB
) & SDVO_DETECTED
) {
14116 /* PCH SDVOB multiplex with HDMIB */
14117 found
= intel_sdvo_init(dev
, PCH_SDVOB
, true);
14119 intel_hdmi_init(dev
, PCH_HDMIB
, PORT_B
);
14120 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
14121 intel_dp_init(dev
, PCH_DP_B
, PORT_B
);
14124 if (I915_READ(PCH_HDMIC
) & SDVO_DETECTED
)
14125 intel_hdmi_init(dev
, PCH_HDMIC
, PORT_C
);
14127 if (!dpd_is_edp
&& I915_READ(PCH_HDMID
) & SDVO_DETECTED
)
14128 intel_hdmi_init(dev
, PCH_HDMID
, PORT_D
);
14130 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
14131 intel_dp_init(dev
, PCH_DP_C
, PORT_C
);
14133 if (I915_READ(PCH_DP_D
) & DP_DETECTED
)
14134 intel_dp_init(dev
, PCH_DP_D
, PORT_D
);
14135 } else if (IS_VALLEYVIEW(dev
)) {
14137 * The DP_DETECTED bit is the latched state of the DDC
14138 * SDA pin at boot. However since eDP doesn't require DDC
14139 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14140 * eDP ports may have been muxed to an alternate function.
14141 * Thus we can't rely on the DP_DETECTED bit alone to detect
14142 * eDP ports. Consult the VBT as well as DP_DETECTED to
14143 * detect eDP ports.
14145 if (I915_READ(VLV_HDMIB
) & SDVO_DETECTED
&&
14146 !intel_dp_is_edp(dev
, PORT_B
))
14147 intel_hdmi_init(dev
, VLV_HDMIB
, PORT_B
);
14148 if (I915_READ(VLV_DP_B
) & DP_DETECTED
||
14149 intel_dp_is_edp(dev
, PORT_B
))
14150 intel_dp_init(dev
, VLV_DP_B
, PORT_B
);
14152 if (I915_READ(VLV_HDMIC
) & SDVO_DETECTED
&&
14153 !intel_dp_is_edp(dev
, PORT_C
))
14154 intel_hdmi_init(dev
, VLV_HDMIC
, PORT_C
);
14155 if (I915_READ(VLV_DP_C
) & DP_DETECTED
||
14156 intel_dp_is_edp(dev
, PORT_C
))
14157 intel_dp_init(dev
, VLV_DP_C
, PORT_C
);
14159 if (IS_CHERRYVIEW(dev
)) {
14160 /* eDP not supported on port D, so don't check VBT */
14161 if (I915_READ(CHV_HDMID
) & SDVO_DETECTED
)
14162 intel_hdmi_init(dev
, CHV_HDMID
, PORT_D
);
14163 if (I915_READ(CHV_DP_D
) & DP_DETECTED
)
14164 intel_dp_init(dev
, CHV_DP_D
, PORT_D
);
14167 intel_dsi_init(dev
);
14168 } else if (!IS_GEN2(dev
) && !IS_PINEVIEW(dev
)) {
14169 bool found
= false;
14171 if (I915_READ(GEN3_SDVOB
) & SDVO_DETECTED
) {
14172 DRM_DEBUG_KMS("probing SDVOB\n");
14173 found
= intel_sdvo_init(dev
, GEN3_SDVOB
, true);
14174 if (!found
&& IS_G4X(dev
)) {
14175 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14176 intel_hdmi_init(dev
, GEN4_HDMIB
, PORT_B
);
14179 if (!found
&& IS_G4X(dev
))
14180 intel_dp_init(dev
, DP_B
, PORT_B
);
14183 /* Before G4X SDVOC doesn't have its own detect register */
14185 if (I915_READ(GEN3_SDVOB
) & SDVO_DETECTED
) {
14186 DRM_DEBUG_KMS("probing SDVOC\n");
14187 found
= intel_sdvo_init(dev
, GEN3_SDVOC
, false);
14190 if (!found
&& (I915_READ(GEN3_SDVOC
) & SDVO_DETECTED
)) {
14193 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14194 intel_hdmi_init(dev
, GEN4_HDMIC
, PORT_C
);
14197 intel_dp_init(dev
, DP_C
, PORT_C
);
14201 (I915_READ(DP_D
) & DP_DETECTED
))
14202 intel_dp_init(dev
, DP_D
, PORT_D
);
14203 } else if (IS_GEN2(dev
))
14204 intel_dvo_init(dev
);
14206 if (SUPPORTS_TV(dev
))
14207 intel_tv_init(dev
);
14209 intel_psr_init(dev
);
14211 for_each_intel_encoder(dev
, encoder
) {
14212 encoder
->base
.possible_crtcs
= encoder
->crtc_mask
;
14213 encoder
->base
.possible_clones
=
14214 intel_encoder_clones(encoder
);
14217 intel_init_pch_refclk(dev
);
14219 drm_helper_move_panel_connectors_to_head(dev
);
14222 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
14224 struct drm_device
*dev
= fb
->dev
;
14225 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
14227 drm_framebuffer_cleanup(fb
);
14228 mutex_lock(&dev
->struct_mutex
);
14229 WARN_ON(!intel_fb
->obj
->framebuffer_references
--);
14230 drm_gem_object_unreference(&intel_fb
->obj
->base
);
14231 mutex_unlock(&dev
->struct_mutex
);
14235 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
14236 struct drm_file
*file
,
14237 unsigned int *handle
)
14239 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
14240 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
14242 if (obj
->userptr
.mm
) {
14243 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14247 return drm_gem_handle_create(file
, &obj
->base
, handle
);
14250 static int intel_user_framebuffer_dirty(struct drm_framebuffer
*fb
,
14251 struct drm_file
*file
,
14252 unsigned flags
, unsigned color
,
14253 struct drm_clip_rect
*clips
,
14254 unsigned num_clips
)
14256 struct drm_device
*dev
= fb
->dev
;
14257 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
14258 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
14260 mutex_lock(&dev
->struct_mutex
);
14261 intel_fb_obj_flush(obj
, false, ORIGIN_DIRTYFB
);
14262 mutex_unlock(&dev
->struct_mutex
);
14267 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
14268 .destroy
= intel_user_framebuffer_destroy
,
14269 .create_handle
= intel_user_framebuffer_create_handle
,
14270 .dirty
= intel_user_framebuffer_dirty
,
14274 u32
intel_fb_pitch_limit(struct drm_device
*dev
, uint64_t fb_modifier
,
14275 uint32_t pixel_format
)
14277 u32 gen
= INTEL_INFO(dev
)->gen
;
14280 /* "The stride in bytes must not exceed the of the size of 8K
14281 * pixels and 32K bytes."
14283 return min(8192*drm_format_plane_cpp(pixel_format
, 0), 32768);
14284 } else if (gen
>= 5 && !IS_VALLEYVIEW(dev
)) {
14286 } else if (gen
>= 4) {
14287 if (fb_modifier
== I915_FORMAT_MOD_X_TILED
)
14291 } else if (gen
>= 3) {
14292 if (fb_modifier
== I915_FORMAT_MOD_X_TILED
)
14297 /* XXX DSPC is limited to 4k tiled */
14302 static int intel_framebuffer_init(struct drm_device
*dev
,
14303 struct intel_framebuffer
*intel_fb
,
14304 struct drm_mode_fb_cmd2
*mode_cmd
,
14305 struct drm_i915_gem_object
*obj
)
14307 unsigned int aligned_height
;
14309 u32 pitch_limit
, stride_alignment
;
14311 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
14313 if (mode_cmd
->flags
& DRM_MODE_FB_MODIFIERS
) {
14314 /* Enforce that fb modifier and tiling mode match, but only for
14315 * X-tiled. This is needed for FBC. */
14316 if (!!(obj
->tiling_mode
== I915_TILING_X
) !=
14317 !!(mode_cmd
->modifier
[0] == I915_FORMAT_MOD_X_TILED
)) {
14318 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14322 if (obj
->tiling_mode
== I915_TILING_X
)
14323 mode_cmd
->modifier
[0] = I915_FORMAT_MOD_X_TILED
;
14324 else if (obj
->tiling_mode
== I915_TILING_Y
) {
14325 DRM_DEBUG("No Y tiling for legacy addfb\n");
14330 /* Passed in modifier sanity checking. */
14331 switch (mode_cmd
->modifier
[0]) {
14332 case I915_FORMAT_MOD_Y_TILED
:
14333 case I915_FORMAT_MOD_Yf_TILED
:
14334 if (INTEL_INFO(dev
)->gen
< 9) {
14335 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14336 mode_cmd
->modifier
[0]);
14339 case DRM_FORMAT_MOD_NONE
:
14340 case I915_FORMAT_MOD_X_TILED
:
14343 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14344 mode_cmd
->modifier
[0]);
14348 stride_alignment
= intel_fb_stride_alignment(dev
, mode_cmd
->modifier
[0],
14349 mode_cmd
->pixel_format
);
14350 if (mode_cmd
->pitches
[0] & (stride_alignment
- 1)) {
14351 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14352 mode_cmd
->pitches
[0], stride_alignment
);
14356 pitch_limit
= intel_fb_pitch_limit(dev
, mode_cmd
->modifier
[0],
14357 mode_cmd
->pixel_format
);
14358 if (mode_cmd
->pitches
[0] > pitch_limit
) {
14359 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14360 mode_cmd
->modifier
[0] != DRM_FORMAT_MOD_NONE
?
14361 "tiled" : "linear",
14362 mode_cmd
->pitches
[0], pitch_limit
);
14366 if (mode_cmd
->modifier
[0] == I915_FORMAT_MOD_X_TILED
&&
14367 mode_cmd
->pitches
[0] != obj
->stride
) {
14368 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14369 mode_cmd
->pitches
[0], obj
->stride
);
14373 /* Reject formats not supported by any plane early. */
14374 switch (mode_cmd
->pixel_format
) {
14375 case DRM_FORMAT_C8
:
14376 case DRM_FORMAT_RGB565
:
14377 case DRM_FORMAT_XRGB8888
:
14378 case DRM_FORMAT_ARGB8888
:
14380 case DRM_FORMAT_XRGB1555
:
14381 if (INTEL_INFO(dev
)->gen
> 3) {
14382 DRM_DEBUG("unsupported pixel format: %s\n",
14383 drm_get_format_name(mode_cmd
->pixel_format
));
14387 case DRM_FORMAT_ABGR8888
:
14388 if (!IS_VALLEYVIEW(dev
) && INTEL_INFO(dev
)->gen
< 9) {
14389 DRM_DEBUG("unsupported pixel format: %s\n",
14390 drm_get_format_name(mode_cmd
->pixel_format
));
14394 case DRM_FORMAT_XBGR8888
:
14395 case DRM_FORMAT_XRGB2101010
:
14396 case DRM_FORMAT_XBGR2101010
:
14397 if (INTEL_INFO(dev
)->gen
< 4) {
14398 DRM_DEBUG("unsupported pixel format: %s\n",
14399 drm_get_format_name(mode_cmd
->pixel_format
));
14403 case DRM_FORMAT_ABGR2101010
:
14404 if (!IS_VALLEYVIEW(dev
)) {
14405 DRM_DEBUG("unsupported pixel format: %s\n",
14406 drm_get_format_name(mode_cmd
->pixel_format
));
14410 case DRM_FORMAT_YUYV
:
14411 case DRM_FORMAT_UYVY
:
14412 case DRM_FORMAT_YVYU
:
14413 case DRM_FORMAT_VYUY
:
14414 if (INTEL_INFO(dev
)->gen
< 5) {
14415 DRM_DEBUG("unsupported pixel format: %s\n",
14416 drm_get_format_name(mode_cmd
->pixel_format
));
14421 DRM_DEBUG("unsupported pixel format: %s\n",
14422 drm_get_format_name(mode_cmd
->pixel_format
));
14426 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14427 if (mode_cmd
->offsets
[0] != 0)
14430 aligned_height
= intel_fb_align_height(dev
, mode_cmd
->height
,
14431 mode_cmd
->pixel_format
,
14432 mode_cmd
->modifier
[0]);
14433 /* FIXME drm helper for size checks (especially planar formats)? */
14434 if (obj
->base
.size
< aligned_height
* mode_cmd
->pitches
[0])
14437 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
14438 intel_fb
->obj
= obj
;
14439 intel_fb
->obj
->framebuffer_references
++;
14441 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
14443 DRM_ERROR("framebuffer init failed %d\n", ret
);
14450 static struct drm_framebuffer
*
14451 intel_user_framebuffer_create(struct drm_device
*dev
,
14452 struct drm_file
*filp
,
14453 struct drm_mode_fb_cmd2
*user_mode_cmd
)
14455 struct drm_i915_gem_object
*obj
;
14456 struct drm_mode_fb_cmd2 mode_cmd
= *user_mode_cmd
;
14458 obj
= to_intel_bo(drm_gem_object_lookup(dev
, filp
,
14459 mode_cmd
.handles
[0]));
14460 if (&obj
->base
== NULL
)
14461 return ERR_PTR(-ENOENT
);
14463 return intel_framebuffer_create(dev
, &mode_cmd
, obj
);
14466 #ifndef CONFIG_DRM_FBDEV_EMULATION
14467 static inline void intel_fbdev_output_poll_changed(struct drm_device
*dev
)
14472 static const struct drm_mode_config_funcs intel_mode_funcs
= {
14473 .fb_create
= intel_user_framebuffer_create
,
14474 .output_poll_changed
= intel_fbdev_output_poll_changed
,
14475 .atomic_check
= intel_atomic_check
,
14476 .atomic_commit
= intel_atomic_commit
,
14477 .atomic_state_alloc
= intel_atomic_state_alloc
,
14478 .atomic_state_clear
= intel_atomic_state_clear
,
14481 /* Set up chip specific display functions */
14482 static void intel_init_display(struct drm_device
*dev
)
14484 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14486 if (HAS_PCH_SPLIT(dev
) || IS_G4X(dev
))
14487 dev_priv
->display
.find_dpll
= g4x_find_best_dpll
;
14488 else if (IS_CHERRYVIEW(dev
))
14489 dev_priv
->display
.find_dpll
= chv_find_best_dpll
;
14490 else if (IS_VALLEYVIEW(dev
))
14491 dev_priv
->display
.find_dpll
= vlv_find_best_dpll
;
14492 else if (IS_PINEVIEW(dev
))
14493 dev_priv
->display
.find_dpll
= pnv_find_best_dpll
;
14495 dev_priv
->display
.find_dpll
= i9xx_find_best_dpll
;
14497 if (INTEL_INFO(dev
)->gen
>= 9) {
14498 dev_priv
->display
.get_pipe_config
= haswell_get_pipe_config
;
14499 dev_priv
->display
.get_initial_plane_config
=
14500 skylake_get_initial_plane_config
;
14501 dev_priv
->display
.crtc_compute_clock
=
14502 haswell_crtc_compute_clock
;
14503 dev_priv
->display
.crtc_enable
= haswell_crtc_enable
;
14504 dev_priv
->display
.crtc_disable
= haswell_crtc_disable
;
14505 dev_priv
->display
.update_primary_plane
=
14506 skylake_update_primary_plane
;
14507 } else if (HAS_DDI(dev
)) {
14508 dev_priv
->display
.get_pipe_config
= haswell_get_pipe_config
;
14509 dev_priv
->display
.get_initial_plane_config
=
14510 ironlake_get_initial_plane_config
;
14511 dev_priv
->display
.crtc_compute_clock
=
14512 haswell_crtc_compute_clock
;
14513 dev_priv
->display
.crtc_enable
= haswell_crtc_enable
;
14514 dev_priv
->display
.crtc_disable
= haswell_crtc_disable
;
14515 dev_priv
->display
.update_primary_plane
=
14516 ironlake_update_primary_plane
;
14517 } else if (HAS_PCH_SPLIT(dev
)) {
14518 dev_priv
->display
.get_pipe_config
= ironlake_get_pipe_config
;
14519 dev_priv
->display
.get_initial_plane_config
=
14520 ironlake_get_initial_plane_config
;
14521 dev_priv
->display
.crtc_compute_clock
=
14522 ironlake_crtc_compute_clock
;
14523 dev_priv
->display
.crtc_enable
= ironlake_crtc_enable
;
14524 dev_priv
->display
.crtc_disable
= ironlake_crtc_disable
;
14525 dev_priv
->display
.update_primary_plane
=
14526 ironlake_update_primary_plane
;
14527 } else if (IS_VALLEYVIEW(dev
)) {
14528 dev_priv
->display
.get_pipe_config
= i9xx_get_pipe_config
;
14529 dev_priv
->display
.get_initial_plane_config
=
14530 i9xx_get_initial_plane_config
;
14531 dev_priv
->display
.crtc_compute_clock
= i9xx_crtc_compute_clock
;
14532 dev_priv
->display
.crtc_enable
= valleyview_crtc_enable
;
14533 dev_priv
->display
.crtc_disable
= i9xx_crtc_disable
;
14534 dev_priv
->display
.update_primary_plane
=
14535 i9xx_update_primary_plane
;
14537 dev_priv
->display
.get_pipe_config
= i9xx_get_pipe_config
;
14538 dev_priv
->display
.get_initial_plane_config
=
14539 i9xx_get_initial_plane_config
;
14540 dev_priv
->display
.crtc_compute_clock
= i9xx_crtc_compute_clock
;
14541 dev_priv
->display
.crtc_enable
= i9xx_crtc_enable
;
14542 dev_priv
->display
.crtc_disable
= i9xx_crtc_disable
;
14543 dev_priv
->display
.update_primary_plane
=
14544 i9xx_update_primary_plane
;
14547 /* Returns the core display clock speed */
14548 if (IS_SKYLAKE(dev
))
14549 dev_priv
->display
.get_display_clock_speed
=
14550 skylake_get_display_clock_speed
;
14551 else if (IS_BROXTON(dev
))
14552 dev_priv
->display
.get_display_clock_speed
=
14553 broxton_get_display_clock_speed
;
14554 else if (IS_BROADWELL(dev
))
14555 dev_priv
->display
.get_display_clock_speed
=
14556 broadwell_get_display_clock_speed
;
14557 else if (IS_HASWELL(dev
))
14558 dev_priv
->display
.get_display_clock_speed
=
14559 haswell_get_display_clock_speed
;
14560 else if (IS_VALLEYVIEW(dev
))
14561 dev_priv
->display
.get_display_clock_speed
=
14562 valleyview_get_display_clock_speed
;
14563 else if (IS_GEN5(dev
))
14564 dev_priv
->display
.get_display_clock_speed
=
14565 ilk_get_display_clock_speed
;
14566 else if (IS_I945G(dev
) || IS_BROADWATER(dev
) ||
14567 IS_GEN6(dev
) || IS_IVYBRIDGE(dev
))
14568 dev_priv
->display
.get_display_clock_speed
=
14569 i945_get_display_clock_speed
;
14570 else if (IS_GM45(dev
))
14571 dev_priv
->display
.get_display_clock_speed
=
14572 gm45_get_display_clock_speed
;
14573 else if (IS_CRESTLINE(dev
))
14574 dev_priv
->display
.get_display_clock_speed
=
14575 i965gm_get_display_clock_speed
;
14576 else if (IS_PINEVIEW(dev
))
14577 dev_priv
->display
.get_display_clock_speed
=
14578 pnv_get_display_clock_speed
;
14579 else if (IS_G33(dev
) || IS_G4X(dev
))
14580 dev_priv
->display
.get_display_clock_speed
=
14581 g33_get_display_clock_speed
;
14582 else if (IS_I915G(dev
))
14583 dev_priv
->display
.get_display_clock_speed
=
14584 i915_get_display_clock_speed
;
14585 else if (IS_I945GM(dev
) || IS_845G(dev
))
14586 dev_priv
->display
.get_display_clock_speed
=
14587 i9xx_misc_get_display_clock_speed
;
14588 else if (IS_PINEVIEW(dev
))
14589 dev_priv
->display
.get_display_clock_speed
=
14590 pnv_get_display_clock_speed
;
14591 else if (IS_I915GM(dev
))
14592 dev_priv
->display
.get_display_clock_speed
=
14593 i915gm_get_display_clock_speed
;
14594 else if (IS_I865G(dev
))
14595 dev_priv
->display
.get_display_clock_speed
=
14596 i865_get_display_clock_speed
;
14597 else if (IS_I85X(dev
))
14598 dev_priv
->display
.get_display_clock_speed
=
14599 i85x_get_display_clock_speed
;
14601 WARN(!IS_I830(dev
), "Unknown platform. Assuming 133 MHz CDCLK\n");
14602 dev_priv
->display
.get_display_clock_speed
=
14603 i830_get_display_clock_speed
;
14606 if (IS_GEN5(dev
)) {
14607 dev_priv
->display
.fdi_link_train
= ironlake_fdi_link_train
;
14608 } else if (IS_GEN6(dev
)) {
14609 dev_priv
->display
.fdi_link_train
= gen6_fdi_link_train
;
14610 } else if (IS_IVYBRIDGE(dev
)) {
14611 /* FIXME: detect B0+ stepping and use auto training */
14612 dev_priv
->display
.fdi_link_train
= ivb_manual_fdi_link_train
;
14613 } else if (IS_HASWELL(dev
) || IS_BROADWELL(dev
)) {
14614 dev_priv
->display
.fdi_link_train
= hsw_fdi_link_train
;
14615 if (IS_BROADWELL(dev
)) {
14616 dev_priv
->display
.modeset_commit_cdclk
=
14617 broadwell_modeset_commit_cdclk
;
14618 dev_priv
->display
.modeset_calc_cdclk
=
14619 broadwell_modeset_calc_cdclk
;
14621 } else if (IS_VALLEYVIEW(dev
)) {
14622 dev_priv
->display
.modeset_commit_cdclk
=
14623 valleyview_modeset_commit_cdclk
;
14624 dev_priv
->display
.modeset_calc_cdclk
=
14625 valleyview_modeset_calc_cdclk
;
14626 } else if (IS_BROXTON(dev
)) {
14627 dev_priv
->display
.modeset_commit_cdclk
=
14628 broxton_modeset_commit_cdclk
;
14629 dev_priv
->display
.modeset_calc_cdclk
=
14630 broxton_modeset_calc_cdclk
;
14633 switch (INTEL_INFO(dev
)->gen
) {
14635 dev_priv
->display
.queue_flip
= intel_gen2_queue_flip
;
14639 dev_priv
->display
.queue_flip
= intel_gen3_queue_flip
;
14644 dev_priv
->display
.queue_flip
= intel_gen4_queue_flip
;
14648 dev_priv
->display
.queue_flip
= intel_gen6_queue_flip
;
14651 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14652 dev_priv
->display
.queue_flip
= intel_gen7_queue_flip
;
14655 /* Drop through - unsupported since execlist only. */
14657 /* Default just returns -ENODEV to indicate unsupported */
14658 dev_priv
->display
.queue_flip
= intel_default_queue_flip
;
14661 mutex_init(&dev_priv
->pps_mutex
);
14665 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14666 * resume, or other times. This quirk makes sure that's the case for
14667 * affected systems.
14669 static void quirk_pipea_force(struct drm_device
*dev
)
14671 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14673 dev_priv
->quirks
|= QUIRK_PIPEA_FORCE
;
14674 DRM_INFO("applying pipe a force quirk\n");
14677 static void quirk_pipeb_force(struct drm_device
*dev
)
14679 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14681 dev_priv
->quirks
|= QUIRK_PIPEB_FORCE
;
14682 DRM_INFO("applying pipe b force quirk\n");
14686 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14688 static void quirk_ssc_force_disable(struct drm_device
*dev
)
14690 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14691 dev_priv
->quirks
|= QUIRK_LVDS_SSC_DISABLE
;
14692 DRM_INFO("applying lvds SSC disable quirk\n");
14696 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14699 static void quirk_invert_brightness(struct drm_device
*dev
)
14701 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14702 dev_priv
->quirks
|= QUIRK_INVERT_BRIGHTNESS
;
14703 DRM_INFO("applying inverted panel brightness quirk\n");
14706 /* Some VBT's incorrectly indicate no backlight is present */
14707 static void quirk_backlight_present(struct drm_device
*dev
)
14709 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14710 dev_priv
->quirks
|= QUIRK_BACKLIGHT_PRESENT
;
14711 DRM_INFO("applying backlight present quirk\n");
14714 struct intel_quirk
{
14716 int subsystem_vendor
;
14717 int subsystem_device
;
14718 void (*hook
)(struct drm_device
*dev
);
14721 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14722 struct intel_dmi_quirk
{
14723 void (*hook
)(struct drm_device
*dev
);
14724 const struct dmi_system_id (*dmi_id_list
)[];
14727 static int intel_dmi_reverse_brightness(const struct dmi_system_id
*id
)
14729 DRM_INFO("Backlight polarity reversed on %s\n", id
->ident
);
14733 static const struct intel_dmi_quirk intel_dmi_quirks
[] = {
14735 .dmi_id_list
= &(const struct dmi_system_id
[]) {
14737 .callback
= intel_dmi_reverse_brightness
,
14738 .ident
= "NCR Corporation",
14739 .matches
= {DMI_MATCH(DMI_SYS_VENDOR
, "NCR Corporation"),
14740 DMI_MATCH(DMI_PRODUCT_NAME
, ""),
14743 { } /* terminating entry */
14745 .hook
= quirk_invert_brightness
,
14749 static struct intel_quirk intel_quirks
[] = {
14750 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14751 { 0x2592, 0x1179, 0x0001, quirk_pipea_force
},
14753 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14754 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force
},
14756 /* 830 needs to leave pipe A & dpll A up */
14757 { 0x3577, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
14759 /* 830 needs to leave pipe B & dpll B up */
14760 { 0x3577, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipeb_force
},
14762 /* Lenovo U160 cannot use SSC on LVDS */
14763 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable
},
14765 /* Sony Vaio Y cannot use SSC on LVDS */
14766 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable
},
14768 /* Acer Aspire 5734Z must invert backlight brightness */
14769 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness
},
14771 /* Acer/eMachines G725 */
14772 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness
},
14774 /* Acer/eMachines e725 */
14775 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness
},
14777 /* Acer/Packard Bell NCL20 */
14778 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness
},
14780 /* Acer Aspire 4736Z */
14781 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness
},
14783 /* Acer Aspire 5336 */
14784 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness
},
14786 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14787 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present
},
14789 /* Acer C720 Chromebook (Core i3 4005U) */
14790 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present
},
14792 /* Apple Macbook 2,1 (Core 2 T7400) */
14793 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present
},
14795 /* Apple Macbook 4,1 */
14796 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present
},
14798 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14799 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present
},
14801 /* HP Chromebook 14 (Celeron 2955U) */
14802 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present
},
14804 /* Dell Chromebook 11 */
14805 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present
},
14807 /* Dell Chromebook 11 (2015 version) */
14808 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present
},
14811 static void intel_init_quirks(struct drm_device
*dev
)
14813 struct pci_dev
*d
= dev
->pdev
;
14816 for (i
= 0; i
< ARRAY_SIZE(intel_quirks
); i
++) {
14817 struct intel_quirk
*q
= &intel_quirks
[i
];
14819 if (d
->device
== q
->device
&&
14820 (d
->subsystem_vendor
== q
->subsystem_vendor
||
14821 q
->subsystem_vendor
== PCI_ANY_ID
) &&
14822 (d
->subsystem_device
== q
->subsystem_device
||
14823 q
->subsystem_device
== PCI_ANY_ID
))
14826 for (i
= 0; i
< ARRAY_SIZE(intel_dmi_quirks
); i
++) {
14827 if (dmi_check_system(*intel_dmi_quirks
[i
].dmi_id_list
) != 0)
14828 intel_dmi_quirks
[i
].hook(dev
);
14832 /* Disable the VGA plane that we never use */
14833 static void i915_disable_vga(struct drm_device
*dev
)
14835 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14837 u32 vga_reg
= i915_vgacntrl_reg(dev
);
14839 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14840 vga_get_uninterruptible(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
14841 outb(SR01
, VGA_SR_INDEX
);
14842 sr1
= inb(VGA_SR_DATA
);
14843 outb(sr1
| 1<<5, VGA_SR_DATA
);
14844 vga_put(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
14847 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
14848 POSTING_READ(vga_reg
);
14851 void intel_modeset_init_hw(struct drm_device
*dev
)
14853 intel_update_cdclk(dev
);
14854 intel_prepare_ddi(dev
);
14855 intel_init_clock_gating(dev
);
14856 intel_enable_gt_powersave(dev
);
14859 void intel_modeset_init(struct drm_device
*dev
)
14861 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
14864 struct intel_crtc
*crtc
;
14866 drm_mode_config_init(dev
);
14868 dev
->mode_config
.min_width
= 0;
14869 dev
->mode_config
.min_height
= 0;
14871 dev
->mode_config
.preferred_depth
= 24;
14872 dev
->mode_config
.prefer_shadow
= 1;
14874 dev
->mode_config
.allow_fb_modifiers
= true;
14876 dev
->mode_config
.funcs
= &intel_mode_funcs
;
14878 intel_init_quirks(dev
);
14880 intel_init_pm(dev
);
14882 if (INTEL_INFO(dev
)->num_pipes
== 0)
14886 * There may be no VBT; and if the BIOS enabled SSC we can
14887 * just keep using it to avoid unnecessary flicker. Whereas if the
14888 * BIOS isn't using it, don't assume it will work even if the VBT
14889 * indicates as much.
14891 if (HAS_PCH_IBX(dev
) || HAS_PCH_CPT(dev
)) {
14892 bool bios_lvds_use_ssc
= !!(I915_READ(PCH_DREF_CONTROL
) &
14895 if (dev_priv
->vbt
.lvds_use_ssc
!= bios_lvds_use_ssc
) {
14896 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14897 bios_lvds_use_ssc
? "en" : "dis",
14898 dev_priv
->vbt
.lvds_use_ssc
? "en" : "dis");
14899 dev_priv
->vbt
.lvds_use_ssc
= bios_lvds_use_ssc
;
14903 intel_init_display(dev
);
14904 intel_init_audio(dev
);
14906 if (IS_GEN2(dev
)) {
14907 dev
->mode_config
.max_width
= 2048;
14908 dev
->mode_config
.max_height
= 2048;
14909 } else if (IS_GEN3(dev
)) {
14910 dev
->mode_config
.max_width
= 4096;
14911 dev
->mode_config
.max_height
= 4096;
14913 dev
->mode_config
.max_width
= 8192;
14914 dev
->mode_config
.max_height
= 8192;
14917 if (IS_845G(dev
) || IS_I865G(dev
)) {
14918 dev
->mode_config
.cursor_width
= IS_845G(dev
) ? 64 : 512;
14919 dev
->mode_config
.cursor_height
= 1023;
14920 } else if (IS_GEN2(dev
)) {
14921 dev
->mode_config
.cursor_width
= GEN2_CURSOR_WIDTH
;
14922 dev
->mode_config
.cursor_height
= GEN2_CURSOR_HEIGHT
;
14924 dev
->mode_config
.cursor_width
= MAX_CURSOR_WIDTH
;
14925 dev
->mode_config
.cursor_height
= MAX_CURSOR_HEIGHT
;
14928 dev
->mode_config
.fb_base
= dev_priv
->gtt
.mappable_base
;
14930 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14931 INTEL_INFO(dev
)->num_pipes
,
14932 INTEL_INFO(dev
)->num_pipes
> 1 ? "s" : "");
14934 for_each_pipe(dev_priv
, pipe
) {
14935 intel_crtc_init(dev
, pipe
);
14936 for_each_sprite(dev_priv
, pipe
, sprite
) {
14937 ret
= intel_plane_init(dev
, pipe
, sprite
);
14939 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14940 pipe_name(pipe
), sprite_name(pipe
, sprite
), ret
);
14944 intel_update_czclk(dev_priv
);
14945 intel_update_cdclk(dev
);
14947 intel_shared_dpll_init(dev
);
14949 /* Just disable it once at startup */
14950 i915_disable_vga(dev
);
14951 intel_setup_outputs(dev
);
14953 /* Just in case the BIOS is doing something questionable. */
14954 intel_fbc_disable(dev_priv
);
14956 drm_modeset_lock_all(dev
);
14957 intel_modeset_setup_hw_state(dev
);
14958 drm_modeset_unlock_all(dev
);
14960 for_each_intel_crtc(dev
, crtc
) {
14961 struct intel_initial_plane_config plane_config
= {};
14967 * Note that reserving the BIOS fb up front prevents us
14968 * from stuffing other stolen allocations like the ring
14969 * on top. This prevents some ugliness at boot time, and
14970 * can even allow for smooth boot transitions if the BIOS
14971 * fb is large enough for the active pipe configuration.
14973 dev_priv
->display
.get_initial_plane_config(crtc
,
14977 * If the fb is shared between multiple heads, we'll
14978 * just get the first one.
14980 intel_find_initial_plane_obj(crtc
, &plane_config
);
14984 static void intel_enable_pipe_a(struct drm_device
*dev
)
14986 struct intel_connector
*connector
;
14987 struct drm_connector
*crt
= NULL
;
14988 struct intel_load_detect_pipe load_detect_temp
;
14989 struct drm_modeset_acquire_ctx
*ctx
= dev
->mode_config
.acquire_ctx
;
14991 /* We can't just switch on the pipe A, we need to set things up with a
14992 * proper mode and output configuration. As a gross hack, enable pipe A
14993 * by enabling the load detect pipe once. */
14994 for_each_intel_connector(dev
, connector
) {
14995 if (connector
->encoder
->type
== INTEL_OUTPUT_ANALOG
) {
14996 crt
= &connector
->base
;
15004 if (intel_get_load_detect_pipe(crt
, NULL
, &load_detect_temp
, ctx
))
15005 intel_release_load_detect_pipe(crt
, &load_detect_temp
, ctx
);
15009 intel_check_plane_mapping(struct intel_crtc
*crtc
)
15011 struct drm_device
*dev
= crtc
->base
.dev
;
15012 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15015 if (INTEL_INFO(dev
)->num_pipes
== 1)
15018 val
= I915_READ(DSPCNTR(!crtc
->plane
));
15020 if ((val
& DISPLAY_PLANE_ENABLE
) &&
15021 (!!(val
& DISPPLANE_SEL_PIPE_MASK
) == crtc
->pipe
))
15027 static bool intel_crtc_has_encoders(struct intel_crtc
*crtc
)
15029 struct drm_device
*dev
= crtc
->base
.dev
;
15030 struct intel_encoder
*encoder
;
15032 for_each_encoder_on_crtc(dev
, &crtc
->base
, encoder
)
15038 static void intel_sanitize_crtc(struct intel_crtc
*crtc
)
15040 struct drm_device
*dev
= crtc
->base
.dev
;
15041 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15044 /* Clear any frame start delays used for debugging left by the BIOS */
15045 reg
= PIPECONF(crtc
->config
->cpu_transcoder
);
15046 I915_WRITE(reg
, I915_READ(reg
) & ~PIPECONF_FRAME_START_DELAY_MASK
);
15048 /* restore vblank interrupts to correct state */
15049 drm_crtc_vblank_reset(&crtc
->base
);
15050 if (crtc
->active
) {
15051 struct intel_plane
*plane
;
15053 drm_crtc_vblank_on(&crtc
->base
);
15055 /* Disable everything but the primary plane */
15056 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
15057 if (plane
->base
.type
== DRM_PLANE_TYPE_PRIMARY
)
15060 plane
->disable_plane(&plane
->base
, &crtc
->base
);
15064 /* We need to sanitize the plane -> pipe mapping first because this will
15065 * disable the crtc (and hence change the state) if it is wrong. Note
15066 * that gen4+ has a fixed plane -> pipe mapping. */
15067 if (INTEL_INFO(dev
)->gen
< 4 && !intel_check_plane_mapping(crtc
)) {
15070 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15071 crtc
->base
.base
.id
);
15073 /* Pipe has the wrong plane attached and the plane is active.
15074 * Temporarily change the plane mapping and disable everything
15076 plane
= crtc
->plane
;
15077 to_intel_plane_state(crtc
->base
.primary
->state
)->visible
= true;
15078 crtc
->plane
= !plane
;
15079 intel_crtc_disable_noatomic(&crtc
->base
);
15080 crtc
->plane
= plane
;
15083 if (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
&&
15084 crtc
->pipe
== PIPE_A
&& !crtc
->active
) {
15085 /* BIOS forgot to enable pipe A, this mostly happens after
15086 * resume. Force-enable the pipe to fix this, the update_dpms
15087 * call below we restore the pipe to the right state, but leave
15088 * the required bits on. */
15089 intel_enable_pipe_a(dev
);
15092 /* Adjust the state of the output pipe according to whether we
15093 * have active connectors/encoders. */
15094 if (!intel_crtc_has_encoders(crtc
))
15095 intel_crtc_disable_noatomic(&crtc
->base
);
15097 if (crtc
->active
!= crtc
->base
.state
->active
) {
15098 struct intel_encoder
*encoder
;
15100 /* This can happen either due to bugs in the get_hw_state
15101 * functions or because of calls to intel_crtc_disable_noatomic,
15102 * or because the pipe is force-enabled due to the
15104 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15105 crtc
->base
.base
.id
,
15106 crtc
->base
.state
->enable
? "enabled" : "disabled",
15107 crtc
->active
? "enabled" : "disabled");
15109 WARN_ON(drm_atomic_set_mode_for_crtc(crtc
->base
.state
, NULL
) < 0);
15110 crtc
->base
.state
->active
= crtc
->active
;
15111 crtc
->base
.enabled
= crtc
->active
;
15113 /* Because we only establish the connector -> encoder ->
15114 * crtc links if something is active, this means the
15115 * crtc is now deactivated. Break the links. connector
15116 * -> encoder links are only establish when things are
15117 * actually up, hence no need to break them. */
15118 WARN_ON(crtc
->active
);
15120 for_each_encoder_on_crtc(dev
, &crtc
->base
, encoder
)
15121 encoder
->base
.crtc
= NULL
;
15124 if (crtc
->active
|| HAS_GMCH_DISPLAY(dev
)) {
15126 * We start out with underrun reporting disabled to avoid races.
15127 * For correct bookkeeping mark this on active crtcs.
15129 * Also on gmch platforms we dont have any hardware bits to
15130 * disable the underrun reporting. Which means we need to start
15131 * out with underrun reporting disabled also on inactive pipes,
15132 * since otherwise we'll complain about the garbage we read when
15133 * e.g. coming up after runtime pm.
15135 * No protection against concurrent access is required - at
15136 * worst a fifo underrun happens which also sets this to false.
15138 crtc
->cpu_fifo_underrun_disabled
= true;
15139 crtc
->pch_fifo_underrun_disabled
= true;
15143 static void intel_sanitize_encoder(struct intel_encoder
*encoder
)
15145 struct intel_connector
*connector
;
15146 struct drm_device
*dev
= encoder
->base
.dev
;
15147 bool active
= false;
15149 /* We need to check both for a crtc link (meaning that the
15150 * encoder is active and trying to read from a pipe) and the
15151 * pipe itself being active. */
15152 bool has_active_crtc
= encoder
->base
.crtc
&&
15153 to_intel_crtc(encoder
->base
.crtc
)->active
;
15155 for_each_intel_connector(dev
, connector
) {
15156 if (connector
->base
.encoder
!= &encoder
->base
)
15163 if (active
&& !has_active_crtc
) {
15164 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15165 encoder
->base
.base
.id
,
15166 encoder
->base
.name
);
15168 /* Connector is active, but has no active pipe. This is
15169 * fallout from our resume register restoring. Disable
15170 * the encoder manually again. */
15171 if (encoder
->base
.crtc
) {
15172 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15173 encoder
->base
.base
.id
,
15174 encoder
->base
.name
);
15175 encoder
->disable(encoder
);
15176 if (encoder
->post_disable
)
15177 encoder
->post_disable(encoder
);
15179 encoder
->base
.crtc
= NULL
;
15181 /* Inconsistent output/port/pipe state happens presumably due to
15182 * a bug in one of the get_hw_state functions. Or someplace else
15183 * in our code, like the register restore mess on resume. Clamp
15184 * things to off as a safer default. */
15185 for_each_intel_connector(dev
, connector
) {
15186 if (connector
->encoder
!= encoder
)
15188 connector
->base
.dpms
= DRM_MODE_DPMS_OFF
;
15189 connector
->base
.encoder
= NULL
;
15192 /* Enabled encoders without active connectors will be fixed in
15193 * the crtc fixup. */
15196 void i915_redisable_vga_power_on(struct drm_device
*dev
)
15198 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15199 u32 vga_reg
= i915_vgacntrl_reg(dev
);
15201 if (!(I915_READ(vga_reg
) & VGA_DISP_DISABLE
)) {
15202 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15203 i915_disable_vga(dev
);
15207 void i915_redisable_vga(struct drm_device
*dev
)
15209 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15211 /* This function can be called both from intel_modeset_setup_hw_state or
15212 * at a very early point in our resume sequence, where the power well
15213 * structures are not yet restored. Since this function is at a very
15214 * paranoid "someone might have enabled VGA while we were not looking"
15215 * level, just check if the power well is enabled instead of trying to
15216 * follow the "don't touch the power well if we don't need it" policy
15217 * the rest of the driver uses. */
15218 if (!intel_display_power_is_enabled(dev_priv
, POWER_DOMAIN_VGA
))
15221 i915_redisable_vga_power_on(dev
);
15224 static bool primary_get_hw_state(struct intel_plane
*plane
)
15226 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
15228 return I915_READ(DSPCNTR(plane
->plane
)) & DISPLAY_PLANE_ENABLE
;
15231 /* FIXME read out full plane state for all planes */
15232 static void readout_plane_state(struct intel_crtc
*crtc
)
15234 struct drm_plane
*primary
= crtc
->base
.primary
;
15235 struct intel_plane_state
*plane_state
=
15236 to_intel_plane_state(primary
->state
);
15238 plane_state
->visible
=
15239 primary_get_hw_state(to_intel_plane(primary
));
15241 if (plane_state
->visible
)
15242 crtc
->base
.state
->plane_mask
|= 1 << drm_plane_index(primary
);
15245 static void intel_modeset_readout_hw_state(struct drm_device
*dev
)
15247 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15249 struct intel_crtc
*crtc
;
15250 struct intel_encoder
*encoder
;
15251 struct intel_connector
*connector
;
15254 for_each_intel_crtc(dev
, crtc
) {
15255 __drm_atomic_helper_crtc_destroy_state(&crtc
->base
, crtc
->base
.state
);
15256 memset(crtc
->config
, 0, sizeof(*crtc
->config
));
15257 crtc
->config
->base
.crtc
= &crtc
->base
;
15259 crtc
->active
= dev_priv
->display
.get_pipe_config(crtc
,
15262 crtc
->base
.state
->active
= crtc
->active
;
15263 crtc
->base
.enabled
= crtc
->active
;
15265 readout_plane_state(crtc
);
15267 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15268 crtc
->base
.base
.id
,
15269 crtc
->active
? "enabled" : "disabled");
15272 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++) {
15273 struct intel_shared_dpll
*pll
= &dev_priv
->shared_dplls
[i
];
15275 pll
->on
= pll
->get_hw_state(dev_priv
, pll
,
15276 &pll
->config
.hw_state
);
15278 pll
->config
.crtc_mask
= 0;
15279 for_each_intel_crtc(dev
, crtc
) {
15280 if (crtc
->active
&& intel_crtc_to_shared_dpll(crtc
) == pll
) {
15282 pll
->config
.crtc_mask
|= 1 << crtc
->pipe
;
15286 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15287 pll
->name
, pll
->config
.crtc_mask
, pll
->on
);
15289 if (pll
->config
.crtc_mask
)
15290 intel_display_power_get(dev_priv
, POWER_DOMAIN_PLLS
);
15293 for_each_intel_encoder(dev
, encoder
) {
15296 if (encoder
->get_hw_state(encoder
, &pipe
)) {
15297 crtc
= to_intel_crtc(dev_priv
->pipe_to_crtc_mapping
[pipe
]);
15298 encoder
->base
.crtc
= &crtc
->base
;
15299 encoder
->get_config(encoder
, crtc
->config
);
15301 encoder
->base
.crtc
= NULL
;
15304 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15305 encoder
->base
.base
.id
,
15306 encoder
->base
.name
,
15307 encoder
->base
.crtc
? "enabled" : "disabled",
15311 for_each_intel_connector(dev
, connector
) {
15312 if (connector
->get_hw_state(connector
)) {
15313 connector
->base
.dpms
= DRM_MODE_DPMS_ON
;
15314 connector
->base
.encoder
= &connector
->encoder
->base
;
15316 connector
->base
.dpms
= DRM_MODE_DPMS_OFF
;
15317 connector
->base
.encoder
= NULL
;
15319 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15320 connector
->base
.base
.id
,
15321 connector
->base
.name
,
15322 connector
->base
.encoder
? "enabled" : "disabled");
15325 for_each_intel_crtc(dev
, crtc
) {
15326 crtc
->base
.hwmode
= crtc
->config
->base
.adjusted_mode
;
15328 memset(&crtc
->base
.mode
, 0, sizeof(crtc
->base
.mode
));
15329 if (crtc
->base
.state
->active
) {
15330 intel_mode_from_pipe_config(&crtc
->base
.mode
, crtc
->config
);
15331 intel_mode_from_pipe_config(&crtc
->base
.state
->adjusted_mode
, crtc
->config
);
15332 WARN_ON(drm_atomic_set_mode_for_crtc(crtc
->base
.state
, &crtc
->base
.mode
));
15335 * The initial mode needs to be set in order to keep
15336 * the atomic core happy. It wants a valid mode if the
15337 * crtc's enabled, so we do the above call.
15339 * At this point some state updated by the connectors
15340 * in their ->detect() callback has not run yet, so
15341 * no recalculation can be done yet.
15343 * Even if we could do a recalculation and modeset
15344 * right now it would cause a double modeset if
15345 * fbdev or userspace chooses a different initial mode.
15347 * If that happens, someone indicated they wanted a
15348 * mode change, which means it's safe to do a full
15351 crtc
->base
.state
->mode
.private_flags
= I915_MODE_FLAG_INHERITED
;
15353 drm_calc_timestamping_constants(&crtc
->base
, &crtc
->base
.hwmode
);
15354 update_scanline_offset(crtc
);
15359 /* Scan out the current hw modeset state,
15360 * and sanitizes it to the current state
15363 intel_modeset_setup_hw_state(struct drm_device
*dev
)
15365 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15367 struct intel_crtc
*crtc
;
15368 struct intel_encoder
*encoder
;
15371 intel_modeset_readout_hw_state(dev
);
15373 /* HW state is read out, now we need to sanitize this mess. */
15374 for_each_intel_encoder(dev
, encoder
) {
15375 intel_sanitize_encoder(encoder
);
15378 for_each_pipe(dev_priv
, pipe
) {
15379 crtc
= to_intel_crtc(dev_priv
->pipe_to_crtc_mapping
[pipe
]);
15380 intel_sanitize_crtc(crtc
);
15381 intel_dump_pipe_config(crtc
, crtc
->config
,
15382 "[setup_hw_state]");
15385 intel_modeset_update_connector_atomic_state(dev
);
15387 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++) {
15388 struct intel_shared_dpll
*pll
= &dev_priv
->shared_dplls
[i
];
15390 if (!pll
->on
|| pll
->active
)
15393 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll
->name
);
15395 pll
->disable(dev_priv
, pll
);
15399 if (IS_VALLEYVIEW(dev
))
15400 vlv_wm_get_hw_state(dev
);
15401 else if (IS_GEN9(dev
))
15402 skl_wm_get_hw_state(dev
);
15403 else if (HAS_PCH_SPLIT(dev
))
15404 ilk_wm_get_hw_state(dev
);
15406 for_each_intel_crtc(dev
, crtc
) {
15407 unsigned long put_domains
;
15409 put_domains
= modeset_get_crtc_power_domains(&crtc
->base
);
15410 if (WARN_ON(put_domains
))
15411 modeset_put_power_domains(dev_priv
, put_domains
);
15413 intel_display_set_init_power(dev_priv
, false);
15416 void intel_display_resume(struct drm_device
*dev
)
15418 struct drm_atomic_state
*state
= drm_atomic_state_alloc(dev
);
15419 struct intel_connector
*conn
;
15420 struct intel_plane
*plane
;
15421 struct drm_crtc
*crtc
;
15427 state
->acquire_ctx
= dev
->mode_config
.acquire_ctx
;
15429 /* preserve complete old state, including dpll */
15430 intel_atomic_get_shared_dpll_state(state
);
15432 for_each_crtc(dev
, crtc
) {
15433 struct drm_crtc_state
*crtc_state
=
15434 drm_atomic_get_crtc_state(state
, crtc
);
15436 ret
= PTR_ERR_OR_ZERO(crtc_state
);
15440 /* force a restore */
15441 crtc_state
->mode_changed
= true;
15444 for_each_intel_plane(dev
, plane
) {
15445 ret
= PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state
, &plane
->base
));
15450 for_each_intel_connector(dev
, conn
) {
15451 ret
= PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state
, &conn
->base
));
15456 intel_modeset_setup_hw_state(dev
);
15458 i915_redisable_vga(dev
);
15459 ret
= drm_atomic_commit(state
);
15464 DRM_ERROR("Restoring old state failed with %i\n", ret
);
15465 drm_atomic_state_free(state
);
15468 void intel_modeset_gem_init(struct drm_device
*dev
)
15470 struct drm_crtc
*c
;
15471 struct drm_i915_gem_object
*obj
;
15474 mutex_lock(&dev
->struct_mutex
);
15475 intel_init_gt_powersave(dev
);
15476 mutex_unlock(&dev
->struct_mutex
);
15478 intel_modeset_init_hw(dev
);
15480 intel_setup_overlay(dev
);
15483 * Make sure any fbs we allocated at startup are properly
15484 * pinned & fenced. When we do the allocation it's too early
15487 for_each_crtc(dev
, c
) {
15488 obj
= intel_fb_obj(c
->primary
->fb
);
15492 mutex_lock(&dev
->struct_mutex
);
15493 ret
= intel_pin_and_fence_fb_obj(c
->primary
,
15497 mutex_unlock(&dev
->struct_mutex
);
15499 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15500 to_intel_crtc(c
)->pipe
);
15501 drm_framebuffer_unreference(c
->primary
->fb
);
15502 c
->primary
->fb
= NULL
;
15503 c
->primary
->crtc
= c
->primary
->state
->crtc
= NULL
;
15504 update_state_fb(c
->primary
);
15505 c
->state
->plane_mask
&= ~(1 << drm_plane_index(c
->primary
));
15509 intel_backlight_register(dev
);
15512 void intel_connector_unregister(struct intel_connector
*intel_connector
)
15514 struct drm_connector
*connector
= &intel_connector
->base
;
15516 intel_panel_destroy_backlight(connector
);
15517 drm_connector_unregister(connector
);
15520 void intel_modeset_cleanup(struct drm_device
*dev
)
15522 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15523 struct drm_connector
*connector
;
15525 intel_disable_gt_powersave(dev
);
15527 intel_backlight_unregister(dev
);
15530 * Interrupts and polling as the first thing to avoid creating havoc.
15531 * Too much stuff here (turning of connectors, ...) would
15532 * experience fancy races otherwise.
15534 intel_irq_uninstall(dev_priv
);
15537 * Due to the hpd irq storm handling the hotplug work can re-arm the
15538 * poll handlers. Hence disable polling after hpd handling is shut down.
15540 drm_kms_helper_poll_fini(dev
);
15542 intel_unregister_dsm_handler();
15544 intel_fbc_disable(dev_priv
);
15546 /* flush any delayed tasks or pending work */
15547 flush_scheduled_work();
15549 /* destroy the backlight and sysfs files before encoders/connectors */
15550 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
) {
15551 struct intel_connector
*intel_connector
;
15553 intel_connector
= to_intel_connector(connector
);
15554 intel_connector
->unregister(intel_connector
);
15557 drm_mode_config_cleanup(dev
);
15559 intel_cleanup_overlay(dev
);
15561 mutex_lock(&dev
->struct_mutex
);
15562 intel_cleanup_gt_powersave(dev
);
15563 mutex_unlock(&dev
->struct_mutex
);
15567 * Return which encoder is currently attached for connector.
15569 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
15571 return &intel_attached_encoder(connector
)->base
;
15574 void intel_connector_attach_encoder(struct intel_connector
*connector
,
15575 struct intel_encoder
*encoder
)
15577 connector
->encoder
= encoder
;
15578 drm_mode_connector_attach_encoder(&connector
->base
,
15583 * set vga decode state - true == enable VGA decode
15585 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
15587 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15588 unsigned reg
= INTEL_INFO(dev
)->gen
>= 6 ? SNB_GMCH_CTRL
: INTEL_GMCH_CTRL
;
15591 if (pci_read_config_word(dev_priv
->bridge_dev
, reg
, &gmch_ctrl
)) {
15592 DRM_ERROR("failed to read control word\n");
15596 if (!!(gmch_ctrl
& INTEL_GMCH_VGA_DISABLE
) == !state
)
15600 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
15602 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
15604 if (pci_write_config_word(dev_priv
->bridge_dev
, reg
, gmch_ctrl
)) {
15605 DRM_ERROR("failed to write control word\n");
15612 struct intel_display_error_state
{
15614 u32 power_well_driver
;
15616 int num_transcoders
;
15618 struct intel_cursor_error_state
{
15623 } cursor
[I915_MAX_PIPES
];
15625 struct intel_pipe_error_state
{
15626 bool power_domain_on
;
15629 } pipe
[I915_MAX_PIPES
];
15631 struct intel_plane_error_state
{
15639 } plane
[I915_MAX_PIPES
];
15641 struct intel_transcoder_error_state
{
15642 bool power_domain_on
;
15643 enum transcoder cpu_transcoder
;
15656 struct intel_display_error_state
*
15657 intel_display_capture_error_state(struct drm_device
*dev
)
15659 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15660 struct intel_display_error_state
*error
;
15661 int transcoders
[] = {
15669 if (INTEL_INFO(dev
)->num_pipes
== 0)
15672 error
= kzalloc(sizeof(*error
), GFP_ATOMIC
);
15676 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
15677 error
->power_well_driver
= I915_READ(HSW_PWR_WELL_DRIVER
);
15679 for_each_pipe(dev_priv
, i
) {
15680 error
->pipe
[i
].power_domain_on
=
15681 __intel_display_power_is_enabled(dev_priv
,
15682 POWER_DOMAIN_PIPE(i
));
15683 if (!error
->pipe
[i
].power_domain_on
)
15686 error
->cursor
[i
].control
= I915_READ(CURCNTR(i
));
15687 error
->cursor
[i
].position
= I915_READ(CURPOS(i
));
15688 error
->cursor
[i
].base
= I915_READ(CURBASE(i
));
15690 error
->plane
[i
].control
= I915_READ(DSPCNTR(i
));
15691 error
->plane
[i
].stride
= I915_READ(DSPSTRIDE(i
));
15692 if (INTEL_INFO(dev
)->gen
<= 3) {
15693 error
->plane
[i
].size
= I915_READ(DSPSIZE(i
));
15694 error
->plane
[i
].pos
= I915_READ(DSPPOS(i
));
15696 if (INTEL_INFO(dev
)->gen
<= 7 && !IS_HASWELL(dev
))
15697 error
->plane
[i
].addr
= I915_READ(DSPADDR(i
));
15698 if (INTEL_INFO(dev
)->gen
>= 4) {
15699 error
->plane
[i
].surface
= I915_READ(DSPSURF(i
));
15700 error
->plane
[i
].tile_offset
= I915_READ(DSPTILEOFF(i
));
15703 error
->pipe
[i
].source
= I915_READ(PIPESRC(i
));
15705 if (HAS_GMCH_DISPLAY(dev
))
15706 error
->pipe
[i
].stat
= I915_READ(PIPESTAT(i
));
15709 error
->num_transcoders
= INTEL_INFO(dev
)->num_pipes
;
15710 if (HAS_DDI(dev_priv
->dev
))
15711 error
->num_transcoders
++; /* Account for eDP. */
15713 for (i
= 0; i
< error
->num_transcoders
; i
++) {
15714 enum transcoder cpu_transcoder
= transcoders
[i
];
15716 error
->transcoder
[i
].power_domain_on
=
15717 __intel_display_power_is_enabled(dev_priv
,
15718 POWER_DOMAIN_TRANSCODER(cpu_transcoder
));
15719 if (!error
->transcoder
[i
].power_domain_on
)
15722 error
->transcoder
[i
].cpu_transcoder
= cpu_transcoder
;
15724 error
->transcoder
[i
].conf
= I915_READ(PIPECONF(cpu_transcoder
));
15725 error
->transcoder
[i
].htotal
= I915_READ(HTOTAL(cpu_transcoder
));
15726 error
->transcoder
[i
].hblank
= I915_READ(HBLANK(cpu_transcoder
));
15727 error
->transcoder
[i
].hsync
= I915_READ(HSYNC(cpu_transcoder
));
15728 error
->transcoder
[i
].vtotal
= I915_READ(VTOTAL(cpu_transcoder
));
15729 error
->transcoder
[i
].vblank
= I915_READ(VBLANK(cpu_transcoder
));
15730 error
->transcoder
[i
].vsync
= I915_READ(VSYNC(cpu_transcoder
));
15736 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15739 intel_display_print_error_state(struct drm_i915_error_state_buf
*m
,
15740 struct drm_device
*dev
,
15741 struct intel_display_error_state
*error
)
15743 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
15749 err_printf(m
, "Num Pipes: %d\n", INTEL_INFO(dev
)->num_pipes
);
15750 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
15751 err_printf(m
, "PWR_WELL_CTL2: %08x\n",
15752 error
->power_well_driver
);
15753 for_each_pipe(dev_priv
, i
) {
15754 err_printf(m
, "Pipe [%d]:\n", i
);
15755 err_printf(m
, " Power: %s\n",
15756 error
->pipe
[i
].power_domain_on
? "on" : "off");
15757 err_printf(m
, " SRC: %08x\n", error
->pipe
[i
].source
);
15758 err_printf(m
, " STAT: %08x\n", error
->pipe
[i
].stat
);
15760 err_printf(m
, "Plane [%d]:\n", i
);
15761 err_printf(m
, " CNTR: %08x\n", error
->plane
[i
].control
);
15762 err_printf(m
, " STRIDE: %08x\n", error
->plane
[i
].stride
);
15763 if (INTEL_INFO(dev
)->gen
<= 3) {
15764 err_printf(m
, " SIZE: %08x\n", error
->plane
[i
].size
);
15765 err_printf(m
, " POS: %08x\n", error
->plane
[i
].pos
);
15767 if (INTEL_INFO(dev
)->gen
<= 7 && !IS_HASWELL(dev
))
15768 err_printf(m
, " ADDR: %08x\n", error
->plane
[i
].addr
);
15769 if (INTEL_INFO(dev
)->gen
>= 4) {
15770 err_printf(m
, " SURF: %08x\n", error
->plane
[i
].surface
);
15771 err_printf(m
, " TILEOFF: %08x\n", error
->plane
[i
].tile_offset
);
15774 err_printf(m
, "Cursor [%d]:\n", i
);
15775 err_printf(m
, " CNTR: %08x\n", error
->cursor
[i
].control
);
15776 err_printf(m
, " POS: %08x\n", error
->cursor
[i
].position
);
15777 err_printf(m
, " BASE: %08x\n", error
->cursor
[i
].base
);
15780 for (i
= 0; i
< error
->num_transcoders
; i
++) {
15781 err_printf(m
, "CPU transcoder: %c\n",
15782 transcoder_name(error
->transcoder
[i
].cpu_transcoder
));
15783 err_printf(m
, " Power: %s\n",
15784 error
->transcoder
[i
].power_domain_on
? "on" : "off");
15785 err_printf(m
, " CONF: %08x\n", error
->transcoder
[i
].conf
);
15786 err_printf(m
, " HTOTAL: %08x\n", error
->transcoder
[i
].htotal
);
15787 err_printf(m
, " HBLANK: %08x\n", error
->transcoder
[i
].hblank
);
15788 err_printf(m
, " HSYNC: %08x\n", error
->transcoder
[i
].hsync
);
15789 err_printf(m
, " VTOTAL: %08x\n", error
->transcoder
[i
].vtotal
);
15790 err_printf(m
, " VBLANK: %08x\n", error
->transcoder
[i
].vblank
);
15791 err_printf(m
, " VSYNC: %08x\n", error
->transcoder
[i
].vsync
);
15795 void intel_modeset_preclose(struct drm_device
*dev
, struct drm_file
*file
)
15797 struct intel_crtc
*crtc
;
15799 for_each_intel_crtc(dev
, crtc
) {
15800 struct intel_unpin_work
*work
;
15802 spin_lock_irq(&dev
->event_lock
);
15804 work
= crtc
->unpin_work
;
15806 if (work
&& work
->event
&&
15807 work
->event
->base
.file_priv
== file
) {
15808 kfree(work
->event
);
15809 work
->event
= NULL
;
15812 spin_unlock_irq(&dev
->event_lock
);