posix-clock: Fix return code on the poll method's error path
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_display.c
blobbeb0374a19f199d23c73116dcfcd08c3d500dde0
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 DRM_FORMAT_YUYV,
76 DRM_FORMAT_YVYU,
77 DRM_FORMAT_UYVY,
78 DRM_FORMAT_VYUY,
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83 DRM_FORMAT_ARGB8888,
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91 struct intel_crtc_state *pipe_config);
93 static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108 const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
121 typedef struct {
122 int min, max;
123 } intel_range_t;
125 typedef struct {
126 int dot_limit;
127 int p2_slow, p2_fast;
128 } intel_p2_t;
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
139 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
141 /* Obtain SKU information */
142 mutex_lock(&dev_priv->sb_lock);
143 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144 CCK_FUSE_HPLL_FREQ_MASK;
145 mutex_unlock(&dev_priv->sb_lock);
147 return vco_freq[hpll_freq] * 1000;
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151 const char *name, u32 reg)
153 u32 val;
154 int divider;
156 if (dev_priv->hpll_freq == 0)
157 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
163 divider = val & CCK_FREQUENCY_VALUES;
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
169 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
173 intel_pch_rawclk(struct drm_device *dev)
175 struct drm_i915_private *dev_priv = dev->dev_private;
177 WARN_ON(!HAS_PCH_SPLIT(dev));
179 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
182 /* hrawclock is 1/4 the FSB frequency */
183 int intel_hrawclk(struct drm_device *dev)
185 struct drm_i915_private *dev_priv = dev->dev_private;
186 uint32_t clkcfg;
188 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189 if (IS_VALLEYVIEW(dev))
190 return 200;
192 clkcfg = I915_READ(CLKCFG);
193 switch (clkcfg & CLKCFG_FSB_MASK) {
194 case CLKCFG_FSB_400:
195 return 100;
196 case CLKCFG_FSB_533:
197 return 133;
198 case CLKCFG_FSB_667:
199 return 166;
200 case CLKCFG_FSB_800:
201 return 200;
202 case CLKCFG_FSB_1067:
203 return 266;
204 case CLKCFG_FSB_1333:
205 return 333;
206 /* these two are just a guess; one of them might be right */
207 case CLKCFG_FSB_1600:
208 case CLKCFG_FSB_1600_ALT:
209 return 400;
210 default:
211 return 133;
215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
217 if (!IS_VALLEYVIEW(dev_priv))
218 return;
220 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221 CCK_CZ_CLOCK_CONTROL);
223 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
226 static inline u32 /* units of 100MHz */
227 intel_fdi_link_freq(struct drm_device *dev)
229 if (IS_GEN5(dev)) {
230 struct drm_i915_private *dev_priv = dev->dev_private;
231 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232 } else
233 return 27;
236 static const intel_limit_t intel_limits_i8xx_dac = {
237 .dot = { .min = 25000, .max = 350000 },
238 .vco = { .min = 908000, .max = 1512000 },
239 .n = { .min = 2, .max = 16 },
240 .m = { .min = 96, .max = 140 },
241 .m1 = { .min = 18, .max = 26 },
242 .m2 = { .min = 6, .max = 16 },
243 .p = { .min = 4, .max = 128 },
244 .p1 = { .min = 2, .max = 33 },
245 .p2 = { .dot_limit = 165000,
246 .p2_slow = 4, .p2_fast = 2 },
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250 .dot = { .min = 25000, .max = 350000 },
251 .vco = { .min = 908000, .max = 1512000 },
252 .n = { .min = 2, .max = 16 },
253 .m = { .min = 96, .max = 140 },
254 .m1 = { .min = 18, .max = 26 },
255 .m2 = { .min = 6, .max = 16 },
256 .p = { .min = 4, .max = 128 },
257 .p1 = { .min = 2, .max = 33 },
258 .p2 = { .dot_limit = 165000,
259 .p2_slow = 4, .p2_fast = 4 },
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263 .dot = { .min = 25000, .max = 350000 },
264 .vco = { .min = 908000, .max = 1512000 },
265 .n = { .min = 2, .max = 16 },
266 .m = { .min = 96, .max = 140 },
267 .m1 = { .min = 18, .max = 26 },
268 .m2 = { .min = 6, .max = 16 },
269 .p = { .min = 4, .max = 128 },
270 .p1 = { .min = 1, .max = 6 },
271 .p2 = { .dot_limit = 165000,
272 .p2_slow = 14, .p2_fast = 7 },
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276 .dot = { .min = 20000, .max = 400000 },
277 .vco = { .min = 1400000, .max = 2800000 },
278 .n = { .min = 1, .max = 6 },
279 .m = { .min = 70, .max = 120 },
280 .m1 = { .min = 8, .max = 18 },
281 .m2 = { .min = 3, .max = 7 },
282 .p = { .min = 5, .max = 80 },
283 .p1 = { .min = 1, .max = 8 },
284 .p2 = { .dot_limit = 200000,
285 .p2_slow = 10, .p2_fast = 5 },
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289 .dot = { .min = 20000, .max = 400000 },
290 .vco = { .min = 1400000, .max = 2800000 },
291 .n = { .min = 1, .max = 6 },
292 .m = { .min = 70, .max = 120 },
293 .m1 = { .min = 8, .max = 18 },
294 .m2 = { .min = 3, .max = 7 },
295 .p = { .min = 7, .max = 98 },
296 .p1 = { .min = 1, .max = 8 },
297 .p2 = { .dot_limit = 112000,
298 .p2_slow = 14, .p2_fast = 7 },
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303 .dot = { .min = 25000, .max = 270000 },
304 .vco = { .min = 1750000, .max = 3500000},
305 .n = { .min = 1, .max = 4 },
306 .m = { .min = 104, .max = 138 },
307 .m1 = { .min = 17, .max = 23 },
308 .m2 = { .min = 5, .max = 11 },
309 .p = { .min = 10, .max = 30 },
310 .p1 = { .min = 1, .max = 3},
311 .p2 = { .dot_limit = 270000,
312 .p2_slow = 10,
313 .p2_fast = 10
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318 .dot = { .min = 22000, .max = 400000 },
319 .vco = { .min = 1750000, .max = 3500000},
320 .n = { .min = 1, .max = 4 },
321 .m = { .min = 104, .max = 138 },
322 .m1 = { .min = 16, .max = 23 },
323 .m2 = { .min = 5, .max = 11 },
324 .p = { .min = 5, .max = 80 },
325 .p1 = { .min = 1, .max = 8},
326 .p2 = { .dot_limit = 165000,
327 .p2_slow = 10, .p2_fast = 5 },
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331 .dot = { .min = 20000, .max = 115000 },
332 .vco = { .min = 1750000, .max = 3500000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 104, .max = 138 },
335 .m1 = { .min = 17, .max = 23 },
336 .m2 = { .min = 5, .max = 11 },
337 .p = { .min = 28, .max = 112 },
338 .p1 = { .min = 2, .max = 8 },
339 .p2 = { .dot_limit = 0,
340 .p2_slow = 14, .p2_fast = 14
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345 .dot = { .min = 80000, .max = 224000 },
346 .vco = { .min = 1750000, .max = 3500000 },
347 .n = { .min = 1, .max = 3 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 17, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 14, .max = 42 },
352 .p1 = { .min = 2, .max = 6 },
353 .p2 = { .dot_limit = 0,
354 .p2_slow = 7, .p2_fast = 7
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359 .dot = { .min = 20000, .max = 400000},
360 .vco = { .min = 1700000, .max = 3500000 },
361 /* Pineview's Ncounter is a ring counter */
362 .n = { .min = 3, .max = 6 },
363 .m = { .min = 2, .max = 256 },
364 /* Pineview only has one combined m divider, which we treat as m2. */
365 .m1 = { .min = 0, .max = 0 },
366 .m2 = { .min = 0, .max = 254 },
367 .p = { .min = 5, .max = 80 },
368 .p1 = { .min = 1, .max = 8 },
369 .p2 = { .dot_limit = 200000,
370 .p2_slow = 10, .p2_fast = 5 },
373 static const intel_limit_t intel_limits_pineview_lvds = {
374 .dot = { .min = 20000, .max = 400000 },
375 .vco = { .min = 1700000, .max = 3500000 },
376 .n = { .min = 3, .max = 6 },
377 .m = { .min = 2, .max = 256 },
378 .m1 = { .min = 0, .max = 0 },
379 .m2 = { .min = 0, .max = 254 },
380 .p = { .min = 7, .max = 112 },
381 .p1 = { .min = 1, .max = 8 },
382 .p2 = { .dot_limit = 112000,
383 .p2_slow = 14, .p2_fast = 14 },
386 /* Ironlake / Sandybridge
388 * We calculate clock using (register_value + 2) for N/M1/M2, so here
389 * the range value for them is (actual_value - 2).
391 static const intel_limit_t intel_limits_ironlake_dac = {
392 .dot = { .min = 25000, .max = 350000 },
393 .vco = { .min = 1760000, .max = 3510000 },
394 .n = { .min = 1, .max = 5 },
395 .m = { .min = 79, .max = 127 },
396 .m1 = { .min = 12, .max = 22 },
397 .m2 = { .min = 5, .max = 9 },
398 .p = { .min = 5, .max = 80 },
399 .p1 = { .min = 1, .max = 8 },
400 .p2 = { .dot_limit = 225000,
401 .p2_slow = 10, .p2_fast = 5 },
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405 .dot = { .min = 25000, .max = 350000 },
406 .vco = { .min = 1760000, .max = 3510000 },
407 .n = { .min = 1, .max = 3 },
408 .m = { .min = 79, .max = 118 },
409 .m1 = { .min = 12, .max = 22 },
410 .m2 = { .min = 5, .max = 9 },
411 .p = { .min = 28, .max = 112 },
412 .p1 = { .min = 2, .max = 8 },
413 .p2 = { .dot_limit = 225000,
414 .p2_slow = 14, .p2_fast = 14 },
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418 .dot = { .min = 25000, .max = 350000 },
419 .vco = { .min = 1760000, .max = 3510000 },
420 .n = { .min = 1, .max = 3 },
421 .m = { .min = 79, .max = 127 },
422 .m1 = { .min = 12, .max = 22 },
423 .m2 = { .min = 5, .max = 9 },
424 .p = { .min = 14, .max = 56 },
425 .p1 = { .min = 2, .max = 8 },
426 .p2 = { .dot_limit = 225000,
427 .p2_slow = 7, .p2_fast = 7 },
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 2 },
435 .m = { .min = 79, .max = 126 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 126 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 42 },
452 .p1 = { .min = 2, .max = 6 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
457 static const intel_limit_t intel_limits_vlv = {
459 * These are the data rate limits (measured in fast clocks)
460 * since those are the strictest limits we have. The fast
461 * clock and actual rate limits are more relaxed, so checking
462 * them would make no difference.
464 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465 .vco = { .min = 4000000, .max = 6000000 },
466 .n = { .min = 1, .max = 7 },
467 .m1 = { .min = 2, .max = 3 },
468 .m2 = { .min = 11, .max = 156 },
469 .p1 = { .min = 2, .max = 3 },
470 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
473 static const intel_limit_t intel_limits_chv = {
475 * These are the data rate limits (measured in fast clocks)
476 * since those are the strictest limits we have. The fast
477 * clock and actual rate limits are more relaxed, so checking
478 * them would make no difference.
480 .dot = { .min = 25000 * 5, .max = 540000 * 5},
481 .vco = { .min = 4800000, .max = 6480000 },
482 .n = { .min = 1, .max = 1 },
483 .m1 = { .min = 2, .max = 2 },
484 .m2 = { .min = 24 << 22, .max = 175 << 22 },
485 .p1 = { .min = 2, .max = 4 },
486 .p2 = { .p2_slow = 1, .p2_fast = 14 },
489 static const intel_limit_t intel_limits_bxt = {
490 /* FIXME: find real dot limits */
491 .dot = { .min = 0, .max = INT_MAX },
492 .vco = { .min = 4800000, .max = 6700000 },
493 .n = { .min = 1, .max = 1 },
494 .m1 = { .min = 2, .max = 2 },
495 /* FIXME: find real m2 limits */
496 .m2 = { .min = 2 << 22, .max = 255 << 22 },
497 .p1 = { .min = 2, .max = 4 },
498 .p2 = { .p2_slow = 1, .p2_fast = 20 },
501 static bool
502 needs_modeset(struct drm_crtc_state *state)
504 return drm_atomic_crtc_needs_modeset(state);
508 * Returns whether any output on the specified pipe is of the specified type
510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
512 struct drm_device *dev = crtc->base.dev;
513 struct intel_encoder *encoder;
515 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516 if (encoder->type == type)
517 return true;
519 return false;
523 * Returns whether any output on the specified pipe will have the specified
524 * type after a staged modeset is complete, i.e., the same as
525 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526 * encoder->crtc.
528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529 int type)
531 struct drm_atomic_state *state = crtc_state->base.state;
532 struct drm_connector *connector;
533 struct drm_connector_state *connector_state;
534 struct intel_encoder *encoder;
535 int i, num_connectors = 0;
537 for_each_connector_in_state(state, connector, connector_state, i) {
538 if (connector_state->crtc != crtc_state->base.crtc)
539 continue;
541 num_connectors++;
543 encoder = to_intel_encoder(connector_state->best_encoder);
544 if (encoder->type == type)
545 return true;
548 WARN_ON(num_connectors == 0);
550 return false;
553 static const intel_limit_t *
554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
556 struct drm_device *dev = crtc_state->base.crtc->dev;
557 const intel_limit_t *limit;
559 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560 if (intel_is_dual_link_lvds(dev)) {
561 if (refclk == 100000)
562 limit = &intel_limits_ironlake_dual_lvds_100m;
563 else
564 limit = &intel_limits_ironlake_dual_lvds;
565 } else {
566 if (refclk == 100000)
567 limit = &intel_limits_ironlake_single_lvds_100m;
568 else
569 limit = &intel_limits_ironlake_single_lvds;
571 } else
572 limit = &intel_limits_ironlake_dac;
574 return limit;
577 static const intel_limit_t *
578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
580 struct drm_device *dev = crtc_state->base.crtc->dev;
581 const intel_limit_t *limit;
583 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584 if (intel_is_dual_link_lvds(dev))
585 limit = &intel_limits_g4x_dual_channel_lvds;
586 else
587 limit = &intel_limits_g4x_single_channel_lvds;
588 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590 limit = &intel_limits_g4x_hdmi;
591 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592 limit = &intel_limits_g4x_sdvo;
593 } else /* The option is for other outputs */
594 limit = &intel_limits_i9xx_sdvo;
596 return limit;
599 static const intel_limit_t *
600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
602 struct drm_device *dev = crtc_state->base.crtc->dev;
603 const intel_limit_t *limit;
605 if (IS_BROXTON(dev))
606 limit = &intel_limits_bxt;
607 else if (HAS_PCH_SPLIT(dev))
608 limit = intel_ironlake_limit(crtc_state, refclk);
609 else if (IS_G4X(dev)) {
610 limit = intel_g4x_limit(crtc_state);
611 } else if (IS_PINEVIEW(dev)) {
612 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613 limit = &intel_limits_pineview_lvds;
614 else
615 limit = &intel_limits_pineview_sdvo;
616 } else if (IS_CHERRYVIEW(dev)) {
617 limit = &intel_limits_chv;
618 } else if (IS_VALLEYVIEW(dev)) {
619 limit = &intel_limits_vlv;
620 } else if (!IS_GEN2(dev)) {
621 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622 limit = &intel_limits_i9xx_lvds;
623 else
624 limit = &intel_limits_i9xx_sdvo;
625 } else {
626 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627 limit = &intel_limits_i8xx_lvds;
628 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629 limit = &intel_limits_i8xx_dvo;
630 else
631 limit = &intel_limits_i8xx_dac;
633 return limit;
637 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640 * The helpers' return value is the rate of the clock that is fed to the
641 * display engine's pipe which can be the above fast dot clock rate or a
642 * divided-down version of it.
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
647 clock->m = clock->m2 + 2;
648 clock->p = clock->p1 * clock->p2;
649 if (WARN_ON(clock->n == 0 || clock->p == 0))
650 return 0;
651 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
654 return clock->dot;
657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
659 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
664 clock->m = i9xx_dpll_compute_m(clock);
665 clock->p = clock->p1 * clock->p2;
666 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667 return 0;
668 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
671 return clock->dot;
674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
676 clock->m = clock->m1 * clock->m2;
677 clock->p = clock->p1 * clock->p2;
678 if (WARN_ON(clock->n == 0 || clock->p == 0))
679 return 0;
680 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
683 return clock->dot / 5;
686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
688 clock->m = clock->m1 * clock->m2;
689 clock->p = clock->p1 * clock->p2;
690 if (WARN_ON(clock->n == 0 || clock->p == 0))
691 return 0;
692 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693 clock->n << 22);
694 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
696 return clock->dot / 5;
699 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
701 * Returns whether the given set of divisors are valid for a given refclk with
702 * the given connectors.
705 static bool intel_PLL_is_valid(struct drm_device *dev,
706 const intel_limit_t *limit,
707 const intel_clock_t *clock)
709 if (clock->n < limit->n.min || limit->n.max < clock->n)
710 INTELPllInvalid("n out of range\n");
711 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
712 INTELPllInvalid("p1 out of range\n");
713 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
714 INTELPllInvalid("m2 out of range\n");
715 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
716 INTELPllInvalid("m1 out of range\n");
718 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
719 if (clock->m1 <= clock->m2)
720 INTELPllInvalid("m1 <= m2\n");
722 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
723 if (clock->p < limit->p.min || limit->p.max < clock->p)
724 INTELPllInvalid("p out of range\n");
725 if (clock->m < limit->m.min || limit->m.max < clock->m)
726 INTELPllInvalid("m out of range\n");
729 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
730 INTELPllInvalid("vco out of range\n");
731 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
732 * connector, etc., rather than just a single range.
734 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
735 INTELPllInvalid("dot out of range\n");
737 return true;
740 static int
741 i9xx_select_p2_div(const intel_limit_t *limit,
742 const struct intel_crtc_state *crtc_state,
743 int target)
745 struct drm_device *dev = crtc_state->base.crtc->dev;
747 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
749 * For LVDS just rely on its current settings for dual-channel.
750 * We haven't figured out how to reliably set up different
751 * single/dual channel state, if we even can.
753 if (intel_is_dual_link_lvds(dev))
754 return limit->p2.p2_fast;
755 else
756 return limit->p2.p2_slow;
757 } else {
758 if (target < limit->p2.dot_limit)
759 return limit->p2.p2_slow;
760 else
761 return limit->p2.p2_fast;
765 static bool
766 i9xx_find_best_dpll(const intel_limit_t *limit,
767 struct intel_crtc_state *crtc_state,
768 int target, int refclk, intel_clock_t *match_clock,
769 intel_clock_t *best_clock)
771 struct drm_device *dev = crtc_state->base.crtc->dev;
772 intel_clock_t clock;
773 int err = target;
775 memset(best_clock, 0, sizeof(*best_clock));
777 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
780 clock.m1++) {
781 for (clock.m2 = limit->m2.min;
782 clock.m2 <= limit->m2.max; clock.m2++) {
783 if (clock.m2 >= clock.m1)
784 break;
785 for (clock.n = limit->n.min;
786 clock.n <= limit->n.max; clock.n++) {
787 for (clock.p1 = limit->p1.min;
788 clock.p1 <= limit->p1.max; clock.p1++) {
789 int this_err;
791 i9xx_calc_dpll_params(refclk, &clock);
792 if (!intel_PLL_is_valid(dev, limit,
793 &clock))
794 continue;
795 if (match_clock &&
796 clock.p != match_clock->p)
797 continue;
799 this_err = abs(clock.dot - target);
800 if (this_err < err) {
801 *best_clock = clock;
802 err = this_err;
809 return (err != target);
812 static bool
813 pnv_find_best_dpll(const intel_limit_t *limit,
814 struct intel_crtc_state *crtc_state,
815 int target, int refclk, intel_clock_t *match_clock,
816 intel_clock_t *best_clock)
818 struct drm_device *dev = crtc_state->base.crtc->dev;
819 intel_clock_t clock;
820 int err = target;
822 memset(best_clock, 0, sizeof(*best_clock));
824 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
826 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
827 clock.m1++) {
828 for (clock.m2 = limit->m2.min;
829 clock.m2 <= limit->m2.max; clock.m2++) {
830 for (clock.n = limit->n.min;
831 clock.n <= limit->n.max; clock.n++) {
832 for (clock.p1 = limit->p1.min;
833 clock.p1 <= limit->p1.max; clock.p1++) {
834 int this_err;
836 pnv_calc_dpll_params(refclk, &clock);
837 if (!intel_PLL_is_valid(dev, limit,
838 &clock))
839 continue;
840 if (match_clock &&
841 clock.p != match_clock->p)
842 continue;
844 this_err = abs(clock.dot - target);
845 if (this_err < err) {
846 *best_clock = clock;
847 err = this_err;
854 return (err != target);
857 static bool
858 g4x_find_best_dpll(const intel_limit_t *limit,
859 struct intel_crtc_state *crtc_state,
860 int target, int refclk, intel_clock_t *match_clock,
861 intel_clock_t *best_clock)
863 struct drm_device *dev = crtc_state->base.crtc->dev;
864 intel_clock_t clock;
865 int max_n;
866 bool found = false;
867 /* approximately equals target * 0.00585 */
868 int err_most = (target >> 8) + (target >> 9);
870 memset(best_clock, 0, sizeof(*best_clock));
872 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
874 max_n = limit->n.max;
875 /* based on hardware requirement, prefer smaller n to precision */
876 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877 /* based on hardware requirement, prefere larger m1,m2 */
878 for (clock.m1 = limit->m1.max;
879 clock.m1 >= limit->m1.min; clock.m1--) {
880 for (clock.m2 = limit->m2.max;
881 clock.m2 >= limit->m2.min; clock.m2--) {
882 for (clock.p1 = limit->p1.max;
883 clock.p1 >= limit->p1.min; clock.p1--) {
884 int this_err;
886 i9xx_calc_dpll_params(refclk, &clock);
887 if (!intel_PLL_is_valid(dev, limit,
888 &clock))
889 continue;
891 this_err = abs(clock.dot - target);
892 if (this_err < err_most) {
893 *best_clock = clock;
894 err_most = this_err;
895 max_n = clock.n;
896 found = true;
902 return found;
906 * Check if the calculated PLL configuration is more optimal compared to the
907 * best configuration and error found so far. Return the calculated error.
909 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
910 const intel_clock_t *calculated_clock,
911 const intel_clock_t *best_clock,
912 unsigned int best_error_ppm,
913 unsigned int *error_ppm)
916 * For CHV ignore the error and consider only the P value.
917 * Prefer a bigger P value based on HW requirements.
919 if (IS_CHERRYVIEW(dev)) {
920 *error_ppm = 0;
922 return calculated_clock->p > best_clock->p;
925 if (WARN_ON_ONCE(!target_freq))
926 return false;
928 *error_ppm = div_u64(1000000ULL *
929 abs(target_freq - calculated_clock->dot),
930 target_freq);
932 * Prefer a better P value over a better (smaller) error if the error
933 * is small. Ensure this preference for future configurations too by
934 * setting the error to 0.
936 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
937 *error_ppm = 0;
939 return true;
942 return *error_ppm + 10 < best_error_ppm;
945 static bool
946 vlv_find_best_dpll(const intel_limit_t *limit,
947 struct intel_crtc_state *crtc_state,
948 int target, int refclk, intel_clock_t *match_clock,
949 intel_clock_t *best_clock)
951 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
952 struct drm_device *dev = crtc->base.dev;
953 intel_clock_t clock;
954 unsigned int bestppm = 1000000;
955 /* min update 19.2 MHz */
956 int max_n = min(limit->n.max, refclk / 19200);
957 bool found = false;
959 target *= 5; /* fast clock */
961 memset(best_clock, 0, sizeof(*best_clock));
963 /* based on hardware requirement, prefer smaller n to precision */
964 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
965 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
966 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
967 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
968 clock.p = clock.p1 * clock.p2;
969 /* based on hardware requirement, prefer bigger m1,m2 values */
970 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
971 unsigned int ppm;
973 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
974 refclk * clock.m1);
976 vlv_calc_dpll_params(refclk, &clock);
978 if (!intel_PLL_is_valid(dev, limit,
979 &clock))
980 continue;
982 if (!vlv_PLL_is_optimal(dev, target,
983 &clock,
984 best_clock,
985 bestppm, &ppm))
986 continue;
988 *best_clock = clock;
989 bestppm = ppm;
990 found = true;
996 return found;
999 static bool
1000 chv_find_best_dpll(const intel_limit_t *limit,
1001 struct intel_crtc_state *crtc_state,
1002 int target, int refclk, intel_clock_t *match_clock,
1003 intel_clock_t *best_clock)
1005 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1006 struct drm_device *dev = crtc->base.dev;
1007 unsigned int best_error_ppm;
1008 intel_clock_t clock;
1009 uint64_t m2;
1010 int found = false;
1012 memset(best_clock, 0, sizeof(*best_clock));
1013 best_error_ppm = 1000000;
1016 * Based on hardware doc, the n always set to 1, and m1 always
1017 * set to 2. If requires to support 200Mhz refclk, we need to
1018 * revisit this because n may not 1 anymore.
1020 clock.n = 1, clock.m1 = 2;
1021 target *= 5; /* fast clock */
1023 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1024 for (clock.p2 = limit->p2.p2_fast;
1025 clock.p2 >= limit->p2.p2_slow;
1026 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1027 unsigned int error_ppm;
1029 clock.p = clock.p1 * clock.p2;
1031 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1032 clock.n) << 22, refclk * clock.m1);
1034 if (m2 > INT_MAX/clock.m1)
1035 continue;
1037 clock.m2 = m2;
1039 chv_calc_dpll_params(refclk, &clock);
1041 if (!intel_PLL_is_valid(dev, limit, &clock))
1042 continue;
1044 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1045 best_error_ppm, &error_ppm))
1046 continue;
1048 *best_clock = clock;
1049 best_error_ppm = error_ppm;
1050 found = true;
1054 return found;
1057 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1058 intel_clock_t *best_clock)
1060 int refclk = i9xx_get_refclk(crtc_state, 0);
1062 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1063 target_clock, refclk, NULL, best_clock);
1066 bool intel_crtc_active(struct drm_crtc *crtc)
1068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070 /* Be paranoid as we can arrive here with only partial
1071 * state retrieved from the hardware during setup.
1073 * We can ditch the adjusted_mode.crtc_clock check as soon
1074 * as Haswell has gained clock readout/fastboot support.
1076 * We can ditch the crtc->primary->fb check as soon as we can
1077 * properly reconstruct framebuffers.
1079 * FIXME: The intel_crtc->active here should be switched to
1080 * crtc->state->active once we have proper CRTC states wired up
1081 * for atomic.
1083 return intel_crtc->active && crtc->primary->state->fb &&
1084 intel_crtc->config->base.adjusted_mode.crtc_clock;
1087 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1088 enum pipe pipe)
1090 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1093 return intel_crtc->config->cpu_transcoder;
1096 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099 u32 reg = PIPEDSL(pipe);
1100 u32 line1, line2;
1101 u32 line_mask;
1103 if (IS_GEN2(dev))
1104 line_mask = DSL_LINEMASK_GEN2;
1105 else
1106 line_mask = DSL_LINEMASK_GEN3;
1108 line1 = I915_READ(reg) & line_mask;
1109 msleep(5);
1110 line2 = I915_READ(reg) & line_mask;
1112 return line1 == line2;
1116 * intel_wait_for_pipe_off - wait for pipe to turn off
1117 * @crtc: crtc whose pipe to wait for
1119 * After disabling a pipe, we can't wait for vblank in the usual way,
1120 * spinning on the vblank interrupt status bit, since we won't actually
1121 * see an interrupt when the pipe is disabled.
1123 * On Gen4 and above:
1124 * wait for the pipe register state bit to turn off
1126 * Otherwise:
1127 * wait for the display line value to settle (it usually
1128 * ends up stopping at the start of the next frame).
1131 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1133 struct drm_device *dev = crtc->base.dev;
1134 struct drm_i915_private *dev_priv = dev->dev_private;
1135 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1136 enum pipe pipe = crtc->pipe;
1138 if (INTEL_INFO(dev)->gen >= 4) {
1139 int reg = PIPECONF(cpu_transcoder);
1141 /* Wait for the Pipe State to go off */
1142 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1143 100))
1144 WARN(1, "pipe_off wait timed out\n");
1145 } else {
1146 /* Wait for the display line to settle */
1147 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1148 WARN(1, "pipe_off wait timed out\n");
1152 static const char *state_string(bool enabled)
1154 return enabled ? "on" : "off";
1157 /* Only for pre-ILK configs */
1158 void assert_pll(struct drm_i915_private *dev_priv,
1159 enum pipe pipe, bool state)
1161 u32 val;
1162 bool cur_state;
1164 val = I915_READ(DPLL(pipe));
1165 cur_state = !!(val & DPLL_VCO_ENABLE);
1166 I915_STATE_WARN(cur_state != state,
1167 "PLL state assertion failure (expected %s, current %s)\n",
1168 state_string(state), state_string(cur_state));
1171 /* XXX: the dsi pll is shared between MIPI DSI ports */
1172 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1174 u32 val;
1175 bool cur_state;
1177 mutex_lock(&dev_priv->sb_lock);
1178 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1179 mutex_unlock(&dev_priv->sb_lock);
1181 cur_state = val & DSI_PLL_VCO_EN;
1182 I915_STATE_WARN(cur_state != state,
1183 "DSI PLL state assertion failure (expected %s, current %s)\n",
1184 state_string(state), state_string(cur_state));
1186 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1187 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1189 struct intel_shared_dpll *
1190 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1192 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1194 if (crtc->config->shared_dpll < 0)
1195 return NULL;
1197 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1200 /* For ILK+ */
1201 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1202 struct intel_shared_dpll *pll,
1203 bool state)
1205 bool cur_state;
1206 struct intel_dpll_hw_state hw_state;
1208 if (WARN (!pll,
1209 "asserting DPLL %s with no DPLL\n", state_string(state)))
1210 return;
1212 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1213 I915_STATE_WARN(cur_state != state,
1214 "%s assertion failure (expected %s, current %s)\n",
1215 pll->name, state_string(state), state_string(cur_state));
1218 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1221 bool cur_state;
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
1225 if (HAS_DDI(dev_priv->dev)) {
1226 /* DDI does not have a specific FDI_TX register */
1227 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1228 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1229 } else {
1230 u32 val = I915_READ(FDI_TX_CTL(pipe));
1231 cur_state = !!(val & FDI_TX_ENABLE);
1233 I915_STATE_WARN(cur_state != state,
1234 "FDI TX state assertion failure (expected %s, current %s)\n",
1235 state_string(state), state_string(cur_state));
1237 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1238 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1240 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1241 enum pipe pipe, bool state)
1243 u32 val;
1244 bool cur_state;
1246 val = I915_READ(FDI_RX_CTL(pipe));
1247 cur_state = !!(val & FDI_RX_ENABLE);
1248 I915_STATE_WARN(cur_state != state,
1249 "FDI RX state assertion failure (expected %s, current %s)\n",
1250 state_string(state), state_string(cur_state));
1252 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1253 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1255 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1256 enum pipe pipe)
1258 u32 val;
1260 /* ILK FDI PLL is always enabled */
1261 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1262 return;
1264 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1265 if (HAS_DDI(dev_priv->dev))
1266 return;
1268 val = I915_READ(FDI_TX_CTL(pipe));
1269 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1272 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1273 enum pipe pipe, bool state)
1275 u32 val;
1276 bool cur_state;
1278 val = I915_READ(FDI_RX_CTL(pipe));
1279 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1280 I915_STATE_WARN(cur_state != state,
1281 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1282 state_string(state), state_string(cur_state));
1285 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1286 enum pipe pipe)
1288 struct drm_device *dev = dev_priv->dev;
1289 int pp_reg;
1290 u32 val;
1291 enum pipe panel_pipe = PIPE_A;
1292 bool locked = true;
1294 if (WARN_ON(HAS_DDI(dev)))
1295 return;
1297 if (HAS_PCH_SPLIT(dev)) {
1298 u32 port_sel;
1300 pp_reg = PCH_PP_CONTROL;
1301 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1303 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1304 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1305 panel_pipe = PIPE_B;
1306 /* XXX: else fix for eDP */
1307 } else if (IS_VALLEYVIEW(dev)) {
1308 /* presumably write lock depends on pipe, not port select */
1309 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1310 panel_pipe = pipe;
1311 } else {
1312 pp_reg = PP_CONTROL;
1313 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1314 panel_pipe = PIPE_B;
1317 val = I915_READ(pp_reg);
1318 if (!(val & PANEL_POWER_ON) ||
1319 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1320 locked = false;
1322 I915_STATE_WARN(panel_pipe == pipe && locked,
1323 "panel assertion failure, pipe %c regs locked\n",
1324 pipe_name(pipe));
1327 static void assert_cursor(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, bool state)
1330 struct drm_device *dev = dev_priv->dev;
1331 bool cur_state;
1333 if (IS_845G(dev) || IS_I865G(dev))
1334 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1335 else
1336 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1338 I915_STATE_WARN(cur_state != state,
1339 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1340 pipe_name(pipe), state_string(state), state_string(cur_state));
1342 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1343 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1345 void assert_pipe(struct drm_i915_private *dev_priv,
1346 enum pipe pipe, bool state)
1348 bool cur_state;
1349 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1350 pipe);
1352 /* if we need the pipe quirk it must be always on */
1353 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1354 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1355 state = true;
1357 if (!intel_display_power_is_enabled(dev_priv,
1358 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1359 cur_state = false;
1360 } else {
1361 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1362 cur_state = !!(val & PIPECONF_ENABLE);
1365 I915_STATE_WARN(cur_state != state,
1366 "pipe %c assertion failure (expected %s, current %s)\n",
1367 pipe_name(pipe), state_string(state), state_string(cur_state));
1370 static void assert_plane(struct drm_i915_private *dev_priv,
1371 enum plane plane, bool state)
1373 u32 val;
1374 bool cur_state;
1376 val = I915_READ(DSPCNTR(plane));
1377 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1378 I915_STATE_WARN(cur_state != state,
1379 "plane %c assertion failure (expected %s, current %s)\n",
1380 plane_name(plane), state_string(state), state_string(cur_state));
1383 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1384 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1386 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1387 enum pipe pipe)
1389 struct drm_device *dev = dev_priv->dev;
1390 int i;
1392 /* Primary planes are fixed to pipes on gen4+ */
1393 if (INTEL_INFO(dev)->gen >= 4) {
1394 u32 val = I915_READ(DSPCNTR(pipe));
1395 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1396 "plane %c assertion failure, should be disabled but not\n",
1397 plane_name(pipe));
1398 return;
1401 /* Need to check both planes against the pipe */
1402 for_each_pipe(dev_priv, i) {
1403 u32 val = I915_READ(DSPCNTR(i));
1404 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1405 DISPPLANE_SEL_PIPE_SHIFT;
1406 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1407 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1408 plane_name(i), pipe_name(pipe));
1412 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1413 enum pipe pipe)
1415 struct drm_device *dev = dev_priv->dev;
1416 int sprite;
1418 if (INTEL_INFO(dev)->gen >= 9) {
1419 for_each_sprite(dev_priv, pipe, sprite) {
1420 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1421 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1422 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1423 sprite, pipe_name(pipe));
1425 } else if (IS_VALLEYVIEW(dev)) {
1426 for_each_sprite(dev_priv, pipe, sprite) {
1427 u32 val = I915_READ(SPCNTR(pipe, sprite));
1428 I915_STATE_WARN(val & SP_ENABLE,
1429 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1430 sprite_name(pipe, sprite), pipe_name(pipe));
1432 } else if (INTEL_INFO(dev)->gen >= 7) {
1433 u32 val = I915_READ(SPRCTL(pipe));
1434 I915_STATE_WARN(val & SPRITE_ENABLE,
1435 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436 plane_name(pipe), pipe_name(pipe));
1437 } else if (INTEL_INFO(dev)->gen >= 5) {
1438 u32 val = I915_READ(DVSCNTR(pipe));
1439 I915_STATE_WARN(val & DVS_ENABLE,
1440 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1441 plane_name(pipe), pipe_name(pipe));
1445 static void assert_vblank_disabled(struct drm_crtc *crtc)
1447 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1448 drm_crtc_vblank_put(crtc);
1451 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1453 u32 val;
1454 bool enabled;
1456 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1458 val = I915_READ(PCH_DREF_CONTROL);
1459 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1460 DREF_SUPERSPREAD_SOURCE_MASK));
1461 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1464 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe)
1467 u32 val;
1468 bool enabled;
1470 val = I915_READ(PCH_TRANSCONF(pipe));
1471 enabled = !!(val & TRANS_ENABLE);
1472 I915_STATE_WARN(enabled,
1473 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1474 pipe_name(pipe));
1477 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1478 enum pipe pipe, u32 port_sel, u32 val)
1480 if ((val & DP_PORT_EN) == 0)
1481 return false;
1483 if (HAS_PCH_CPT(dev_priv->dev)) {
1484 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1485 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1486 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1487 return false;
1488 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1489 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1490 return false;
1491 } else {
1492 if ((val & DP_PIPE_MASK) != (pipe << 30))
1493 return false;
1495 return true;
1498 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1499 enum pipe pipe, u32 val)
1501 if ((val & SDVO_ENABLE) == 0)
1502 return false;
1504 if (HAS_PCH_CPT(dev_priv->dev)) {
1505 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1506 return false;
1507 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1508 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1509 return false;
1510 } else {
1511 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1512 return false;
1514 return true;
1517 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1518 enum pipe pipe, u32 val)
1520 if ((val & LVDS_PORT_EN) == 0)
1521 return false;
1523 if (HAS_PCH_CPT(dev_priv->dev)) {
1524 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1525 return false;
1526 } else {
1527 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1528 return false;
1530 return true;
1533 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1534 enum pipe pipe, u32 val)
1536 if ((val & ADPA_DAC_ENABLE) == 0)
1537 return false;
1538 if (HAS_PCH_CPT(dev_priv->dev)) {
1539 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1540 return false;
1541 } else {
1542 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1543 return false;
1545 return true;
1548 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1549 enum pipe pipe, int reg, u32 port_sel)
1551 u32 val = I915_READ(reg);
1552 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1553 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1554 reg, pipe_name(pipe));
1556 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1557 && (val & DP_PIPEB_SELECT),
1558 "IBX PCH dp port still using transcoder B\n");
1561 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1562 enum pipe pipe, int reg)
1564 u32 val = I915_READ(reg);
1565 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1566 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1567 reg, pipe_name(pipe));
1569 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1570 && (val & SDVO_PIPE_B_SELECT),
1571 "IBX PCH hdmi port still using transcoder B\n");
1574 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1575 enum pipe pipe)
1577 u32 val;
1579 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1580 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1581 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1583 val = I915_READ(PCH_ADPA);
1584 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1585 "PCH VGA enabled on transcoder %c, should be disabled\n",
1586 pipe_name(pipe));
1588 val = I915_READ(PCH_LVDS);
1589 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1590 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1591 pipe_name(pipe));
1593 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1595 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1598 static void vlv_enable_pll(struct intel_crtc *crtc,
1599 const struct intel_crtc_state *pipe_config)
1601 struct drm_device *dev = crtc->base.dev;
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 int reg = DPLL(crtc->pipe);
1604 u32 dpll = pipe_config->dpll_hw_state.dpll;
1606 assert_pipe_disabled(dev_priv, crtc->pipe);
1608 /* No really, not for ILK+ */
1609 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1611 /* PLL is protected by panel, make sure we can write it */
1612 if (IS_MOBILE(dev_priv->dev))
1613 assert_panel_unlocked(dev_priv, crtc->pipe);
1615 I915_WRITE(reg, dpll);
1616 POSTING_READ(reg);
1617 udelay(150);
1619 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1620 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1622 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1623 POSTING_READ(DPLL_MD(crtc->pipe));
1625 /* We do this three times for luck */
1626 I915_WRITE(reg, dpll);
1627 POSTING_READ(reg);
1628 udelay(150); /* wait for warmup */
1629 I915_WRITE(reg, dpll);
1630 POSTING_READ(reg);
1631 udelay(150); /* wait for warmup */
1632 I915_WRITE(reg, dpll);
1633 POSTING_READ(reg);
1634 udelay(150); /* wait for warmup */
1637 static void chv_enable_pll(struct intel_crtc *crtc,
1638 const struct intel_crtc_state *pipe_config)
1640 struct drm_device *dev = crtc->base.dev;
1641 struct drm_i915_private *dev_priv = dev->dev_private;
1642 int pipe = crtc->pipe;
1643 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1644 u32 tmp;
1646 assert_pipe_disabled(dev_priv, crtc->pipe);
1648 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1650 mutex_lock(&dev_priv->sb_lock);
1652 /* Enable back the 10bit clock to display controller */
1653 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1654 tmp |= DPIO_DCLKP_EN;
1655 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1657 mutex_unlock(&dev_priv->sb_lock);
1660 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1662 udelay(1);
1664 /* Enable PLL */
1665 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1667 /* Check PLL is locked */
1668 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1669 DRM_ERROR("PLL %d failed to lock\n", pipe);
1671 /* not sure when this should be written */
1672 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1673 POSTING_READ(DPLL_MD(pipe));
1676 static int intel_num_dvo_pipes(struct drm_device *dev)
1678 struct intel_crtc *crtc;
1679 int count = 0;
1681 for_each_intel_crtc(dev, crtc)
1682 count += crtc->base.state->active &&
1683 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1685 return count;
1688 static void i9xx_enable_pll(struct intel_crtc *crtc)
1690 struct drm_device *dev = crtc->base.dev;
1691 struct drm_i915_private *dev_priv = dev->dev_private;
1692 int reg = DPLL(crtc->pipe);
1693 u32 dpll = crtc->config->dpll_hw_state.dpll;
1695 assert_pipe_disabled(dev_priv, crtc->pipe);
1697 /* No really, not for ILK+ */
1698 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1700 /* PLL is protected by panel, make sure we can write it */
1701 if (IS_MOBILE(dev) && !IS_I830(dev))
1702 assert_panel_unlocked(dev_priv, crtc->pipe);
1704 /* Enable DVO 2x clock on both PLLs if necessary */
1705 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1707 * It appears to be important that we don't enable this
1708 * for the current pipe before otherwise configuring the
1709 * PLL. No idea how this should be handled if multiple
1710 * DVO outputs are enabled simultaneosly.
1712 dpll |= DPLL_DVO_2X_MODE;
1713 I915_WRITE(DPLL(!crtc->pipe),
1714 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1718 * Apparently we need to have VGA mode enabled prior to changing
1719 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1720 * dividers, even though the register value does change.
1722 I915_WRITE(reg, 0);
1724 I915_WRITE(reg, dpll);
1726 /* Wait for the clocks to stabilize. */
1727 POSTING_READ(reg);
1728 udelay(150);
1730 if (INTEL_INFO(dev)->gen >= 4) {
1731 I915_WRITE(DPLL_MD(crtc->pipe),
1732 crtc->config->dpll_hw_state.dpll_md);
1733 } else {
1734 /* The pixel multiplier can only be updated once the
1735 * DPLL is enabled and the clocks are stable.
1737 * So write it again.
1739 I915_WRITE(reg, dpll);
1742 /* We do this three times for luck */
1743 I915_WRITE(reg, dpll);
1744 POSTING_READ(reg);
1745 udelay(150); /* wait for warmup */
1746 I915_WRITE(reg, dpll);
1747 POSTING_READ(reg);
1748 udelay(150); /* wait for warmup */
1749 I915_WRITE(reg, dpll);
1750 POSTING_READ(reg);
1751 udelay(150); /* wait for warmup */
1755 * i9xx_disable_pll - disable a PLL
1756 * @dev_priv: i915 private structure
1757 * @pipe: pipe PLL to disable
1759 * Disable the PLL for @pipe, making sure the pipe is off first.
1761 * Note! This is for pre-ILK only.
1763 static void i9xx_disable_pll(struct intel_crtc *crtc)
1765 struct drm_device *dev = crtc->base.dev;
1766 struct drm_i915_private *dev_priv = dev->dev_private;
1767 enum pipe pipe = crtc->pipe;
1769 /* Disable DVO 2x clock on both PLLs if necessary */
1770 if (IS_I830(dev) &&
1771 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1772 !intel_num_dvo_pipes(dev)) {
1773 I915_WRITE(DPLL(PIPE_B),
1774 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1775 I915_WRITE(DPLL(PIPE_A),
1776 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1779 /* Don't disable pipe or pipe PLLs if needed */
1780 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1781 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1782 return;
1784 /* Make sure the pipe isn't still relying on us */
1785 assert_pipe_disabled(dev_priv, pipe);
1787 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1788 POSTING_READ(DPLL(pipe));
1791 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1793 u32 val;
1795 /* Make sure the pipe isn't still relying on us */
1796 assert_pipe_disabled(dev_priv, pipe);
1799 * Leave integrated clock source and reference clock enabled for pipe B.
1800 * The latter is needed for VGA hotplug / manual detection.
1802 val = DPLL_VGA_MODE_DIS;
1803 if (pipe == PIPE_B)
1804 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1805 I915_WRITE(DPLL(pipe), val);
1806 POSTING_READ(DPLL(pipe));
1810 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1812 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1813 u32 val;
1815 /* Make sure the pipe isn't still relying on us */
1816 assert_pipe_disabled(dev_priv, pipe);
1818 /* Set PLL en = 0 */
1819 val = DPLL_SSC_REF_CLK_CHV |
1820 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1821 if (pipe != PIPE_A)
1822 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1823 I915_WRITE(DPLL(pipe), val);
1824 POSTING_READ(DPLL(pipe));
1826 mutex_lock(&dev_priv->sb_lock);
1828 /* Disable 10bit clock to display controller */
1829 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1830 val &= ~DPIO_DCLKP_EN;
1831 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1833 mutex_unlock(&dev_priv->sb_lock);
1836 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1837 struct intel_digital_port *dport,
1838 unsigned int expected_mask)
1840 u32 port_mask;
1841 int dpll_reg;
1843 switch (dport->port) {
1844 case PORT_B:
1845 port_mask = DPLL_PORTB_READY_MASK;
1846 dpll_reg = DPLL(0);
1847 break;
1848 case PORT_C:
1849 port_mask = DPLL_PORTC_READY_MASK;
1850 dpll_reg = DPLL(0);
1851 expected_mask <<= 4;
1852 break;
1853 case PORT_D:
1854 port_mask = DPLL_PORTD_READY_MASK;
1855 dpll_reg = DPIO_PHY_STATUS;
1856 break;
1857 default:
1858 BUG();
1861 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1862 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1863 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1866 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1868 struct drm_device *dev = crtc->base.dev;
1869 struct drm_i915_private *dev_priv = dev->dev_private;
1870 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1872 if (WARN_ON(pll == NULL))
1873 return;
1875 WARN_ON(!pll->config.crtc_mask);
1876 if (pll->active == 0) {
1877 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1878 WARN_ON(pll->on);
1879 assert_shared_dpll_disabled(dev_priv, pll);
1881 pll->mode_set(dev_priv, pll);
1886 * intel_enable_shared_dpll - enable PCH PLL
1887 * @dev_priv: i915 private structure
1888 * @pipe: pipe PLL to enable
1890 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1891 * drives the transcoder clock.
1893 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1895 struct drm_device *dev = crtc->base.dev;
1896 struct drm_i915_private *dev_priv = dev->dev_private;
1897 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1899 if (WARN_ON(pll == NULL))
1900 return;
1902 if (WARN_ON(pll->config.crtc_mask == 0))
1903 return;
1905 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1906 pll->name, pll->active, pll->on,
1907 crtc->base.base.id);
1909 if (pll->active++) {
1910 WARN_ON(!pll->on);
1911 assert_shared_dpll_enabled(dev_priv, pll);
1912 return;
1914 WARN_ON(pll->on);
1916 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1918 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1919 pll->enable(dev_priv, pll);
1920 pll->on = true;
1923 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1925 struct drm_device *dev = crtc->base.dev;
1926 struct drm_i915_private *dev_priv = dev->dev_private;
1927 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1929 /* PCH only available on ILK+ */
1930 if (INTEL_INFO(dev)->gen < 5)
1931 return;
1933 if (pll == NULL)
1934 return;
1936 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1937 return;
1939 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1940 pll->name, pll->active, pll->on,
1941 crtc->base.base.id);
1943 if (WARN_ON(pll->active == 0)) {
1944 assert_shared_dpll_disabled(dev_priv, pll);
1945 return;
1948 assert_shared_dpll_enabled(dev_priv, pll);
1949 WARN_ON(!pll->on);
1950 if (--pll->active)
1951 return;
1953 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1954 pll->disable(dev_priv, pll);
1955 pll->on = false;
1957 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1960 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1961 enum pipe pipe)
1963 struct drm_device *dev = dev_priv->dev;
1964 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966 uint32_t reg, val, pipeconf_val;
1968 /* PCH only available on ILK+ */
1969 BUG_ON(!HAS_PCH_SPLIT(dev));
1971 /* Make sure PCH DPLL is enabled */
1972 assert_shared_dpll_enabled(dev_priv,
1973 intel_crtc_to_shared_dpll(intel_crtc));
1975 /* FDI must be feeding us bits for PCH ports */
1976 assert_fdi_tx_enabled(dev_priv, pipe);
1977 assert_fdi_rx_enabled(dev_priv, pipe);
1979 if (HAS_PCH_CPT(dev)) {
1980 /* Workaround: Set the timing override bit before enabling the
1981 * pch transcoder. */
1982 reg = TRANS_CHICKEN2(pipe);
1983 val = I915_READ(reg);
1984 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1985 I915_WRITE(reg, val);
1988 reg = PCH_TRANSCONF(pipe);
1989 val = I915_READ(reg);
1990 pipeconf_val = I915_READ(PIPECONF(pipe));
1992 if (HAS_PCH_IBX(dev_priv->dev)) {
1994 * Make the BPC in transcoder be consistent with
1995 * that in pipeconf reg. For HDMI we must use 8bpc
1996 * here for both 8bpc and 12bpc.
1998 val &= ~PIPECONF_BPC_MASK;
1999 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2000 val |= PIPECONF_8BPC;
2001 else
2002 val |= pipeconf_val & PIPECONF_BPC_MASK;
2005 val &= ~TRANS_INTERLACE_MASK;
2006 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2007 if (HAS_PCH_IBX(dev_priv->dev) &&
2008 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2009 val |= TRANS_LEGACY_INTERLACED_ILK;
2010 else
2011 val |= TRANS_INTERLACED;
2012 else
2013 val |= TRANS_PROGRESSIVE;
2015 I915_WRITE(reg, val | TRANS_ENABLE);
2016 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2017 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2020 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2021 enum transcoder cpu_transcoder)
2023 u32 val, pipeconf_val;
2025 /* PCH only available on ILK+ */
2026 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2028 /* FDI must be feeding us bits for PCH ports */
2029 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2030 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2032 /* Workaround: set timing override bit. */
2033 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2034 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2035 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2037 val = TRANS_ENABLE;
2038 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2040 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2041 PIPECONF_INTERLACED_ILK)
2042 val |= TRANS_INTERLACED;
2043 else
2044 val |= TRANS_PROGRESSIVE;
2046 I915_WRITE(LPT_TRANSCONF, val);
2047 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2048 DRM_ERROR("Failed to enable PCH transcoder\n");
2051 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2052 enum pipe pipe)
2054 struct drm_device *dev = dev_priv->dev;
2055 uint32_t reg, val;
2057 /* FDI relies on the transcoder */
2058 assert_fdi_tx_disabled(dev_priv, pipe);
2059 assert_fdi_rx_disabled(dev_priv, pipe);
2061 /* Ports must be off as well */
2062 assert_pch_ports_disabled(dev_priv, pipe);
2064 reg = PCH_TRANSCONF(pipe);
2065 val = I915_READ(reg);
2066 val &= ~TRANS_ENABLE;
2067 I915_WRITE(reg, val);
2068 /* wait for PCH transcoder off, transcoder state */
2069 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2070 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2072 if (!HAS_PCH_IBX(dev)) {
2073 /* Workaround: Clear the timing override chicken bit again. */
2074 reg = TRANS_CHICKEN2(pipe);
2075 val = I915_READ(reg);
2076 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2077 I915_WRITE(reg, val);
2081 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2083 u32 val;
2085 val = I915_READ(LPT_TRANSCONF);
2086 val &= ~TRANS_ENABLE;
2087 I915_WRITE(LPT_TRANSCONF, val);
2088 /* wait for PCH transcoder off, transcoder state */
2089 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2090 DRM_ERROR("Failed to disable PCH transcoder\n");
2092 /* Workaround: clear timing override bit. */
2093 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2094 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2095 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2099 * intel_enable_pipe - enable a pipe, asserting requirements
2100 * @crtc: crtc responsible for the pipe
2102 * Enable @crtc's pipe, making sure that various hardware specific requirements
2103 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2105 static void intel_enable_pipe(struct intel_crtc *crtc)
2107 struct drm_device *dev = crtc->base.dev;
2108 struct drm_i915_private *dev_priv = dev->dev_private;
2109 enum pipe pipe = crtc->pipe;
2110 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2111 pipe);
2112 enum pipe pch_transcoder;
2113 int reg;
2114 u32 val;
2116 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2118 assert_planes_disabled(dev_priv, pipe);
2119 assert_cursor_disabled(dev_priv, pipe);
2120 assert_sprites_disabled(dev_priv, pipe);
2122 if (HAS_PCH_LPT(dev_priv->dev))
2123 pch_transcoder = TRANSCODER_A;
2124 else
2125 pch_transcoder = pipe;
2128 * A pipe without a PLL won't actually be able to drive bits from
2129 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2130 * need the check.
2132 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2133 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2134 assert_dsi_pll_enabled(dev_priv);
2135 else
2136 assert_pll_enabled(dev_priv, pipe);
2137 else {
2138 if (crtc->config->has_pch_encoder) {
2139 /* if driving the PCH, we need FDI enabled */
2140 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2141 assert_fdi_tx_pll_enabled(dev_priv,
2142 (enum pipe) cpu_transcoder);
2144 /* FIXME: assert CPU port conditions for SNB+ */
2147 reg = PIPECONF(cpu_transcoder);
2148 val = I915_READ(reg);
2149 if (val & PIPECONF_ENABLE) {
2150 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2151 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2152 return;
2155 I915_WRITE(reg, val | PIPECONF_ENABLE);
2156 POSTING_READ(reg);
2160 * intel_disable_pipe - disable a pipe, asserting requirements
2161 * @crtc: crtc whose pipes is to be disabled
2163 * Disable the pipe of @crtc, making sure that various hardware
2164 * specific requirements are met, if applicable, e.g. plane
2165 * disabled, panel fitter off, etc.
2167 * Will wait until the pipe has shut down before returning.
2169 static void intel_disable_pipe(struct intel_crtc *crtc)
2171 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2172 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2173 enum pipe pipe = crtc->pipe;
2174 int reg;
2175 u32 val;
2177 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2180 * Make sure planes won't keep trying to pump pixels to us,
2181 * or we might hang the display.
2183 assert_planes_disabled(dev_priv, pipe);
2184 assert_cursor_disabled(dev_priv, pipe);
2185 assert_sprites_disabled(dev_priv, pipe);
2187 reg = PIPECONF(cpu_transcoder);
2188 val = I915_READ(reg);
2189 if ((val & PIPECONF_ENABLE) == 0)
2190 return;
2193 * Double wide has implications for planes
2194 * so best keep it disabled when not needed.
2196 if (crtc->config->double_wide)
2197 val &= ~PIPECONF_DOUBLE_WIDE;
2199 /* Don't disable pipe or pipe PLLs if needed */
2200 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202 val &= ~PIPECONF_ENABLE;
2204 I915_WRITE(reg, val);
2205 if ((val & PIPECONF_ENABLE) == 0)
2206 intel_wait_for_pipe_off(crtc);
2209 static bool need_vtd_wa(struct drm_device *dev)
2211 #ifdef CONFIG_INTEL_IOMMU
2212 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213 return true;
2214 #endif
2215 return false;
2218 unsigned int
2219 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2220 uint64_t fb_format_modifier, unsigned int plane)
2222 unsigned int tile_height;
2223 uint32_t pixel_bytes;
2225 switch (fb_format_modifier) {
2226 case DRM_FORMAT_MOD_NONE:
2227 tile_height = 1;
2228 break;
2229 case I915_FORMAT_MOD_X_TILED:
2230 tile_height = IS_GEN2(dev) ? 16 : 8;
2231 break;
2232 case I915_FORMAT_MOD_Y_TILED:
2233 tile_height = 32;
2234 break;
2235 case I915_FORMAT_MOD_Yf_TILED:
2236 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2237 switch (pixel_bytes) {
2238 default:
2239 case 1:
2240 tile_height = 64;
2241 break;
2242 case 2:
2243 case 4:
2244 tile_height = 32;
2245 break;
2246 case 8:
2247 tile_height = 16;
2248 break;
2249 case 16:
2250 WARN_ONCE(1,
2251 "128-bit pixels are not supported for display!");
2252 tile_height = 16;
2253 break;
2255 break;
2256 default:
2257 MISSING_CASE(fb_format_modifier);
2258 tile_height = 1;
2259 break;
2262 return tile_height;
2265 unsigned int
2266 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2267 uint32_t pixel_format, uint64_t fb_format_modifier)
2269 return ALIGN(height, intel_tile_height(dev, pixel_format,
2270 fb_format_modifier, 0));
2273 static int
2274 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2275 const struct drm_plane_state *plane_state)
2277 struct intel_rotation_info *info = &view->rotation_info;
2278 unsigned int tile_height, tile_pitch;
2280 *view = i915_ggtt_view_normal;
2282 if (!plane_state)
2283 return 0;
2285 if (!intel_rotation_90_or_270(plane_state->rotation))
2286 return 0;
2288 *view = i915_ggtt_view_rotated;
2290 info->height = fb->height;
2291 info->pixel_format = fb->pixel_format;
2292 info->pitch = fb->pitches[0];
2293 info->uv_offset = fb->offsets[1];
2294 info->fb_modifier = fb->modifier[0];
2296 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2297 fb->modifier[0], 0);
2298 tile_pitch = PAGE_SIZE / tile_height;
2299 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2300 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2301 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2303 if (info->pixel_format == DRM_FORMAT_NV12) {
2304 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305 fb->modifier[0], 1);
2306 tile_pitch = PAGE_SIZE / tile_height;
2307 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2309 tile_height);
2310 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2311 PAGE_SIZE;
2314 return 0;
2317 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2319 if (INTEL_INFO(dev_priv)->gen >= 9)
2320 return 256 * 1024;
2321 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322 IS_VALLEYVIEW(dev_priv))
2323 return 128 * 1024;
2324 else if (INTEL_INFO(dev_priv)->gen >= 4)
2325 return 4 * 1024;
2326 else
2327 return 0;
2331 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332 struct drm_framebuffer *fb,
2333 const struct drm_plane_state *plane_state,
2334 struct intel_engine_cs *pipelined,
2335 struct drm_i915_gem_request **pipelined_request)
2337 struct drm_device *dev = fb->dev;
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2340 struct i915_ggtt_view view;
2341 u32 alignment;
2342 int ret;
2344 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2346 switch (fb->modifier[0]) {
2347 case DRM_FORMAT_MOD_NONE:
2348 alignment = intel_linear_alignment(dev_priv);
2349 break;
2350 case I915_FORMAT_MOD_X_TILED:
2351 if (INTEL_INFO(dev)->gen >= 9)
2352 alignment = 256 * 1024;
2353 else {
2354 /* pin() will align the object as required by fence */
2355 alignment = 0;
2357 break;
2358 case I915_FORMAT_MOD_Y_TILED:
2359 case I915_FORMAT_MOD_Yf_TILED:
2360 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361 "Y tiling bo slipped through, driver bug!\n"))
2362 return -EINVAL;
2363 alignment = 1 * 1024 * 1024;
2364 break;
2365 default:
2366 MISSING_CASE(fb->modifier[0]);
2367 return -EINVAL;
2370 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371 if (ret)
2372 return ret;
2374 /* Note that the w/a also requires 64 PTE of padding following the
2375 * bo. We currently fill all unused PTE with the shadow page and so
2376 * we should always have valid PTE following the scanout preventing
2377 * the VT-d warning.
2379 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380 alignment = 256 * 1024;
2383 * Global gtt pte registers are special registers which actually forward
2384 * writes to a chunk of system memory. Which means that there is no risk
2385 * that the register values disappear as soon as we call
2386 * intel_runtime_pm_put(), so it is correct to wrap only the
2387 * pin/unpin/fence and not more.
2389 intel_runtime_pm_get(dev_priv);
2391 dev_priv->mm.interruptible = false;
2392 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393 pipelined_request, &view);
2394 if (ret)
2395 goto err_interruptible;
2397 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398 * fence, whereas 965+ only requires a fence if using
2399 * framebuffer compression. For simplicity, we always install
2400 * a fence as the cost is not that onerous.
2402 if (view.type == I915_GGTT_VIEW_NORMAL) {
2403 ret = i915_gem_object_get_fence(obj);
2404 if (ret == -EDEADLK) {
2406 * -EDEADLK means there are no free fences
2407 * no pending flips.
2409 * This is propagated to atomic, but it uses
2410 * -EDEADLK to force a locking recovery, so
2411 * change the returned error to -EBUSY.
2413 ret = -EBUSY;
2414 goto err_unpin;
2415 } else if (ret)
2416 goto err_unpin;
2418 i915_gem_object_pin_fence(obj);
2421 dev_priv->mm.interruptible = true;
2422 intel_runtime_pm_put(dev_priv);
2423 return 0;
2425 err_unpin:
2426 i915_gem_object_unpin_from_display_plane(obj, &view);
2427 err_interruptible:
2428 dev_priv->mm.interruptible = true;
2429 intel_runtime_pm_put(dev_priv);
2430 return ret;
2433 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2434 const struct drm_plane_state *plane_state)
2436 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2437 struct i915_ggtt_view view;
2438 int ret;
2440 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2442 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2443 WARN_ONCE(ret, "Couldn't get view from plane state!");
2445 if (view.type == I915_GGTT_VIEW_NORMAL)
2446 i915_gem_object_unpin_fence(obj);
2448 i915_gem_object_unpin_from_display_plane(obj, &view);
2451 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2452 * is assumed to be a power-of-two. */
2453 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2454 int *x, int *y,
2455 unsigned int tiling_mode,
2456 unsigned int cpp,
2457 unsigned int pitch)
2459 if (tiling_mode != I915_TILING_NONE) {
2460 unsigned int tile_rows, tiles;
2462 tile_rows = *y / 8;
2463 *y %= 8;
2465 tiles = *x / (512/cpp);
2466 *x %= 512/cpp;
2468 return tile_rows * pitch * 8 + tiles * 4096;
2469 } else {
2470 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2471 unsigned int offset;
2473 offset = *y * pitch + *x * cpp;
2474 *y = (offset & alignment) / pitch;
2475 *x = ((offset & alignment) - *y * pitch) / cpp;
2476 return offset & ~alignment;
2480 static int i9xx_format_to_fourcc(int format)
2482 switch (format) {
2483 case DISPPLANE_8BPP:
2484 return DRM_FORMAT_C8;
2485 case DISPPLANE_BGRX555:
2486 return DRM_FORMAT_XRGB1555;
2487 case DISPPLANE_BGRX565:
2488 return DRM_FORMAT_RGB565;
2489 default:
2490 case DISPPLANE_BGRX888:
2491 return DRM_FORMAT_XRGB8888;
2492 case DISPPLANE_RGBX888:
2493 return DRM_FORMAT_XBGR8888;
2494 case DISPPLANE_BGRX101010:
2495 return DRM_FORMAT_XRGB2101010;
2496 case DISPPLANE_RGBX101010:
2497 return DRM_FORMAT_XBGR2101010;
2501 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2503 switch (format) {
2504 case PLANE_CTL_FORMAT_RGB_565:
2505 return DRM_FORMAT_RGB565;
2506 default:
2507 case PLANE_CTL_FORMAT_XRGB_8888:
2508 if (rgb_order) {
2509 if (alpha)
2510 return DRM_FORMAT_ABGR8888;
2511 else
2512 return DRM_FORMAT_XBGR8888;
2513 } else {
2514 if (alpha)
2515 return DRM_FORMAT_ARGB8888;
2516 else
2517 return DRM_FORMAT_XRGB8888;
2519 case PLANE_CTL_FORMAT_XRGB_2101010:
2520 if (rgb_order)
2521 return DRM_FORMAT_XBGR2101010;
2522 else
2523 return DRM_FORMAT_XRGB2101010;
2527 static bool
2528 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2529 struct intel_initial_plane_config *plane_config)
2531 struct drm_device *dev = crtc->base.dev;
2532 struct drm_i915_private *dev_priv = to_i915(dev);
2533 struct drm_i915_gem_object *obj = NULL;
2534 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2535 struct drm_framebuffer *fb = &plane_config->fb->base;
2536 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2537 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2538 PAGE_SIZE);
2540 size_aligned -= base_aligned;
2542 if (plane_config->size == 0)
2543 return false;
2545 /* If the FB is too big, just don't use it since fbdev is not very
2546 * important and we should probably use that space with FBC or other
2547 * features. */
2548 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2549 return false;
2551 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2552 base_aligned,
2553 base_aligned,
2554 size_aligned);
2555 if (!obj)
2556 return false;
2558 obj->tiling_mode = plane_config->tiling;
2559 if (obj->tiling_mode == I915_TILING_X)
2560 obj->stride = fb->pitches[0];
2562 mode_cmd.pixel_format = fb->pixel_format;
2563 mode_cmd.width = fb->width;
2564 mode_cmd.height = fb->height;
2565 mode_cmd.pitches[0] = fb->pitches[0];
2566 mode_cmd.modifier[0] = fb->modifier[0];
2567 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2569 mutex_lock(&dev->struct_mutex);
2570 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2571 &mode_cmd, obj)) {
2572 DRM_DEBUG_KMS("intel fb init failed\n");
2573 goto out_unref_obj;
2575 mutex_unlock(&dev->struct_mutex);
2577 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2578 return true;
2580 out_unref_obj:
2581 drm_gem_object_unreference(&obj->base);
2582 mutex_unlock(&dev->struct_mutex);
2583 return false;
2586 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2587 static void
2588 update_state_fb(struct drm_plane *plane)
2590 if (plane->fb == plane->state->fb)
2591 return;
2593 if (plane->state->fb)
2594 drm_framebuffer_unreference(plane->state->fb);
2595 plane->state->fb = plane->fb;
2596 if (plane->state->fb)
2597 drm_framebuffer_reference(plane->state->fb);
2600 static void
2601 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2602 struct intel_initial_plane_config *plane_config)
2604 struct drm_device *dev = intel_crtc->base.dev;
2605 struct drm_i915_private *dev_priv = dev->dev_private;
2606 struct drm_crtc *c;
2607 struct intel_crtc *i;
2608 struct drm_i915_gem_object *obj;
2609 struct drm_plane *primary = intel_crtc->base.primary;
2610 struct drm_plane_state *plane_state = primary->state;
2611 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2612 struct intel_plane *intel_plane = to_intel_plane(primary);
2613 struct drm_framebuffer *fb;
2615 if (!plane_config->fb)
2616 return;
2618 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619 fb = &plane_config->fb->base;
2620 goto valid_fb;
2623 kfree(plane_config->fb);
2626 * Failed to alloc the obj, check to see if we should share
2627 * an fb with another CRTC instead
2629 for_each_crtc(dev, c) {
2630 i = to_intel_crtc(c);
2632 if (c == &intel_crtc->base)
2633 continue;
2635 if (!i->active)
2636 continue;
2638 fb = c->primary->fb;
2639 if (!fb)
2640 continue;
2642 obj = intel_fb_obj(fb);
2643 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2644 drm_framebuffer_reference(fb);
2645 goto valid_fb;
2650 * We've failed to reconstruct the BIOS FB. Current display state
2651 * indicates that the primary plane is visible, but has a NULL FB,
2652 * which will lead to problems later if we don't fix it up. The
2653 * simplest solution is to just disable the primary plane now and
2654 * pretend the BIOS never had it enabled.
2656 to_intel_plane_state(plane_state)->visible = false;
2657 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2658 intel_pre_disable_primary(&intel_crtc->base);
2659 intel_plane->disable_plane(primary, &intel_crtc->base);
2661 return;
2663 valid_fb:
2664 plane_state->src_x = 0;
2665 plane_state->src_y = 0;
2666 plane_state->src_w = fb->width << 16;
2667 plane_state->src_h = fb->height << 16;
2669 plane_state->crtc_x = 0;
2670 plane_state->crtc_y = 0;
2671 plane_state->crtc_w = fb->width;
2672 plane_state->crtc_h = fb->height;
2674 obj = intel_fb_obj(fb);
2675 if (obj->tiling_mode != I915_TILING_NONE)
2676 dev_priv->preserve_bios_swizzle = true;
2678 drm_framebuffer_reference(fb);
2679 primary->fb = primary->state->fb = fb;
2680 primary->crtc = primary->state->crtc = &intel_crtc->base;
2681 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2682 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2685 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2686 struct drm_framebuffer *fb,
2687 int x, int y)
2689 struct drm_device *dev = crtc->dev;
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2692 struct drm_plane *primary = crtc->primary;
2693 bool visible = to_intel_plane_state(primary->state)->visible;
2694 struct drm_i915_gem_object *obj;
2695 int plane = intel_crtc->plane;
2696 unsigned long linear_offset;
2697 u32 dspcntr;
2698 u32 reg = DSPCNTR(plane);
2699 int pixel_size;
2701 if (!visible || !fb) {
2702 I915_WRITE(reg, 0);
2703 if (INTEL_INFO(dev)->gen >= 4)
2704 I915_WRITE(DSPSURF(plane), 0);
2705 else
2706 I915_WRITE(DSPADDR(plane), 0);
2707 POSTING_READ(reg);
2708 return;
2711 obj = intel_fb_obj(fb);
2712 if (WARN_ON(obj == NULL))
2713 return;
2715 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2717 dspcntr = DISPPLANE_GAMMA_ENABLE;
2719 dspcntr |= DISPLAY_PLANE_ENABLE;
2721 if (INTEL_INFO(dev)->gen < 4) {
2722 if (intel_crtc->pipe == PIPE_B)
2723 dspcntr |= DISPPLANE_SEL_PIPE_B;
2725 /* pipesrc and dspsize control the size that is scaled from,
2726 * which should always be the user's requested size.
2728 I915_WRITE(DSPSIZE(plane),
2729 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2730 (intel_crtc->config->pipe_src_w - 1));
2731 I915_WRITE(DSPPOS(plane), 0);
2732 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2733 I915_WRITE(PRIMSIZE(plane),
2734 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2735 (intel_crtc->config->pipe_src_w - 1));
2736 I915_WRITE(PRIMPOS(plane), 0);
2737 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2740 switch (fb->pixel_format) {
2741 case DRM_FORMAT_C8:
2742 dspcntr |= DISPPLANE_8BPP;
2743 break;
2744 case DRM_FORMAT_XRGB1555:
2745 dspcntr |= DISPPLANE_BGRX555;
2746 break;
2747 case DRM_FORMAT_RGB565:
2748 dspcntr |= DISPPLANE_BGRX565;
2749 break;
2750 case DRM_FORMAT_XRGB8888:
2751 dspcntr |= DISPPLANE_BGRX888;
2752 break;
2753 case DRM_FORMAT_XBGR8888:
2754 dspcntr |= DISPPLANE_RGBX888;
2755 break;
2756 case DRM_FORMAT_XRGB2101010:
2757 dspcntr |= DISPPLANE_BGRX101010;
2758 break;
2759 case DRM_FORMAT_XBGR2101010:
2760 dspcntr |= DISPPLANE_RGBX101010;
2761 break;
2762 default:
2763 BUG();
2766 if (INTEL_INFO(dev)->gen >= 4 &&
2767 obj->tiling_mode != I915_TILING_NONE)
2768 dspcntr |= DISPPLANE_TILED;
2770 if (IS_G4X(dev))
2771 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2773 linear_offset = y * fb->pitches[0] + x * pixel_size;
2775 if (INTEL_INFO(dev)->gen >= 4) {
2776 intel_crtc->dspaddr_offset =
2777 intel_gen4_compute_page_offset(dev_priv,
2778 &x, &y, obj->tiling_mode,
2779 pixel_size,
2780 fb->pitches[0]);
2781 linear_offset -= intel_crtc->dspaddr_offset;
2782 } else {
2783 intel_crtc->dspaddr_offset = linear_offset;
2786 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2787 dspcntr |= DISPPLANE_ROTATE_180;
2789 x += (intel_crtc->config->pipe_src_w - 1);
2790 y += (intel_crtc->config->pipe_src_h - 1);
2792 /* Finding the last pixel of the last line of the display
2793 data and adding to linear_offset*/
2794 linear_offset +=
2795 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2796 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2799 intel_crtc->adjusted_x = x;
2800 intel_crtc->adjusted_y = y;
2802 I915_WRITE(reg, dspcntr);
2804 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2805 if (INTEL_INFO(dev)->gen >= 4) {
2806 I915_WRITE(DSPSURF(plane),
2807 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2808 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2809 I915_WRITE(DSPLINOFF(plane), linear_offset);
2810 } else
2811 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2812 POSTING_READ(reg);
2815 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2816 struct drm_framebuffer *fb,
2817 int x, int y)
2819 struct drm_device *dev = crtc->dev;
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2822 struct drm_plane *primary = crtc->primary;
2823 bool visible = to_intel_plane_state(primary->state)->visible;
2824 struct drm_i915_gem_object *obj;
2825 int plane = intel_crtc->plane;
2826 unsigned long linear_offset;
2827 u32 dspcntr;
2828 u32 reg = DSPCNTR(plane);
2829 int pixel_size;
2831 if (!visible || !fb) {
2832 I915_WRITE(reg, 0);
2833 I915_WRITE(DSPSURF(plane), 0);
2834 POSTING_READ(reg);
2835 return;
2838 obj = intel_fb_obj(fb);
2839 if (WARN_ON(obj == NULL))
2840 return;
2842 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2844 dspcntr = DISPPLANE_GAMMA_ENABLE;
2846 dspcntr |= DISPLAY_PLANE_ENABLE;
2848 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2849 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2851 switch (fb->pixel_format) {
2852 case DRM_FORMAT_C8:
2853 dspcntr |= DISPPLANE_8BPP;
2854 break;
2855 case DRM_FORMAT_RGB565:
2856 dspcntr |= DISPPLANE_BGRX565;
2857 break;
2858 case DRM_FORMAT_XRGB8888:
2859 dspcntr |= DISPPLANE_BGRX888;
2860 break;
2861 case DRM_FORMAT_XBGR8888:
2862 dspcntr |= DISPPLANE_RGBX888;
2863 break;
2864 case DRM_FORMAT_XRGB2101010:
2865 dspcntr |= DISPPLANE_BGRX101010;
2866 break;
2867 case DRM_FORMAT_XBGR2101010:
2868 dspcntr |= DISPPLANE_RGBX101010;
2869 break;
2870 default:
2871 BUG();
2874 if (obj->tiling_mode != I915_TILING_NONE)
2875 dspcntr |= DISPPLANE_TILED;
2877 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2878 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2880 linear_offset = y * fb->pitches[0] + x * pixel_size;
2881 intel_crtc->dspaddr_offset =
2882 intel_gen4_compute_page_offset(dev_priv,
2883 &x, &y, obj->tiling_mode,
2884 pixel_size,
2885 fb->pitches[0]);
2886 linear_offset -= intel_crtc->dspaddr_offset;
2887 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2888 dspcntr |= DISPPLANE_ROTATE_180;
2890 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2891 x += (intel_crtc->config->pipe_src_w - 1);
2892 y += (intel_crtc->config->pipe_src_h - 1);
2894 /* Finding the last pixel of the last line of the display
2895 data and adding to linear_offset*/
2896 linear_offset +=
2897 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2898 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2902 intel_crtc->adjusted_x = x;
2903 intel_crtc->adjusted_y = y;
2905 I915_WRITE(reg, dspcntr);
2907 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2908 I915_WRITE(DSPSURF(plane),
2909 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2910 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2911 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2912 } else {
2913 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2914 I915_WRITE(DSPLINOFF(plane), linear_offset);
2916 POSTING_READ(reg);
2919 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2920 uint32_t pixel_format)
2922 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2925 * The stride is either expressed as a multiple of 64 bytes
2926 * chunks for linear buffers or in number of tiles for tiled
2927 * buffers.
2929 switch (fb_modifier) {
2930 case DRM_FORMAT_MOD_NONE:
2931 return 64;
2932 case I915_FORMAT_MOD_X_TILED:
2933 if (INTEL_INFO(dev)->gen == 2)
2934 return 128;
2935 return 512;
2936 case I915_FORMAT_MOD_Y_TILED:
2937 /* No need to check for old gens and Y tiling since this is
2938 * about the display engine and those will be blocked before
2939 * we get here.
2941 return 128;
2942 case I915_FORMAT_MOD_Yf_TILED:
2943 if (bits_per_pixel == 8)
2944 return 64;
2945 else
2946 return 128;
2947 default:
2948 MISSING_CASE(fb_modifier);
2949 return 64;
2953 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2954 struct drm_i915_gem_object *obj,
2955 unsigned int plane)
2957 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2958 struct i915_vma *vma;
2959 unsigned char *offset;
2961 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2962 view = &i915_ggtt_view_rotated;
2964 vma = i915_gem_obj_to_ggtt_view(obj, view);
2965 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2966 view->type))
2967 return -1;
2969 offset = (unsigned char *)vma->node.start;
2971 if (plane == 1) {
2972 offset += vma->ggtt_view.rotation_info.uv_start_page *
2973 PAGE_SIZE;
2976 return (unsigned long)offset;
2979 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2981 struct drm_device *dev = intel_crtc->base.dev;
2982 struct drm_i915_private *dev_priv = dev->dev_private;
2984 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2985 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2986 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2990 * This function detaches (aka. unbinds) unused scalers in hardware
2992 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2994 struct intel_crtc_scaler_state *scaler_state;
2995 int i;
2997 scaler_state = &intel_crtc->config->scaler_state;
2999 /* loop through and disable scalers that aren't in use */
3000 for (i = 0; i < intel_crtc->num_scalers; i++) {
3001 if (!scaler_state->scalers[i].in_use)
3002 skl_detach_scaler(intel_crtc, i);
3006 u32 skl_plane_ctl_format(uint32_t pixel_format)
3008 switch (pixel_format) {
3009 case DRM_FORMAT_C8:
3010 return PLANE_CTL_FORMAT_INDEXED;
3011 case DRM_FORMAT_RGB565:
3012 return PLANE_CTL_FORMAT_RGB_565;
3013 case DRM_FORMAT_XBGR8888:
3014 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3015 case DRM_FORMAT_XRGB8888:
3016 return PLANE_CTL_FORMAT_XRGB_8888;
3018 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3019 * to be already pre-multiplied. We need to add a knob (or a different
3020 * DRM_FORMAT) for user-space to configure that.
3022 case DRM_FORMAT_ABGR8888:
3023 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3024 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3025 case DRM_FORMAT_ARGB8888:
3026 return PLANE_CTL_FORMAT_XRGB_8888 |
3027 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3028 case DRM_FORMAT_XRGB2101010:
3029 return PLANE_CTL_FORMAT_XRGB_2101010;
3030 case DRM_FORMAT_XBGR2101010:
3031 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3032 case DRM_FORMAT_YUYV:
3033 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3034 case DRM_FORMAT_YVYU:
3035 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3036 case DRM_FORMAT_UYVY:
3037 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3038 case DRM_FORMAT_VYUY:
3039 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3040 default:
3041 MISSING_CASE(pixel_format);
3044 return 0;
3047 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3049 switch (fb_modifier) {
3050 case DRM_FORMAT_MOD_NONE:
3051 break;
3052 case I915_FORMAT_MOD_X_TILED:
3053 return PLANE_CTL_TILED_X;
3054 case I915_FORMAT_MOD_Y_TILED:
3055 return PLANE_CTL_TILED_Y;
3056 case I915_FORMAT_MOD_Yf_TILED:
3057 return PLANE_CTL_TILED_YF;
3058 default:
3059 MISSING_CASE(fb_modifier);
3062 return 0;
3065 u32 skl_plane_ctl_rotation(unsigned int rotation)
3067 switch (rotation) {
3068 case BIT(DRM_ROTATE_0):
3069 break;
3071 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3072 * while i915 HW rotation is clockwise, thats why this swapping.
3074 case BIT(DRM_ROTATE_90):
3075 return PLANE_CTL_ROTATE_270;
3076 case BIT(DRM_ROTATE_180):
3077 return PLANE_CTL_ROTATE_180;
3078 case BIT(DRM_ROTATE_270):
3079 return PLANE_CTL_ROTATE_90;
3080 default:
3081 MISSING_CASE(rotation);
3084 return 0;
3087 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3088 struct drm_framebuffer *fb,
3089 int x, int y)
3091 struct drm_device *dev = crtc->dev;
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3094 struct drm_plane *plane = crtc->primary;
3095 bool visible = to_intel_plane_state(plane->state)->visible;
3096 struct drm_i915_gem_object *obj;
3097 int pipe = intel_crtc->pipe;
3098 u32 plane_ctl, stride_div, stride;
3099 u32 tile_height, plane_offset, plane_size;
3100 unsigned int rotation;
3101 int x_offset, y_offset;
3102 unsigned long surf_addr;
3103 struct intel_crtc_state *crtc_state = intel_crtc->config;
3104 struct intel_plane_state *plane_state;
3105 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3106 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3107 int scaler_id = -1;
3109 plane_state = to_intel_plane_state(plane->state);
3111 if (!visible || !fb) {
3112 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3113 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3114 POSTING_READ(PLANE_CTL(pipe, 0));
3115 return;
3118 plane_ctl = PLANE_CTL_ENABLE |
3119 PLANE_CTL_PIPE_GAMMA_ENABLE |
3120 PLANE_CTL_PIPE_CSC_ENABLE;
3122 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3123 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3124 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3126 rotation = plane->state->rotation;
3127 plane_ctl |= skl_plane_ctl_rotation(rotation);
3129 obj = intel_fb_obj(fb);
3130 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3131 fb->pixel_format);
3132 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3134 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3136 scaler_id = plane_state->scaler_id;
3137 src_x = plane_state->src.x1 >> 16;
3138 src_y = plane_state->src.y1 >> 16;
3139 src_w = drm_rect_width(&plane_state->src) >> 16;
3140 src_h = drm_rect_height(&plane_state->src) >> 16;
3141 dst_x = plane_state->dst.x1;
3142 dst_y = plane_state->dst.y1;
3143 dst_w = drm_rect_width(&plane_state->dst);
3144 dst_h = drm_rect_height(&plane_state->dst);
3146 WARN_ON(x != src_x || y != src_y);
3148 if (intel_rotation_90_or_270(rotation)) {
3149 /* stride = Surface height in tiles */
3150 tile_height = intel_tile_height(dev, fb->pixel_format,
3151 fb->modifier[0], 0);
3152 stride = DIV_ROUND_UP(fb->height, tile_height);
3153 x_offset = stride * tile_height - y - src_h;
3154 y_offset = x;
3155 plane_size = (src_w - 1) << 16 | (src_h - 1);
3156 } else {
3157 stride = fb->pitches[0] / stride_div;
3158 x_offset = x;
3159 y_offset = y;
3160 plane_size = (src_h - 1) << 16 | (src_w - 1);
3162 plane_offset = y_offset << 16 | x_offset;
3164 intel_crtc->adjusted_x = x_offset;
3165 intel_crtc->adjusted_y = y_offset;
3167 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3168 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3169 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3170 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3172 if (scaler_id >= 0) {
3173 uint32_t ps_ctrl = 0;
3175 WARN_ON(!dst_w || !dst_h);
3176 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3177 crtc_state->scaler_state.scalers[scaler_id].mode;
3178 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3179 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3180 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3181 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3182 I915_WRITE(PLANE_POS(pipe, 0), 0);
3183 } else {
3184 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3187 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3189 POSTING_READ(PLANE_SURF(pipe, 0));
3192 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3193 static int
3194 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3195 int x, int y, enum mode_set_atomic state)
3197 struct drm_device *dev = crtc->dev;
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3200 if (dev_priv->fbc.disable_fbc)
3201 dev_priv->fbc.disable_fbc(dev_priv);
3203 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3205 return 0;
3208 static void intel_complete_page_flips(struct drm_device *dev)
3210 struct drm_crtc *crtc;
3212 for_each_crtc(dev, crtc) {
3213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214 enum plane plane = intel_crtc->plane;
3216 intel_prepare_page_flip(dev, plane);
3217 intel_finish_page_flip_plane(dev, plane);
3221 static void intel_update_primary_planes(struct drm_device *dev)
3223 struct drm_crtc *crtc;
3225 for_each_crtc(dev, crtc) {
3226 struct intel_plane *plane = to_intel_plane(crtc->primary);
3227 struct intel_plane_state *plane_state;
3229 drm_modeset_lock_crtc(crtc, &plane->base);
3231 plane_state = to_intel_plane_state(plane->base.state);
3233 if (plane_state->base.fb)
3234 plane->commit_plane(&plane->base, plane_state);
3236 drm_modeset_unlock_crtc(crtc);
3240 void intel_prepare_reset(struct drm_device *dev)
3242 /* no reset support for gen2 */
3243 if (IS_GEN2(dev))
3244 return;
3246 /* reset doesn't touch the display */
3247 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3248 return;
3250 drm_modeset_lock_all(dev);
3252 * Disabling the crtcs gracefully seems nicer. Also the
3253 * g33 docs say we should at least disable all the planes.
3255 intel_display_suspend(dev);
3258 void intel_finish_reset(struct drm_device *dev)
3260 struct drm_i915_private *dev_priv = to_i915(dev);
3263 * Flips in the rings will be nuked by the reset,
3264 * so complete all pending flips so that user space
3265 * will get its events and not get stuck.
3267 intel_complete_page_flips(dev);
3269 /* no reset support for gen2 */
3270 if (IS_GEN2(dev))
3271 return;
3273 /* reset doesn't touch the display */
3274 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3276 * Flips in the rings have been nuked by the reset,
3277 * so update the base address of all primary
3278 * planes to the the last fb to make sure we're
3279 * showing the correct fb after a reset.
3281 * FIXME: Atomic will make this obsolete since we won't schedule
3282 * CS-based flips (which might get lost in gpu resets) any more.
3284 intel_update_primary_planes(dev);
3285 return;
3289 * The display has been reset as well,
3290 * so need a full re-initialization.
3292 intel_runtime_pm_disable_interrupts(dev_priv);
3293 intel_runtime_pm_enable_interrupts(dev_priv);
3295 intel_modeset_init_hw(dev);
3297 spin_lock_irq(&dev_priv->irq_lock);
3298 if (dev_priv->display.hpd_irq_setup)
3299 dev_priv->display.hpd_irq_setup(dev);
3300 spin_unlock_irq(&dev_priv->irq_lock);
3302 intel_display_resume(dev);
3304 intel_hpd_init(dev_priv);
3306 drm_modeset_unlock_all(dev);
3309 static void
3310 intel_finish_fb(struct drm_framebuffer *old_fb)
3312 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3313 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3314 bool was_interruptible = dev_priv->mm.interruptible;
3315 int ret;
3317 /* Big Hammer, we also need to ensure that any pending
3318 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3319 * current scanout is retired before unpinning the old
3320 * framebuffer. Note that we rely on userspace rendering
3321 * into the buffer attached to the pipe they are waiting
3322 * on. If not, userspace generates a GPU hang with IPEHR
3323 * point to the MI_WAIT_FOR_EVENT.
3325 * This should only fail upon a hung GPU, in which case we
3326 * can safely continue.
3328 dev_priv->mm.interruptible = false;
3329 ret = i915_gem_object_wait_rendering(obj, true);
3330 dev_priv->mm.interruptible = was_interruptible;
3332 WARN_ON(ret);
3335 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3337 struct drm_device *dev = crtc->dev;
3338 struct drm_i915_private *dev_priv = dev->dev_private;
3339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3340 bool pending;
3342 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3343 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3344 return false;
3346 spin_lock_irq(&dev->event_lock);
3347 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3348 spin_unlock_irq(&dev->event_lock);
3350 return pending;
3353 static void intel_update_pipe_config(struct intel_crtc *crtc,
3354 struct intel_crtc_state *old_crtc_state)
3356 struct drm_device *dev = crtc->base.dev;
3357 struct drm_i915_private *dev_priv = dev->dev_private;
3358 struct intel_crtc_state *pipe_config =
3359 to_intel_crtc_state(crtc->base.state);
3361 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3362 crtc->base.mode = crtc->base.state->mode;
3364 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3365 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3366 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3368 if (HAS_DDI(dev))
3369 intel_set_pipe_csc(&crtc->base);
3372 * Update pipe size and adjust fitter if needed: the reason for this is
3373 * that in compute_mode_changes we check the native mode (not the pfit
3374 * mode) to see if we can flip rather than do a full mode set. In the
3375 * fastboot case, we'll flip, but if we don't update the pipesrc and
3376 * pfit state, we'll end up with a big fb scanned out into the wrong
3377 * sized surface.
3380 I915_WRITE(PIPESRC(crtc->pipe),
3381 ((pipe_config->pipe_src_w - 1) << 16) |
3382 (pipe_config->pipe_src_h - 1));
3384 /* on skylake this is done by detaching scalers */
3385 if (INTEL_INFO(dev)->gen >= 9) {
3386 skl_detach_scalers(crtc);
3388 if (pipe_config->pch_pfit.enabled)
3389 skylake_pfit_enable(crtc);
3390 } else if (HAS_PCH_SPLIT(dev)) {
3391 if (pipe_config->pch_pfit.enabled)
3392 ironlake_pfit_enable(crtc);
3393 else if (old_crtc_state->pch_pfit.enabled)
3394 ironlake_pfit_disable(crtc, true);
3398 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3400 struct drm_device *dev = crtc->dev;
3401 struct drm_i915_private *dev_priv = dev->dev_private;
3402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3403 int pipe = intel_crtc->pipe;
3404 u32 reg, temp;
3406 /* enable normal train */
3407 reg = FDI_TX_CTL(pipe);
3408 temp = I915_READ(reg);
3409 if (IS_IVYBRIDGE(dev)) {
3410 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3411 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3412 } else {
3413 temp &= ~FDI_LINK_TRAIN_NONE;
3414 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3416 I915_WRITE(reg, temp);
3418 reg = FDI_RX_CTL(pipe);
3419 temp = I915_READ(reg);
3420 if (HAS_PCH_CPT(dev)) {
3421 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3422 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3423 } else {
3424 temp &= ~FDI_LINK_TRAIN_NONE;
3425 temp |= FDI_LINK_TRAIN_NONE;
3427 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3429 /* wait one idle pattern time */
3430 POSTING_READ(reg);
3431 udelay(1000);
3433 /* IVB wants error correction enabled */
3434 if (IS_IVYBRIDGE(dev))
3435 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3436 FDI_FE_ERRC_ENABLE);
3439 /* The FDI link training functions for ILK/Ibexpeak. */
3440 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3442 struct drm_device *dev = crtc->dev;
3443 struct drm_i915_private *dev_priv = dev->dev_private;
3444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445 int pipe = intel_crtc->pipe;
3446 u32 reg, temp, tries;
3448 /* FDI needs bits from pipe first */
3449 assert_pipe_enabled(dev_priv, pipe);
3451 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3452 for train result */
3453 reg = FDI_RX_IMR(pipe);
3454 temp = I915_READ(reg);
3455 temp &= ~FDI_RX_SYMBOL_LOCK;
3456 temp &= ~FDI_RX_BIT_LOCK;
3457 I915_WRITE(reg, temp);
3458 I915_READ(reg);
3459 udelay(150);
3461 /* enable CPU FDI TX and PCH FDI RX */
3462 reg = FDI_TX_CTL(pipe);
3463 temp = I915_READ(reg);
3464 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3465 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3466 temp &= ~FDI_LINK_TRAIN_NONE;
3467 temp |= FDI_LINK_TRAIN_PATTERN_1;
3468 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3470 reg = FDI_RX_CTL(pipe);
3471 temp = I915_READ(reg);
3472 temp &= ~FDI_LINK_TRAIN_NONE;
3473 temp |= FDI_LINK_TRAIN_PATTERN_1;
3474 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3476 POSTING_READ(reg);
3477 udelay(150);
3479 /* Ironlake workaround, enable clock pointer after FDI enable*/
3480 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3481 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3482 FDI_RX_PHASE_SYNC_POINTER_EN);
3484 reg = FDI_RX_IIR(pipe);
3485 for (tries = 0; tries < 5; tries++) {
3486 temp = I915_READ(reg);
3487 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3489 if ((temp & FDI_RX_BIT_LOCK)) {
3490 DRM_DEBUG_KMS("FDI train 1 done.\n");
3491 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3492 break;
3495 if (tries == 5)
3496 DRM_ERROR("FDI train 1 fail!\n");
3498 /* Train 2 */
3499 reg = FDI_TX_CTL(pipe);
3500 temp = I915_READ(reg);
3501 temp &= ~FDI_LINK_TRAIN_NONE;
3502 temp |= FDI_LINK_TRAIN_PATTERN_2;
3503 I915_WRITE(reg, temp);
3505 reg = FDI_RX_CTL(pipe);
3506 temp = I915_READ(reg);
3507 temp &= ~FDI_LINK_TRAIN_NONE;
3508 temp |= FDI_LINK_TRAIN_PATTERN_2;
3509 I915_WRITE(reg, temp);
3511 POSTING_READ(reg);
3512 udelay(150);
3514 reg = FDI_RX_IIR(pipe);
3515 for (tries = 0; tries < 5; tries++) {
3516 temp = I915_READ(reg);
3517 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3519 if (temp & FDI_RX_SYMBOL_LOCK) {
3520 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3521 DRM_DEBUG_KMS("FDI train 2 done.\n");
3522 break;
3525 if (tries == 5)
3526 DRM_ERROR("FDI train 2 fail!\n");
3528 DRM_DEBUG_KMS("FDI train done\n");
3532 static const int snb_b_fdi_train_param[] = {
3533 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3534 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3535 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3536 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3539 /* The FDI link training functions for SNB/Cougarpoint. */
3540 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3542 struct drm_device *dev = crtc->dev;
3543 struct drm_i915_private *dev_priv = dev->dev_private;
3544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3545 int pipe = intel_crtc->pipe;
3546 u32 reg, temp, i, retry;
3548 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3549 for train result */
3550 reg = FDI_RX_IMR(pipe);
3551 temp = I915_READ(reg);
3552 temp &= ~FDI_RX_SYMBOL_LOCK;
3553 temp &= ~FDI_RX_BIT_LOCK;
3554 I915_WRITE(reg, temp);
3556 POSTING_READ(reg);
3557 udelay(150);
3559 /* enable CPU FDI TX and PCH FDI RX */
3560 reg = FDI_TX_CTL(pipe);
3561 temp = I915_READ(reg);
3562 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3563 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3564 temp &= ~FDI_LINK_TRAIN_NONE;
3565 temp |= FDI_LINK_TRAIN_PATTERN_1;
3566 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3567 /* SNB-B */
3568 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3569 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3571 I915_WRITE(FDI_RX_MISC(pipe),
3572 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3574 reg = FDI_RX_CTL(pipe);
3575 temp = I915_READ(reg);
3576 if (HAS_PCH_CPT(dev)) {
3577 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3578 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3579 } else {
3580 temp &= ~FDI_LINK_TRAIN_NONE;
3581 temp |= FDI_LINK_TRAIN_PATTERN_1;
3583 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3585 POSTING_READ(reg);
3586 udelay(150);
3588 for (i = 0; i < 4; i++) {
3589 reg = FDI_TX_CTL(pipe);
3590 temp = I915_READ(reg);
3591 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3592 temp |= snb_b_fdi_train_param[i];
3593 I915_WRITE(reg, temp);
3595 POSTING_READ(reg);
3596 udelay(500);
3598 for (retry = 0; retry < 5; retry++) {
3599 reg = FDI_RX_IIR(pipe);
3600 temp = I915_READ(reg);
3601 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3602 if (temp & FDI_RX_BIT_LOCK) {
3603 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3604 DRM_DEBUG_KMS("FDI train 1 done.\n");
3605 break;
3607 udelay(50);
3609 if (retry < 5)
3610 break;
3612 if (i == 4)
3613 DRM_ERROR("FDI train 1 fail!\n");
3615 /* Train 2 */
3616 reg = FDI_TX_CTL(pipe);
3617 temp = I915_READ(reg);
3618 temp &= ~FDI_LINK_TRAIN_NONE;
3619 temp |= FDI_LINK_TRAIN_PATTERN_2;
3620 if (IS_GEN6(dev)) {
3621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3622 /* SNB-B */
3623 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3625 I915_WRITE(reg, temp);
3627 reg = FDI_RX_CTL(pipe);
3628 temp = I915_READ(reg);
3629 if (HAS_PCH_CPT(dev)) {
3630 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3631 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3632 } else {
3633 temp &= ~FDI_LINK_TRAIN_NONE;
3634 temp |= FDI_LINK_TRAIN_PATTERN_2;
3636 I915_WRITE(reg, temp);
3638 POSTING_READ(reg);
3639 udelay(150);
3641 for (i = 0; i < 4; i++) {
3642 reg = FDI_TX_CTL(pipe);
3643 temp = I915_READ(reg);
3644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3645 temp |= snb_b_fdi_train_param[i];
3646 I915_WRITE(reg, temp);
3648 POSTING_READ(reg);
3649 udelay(500);
3651 for (retry = 0; retry < 5; retry++) {
3652 reg = FDI_RX_IIR(pipe);
3653 temp = I915_READ(reg);
3654 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3655 if (temp & FDI_RX_SYMBOL_LOCK) {
3656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3657 DRM_DEBUG_KMS("FDI train 2 done.\n");
3658 break;
3660 udelay(50);
3662 if (retry < 5)
3663 break;
3665 if (i == 4)
3666 DRM_ERROR("FDI train 2 fail!\n");
3668 DRM_DEBUG_KMS("FDI train done.\n");
3671 /* Manual link training for Ivy Bridge A0 parts */
3672 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3674 struct drm_device *dev = crtc->dev;
3675 struct drm_i915_private *dev_priv = dev->dev_private;
3676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3677 int pipe = intel_crtc->pipe;
3678 u32 reg, temp, i, j;
3680 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3681 for train result */
3682 reg = FDI_RX_IMR(pipe);
3683 temp = I915_READ(reg);
3684 temp &= ~FDI_RX_SYMBOL_LOCK;
3685 temp &= ~FDI_RX_BIT_LOCK;
3686 I915_WRITE(reg, temp);
3688 POSTING_READ(reg);
3689 udelay(150);
3691 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3692 I915_READ(FDI_RX_IIR(pipe)));
3694 /* Try each vswing and preemphasis setting twice before moving on */
3695 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3696 /* disable first in case we need to retry */
3697 reg = FDI_TX_CTL(pipe);
3698 temp = I915_READ(reg);
3699 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3700 temp &= ~FDI_TX_ENABLE;
3701 I915_WRITE(reg, temp);
3703 reg = FDI_RX_CTL(pipe);
3704 temp = I915_READ(reg);
3705 temp &= ~FDI_LINK_TRAIN_AUTO;
3706 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3707 temp &= ~FDI_RX_ENABLE;
3708 I915_WRITE(reg, temp);
3710 /* enable CPU FDI TX and PCH FDI RX */
3711 reg = FDI_TX_CTL(pipe);
3712 temp = I915_READ(reg);
3713 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3714 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3715 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3716 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3717 temp |= snb_b_fdi_train_param[j/2];
3718 temp |= FDI_COMPOSITE_SYNC;
3719 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3721 I915_WRITE(FDI_RX_MISC(pipe),
3722 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3724 reg = FDI_RX_CTL(pipe);
3725 temp = I915_READ(reg);
3726 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3727 temp |= FDI_COMPOSITE_SYNC;
3728 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3730 POSTING_READ(reg);
3731 udelay(1); /* should be 0.5us */
3733 for (i = 0; i < 4; i++) {
3734 reg = FDI_RX_IIR(pipe);
3735 temp = I915_READ(reg);
3736 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3738 if (temp & FDI_RX_BIT_LOCK ||
3739 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3740 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3741 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3743 break;
3745 udelay(1); /* should be 0.5us */
3747 if (i == 4) {
3748 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3749 continue;
3752 /* Train 2 */
3753 reg = FDI_TX_CTL(pipe);
3754 temp = I915_READ(reg);
3755 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3756 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3757 I915_WRITE(reg, temp);
3759 reg = FDI_RX_CTL(pipe);
3760 temp = I915_READ(reg);
3761 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3762 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3763 I915_WRITE(reg, temp);
3765 POSTING_READ(reg);
3766 udelay(2); /* should be 1.5us */
3768 for (i = 0; i < 4; i++) {
3769 reg = FDI_RX_IIR(pipe);
3770 temp = I915_READ(reg);
3771 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3773 if (temp & FDI_RX_SYMBOL_LOCK ||
3774 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3775 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3776 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3778 goto train_done;
3780 udelay(2); /* should be 1.5us */
3782 if (i == 4)
3783 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3786 train_done:
3787 DRM_DEBUG_KMS("FDI train done.\n");
3790 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3792 struct drm_device *dev = intel_crtc->base.dev;
3793 struct drm_i915_private *dev_priv = dev->dev_private;
3794 int pipe = intel_crtc->pipe;
3795 u32 reg, temp;
3798 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3799 reg = FDI_RX_CTL(pipe);
3800 temp = I915_READ(reg);
3801 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3802 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3803 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3804 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3806 POSTING_READ(reg);
3807 udelay(200);
3809 /* Switch from Rawclk to PCDclk */
3810 temp = I915_READ(reg);
3811 I915_WRITE(reg, temp | FDI_PCDCLK);
3813 POSTING_READ(reg);
3814 udelay(200);
3816 /* Enable CPU FDI TX PLL, always on for Ironlake */
3817 reg = FDI_TX_CTL(pipe);
3818 temp = I915_READ(reg);
3819 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3820 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3822 POSTING_READ(reg);
3823 udelay(100);
3827 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3829 struct drm_device *dev = intel_crtc->base.dev;
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831 int pipe = intel_crtc->pipe;
3832 u32 reg, temp;
3834 /* Switch from PCDclk to Rawclk */
3835 reg = FDI_RX_CTL(pipe);
3836 temp = I915_READ(reg);
3837 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3839 /* Disable CPU FDI TX PLL */
3840 reg = FDI_TX_CTL(pipe);
3841 temp = I915_READ(reg);
3842 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3844 POSTING_READ(reg);
3845 udelay(100);
3847 reg = FDI_RX_CTL(pipe);
3848 temp = I915_READ(reg);
3849 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3851 /* Wait for the clocks to turn off. */
3852 POSTING_READ(reg);
3853 udelay(100);
3856 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3858 struct drm_device *dev = crtc->dev;
3859 struct drm_i915_private *dev_priv = dev->dev_private;
3860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3861 int pipe = intel_crtc->pipe;
3862 u32 reg, temp;
3864 /* disable CPU FDI tx and PCH FDI rx */
3865 reg = FDI_TX_CTL(pipe);
3866 temp = I915_READ(reg);
3867 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3868 POSTING_READ(reg);
3870 reg = FDI_RX_CTL(pipe);
3871 temp = I915_READ(reg);
3872 temp &= ~(0x7 << 16);
3873 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3874 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3876 POSTING_READ(reg);
3877 udelay(100);
3879 /* Ironlake workaround, disable clock pointer after downing FDI */
3880 if (HAS_PCH_IBX(dev))
3881 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3883 /* still set train pattern 1 */
3884 reg = FDI_TX_CTL(pipe);
3885 temp = I915_READ(reg);
3886 temp &= ~FDI_LINK_TRAIN_NONE;
3887 temp |= FDI_LINK_TRAIN_PATTERN_1;
3888 I915_WRITE(reg, temp);
3890 reg = FDI_RX_CTL(pipe);
3891 temp = I915_READ(reg);
3892 if (HAS_PCH_CPT(dev)) {
3893 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3894 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3895 } else {
3896 temp &= ~FDI_LINK_TRAIN_NONE;
3897 temp |= FDI_LINK_TRAIN_PATTERN_1;
3899 /* BPC in FDI rx is consistent with that in PIPECONF */
3900 temp &= ~(0x07 << 16);
3901 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3902 I915_WRITE(reg, temp);
3904 POSTING_READ(reg);
3905 udelay(100);
3908 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3910 struct intel_crtc *crtc;
3912 /* Note that we don't need to be called with mode_config.lock here
3913 * as our list of CRTC objects is static for the lifetime of the
3914 * device and so cannot disappear as we iterate. Similarly, we can
3915 * happily treat the predicates as racy, atomic checks as userspace
3916 * cannot claim and pin a new fb without at least acquring the
3917 * struct_mutex and so serialising with us.
3919 for_each_intel_crtc(dev, crtc) {
3920 if (atomic_read(&crtc->unpin_work_count) == 0)
3921 continue;
3923 if (crtc->unpin_work)
3924 intel_wait_for_vblank(dev, crtc->pipe);
3926 return true;
3929 return false;
3932 static void page_flip_completed(struct intel_crtc *intel_crtc)
3934 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3935 struct intel_unpin_work *work = intel_crtc->unpin_work;
3937 /* ensure that the unpin work is consistent wrt ->pending. */
3938 smp_rmb();
3939 intel_crtc->unpin_work = NULL;
3941 if (work->event)
3942 drm_send_vblank_event(intel_crtc->base.dev,
3943 intel_crtc->pipe,
3944 work->event);
3946 drm_crtc_vblank_put(&intel_crtc->base);
3948 wake_up_all(&dev_priv->pending_flip_queue);
3949 queue_work(dev_priv->wq, &work->work);
3951 trace_i915_flip_complete(intel_crtc->plane,
3952 work->pending_flip_obj);
3955 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3957 struct drm_device *dev = crtc->dev;
3958 struct drm_i915_private *dev_priv = dev->dev_private;
3960 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3961 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3962 !intel_crtc_has_pending_flip(crtc),
3963 60*HZ) == 0)) {
3964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3966 spin_lock_irq(&dev->event_lock);
3967 if (intel_crtc->unpin_work) {
3968 WARN_ONCE(1, "Removing stuck page flip\n");
3969 page_flip_completed(intel_crtc);
3971 spin_unlock_irq(&dev->event_lock);
3974 if (crtc->primary->fb) {
3975 mutex_lock(&dev->struct_mutex);
3976 intel_finish_fb(crtc->primary->fb);
3977 mutex_unlock(&dev->struct_mutex);
3981 /* Program iCLKIP clock to the desired frequency */
3982 static void lpt_program_iclkip(struct drm_crtc *crtc)
3984 struct drm_device *dev = crtc->dev;
3985 struct drm_i915_private *dev_priv = dev->dev_private;
3986 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3987 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3988 u32 temp;
3990 mutex_lock(&dev_priv->sb_lock);
3992 /* It is necessary to ungate the pixclk gate prior to programming
3993 * the divisors, and gate it back when it is done.
3995 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3997 /* Disable SSCCTL */
3998 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3999 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
4000 SBI_SSCCTL_DISABLE,
4001 SBI_ICLK);
4003 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
4004 if (clock == 20000) {
4005 auxdiv = 1;
4006 divsel = 0x41;
4007 phaseinc = 0x20;
4008 } else {
4009 /* The iCLK virtual clock root frequency is in MHz,
4010 * but the adjusted_mode->crtc_clock in in KHz. To get the
4011 * divisors, it is necessary to divide one by another, so we
4012 * convert the virtual clock precision to KHz here for higher
4013 * precision.
4015 u32 iclk_virtual_root_freq = 172800 * 1000;
4016 u32 iclk_pi_range = 64;
4017 u32 desired_divisor, msb_divisor_value, pi_value;
4019 desired_divisor = (iclk_virtual_root_freq / clock);
4020 msb_divisor_value = desired_divisor / iclk_pi_range;
4021 pi_value = desired_divisor % iclk_pi_range;
4023 auxdiv = 0;
4024 divsel = msb_divisor_value - 2;
4025 phaseinc = pi_value;
4028 /* This should not happen with any sane values */
4029 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4030 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4031 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4032 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4034 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4035 clock,
4036 auxdiv,
4037 divsel,
4038 phasedir,
4039 phaseinc);
4041 /* Program SSCDIVINTPHASE6 */
4042 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4043 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4044 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4045 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4046 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4047 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4048 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4049 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4051 /* Program SSCAUXDIV */
4052 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4053 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4054 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4055 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4057 /* Enable modulator and associated divider */
4058 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4059 temp &= ~SBI_SSCCTL_DISABLE;
4060 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4062 /* Wait for initialization time */
4063 udelay(24);
4065 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4067 mutex_unlock(&dev_priv->sb_lock);
4070 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4071 enum pipe pch_transcoder)
4073 struct drm_device *dev = crtc->base.dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4077 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4078 I915_READ(HTOTAL(cpu_transcoder)));
4079 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4080 I915_READ(HBLANK(cpu_transcoder)));
4081 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4082 I915_READ(HSYNC(cpu_transcoder)));
4084 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4085 I915_READ(VTOTAL(cpu_transcoder)));
4086 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4087 I915_READ(VBLANK(cpu_transcoder)));
4088 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4089 I915_READ(VSYNC(cpu_transcoder)));
4090 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4091 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4094 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4096 struct drm_i915_private *dev_priv = dev->dev_private;
4097 uint32_t temp;
4099 temp = I915_READ(SOUTH_CHICKEN1);
4100 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4101 return;
4103 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4104 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4106 temp &= ~FDI_BC_BIFURCATION_SELECT;
4107 if (enable)
4108 temp |= FDI_BC_BIFURCATION_SELECT;
4110 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4111 I915_WRITE(SOUTH_CHICKEN1, temp);
4112 POSTING_READ(SOUTH_CHICKEN1);
4115 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4117 struct drm_device *dev = intel_crtc->base.dev;
4119 switch (intel_crtc->pipe) {
4120 case PIPE_A:
4121 break;
4122 case PIPE_B:
4123 if (intel_crtc->config->fdi_lanes > 2)
4124 cpt_set_fdi_bc_bifurcation(dev, false);
4125 else
4126 cpt_set_fdi_bc_bifurcation(dev, true);
4128 break;
4129 case PIPE_C:
4130 cpt_set_fdi_bc_bifurcation(dev, true);
4132 break;
4133 default:
4134 BUG();
4139 * Enable PCH resources required for PCH ports:
4140 * - PCH PLLs
4141 * - FDI training & RX/TX
4142 * - update transcoder timings
4143 * - DP transcoding bits
4144 * - transcoder
4146 static void ironlake_pch_enable(struct drm_crtc *crtc)
4148 struct drm_device *dev = crtc->dev;
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4151 int pipe = intel_crtc->pipe;
4152 u32 reg, temp;
4154 assert_pch_transcoder_disabled(dev_priv, pipe);
4156 if (IS_IVYBRIDGE(dev))
4157 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4159 /* Write the TU size bits before fdi link training, so that error
4160 * detection works. */
4161 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4162 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4164 /* For PCH output, training FDI link */
4165 dev_priv->display.fdi_link_train(crtc);
4167 /* We need to program the right clock selection before writing the pixel
4168 * mutliplier into the DPLL. */
4169 if (HAS_PCH_CPT(dev)) {
4170 u32 sel;
4172 temp = I915_READ(PCH_DPLL_SEL);
4173 temp |= TRANS_DPLL_ENABLE(pipe);
4174 sel = TRANS_DPLLB_SEL(pipe);
4175 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4176 temp |= sel;
4177 else
4178 temp &= ~sel;
4179 I915_WRITE(PCH_DPLL_SEL, temp);
4182 /* XXX: pch pll's can be enabled any time before we enable the PCH
4183 * transcoder, and we actually should do this to not upset any PCH
4184 * transcoder that already use the clock when we share it.
4186 * Note that enable_shared_dpll tries to do the right thing, but
4187 * get_shared_dpll unconditionally resets the pll - we need that to have
4188 * the right LVDS enable sequence. */
4189 intel_enable_shared_dpll(intel_crtc);
4191 /* set transcoder timing, panel must allow it */
4192 assert_panel_unlocked(dev_priv, pipe);
4193 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4195 intel_fdi_normal_train(crtc);
4197 /* For PCH DP, enable TRANS_DP_CTL */
4198 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4199 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4200 reg = TRANS_DP_CTL(pipe);
4201 temp = I915_READ(reg);
4202 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4203 TRANS_DP_SYNC_MASK |
4204 TRANS_DP_BPC_MASK);
4205 temp |= TRANS_DP_OUTPUT_ENABLE;
4206 temp |= bpc << 9; /* same format but at 11:9 */
4208 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4209 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4210 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4211 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4213 switch (intel_trans_dp_port_sel(crtc)) {
4214 case PCH_DP_B:
4215 temp |= TRANS_DP_PORT_SEL_B;
4216 break;
4217 case PCH_DP_C:
4218 temp |= TRANS_DP_PORT_SEL_C;
4219 break;
4220 case PCH_DP_D:
4221 temp |= TRANS_DP_PORT_SEL_D;
4222 break;
4223 default:
4224 BUG();
4227 I915_WRITE(reg, temp);
4230 ironlake_enable_pch_transcoder(dev_priv, pipe);
4233 static void lpt_pch_enable(struct drm_crtc *crtc)
4235 struct drm_device *dev = crtc->dev;
4236 struct drm_i915_private *dev_priv = dev->dev_private;
4237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4238 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4240 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4242 lpt_program_iclkip(crtc);
4244 /* Set transcoder timing. */
4245 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4247 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4250 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4251 struct intel_crtc_state *crtc_state)
4253 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4254 struct intel_shared_dpll *pll;
4255 struct intel_shared_dpll_config *shared_dpll;
4256 enum intel_dpll_id i;
4257 int max = dev_priv->num_shared_dpll;
4259 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4261 if (HAS_PCH_IBX(dev_priv->dev)) {
4262 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4263 i = (enum intel_dpll_id) crtc->pipe;
4264 pll = &dev_priv->shared_dplls[i];
4266 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4267 crtc->base.base.id, pll->name);
4269 WARN_ON(shared_dpll[i].crtc_mask);
4271 goto found;
4274 if (IS_BROXTON(dev_priv->dev)) {
4275 /* PLL is attached to port in bxt */
4276 struct intel_encoder *encoder;
4277 struct intel_digital_port *intel_dig_port;
4279 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4280 if (WARN_ON(!encoder))
4281 return NULL;
4283 intel_dig_port = enc_to_dig_port(&encoder->base);
4284 /* 1:1 mapping between ports and PLLs */
4285 i = (enum intel_dpll_id)intel_dig_port->port;
4286 pll = &dev_priv->shared_dplls[i];
4287 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4288 crtc->base.base.id, pll->name);
4289 WARN_ON(shared_dpll[i].crtc_mask);
4291 goto found;
4292 } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4293 /* Do not consider SPLL */
4294 max = 2;
4296 for (i = 0; i < max; i++) {
4297 pll = &dev_priv->shared_dplls[i];
4299 /* Only want to check enabled timings first */
4300 if (shared_dpll[i].crtc_mask == 0)
4301 continue;
4303 if (memcmp(&crtc_state->dpll_hw_state,
4304 &shared_dpll[i].hw_state,
4305 sizeof(crtc_state->dpll_hw_state)) == 0) {
4306 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4307 crtc->base.base.id, pll->name,
4308 shared_dpll[i].crtc_mask,
4309 pll->active);
4310 goto found;
4314 /* Ok no matching timings, maybe there's a free one? */
4315 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4316 pll = &dev_priv->shared_dplls[i];
4317 if (shared_dpll[i].crtc_mask == 0) {
4318 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4319 crtc->base.base.id, pll->name);
4320 goto found;
4324 return NULL;
4326 found:
4327 if (shared_dpll[i].crtc_mask == 0)
4328 shared_dpll[i].hw_state =
4329 crtc_state->dpll_hw_state;
4331 crtc_state->shared_dpll = i;
4332 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4333 pipe_name(crtc->pipe));
4335 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4337 return pll;
4340 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4342 struct drm_i915_private *dev_priv = to_i915(state->dev);
4343 struct intel_shared_dpll_config *shared_dpll;
4344 struct intel_shared_dpll *pll;
4345 enum intel_dpll_id i;
4347 if (!to_intel_atomic_state(state)->dpll_set)
4348 return;
4350 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4351 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4352 pll = &dev_priv->shared_dplls[i];
4353 pll->config = shared_dpll[i];
4357 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4359 struct drm_i915_private *dev_priv = dev->dev_private;
4360 int dslreg = PIPEDSL(pipe);
4361 u32 temp;
4363 temp = I915_READ(dslreg);
4364 udelay(500);
4365 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4366 if (wait_for(I915_READ(dslreg) != temp, 5))
4367 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4371 static int
4372 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4373 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4374 int src_w, int src_h, int dst_w, int dst_h)
4376 struct intel_crtc_scaler_state *scaler_state =
4377 &crtc_state->scaler_state;
4378 struct intel_crtc *intel_crtc =
4379 to_intel_crtc(crtc_state->base.crtc);
4380 int need_scaling;
4382 need_scaling = intel_rotation_90_or_270(rotation) ?
4383 (src_h != dst_w || src_w != dst_h):
4384 (src_w != dst_w || src_h != dst_h);
4387 * if plane is being disabled or scaler is no more required or force detach
4388 * - free scaler binded to this plane/crtc
4389 * - in order to do this, update crtc->scaler_usage
4391 * Here scaler state in crtc_state is set free so that
4392 * scaler can be assigned to other user. Actual register
4393 * update to free the scaler is done in plane/panel-fit programming.
4394 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4396 if (force_detach || !need_scaling) {
4397 if (*scaler_id >= 0) {
4398 scaler_state->scaler_users &= ~(1 << scaler_user);
4399 scaler_state->scalers[*scaler_id].in_use = 0;
4401 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4402 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4403 intel_crtc->pipe, scaler_user, *scaler_id,
4404 scaler_state->scaler_users);
4405 *scaler_id = -1;
4407 return 0;
4410 /* range checks */
4411 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4412 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4414 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4415 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4416 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4417 "size is out of scaler range\n",
4418 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4419 return -EINVAL;
4422 /* mark this plane as a scaler user in crtc_state */
4423 scaler_state->scaler_users |= (1 << scaler_user);
4424 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4425 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4426 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4427 scaler_state->scaler_users);
4429 return 0;
4433 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4435 * @state: crtc's scaler state
4437 * Return
4438 * 0 - scaler_usage updated successfully
4439 * error - requested scaling cannot be supported or other error condition
4441 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4443 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4444 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4446 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4447 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4449 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4450 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4451 state->pipe_src_w, state->pipe_src_h,
4452 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4456 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4458 * @state: crtc's scaler state
4459 * @plane_state: atomic plane state to update
4461 * Return
4462 * 0 - scaler_usage updated successfully
4463 * error - requested scaling cannot be supported or other error condition
4465 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4466 struct intel_plane_state *plane_state)
4469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4470 struct intel_plane *intel_plane =
4471 to_intel_plane(plane_state->base.plane);
4472 struct drm_framebuffer *fb = plane_state->base.fb;
4473 int ret;
4475 bool force_detach = !fb || !plane_state->visible;
4477 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4478 intel_plane->base.base.id, intel_crtc->pipe,
4479 drm_plane_index(&intel_plane->base));
4481 ret = skl_update_scaler(crtc_state, force_detach,
4482 drm_plane_index(&intel_plane->base),
4483 &plane_state->scaler_id,
4484 plane_state->base.rotation,
4485 drm_rect_width(&plane_state->src) >> 16,
4486 drm_rect_height(&plane_state->src) >> 16,
4487 drm_rect_width(&plane_state->dst),
4488 drm_rect_height(&plane_state->dst));
4490 if (ret || plane_state->scaler_id < 0)
4491 return ret;
4493 /* check colorkey */
4494 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4495 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4496 intel_plane->base.base.id);
4497 return -EINVAL;
4500 /* Check src format */
4501 switch (fb->pixel_format) {
4502 case DRM_FORMAT_RGB565:
4503 case DRM_FORMAT_XBGR8888:
4504 case DRM_FORMAT_XRGB8888:
4505 case DRM_FORMAT_ABGR8888:
4506 case DRM_FORMAT_ARGB8888:
4507 case DRM_FORMAT_XRGB2101010:
4508 case DRM_FORMAT_XBGR2101010:
4509 case DRM_FORMAT_YUYV:
4510 case DRM_FORMAT_YVYU:
4511 case DRM_FORMAT_UYVY:
4512 case DRM_FORMAT_VYUY:
4513 break;
4514 default:
4515 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4516 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4517 return -EINVAL;
4520 return 0;
4523 static void skylake_scaler_disable(struct intel_crtc *crtc)
4525 int i;
4527 for (i = 0; i < crtc->num_scalers; i++)
4528 skl_detach_scaler(crtc, i);
4531 static void skylake_pfit_enable(struct intel_crtc *crtc)
4533 struct drm_device *dev = crtc->base.dev;
4534 struct drm_i915_private *dev_priv = dev->dev_private;
4535 int pipe = crtc->pipe;
4536 struct intel_crtc_scaler_state *scaler_state =
4537 &crtc->config->scaler_state;
4539 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4541 if (crtc->config->pch_pfit.enabled) {
4542 int id;
4544 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4545 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4546 return;
4549 id = scaler_state->scaler_id;
4550 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4551 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4552 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4553 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4555 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4559 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4561 struct drm_device *dev = crtc->base.dev;
4562 struct drm_i915_private *dev_priv = dev->dev_private;
4563 int pipe = crtc->pipe;
4565 if (crtc->config->pch_pfit.enabled) {
4566 /* Force use of hard-coded filter coefficients
4567 * as some pre-programmed values are broken,
4568 * e.g. x201.
4570 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4571 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4572 PF_PIPE_SEL_IVB(pipe));
4573 else
4574 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4575 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4576 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4580 void hsw_enable_ips(struct intel_crtc *crtc)
4582 struct drm_device *dev = crtc->base.dev;
4583 struct drm_i915_private *dev_priv = dev->dev_private;
4585 if (!crtc->config->ips_enabled)
4586 return;
4588 /* We can only enable IPS after we enable a plane and wait for a vblank */
4589 intel_wait_for_vblank(dev, crtc->pipe);
4591 assert_plane_enabled(dev_priv, crtc->plane);
4592 if (IS_BROADWELL(dev)) {
4593 mutex_lock(&dev_priv->rps.hw_lock);
4594 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4595 mutex_unlock(&dev_priv->rps.hw_lock);
4596 /* Quoting Art Runyan: "its not safe to expect any particular
4597 * value in IPS_CTL bit 31 after enabling IPS through the
4598 * mailbox." Moreover, the mailbox may return a bogus state,
4599 * so we need to just enable it and continue on.
4601 } else {
4602 I915_WRITE(IPS_CTL, IPS_ENABLE);
4603 /* The bit only becomes 1 in the next vblank, so this wait here
4604 * is essentially intel_wait_for_vblank. If we don't have this
4605 * and don't wait for vblanks until the end of crtc_enable, then
4606 * the HW state readout code will complain that the expected
4607 * IPS_CTL value is not the one we read. */
4608 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4609 DRM_ERROR("Timed out waiting for IPS enable\n");
4613 void hsw_disable_ips(struct intel_crtc *crtc)
4615 struct drm_device *dev = crtc->base.dev;
4616 struct drm_i915_private *dev_priv = dev->dev_private;
4618 if (!crtc->config->ips_enabled)
4619 return;
4621 assert_plane_enabled(dev_priv, crtc->plane);
4622 if (IS_BROADWELL(dev)) {
4623 mutex_lock(&dev_priv->rps.hw_lock);
4624 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4625 mutex_unlock(&dev_priv->rps.hw_lock);
4626 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4627 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4628 DRM_ERROR("Timed out waiting for IPS disable\n");
4629 } else {
4630 I915_WRITE(IPS_CTL, 0);
4631 POSTING_READ(IPS_CTL);
4634 /* We need to wait for a vblank before we can disable the plane. */
4635 intel_wait_for_vblank(dev, crtc->pipe);
4638 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4639 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4641 struct drm_device *dev = crtc->dev;
4642 struct drm_i915_private *dev_priv = dev->dev_private;
4643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4644 enum pipe pipe = intel_crtc->pipe;
4645 int i;
4646 bool reenable_ips = false;
4648 /* The clocks have to be on to load the palette. */
4649 if (!crtc->state->active)
4650 return;
4652 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4653 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4654 assert_dsi_pll_enabled(dev_priv);
4655 else
4656 assert_pll_enabled(dev_priv, pipe);
4659 /* Workaround : Do not read or write the pipe palette/gamma data while
4660 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4662 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4663 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4664 GAMMA_MODE_MODE_SPLIT)) {
4665 hsw_disable_ips(intel_crtc);
4666 reenable_ips = true;
4669 for (i = 0; i < 256; i++) {
4670 u32 palreg;
4672 if (HAS_GMCH_DISPLAY(dev))
4673 palreg = PALETTE(pipe, i);
4674 else
4675 palreg = LGC_PALETTE(pipe, i);
4677 I915_WRITE(palreg,
4678 (intel_crtc->lut_r[i] << 16) |
4679 (intel_crtc->lut_g[i] << 8) |
4680 intel_crtc->lut_b[i]);
4683 if (reenable_ips)
4684 hsw_enable_ips(intel_crtc);
4687 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4689 if (intel_crtc->overlay) {
4690 struct drm_device *dev = intel_crtc->base.dev;
4691 struct drm_i915_private *dev_priv = dev->dev_private;
4693 mutex_lock(&dev->struct_mutex);
4694 dev_priv->mm.interruptible = false;
4695 (void) intel_overlay_switch_off(intel_crtc->overlay);
4696 dev_priv->mm.interruptible = true;
4697 mutex_unlock(&dev->struct_mutex);
4700 /* Let userspace switch the overlay on again. In most cases userspace
4701 * has to recompute where to put it anyway.
4706 * intel_post_enable_primary - Perform operations after enabling primary plane
4707 * @crtc: the CRTC whose primary plane was just enabled
4709 * Performs potentially sleeping operations that must be done after the primary
4710 * plane is enabled, such as updating FBC and IPS. Note that this may be
4711 * called due to an explicit primary plane update, or due to an implicit
4712 * re-enable that is caused when a sprite plane is updated to no longer
4713 * completely hide the primary plane.
4715 static void
4716 intel_post_enable_primary(struct drm_crtc *crtc)
4718 struct drm_device *dev = crtc->dev;
4719 struct drm_i915_private *dev_priv = dev->dev_private;
4720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4721 int pipe = intel_crtc->pipe;
4724 * BDW signals flip done immediately if the plane
4725 * is disabled, even if the plane enable is already
4726 * armed to occur at the next vblank :(
4728 if (IS_BROADWELL(dev))
4729 intel_wait_for_vblank(dev, pipe);
4732 * FIXME IPS should be fine as long as one plane is
4733 * enabled, but in practice it seems to have problems
4734 * when going from primary only to sprite only and vice
4735 * versa.
4737 hsw_enable_ips(intel_crtc);
4740 * Gen2 reports pipe underruns whenever all planes are disabled.
4741 * So don't enable underrun reporting before at least some planes
4742 * are enabled.
4743 * FIXME: Need to fix the logic to work when we turn off all planes
4744 * but leave the pipe running.
4746 if (IS_GEN2(dev))
4747 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4749 /* Underruns don't raise interrupts, so check manually. */
4750 if (HAS_GMCH_DISPLAY(dev))
4751 i9xx_check_fifo_underruns(dev_priv);
4755 * intel_pre_disable_primary - Perform operations before disabling primary plane
4756 * @crtc: the CRTC whose primary plane is to be disabled
4758 * Performs potentially sleeping operations that must be done before the
4759 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4760 * be called due to an explicit primary plane update, or due to an implicit
4761 * disable that is caused when a sprite plane completely hides the primary
4762 * plane.
4764 static void
4765 intel_pre_disable_primary(struct drm_crtc *crtc)
4767 struct drm_device *dev = crtc->dev;
4768 struct drm_i915_private *dev_priv = dev->dev_private;
4769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4770 int pipe = intel_crtc->pipe;
4773 * Gen2 reports pipe underruns whenever all planes are disabled.
4774 * So diasble underrun reporting before all the planes get disabled.
4775 * FIXME: Need to fix the logic to work when we turn off all planes
4776 * but leave the pipe running.
4778 if (IS_GEN2(dev))
4779 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4782 * Vblank time updates from the shadow to live plane control register
4783 * are blocked if the memory self-refresh mode is active at that
4784 * moment. So to make sure the plane gets truly disabled, disable
4785 * first the self-refresh mode. The self-refresh enable bit in turn
4786 * will be checked/applied by the HW only at the next frame start
4787 * event which is after the vblank start event, so we need to have a
4788 * wait-for-vblank between disabling the plane and the pipe.
4790 if (HAS_GMCH_DISPLAY(dev)) {
4791 intel_set_memory_cxsr(dev_priv, false);
4792 dev_priv->wm.vlv.cxsr = false;
4793 intel_wait_for_vblank(dev, pipe);
4797 * FIXME IPS should be fine as long as one plane is
4798 * enabled, but in practice it seems to have problems
4799 * when going from primary only to sprite only and vice
4800 * versa.
4802 hsw_disable_ips(intel_crtc);
4805 static void intel_post_plane_update(struct intel_crtc *crtc)
4807 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4808 struct drm_device *dev = crtc->base.dev;
4809 struct drm_i915_private *dev_priv = dev->dev_private;
4810 struct drm_plane *plane;
4812 if (atomic->wait_vblank)
4813 intel_wait_for_vblank(dev, crtc->pipe);
4815 intel_frontbuffer_flip(dev, atomic->fb_bits);
4817 if (atomic->disable_cxsr)
4818 crtc->wm.cxsr_allowed = true;
4820 if (crtc->atomic.update_wm_post)
4821 intel_update_watermarks(&crtc->base);
4823 if (atomic->update_fbc)
4824 intel_fbc_update(dev_priv);
4826 if (atomic->post_enable_primary)
4827 intel_post_enable_primary(&crtc->base);
4829 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4830 intel_update_sprite_watermarks(plane, &crtc->base,
4831 0, 0, 0, false, false);
4833 memset(atomic, 0, sizeof(*atomic));
4836 static void intel_pre_plane_update(struct intel_crtc *crtc)
4838 struct drm_device *dev = crtc->base.dev;
4839 struct drm_i915_private *dev_priv = dev->dev_private;
4840 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4841 struct drm_plane *p;
4843 /* Track fb's for any planes being disabled */
4844 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4845 struct intel_plane *plane = to_intel_plane(p);
4847 mutex_lock(&dev->struct_mutex);
4848 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4849 plane->frontbuffer_bit);
4850 mutex_unlock(&dev->struct_mutex);
4853 if (atomic->wait_for_flips)
4854 intel_crtc_wait_for_pending_flips(&crtc->base);
4856 if (atomic->disable_fbc)
4857 intel_fbc_disable_crtc(crtc);
4859 if (crtc->atomic.disable_ips)
4860 hsw_disable_ips(crtc);
4862 if (atomic->pre_disable_primary)
4863 intel_pre_disable_primary(&crtc->base);
4865 if (atomic->disable_cxsr) {
4866 crtc->wm.cxsr_allowed = false;
4867 intel_set_memory_cxsr(dev_priv, false);
4871 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4873 struct drm_device *dev = crtc->dev;
4874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875 struct drm_plane *p;
4876 int pipe = intel_crtc->pipe;
4878 intel_crtc_dpms_overlay_disable(intel_crtc);
4880 drm_for_each_plane_mask(p, dev, plane_mask)
4881 to_intel_plane(p)->disable_plane(p, crtc);
4884 * FIXME: Once we grow proper nuclear flip support out of this we need
4885 * to compute the mask of flip planes precisely. For the time being
4886 * consider this a flip to a NULL plane.
4888 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4891 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4893 struct drm_device *dev = crtc->dev;
4894 struct drm_i915_private *dev_priv = dev->dev_private;
4895 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4896 struct intel_encoder *encoder;
4897 int pipe = intel_crtc->pipe;
4899 if (WARN_ON(intel_crtc->active))
4900 return;
4902 if (intel_crtc->config->has_pch_encoder)
4903 intel_prepare_shared_dpll(intel_crtc);
4905 if (intel_crtc->config->has_dp_encoder)
4906 intel_dp_set_m_n(intel_crtc, M1_N1);
4908 intel_set_pipe_timings(intel_crtc);
4910 if (intel_crtc->config->has_pch_encoder) {
4911 intel_cpu_transcoder_set_m_n(intel_crtc,
4912 &intel_crtc->config->fdi_m_n, NULL);
4915 ironlake_set_pipeconf(crtc);
4917 intel_crtc->active = true;
4919 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4920 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4922 for_each_encoder_on_crtc(dev, crtc, encoder)
4923 if (encoder->pre_enable)
4924 encoder->pre_enable(encoder);
4926 if (intel_crtc->config->has_pch_encoder) {
4927 /* Note: FDI PLL enabling _must_ be done before we enable the
4928 * cpu pipes, hence this is separate from all the other fdi/pch
4929 * enabling. */
4930 ironlake_fdi_pll_enable(intel_crtc);
4931 } else {
4932 assert_fdi_tx_disabled(dev_priv, pipe);
4933 assert_fdi_rx_disabled(dev_priv, pipe);
4936 ironlake_pfit_enable(intel_crtc);
4939 * On ILK+ LUT must be loaded before the pipe is running but with
4940 * clocks enabled
4942 intel_crtc_load_lut(crtc);
4944 intel_update_watermarks(crtc);
4945 intel_enable_pipe(intel_crtc);
4947 if (intel_crtc->config->has_pch_encoder)
4948 ironlake_pch_enable(crtc);
4950 assert_vblank_disabled(crtc);
4951 drm_crtc_vblank_on(crtc);
4953 for_each_encoder_on_crtc(dev, crtc, encoder)
4954 encoder->enable(encoder);
4956 if (HAS_PCH_CPT(dev))
4957 cpt_verify_modeset(dev, intel_crtc->pipe);
4960 /* IPS only exists on ULT machines and is tied to pipe A. */
4961 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4963 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4966 static void haswell_crtc_enable(struct drm_crtc *crtc)
4968 struct drm_device *dev = crtc->dev;
4969 struct drm_i915_private *dev_priv = dev->dev_private;
4970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4971 struct intel_encoder *encoder;
4972 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4973 struct intel_crtc_state *pipe_config =
4974 to_intel_crtc_state(crtc->state);
4975 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4977 if (WARN_ON(intel_crtc->active))
4978 return;
4980 if (intel_crtc_to_shared_dpll(intel_crtc))
4981 intel_enable_shared_dpll(intel_crtc);
4983 if (intel_crtc->config->has_dp_encoder)
4984 intel_dp_set_m_n(intel_crtc, M1_N1);
4986 intel_set_pipe_timings(intel_crtc);
4988 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4989 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4990 intel_crtc->config->pixel_multiplier - 1);
4993 if (intel_crtc->config->has_pch_encoder) {
4994 intel_cpu_transcoder_set_m_n(intel_crtc,
4995 &intel_crtc->config->fdi_m_n, NULL);
4998 haswell_set_pipeconf(crtc);
5000 intel_set_pipe_csc(crtc);
5002 intel_crtc->active = true;
5004 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5005 for_each_encoder_on_crtc(dev, crtc, encoder) {
5006 if (encoder->pre_pll_enable)
5007 encoder->pre_pll_enable(encoder);
5008 if (encoder->pre_enable)
5009 encoder->pre_enable(encoder);
5012 if (intel_crtc->config->has_pch_encoder) {
5013 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5014 true);
5015 dev_priv->display.fdi_link_train(crtc);
5018 if (!is_dsi)
5019 intel_ddi_enable_pipe_clock(intel_crtc);
5021 if (INTEL_INFO(dev)->gen >= 9)
5022 skylake_pfit_enable(intel_crtc);
5023 else
5024 ironlake_pfit_enable(intel_crtc);
5027 * On ILK+ LUT must be loaded before the pipe is running but with
5028 * clocks enabled
5030 intel_crtc_load_lut(crtc);
5032 intel_ddi_set_pipe_settings(crtc);
5033 if (!is_dsi)
5034 intel_ddi_enable_transcoder_func(crtc);
5036 intel_update_watermarks(crtc);
5037 intel_enable_pipe(intel_crtc);
5039 if (intel_crtc->config->has_pch_encoder)
5040 lpt_pch_enable(crtc);
5042 if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5043 intel_ddi_set_vc_payload_alloc(crtc, true);
5045 assert_vblank_disabled(crtc);
5046 drm_crtc_vblank_on(crtc);
5048 for_each_encoder_on_crtc(dev, crtc, encoder) {
5049 encoder->enable(encoder);
5050 intel_opregion_notify_encoder(encoder, true);
5053 /* If we change the relative order between pipe/planes enabling, we need
5054 * to change the workaround. */
5055 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5056 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5057 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5058 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5062 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5064 struct drm_device *dev = crtc->base.dev;
5065 struct drm_i915_private *dev_priv = dev->dev_private;
5066 int pipe = crtc->pipe;
5068 /* To avoid upsetting the power well on haswell only disable the pfit if
5069 * it's in use. The hw state code will make sure we get this right. */
5070 if (force || crtc->config->pch_pfit.enabled) {
5071 I915_WRITE(PF_CTL(pipe), 0);
5072 I915_WRITE(PF_WIN_POS(pipe), 0);
5073 I915_WRITE(PF_WIN_SZ(pipe), 0);
5077 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5079 struct drm_device *dev = crtc->dev;
5080 struct drm_i915_private *dev_priv = dev->dev_private;
5081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5082 struct intel_encoder *encoder;
5083 int pipe = intel_crtc->pipe;
5084 u32 reg, temp;
5086 for_each_encoder_on_crtc(dev, crtc, encoder)
5087 encoder->disable(encoder);
5089 drm_crtc_vblank_off(crtc);
5090 assert_vblank_disabled(crtc);
5092 if (intel_crtc->config->has_pch_encoder)
5093 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5095 intel_disable_pipe(intel_crtc);
5097 ironlake_pfit_disable(intel_crtc, false);
5099 if (intel_crtc->config->has_pch_encoder)
5100 ironlake_fdi_disable(crtc);
5102 for_each_encoder_on_crtc(dev, crtc, encoder)
5103 if (encoder->post_disable)
5104 encoder->post_disable(encoder);
5106 if (intel_crtc->config->has_pch_encoder) {
5107 ironlake_disable_pch_transcoder(dev_priv, pipe);
5109 if (HAS_PCH_CPT(dev)) {
5110 /* disable TRANS_DP_CTL */
5111 reg = TRANS_DP_CTL(pipe);
5112 temp = I915_READ(reg);
5113 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5114 TRANS_DP_PORT_SEL_MASK);
5115 temp |= TRANS_DP_PORT_SEL_NONE;
5116 I915_WRITE(reg, temp);
5118 /* disable DPLL_SEL */
5119 temp = I915_READ(PCH_DPLL_SEL);
5120 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5121 I915_WRITE(PCH_DPLL_SEL, temp);
5124 ironlake_fdi_pll_disable(intel_crtc);
5128 static void haswell_crtc_disable(struct drm_crtc *crtc)
5130 struct drm_device *dev = crtc->dev;
5131 struct drm_i915_private *dev_priv = dev->dev_private;
5132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5133 struct intel_encoder *encoder;
5134 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5135 bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5137 for_each_encoder_on_crtc(dev, crtc, encoder) {
5138 intel_opregion_notify_encoder(encoder, false);
5139 encoder->disable(encoder);
5142 drm_crtc_vblank_off(crtc);
5143 assert_vblank_disabled(crtc);
5145 if (intel_crtc->config->has_pch_encoder)
5146 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5147 false);
5148 intel_disable_pipe(intel_crtc);
5150 if (intel_crtc->config->dp_encoder_is_mst)
5151 intel_ddi_set_vc_payload_alloc(crtc, false);
5153 if (!is_dsi)
5154 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5156 if (INTEL_INFO(dev)->gen >= 9)
5157 skylake_scaler_disable(intel_crtc);
5158 else
5159 ironlake_pfit_disable(intel_crtc, false);
5161 if (!is_dsi)
5162 intel_ddi_disable_pipe_clock(intel_crtc);
5164 if (intel_crtc->config->has_pch_encoder) {
5165 lpt_disable_pch_transcoder(dev_priv);
5166 intel_ddi_fdi_disable(crtc);
5169 for_each_encoder_on_crtc(dev, crtc, encoder)
5170 if (encoder->post_disable)
5171 encoder->post_disable(encoder);
5174 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5176 struct drm_device *dev = crtc->base.dev;
5177 struct drm_i915_private *dev_priv = dev->dev_private;
5178 struct intel_crtc_state *pipe_config = crtc->config;
5180 if (!pipe_config->gmch_pfit.control)
5181 return;
5184 * The panel fitter should only be adjusted whilst the pipe is disabled,
5185 * according to register description and PRM.
5187 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5188 assert_pipe_disabled(dev_priv, crtc->pipe);
5190 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5191 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5193 /* Border color in case we don't scale up to the full screen. Black by
5194 * default, change to something else for debugging. */
5195 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5198 static enum intel_display_power_domain port_to_power_domain(enum port port)
5200 switch (port) {
5201 case PORT_A:
5202 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5203 case PORT_B:
5204 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5205 case PORT_C:
5206 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5207 case PORT_D:
5208 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5209 case PORT_E:
5210 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5211 default:
5212 MISSING_CASE(port);
5213 return POWER_DOMAIN_PORT_OTHER;
5217 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5219 switch (port) {
5220 case PORT_A:
5221 return POWER_DOMAIN_AUX_A;
5222 case PORT_B:
5223 return POWER_DOMAIN_AUX_B;
5224 case PORT_C:
5225 return POWER_DOMAIN_AUX_C;
5226 case PORT_D:
5227 return POWER_DOMAIN_AUX_D;
5228 case PORT_E:
5229 /* FIXME: Check VBT for actual wiring of PORT E */
5230 return POWER_DOMAIN_AUX_D;
5231 default:
5232 MISSING_CASE(port);
5233 return POWER_DOMAIN_AUX_A;
5237 #define for_each_power_domain(domain, mask) \
5238 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5239 if ((1 << (domain)) & (mask))
5241 enum intel_display_power_domain
5242 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5244 struct drm_device *dev = intel_encoder->base.dev;
5245 struct intel_digital_port *intel_dig_port;
5247 switch (intel_encoder->type) {
5248 case INTEL_OUTPUT_UNKNOWN:
5249 /* Only DDI platforms should ever use this output type */
5250 WARN_ON_ONCE(!HAS_DDI(dev));
5251 case INTEL_OUTPUT_DISPLAYPORT:
5252 case INTEL_OUTPUT_HDMI:
5253 case INTEL_OUTPUT_EDP:
5254 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5255 return port_to_power_domain(intel_dig_port->port);
5256 case INTEL_OUTPUT_DP_MST:
5257 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5258 return port_to_power_domain(intel_dig_port->port);
5259 case INTEL_OUTPUT_ANALOG:
5260 return POWER_DOMAIN_PORT_CRT;
5261 case INTEL_OUTPUT_DSI:
5262 return POWER_DOMAIN_PORT_DSI;
5263 default:
5264 return POWER_DOMAIN_PORT_OTHER;
5268 enum intel_display_power_domain
5269 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5271 struct drm_device *dev = intel_encoder->base.dev;
5272 struct intel_digital_port *intel_dig_port;
5274 switch (intel_encoder->type) {
5275 case INTEL_OUTPUT_UNKNOWN:
5276 case INTEL_OUTPUT_HDMI:
5278 * Only DDI platforms should ever use these output types.
5279 * We can get here after the HDMI detect code has already set
5280 * the type of the shared encoder. Since we can't be sure
5281 * what's the status of the given connectors, play safe and
5282 * run the DP detection too.
5284 WARN_ON_ONCE(!HAS_DDI(dev));
5285 case INTEL_OUTPUT_DISPLAYPORT:
5286 case INTEL_OUTPUT_EDP:
5287 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5288 return port_to_aux_power_domain(intel_dig_port->port);
5289 case INTEL_OUTPUT_DP_MST:
5290 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5291 return port_to_aux_power_domain(intel_dig_port->port);
5292 default:
5293 MISSING_CASE(intel_encoder->type);
5294 return POWER_DOMAIN_AUX_A;
5298 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5300 struct drm_device *dev = crtc->dev;
5301 struct intel_encoder *intel_encoder;
5302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5303 enum pipe pipe = intel_crtc->pipe;
5304 unsigned long mask;
5305 enum transcoder transcoder;
5307 if (!crtc->state->active)
5308 return 0;
5310 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5312 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5313 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5314 if (intel_crtc->config->pch_pfit.enabled ||
5315 intel_crtc->config->pch_pfit.force_thru)
5316 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5318 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5319 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5321 return mask;
5324 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5326 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5327 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5328 enum intel_display_power_domain domain;
5329 unsigned long domains, new_domains, old_domains;
5331 old_domains = intel_crtc->enabled_power_domains;
5332 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5334 domains = new_domains & ~old_domains;
5336 for_each_power_domain(domain, domains)
5337 intel_display_power_get(dev_priv, domain);
5339 return old_domains & ~new_domains;
5342 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5343 unsigned long domains)
5345 enum intel_display_power_domain domain;
5347 for_each_power_domain(domain, domains)
5348 intel_display_power_put(dev_priv, domain);
5351 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5353 struct drm_device *dev = state->dev;
5354 struct drm_i915_private *dev_priv = dev->dev_private;
5355 unsigned long put_domains[I915_MAX_PIPES] = {};
5356 struct drm_crtc_state *crtc_state;
5357 struct drm_crtc *crtc;
5358 int i;
5360 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5361 if (needs_modeset(crtc->state))
5362 put_domains[to_intel_crtc(crtc)->pipe] =
5363 modeset_get_crtc_power_domains(crtc);
5366 if (dev_priv->display.modeset_commit_cdclk) {
5367 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5369 if (cdclk != dev_priv->cdclk_freq &&
5370 !WARN_ON(!state->allow_modeset))
5371 dev_priv->display.modeset_commit_cdclk(state);
5374 for (i = 0; i < I915_MAX_PIPES; i++)
5375 if (put_domains[i])
5376 modeset_put_power_domains(dev_priv, put_domains[i]);
5379 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5381 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5383 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5384 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5385 return max_cdclk_freq;
5386 else if (IS_CHERRYVIEW(dev_priv))
5387 return max_cdclk_freq*95/100;
5388 else if (INTEL_INFO(dev_priv)->gen < 4)
5389 return 2*max_cdclk_freq*90/100;
5390 else
5391 return max_cdclk_freq*90/100;
5394 static void intel_update_max_cdclk(struct drm_device *dev)
5396 struct drm_i915_private *dev_priv = dev->dev_private;
5398 if (IS_SKYLAKE(dev)) {
5399 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5401 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5402 dev_priv->max_cdclk_freq = 675000;
5403 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5404 dev_priv->max_cdclk_freq = 540000;
5405 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5406 dev_priv->max_cdclk_freq = 450000;
5407 else
5408 dev_priv->max_cdclk_freq = 337500;
5409 } else if (IS_BROADWELL(dev)) {
5411 * FIXME with extra cooling we can allow
5412 * 540 MHz for ULX and 675 Mhz for ULT.
5413 * How can we know if extra cooling is
5414 * available? PCI ID, VTB, something else?
5416 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5417 dev_priv->max_cdclk_freq = 450000;
5418 else if (IS_BDW_ULX(dev))
5419 dev_priv->max_cdclk_freq = 450000;
5420 else if (IS_BDW_ULT(dev))
5421 dev_priv->max_cdclk_freq = 540000;
5422 else
5423 dev_priv->max_cdclk_freq = 675000;
5424 } else if (IS_CHERRYVIEW(dev)) {
5425 dev_priv->max_cdclk_freq = 320000;
5426 } else if (IS_VALLEYVIEW(dev)) {
5427 dev_priv->max_cdclk_freq = 400000;
5428 } else {
5429 /* otherwise assume cdclk is fixed */
5430 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5433 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5435 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5436 dev_priv->max_cdclk_freq);
5438 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5439 dev_priv->max_dotclk_freq);
5442 static void intel_update_cdclk(struct drm_device *dev)
5444 struct drm_i915_private *dev_priv = dev->dev_private;
5446 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5447 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5448 dev_priv->cdclk_freq);
5451 * Program the gmbus_freq based on the cdclk frequency.
5452 * BSpec erroneously claims we should aim for 4MHz, but
5453 * in fact 1MHz is the correct frequency.
5455 if (IS_VALLEYVIEW(dev)) {
5457 * Program the gmbus_freq based on the cdclk frequency.
5458 * BSpec erroneously claims we should aim for 4MHz, but
5459 * in fact 1MHz is the correct frequency.
5461 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5464 if (dev_priv->max_cdclk_freq == 0)
5465 intel_update_max_cdclk(dev);
5468 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5470 struct drm_i915_private *dev_priv = dev->dev_private;
5471 uint32_t divider;
5472 uint32_t ratio;
5473 uint32_t current_freq;
5474 int ret;
5476 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5477 switch (frequency) {
5478 case 144000:
5479 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5480 ratio = BXT_DE_PLL_RATIO(60);
5481 break;
5482 case 288000:
5483 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5484 ratio = BXT_DE_PLL_RATIO(60);
5485 break;
5486 case 384000:
5487 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5488 ratio = BXT_DE_PLL_RATIO(60);
5489 break;
5490 case 576000:
5491 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5492 ratio = BXT_DE_PLL_RATIO(60);
5493 break;
5494 case 624000:
5495 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5496 ratio = BXT_DE_PLL_RATIO(65);
5497 break;
5498 case 19200:
5500 * Bypass frequency with DE PLL disabled. Init ratio, divider
5501 * to suppress GCC warning.
5503 ratio = 0;
5504 divider = 0;
5505 break;
5506 default:
5507 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5509 return;
5512 mutex_lock(&dev_priv->rps.hw_lock);
5513 /* Inform power controller of upcoming frequency change */
5514 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5515 0x80000000);
5516 mutex_unlock(&dev_priv->rps.hw_lock);
5518 if (ret) {
5519 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5520 ret, frequency);
5521 return;
5524 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5525 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5526 current_freq = current_freq * 500 + 1000;
5529 * DE PLL has to be disabled when
5530 * - setting to 19.2MHz (bypass, PLL isn't used)
5531 * - before setting to 624MHz (PLL needs toggling)
5532 * - before setting to any frequency from 624MHz (PLL needs toggling)
5534 if (frequency == 19200 || frequency == 624000 ||
5535 current_freq == 624000) {
5536 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5537 /* Timeout 200us */
5538 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5540 DRM_ERROR("timout waiting for DE PLL unlock\n");
5543 if (frequency != 19200) {
5544 uint32_t val;
5546 val = I915_READ(BXT_DE_PLL_CTL);
5547 val &= ~BXT_DE_PLL_RATIO_MASK;
5548 val |= ratio;
5549 I915_WRITE(BXT_DE_PLL_CTL, val);
5551 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5552 /* Timeout 200us */
5553 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5554 DRM_ERROR("timeout waiting for DE PLL lock\n");
5556 val = I915_READ(CDCLK_CTL);
5557 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5558 val |= divider;
5560 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5561 * enable otherwise.
5563 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5564 if (frequency >= 500000)
5565 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5567 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5568 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5569 val |= (frequency - 1000) / 500;
5570 I915_WRITE(CDCLK_CTL, val);
5573 mutex_lock(&dev_priv->rps.hw_lock);
5574 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5575 DIV_ROUND_UP(frequency, 25000));
5576 mutex_unlock(&dev_priv->rps.hw_lock);
5578 if (ret) {
5579 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5580 ret, frequency);
5581 return;
5584 intel_update_cdclk(dev);
5587 void broxton_init_cdclk(struct drm_device *dev)
5589 struct drm_i915_private *dev_priv = dev->dev_private;
5590 uint32_t val;
5593 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5594 * or else the reset will hang because there is no PCH to respond.
5595 * Move the handshake programming to initialization sequence.
5596 * Previously was left up to BIOS.
5598 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5599 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5600 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5602 /* Enable PG1 for cdclk */
5603 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5605 /* check if cd clock is enabled */
5606 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5607 DRM_DEBUG_KMS("Display already initialized\n");
5608 return;
5612 * FIXME:
5613 * - The initial CDCLK needs to be read from VBT.
5614 * Need to make this change after VBT has changes for BXT.
5615 * - check if setting the max (or any) cdclk freq is really necessary
5616 * here, it belongs to modeset time
5618 broxton_set_cdclk(dev, 624000);
5620 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5621 POSTING_READ(DBUF_CTL);
5623 udelay(10);
5625 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5626 DRM_ERROR("DBuf power enable timeout!\n");
5629 void broxton_uninit_cdclk(struct drm_device *dev)
5631 struct drm_i915_private *dev_priv = dev->dev_private;
5633 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5634 POSTING_READ(DBUF_CTL);
5636 udelay(10);
5638 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5639 DRM_ERROR("DBuf power disable timeout!\n");
5641 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5642 broxton_set_cdclk(dev, 19200);
5644 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5647 static const struct skl_cdclk_entry {
5648 unsigned int freq;
5649 unsigned int vco;
5650 } skl_cdclk_frequencies[] = {
5651 { .freq = 308570, .vco = 8640 },
5652 { .freq = 337500, .vco = 8100 },
5653 { .freq = 432000, .vco = 8640 },
5654 { .freq = 450000, .vco = 8100 },
5655 { .freq = 540000, .vco = 8100 },
5656 { .freq = 617140, .vco = 8640 },
5657 { .freq = 675000, .vco = 8100 },
5660 static unsigned int skl_cdclk_decimal(unsigned int freq)
5662 return (freq - 1000) / 500;
5665 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5667 unsigned int i;
5669 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5670 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5672 if (e->freq == freq)
5673 return e->vco;
5676 return 8100;
5679 static void
5680 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5682 unsigned int min_freq;
5683 u32 val;
5685 /* select the minimum CDCLK before enabling DPLL 0 */
5686 val = I915_READ(CDCLK_CTL);
5687 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5688 val |= CDCLK_FREQ_337_308;
5690 if (required_vco == 8640)
5691 min_freq = 308570;
5692 else
5693 min_freq = 337500;
5695 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5697 I915_WRITE(CDCLK_CTL, val);
5698 POSTING_READ(CDCLK_CTL);
5701 * We always enable DPLL0 with the lowest link rate possible, but still
5702 * taking into account the VCO required to operate the eDP panel at the
5703 * desired frequency. The usual DP link rates operate with a VCO of
5704 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5705 * The modeset code is responsible for the selection of the exact link
5706 * rate later on, with the constraint of choosing a frequency that
5707 * works with required_vco.
5709 val = I915_READ(DPLL_CTRL1);
5711 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5712 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5713 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5714 if (required_vco == 8640)
5715 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5716 SKL_DPLL0);
5717 else
5718 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5719 SKL_DPLL0);
5721 I915_WRITE(DPLL_CTRL1, val);
5722 POSTING_READ(DPLL_CTRL1);
5724 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5726 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5727 DRM_ERROR("DPLL0 not locked\n");
5730 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5732 int ret;
5733 u32 val;
5735 /* inform PCU we want to change CDCLK */
5736 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5737 mutex_lock(&dev_priv->rps.hw_lock);
5738 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5739 mutex_unlock(&dev_priv->rps.hw_lock);
5741 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5744 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5746 unsigned int i;
5748 for (i = 0; i < 15; i++) {
5749 if (skl_cdclk_pcu_ready(dev_priv))
5750 return true;
5751 udelay(10);
5754 return false;
5757 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5759 struct drm_device *dev = dev_priv->dev;
5760 u32 freq_select, pcu_ack;
5762 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5764 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5765 DRM_ERROR("failed to inform PCU about cdclk change\n");
5766 return;
5769 /* set CDCLK_CTL */
5770 switch(freq) {
5771 case 450000:
5772 case 432000:
5773 freq_select = CDCLK_FREQ_450_432;
5774 pcu_ack = 1;
5775 break;
5776 case 540000:
5777 freq_select = CDCLK_FREQ_540;
5778 pcu_ack = 2;
5779 break;
5780 case 308570:
5781 case 337500:
5782 default:
5783 freq_select = CDCLK_FREQ_337_308;
5784 pcu_ack = 0;
5785 break;
5786 case 617140:
5787 case 675000:
5788 freq_select = CDCLK_FREQ_675_617;
5789 pcu_ack = 3;
5790 break;
5793 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5794 POSTING_READ(CDCLK_CTL);
5796 /* inform PCU of the change */
5797 mutex_lock(&dev_priv->rps.hw_lock);
5798 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5799 mutex_unlock(&dev_priv->rps.hw_lock);
5801 intel_update_cdclk(dev);
5804 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5806 /* disable DBUF power */
5807 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5808 POSTING_READ(DBUF_CTL);
5810 udelay(10);
5812 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5813 DRM_ERROR("DBuf power disable timeout\n");
5816 * DMC assumes ownership of LCPLL and will get confused if we touch it.
5818 if (dev_priv->csr.dmc_payload) {
5819 /* disable DPLL0 */
5820 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5821 ~LCPLL_PLL_ENABLE);
5822 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5823 DRM_ERROR("Couldn't disable DPLL0\n");
5826 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5829 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5831 u32 val;
5832 unsigned int required_vco;
5834 /* enable PCH reset handshake */
5835 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5836 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5838 /* enable PG1 and Misc I/O */
5839 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5841 /* DPLL0 not enabled (happens on early BIOS versions) */
5842 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5843 /* enable DPLL0 */
5844 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5845 skl_dpll0_enable(dev_priv, required_vco);
5848 /* set CDCLK to the frequency the BIOS chose */
5849 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5851 /* enable DBUF power */
5852 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5853 POSTING_READ(DBUF_CTL);
5855 udelay(10);
5857 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5858 DRM_ERROR("DBuf power enable timeout\n");
5861 /* Adjust CDclk dividers to allow high res or save power if possible */
5862 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5864 struct drm_i915_private *dev_priv = dev->dev_private;
5865 u32 val, cmd;
5867 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5868 != dev_priv->cdclk_freq);
5870 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5871 cmd = 2;
5872 else if (cdclk == 266667)
5873 cmd = 1;
5874 else
5875 cmd = 0;
5877 mutex_lock(&dev_priv->rps.hw_lock);
5878 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5879 val &= ~DSPFREQGUAR_MASK;
5880 val |= (cmd << DSPFREQGUAR_SHIFT);
5881 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5882 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5883 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5884 50)) {
5885 DRM_ERROR("timed out waiting for CDclk change\n");
5887 mutex_unlock(&dev_priv->rps.hw_lock);
5889 mutex_lock(&dev_priv->sb_lock);
5891 if (cdclk == 400000) {
5892 u32 divider;
5894 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5896 /* adjust cdclk divider */
5897 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5898 val &= ~CCK_FREQUENCY_VALUES;
5899 val |= divider;
5900 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5902 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5903 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5904 50))
5905 DRM_ERROR("timed out waiting for CDclk change\n");
5908 /* adjust self-refresh exit latency value */
5909 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5910 val &= ~0x7f;
5913 * For high bandwidth configs, we set a higher latency in the bunit
5914 * so that the core display fetch happens in time to avoid underruns.
5916 if (cdclk == 400000)
5917 val |= 4500 / 250; /* 4.5 usec */
5918 else
5919 val |= 3000 / 250; /* 3.0 usec */
5920 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5922 mutex_unlock(&dev_priv->sb_lock);
5924 intel_update_cdclk(dev);
5927 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5929 struct drm_i915_private *dev_priv = dev->dev_private;
5930 u32 val, cmd;
5932 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5933 != dev_priv->cdclk_freq);
5935 switch (cdclk) {
5936 case 333333:
5937 case 320000:
5938 case 266667:
5939 case 200000:
5940 break;
5941 default:
5942 MISSING_CASE(cdclk);
5943 return;
5947 * Specs are full of misinformation, but testing on actual
5948 * hardware has shown that we just need to write the desired
5949 * CCK divider into the Punit register.
5951 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5953 mutex_lock(&dev_priv->rps.hw_lock);
5954 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5955 val &= ~DSPFREQGUAR_MASK_CHV;
5956 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5957 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5958 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5959 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5960 50)) {
5961 DRM_ERROR("timed out waiting for CDclk change\n");
5963 mutex_unlock(&dev_priv->rps.hw_lock);
5965 intel_update_cdclk(dev);
5968 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5969 int max_pixclk)
5971 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5972 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5975 * Really only a few cases to deal with, as only 4 CDclks are supported:
5976 * 200MHz
5977 * 267MHz
5978 * 320/333MHz (depends on HPLL freq)
5979 * 400MHz (VLV only)
5980 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5981 * of the lower bin and adjust if needed.
5983 * We seem to get an unstable or solid color picture at 200MHz.
5984 * Not sure what's wrong. For now use 200MHz only when all pipes
5985 * are off.
5987 if (!IS_CHERRYVIEW(dev_priv) &&
5988 max_pixclk > freq_320*limit/100)
5989 return 400000;
5990 else if (max_pixclk > 266667*limit/100)
5991 return freq_320;
5992 else if (max_pixclk > 0)
5993 return 266667;
5994 else
5995 return 200000;
5998 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5999 int max_pixclk)
6002 * FIXME:
6003 * - remove the guardband, it's not needed on BXT
6004 * - set 19.2MHz bypass frequency if there are no active pipes
6006 if (max_pixclk > 576000*9/10)
6007 return 624000;
6008 else if (max_pixclk > 384000*9/10)
6009 return 576000;
6010 else if (max_pixclk > 288000*9/10)
6011 return 384000;
6012 else if (max_pixclk > 144000*9/10)
6013 return 288000;
6014 else
6015 return 144000;
6018 /* Compute the max pixel clock for new configuration. Uses atomic state if
6019 * that's non-NULL, look at current state otherwise. */
6020 static int intel_mode_max_pixclk(struct drm_device *dev,
6021 struct drm_atomic_state *state)
6023 struct intel_crtc *intel_crtc;
6024 struct intel_crtc_state *crtc_state;
6025 int max_pixclk = 0;
6027 for_each_intel_crtc(dev, intel_crtc) {
6028 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6029 if (IS_ERR(crtc_state))
6030 return PTR_ERR(crtc_state);
6032 if (!crtc_state->base.enable)
6033 continue;
6035 max_pixclk = max(max_pixclk,
6036 crtc_state->base.adjusted_mode.crtc_clock);
6039 return max_pixclk;
6042 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6044 struct drm_device *dev = state->dev;
6045 struct drm_i915_private *dev_priv = dev->dev_private;
6046 int max_pixclk = intel_mode_max_pixclk(dev, state);
6048 if (max_pixclk < 0)
6049 return max_pixclk;
6051 to_intel_atomic_state(state)->cdclk =
6052 valleyview_calc_cdclk(dev_priv, max_pixclk);
6054 return 0;
6057 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6059 struct drm_device *dev = state->dev;
6060 struct drm_i915_private *dev_priv = dev->dev_private;
6061 int max_pixclk = intel_mode_max_pixclk(dev, state);
6063 if (max_pixclk < 0)
6064 return max_pixclk;
6066 to_intel_atomic_state(state)->cdclk =
6067 broxton_calc_cdclk(dev_priv, max_pixclk);
6069 return 0;
6072 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6074 unsigned int credits, default_credits;
6076 if (IS_CHERRYVIEW(dev_priv))
6077 default_credits = PFI_CREDIT(12);
6078 else
6079 default_credits = PFI_CREDIT(8);
6081 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6082 /* CHV suggested value is 31 or 63 */
6083 if (IS_CHERRYVIEW(dev_priv))
6084 credits = PFI_CREDIT_63;
6085 else
6086 credits = PFI_CREDIT(15);
6087 } else {
6088 credits = default_credits;
6092 * WA - write default credits before re-programming
6093 * FIXME: should we also set the resend bit here?
6095 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6096 default_credits);
6098 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6099 credits | PFI_CREDIT_RESEND);
6102 * FIXME is this guaranteed to clear
6103 * immediately or should we poll for it?
6105 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6108 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6110 struct drm_device *dev = old_state->dev;
6111 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6112 struct drm_i915_private *dev_priv = dev->dev_private;
6115 * FIXME: We can end up here with all power domains off, yet
6116 * with a CDCLK frequency other than the minimum. To account
6117 * for this take the PIPE-A power domain, which covers the HW
6118 * blocks needed for the following programming. This can be
6119 * removed once it's guaranteed that we get here either with
6120 * the minimum CDCLK set, or the required power domains
6121 * enabled.
6123 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6125 if (IS_CHERRYVIEW(dev))
6126 cherryview_set_cdclk(dev, req_cdclk);
6127 else
6128 valleyview_set_cdclk(dev, req_cdclk);
6130 vlv_program_pfi_credits(dev_priv);
6132 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6135 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6137 struct drm_device *dev = crtc->dev;
6138 struct drm_i915_private *dev_priv = to_i915(dev);
6139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6140 struct intel_encoder *encoder;
6141 int pipe = intel_crtc->pipe;
6142 bool is_dsi;
6144 if (WARN_ON(intel_crtc->active))
6145 return;
6147 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6149 if (intel_crtc->config->has_dp_encoder)
6150 intel_dp_set_m_n(intel_crtc, M1_N1);
6152 intel_set_pipe_timings(intel_crtc);
6154 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6155 struct drm_i915_private *dev_priv = dev->dev_private;
6157 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6158 I915_WRITE(CHV_CANVAS(pipe), 0);
6161 i9xx_set_pipeconf(intel_crtc);
6163 intel_crtc->active = true;
6165 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6167 for_each_encoder_on_crtc(dev, crtc, encoder)
6168 if (encoder->pre_pll_enable)
6169 encoder->pre_pll_enable(encoder);
6171 if (!is_dsi) {
6172 if (IS_CHERRYVIEW(dev)) {
6173 chv_prepare_pll(intel_crtc, intel_crtc->config);
6174 chv_enable_pll(intel_crtc, intel_crtc->config);
6175 } else {
6176 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6177 vlv_enable_pll(intel_crtc, intel_crtc->config);
6181 for_each_encoder_on_crtc(dev, crtc, encoder)
6182 if (encoder->pre_enable)
6183 encoder->pre_enable(encoder);
6185 i9xx_pfit_enable(intel_crtc);
6187 intel_crtc_load_lut(crtc);
6189 intel_enable_pipe(intel_crtc);
6191 assert_vblank_disabled(crtc);
6192 drm_crtc_vblank_on(crtc);
6194 for_each_encoder_on_crtc(dev, crtc, encoder)
6195 encoder->enable(encoder);
6198 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6200 struct drm_device *dev = crtc->base.dev;
6201 struct drm_i915_private *dev_priv = dev->dev_private;
6203 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6204 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6207 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6209 struct drm_device *dev = crtc->dev;
6210 struct drm_i915_private *dev_priv = to_i915(dev);
6211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6212 struct intel_encoder *encoder;
6213 int pipe = intel_crtc->pipe;
6215 if (WARN_ON(intel_crtc->active))
6216 return;
6218 i9xx_set_pll_dividers(intel_crtc);
6220 if (intel_crtc->config->has_dp_encoder)
6221 intel_dp_set_m_n(intel_crtc, M1_N1);
6223 intel_set_pipe_timings(intel_crtc);
6225 i9xx_set_pipeconf(intel_crtc);
6227 intel_crtc->active = true;
6229 if (!IS_GEN2(dev))
6230 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6232 for_each_encoder_on_crtc(dev, crtc, encoder)
6233 if (encoder->pre_enable)
6234 encoder->pre_enable(encoder);
6236 i9xx_enable_pll(intel_crtc);
6238 i9xx_pfit_enable(intel_crtc);
6240 intel_crtc_load_lut(crtc);
6242 intel_update_watermarks(crtc);
6243 intel_enable_pipe(intel_crtc);
6245 assert_vblank_disabled(crtc);
6246 drm_crtc_vblank_on(crtc);
6248 for_each_encoder_on_crtc(dev, crtc, encoder)
6249 encoder->enable(encoder);
6252 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6254 struct drm_device *dev = crtc->base.dev;
6255 struct drm_i915_private *dev_priv = dev->dev_private;
6257 if (!crtc->config->gmch_pfit.control)
6258 return;
6260 assert_pipe_disabled(dev_priv, crtc->pipe);
6262 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6263 I915_READ(PFIT_CONTROL));
6264 I915_WRITE(PFIT_CONTROL, 0);
6267 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6269 struct drm_device *dev = crtc->dev;
6270 struct drm_i915_private *dev_priv = dev->dev_private;
6271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6272 struct intel_encoder *encoder;
6273 int pipe = intel_crtc->pipe;
6276 * On gen2 planes are double buffered but the pipe isn't, so we must
6277 * wait for planes to fully turn off before disabling the pipe.
6278 * We also need to wait on all gmch platforms because of the
6279 * self-refresh mode constraint explained above.
6281 intel_wait_for_vblank(dev, pipe);
6283 for_each_encoder_on_crtc(dev, crtc, encoder)
6284 encoder->disable(encoder);
6286 drm_crtc_vblank_off(crtc);
6287 assert_vblank_disabled(crtc);
6289 intel_disable_pipe(intel_crtc);
6291 i9xx_pfit_disable(intel_crtc);
6293 for_each_encoder_on_crtc(dev, crtc, encoder)
6294 if (encoder->post_disable)
6295 encoder->post_disable(encoder);
6297 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6298 if (IS_CHERRYVIEW(dev))
6299 chv_disable_pll(dev_priv, pipe);
6300 else if (IS_VALLEYVIEW(dev))
6301 vlv_disable_pll(dev_priv, pipe);
6302 else
6303 i9xx_disable_pll(intel_crtc);
6306 for_each_encoder_on_crtc(dev, crtc, encoder)
6307 if (encoder->post_pll_disable)
6308 encoder->post_pll_disable(encoder);
6310 if (!IS_GEN2(dev))
6311 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6314 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6317 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6318 enum intel_display_power_domain domain;
6319 unsigned long domains;
6321 if (!intel_crtc->active)
6322 return;
6324 if (to_intel_plane_state(crtc->primary->state)->visible) {
6325 intel_crtc_wait_for_pending_flips(crtc);
6326 intel_pre_disable_primary(crtc);
6328 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6329 to_intel_plane_state(crtc->primary->state)->visible = false;
6332 dev_priv->display.crtc_disable(crtc);
6333 intel_crtc->active = false;
6334 intel_update_watermarks(crtc);
6335 intel_disable_shared_dpll(intel_crtc);
6337 domains = intel_crtc->enabled_power_domains;
6338 for_each_power_domain(domain, domains)
6339 intel_display_power_put(dev_priv, domain);
6340 intel_crtc->enabled_power_domains = 0;
6344 * turn all crtc's off, but do not adjust state
6345 * This has to be paired with a call to intel_modeset_setup_hw_state.
6347 int intel_display_suspend(struct drm_device *dev)
6349 struct drm_mode_config *config = &dev->mode_config;
6350 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6351 struct drm_atomic_state *state;
6352 struct drm_crtc *crtc;
6353 unsigned crtc_mask = 0;
6354 int ret = 0;
6356 if (WARN_ON(!ctx))
6357 return 0;
6359 lockdep_assert_held(&ctx->ww_ctx);
6360 state = drm_atomic_state_alloc(dev);
6361 if (WARN_ON(!state))
6362 return -ENOMEM;
6364 state->acquire_ctx = ctx;
6365 state->allow_modeset = true;
6367 for_each_crtc(dev, crtc) {
6368 struct drm_crtc_state *crtc_state =
6369 drm_atomic_get_crtc_state(state, crtc);
6371 ret = PTR_ERR_OR_ZERO(crtc_state);
6372 if (ret)
6373 goto free;
6375 if (!crtc_state->active)
6376 continue;
6378 crtc_state->active = false;
6379 crtc_mask |= 1 << drm_crtc_index(crtc);
6382 if (crtc_mask) {
6383 ret = drm_atomic_commit(state);
6385 if (!ret) {
6386 for_each_crtc(dev, crtc)
6387 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6388 crtc->state->active = true;
6390 return ret;
6394 free:
6395 if (ret)
6396 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6397 drm_atomic_state_free(state);
6398 return ret;
6401 void intel_encoder_destroy(struct drm_encoder *encoder)
6403 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6405 drm_encoder_cleanup(encoder);
6406 kfree(intel_encoder);
6409 /* Cross check the actual hw state with our own modeset state tracking (and it's
6410 * internal consistency). */
6411 static void intel_connector_check_state(struct intel_connector *connector)
6413 struct drm_crtc *crtc = connector->base.state->crtc;
6415 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6416 connector->base.base.id,
6417 connector->base.name);
6419 if (connector->get_hw_state(connector)) {
6420 struct intel_encoder *encoder = connector->encoder;
6421 struct drm_connector_state *conn_state = connector->base.state;
6423 I915_STATE_WARN(!crtc,
6424 "connector enabled without attached crtc\n");
6426 if (!crtc)
6427 return;
6429 I915_STATE_WARN(!crtc->state->active,
6430 "connector is active, but attached crtc isn't\n");
6432 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6433 return;
6435 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6436 "atomic encoder doesn't match attached encoder\n");
6438 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6439 "attached encoder crtc differs from connector crtc\n");
6440 } else {
6441 I915_STATE_WARN(crtc && crtc->state->active,
6442 "attached crtc is active, but connector isn't\n");
6443 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6444 "best encoder set without crtc!\n");
6448 int intel_connector_init(struct intel_connector *connector)
6450 struct drm_connector_state *connector_state;
6452 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6453 if (!connector_state)
6454 return -ENOMEM;
6456 connector->base.state = connector_state;
6457 return 0;
6460 struct intel_connector *intel_connector_alloc(void)
6462 struct intel_connector *connector;
6464 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6465 if (!connector)
6466 return NULL;
6468 if (intel_connector_init(connector) < 0) {
6469 kfree(connector);
6470 return NULL;
6473 return connector;
6476 /* Simple connector->get_hw_state implementation for encoders that support only
6477 * one connector and no cloning and hence the encoder state determines the state
6478 * of the connector. */
6479 bool intel_connector_get_hw_state(struct intel_connector *connector)
6481 enum pipe pipe = 0;
6482 struct intel_encoder *encoder = connector->encoder;
6484 return encoder->get_hw_state(encoder, &pipe);
6487 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6489 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6490 return crtc_state->fdi_lanes;
6492 return 0;
6495 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6496 struct intel_crtc_state *pipe_config)
6498 struct drm_atomic_state *state = pipe_config->base.state;
6499 struct intel_crtc *other_crtc;
6500 struct intel_crtc_state *other_crtc_state;
6502 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6503 pipe_name(pipe), pipe_config->fdi_lanes);
6504 if (pipe_config->fdi_lanes > 4) {
6505 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6506 pipe_name(pipe), pipe_config->fdi_lanes);
6507 return -EINVAL;
6510 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6511 if (pipe_config->fdi_lanes > 2) {
6512 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6513 pipe_config->fdi_lanes);
6514 return -EINVAL;
6515 } else {
6516 return 0;
6520 if (INTEL_INFO(dev)->num_pipes == 2)
6521 return 0;
6523 /* Ivybridge 3 pipe is really complicated */
6524 switch (pipe) {
6525 case PIPE_A:
6526 return 0;
6527 case PIPE_B:
6528 if (pipe_config->fdi_lanes <= 2)
6529 return 0;
6531 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6532 other_crtc_state =
6533 intel_atomic_get_crtc_state(state, other_crtc);
6534 if (IS_ERR(other_crtc_state))
6535 return PTR_ERR(other_crtc_state);
6537 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6538 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6539 pipe_name(pipe), pipe_config->fdi_lanes);
6540 return -EINVAL;
6542 return 0;
6543 case PIPE_C:
6544 if (pipe_config->fdi_lanes > 2) {
6545 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6546 pipe_name(pipe), pipe_config->fdi_lanes);
6547 return -EINVAL;
6550 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6551 other_crtc_state =
6552 intel_atomic_get_crtc_state(state, other_crtc);
6553 if (IS_ERR(other_crtc_state))
6554 return PTR_ERR(other_crtc_state);
6556 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6557 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6558 return -EINVAL;
6560 return 0;
6561 default:
6562 BUG();
6566 #define RETRY 1
6567 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6568 struct intel_crtc_state *pipe_config)
6570 struct drm_device *dev = intel_crtc->base.dev;
6571 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6572 int lane, link_bw, fdi_dotclock, ret;
6573 bool needs_recompute = false;
6575 retry:
6576 /* FDI is a binary signal running at ~2.7GHz, encoding
6577 * each output octet as 10 bits. The actual frequency
6578 * is stored as a divider into a 100MHz clock, and the
6579 * mode pixel clock is stored in units of 1KHz.
6580 * Hence the bw of each lane in terms of the mode signal
6581 * is:
6583 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6585 fdi_dotclock = adjusted_mode->crtc_clock;
6587 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6588 pipe_config->pipe_bpp);
6590 pipe_config->fdi_lanes = lane;
6592 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6593 link_bw, &pipe_config->fdi_m_n);
6595 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6596 intel_crtc->pipe, pipe_config);
6597 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6598 pipe_config->pipe_bpp -= 2*3;
6599 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6600 pipe_config->pipe_bpp);
6601 needs_recompute = true;
6602 pipe_config->bw_constrained = true;
6604 goto retry;
6607 if (needs_recompute)
6608 return RETRY;
6610 return ret;
6613 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6614 struct intel_crtc_state *pipe_config)
6616 if (pipe_config->pipe_bpp > 24)
6617 return false;
6619 /* HSW can handle pixel rate up to cdclk? */
6620 if (IS_HASWELL(dev_priv->dev))
6621 return true;
6624 * We compare against max which means we must take
6625 * the increased cdclk requirement into account when
6626 * calculating the new cdclk.
6628 * Should measure whether using a lower cdclk w/o IPS
6630 return ilk_pipe_pixel_rate(pipe_config) <=
6631 dev_priv->max_cdclk_freq * 95 / 100;
6634 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6635 struct intel_crtc_state *pipe_config)
6637 struct drm_device *dev = crtc->base.dev;
6638 struct drm_i915_private *dev_priv = dev->dev_private;
6640 pipe_config->ips_enabled = i915.enable_ips &&
6641 hsw_crtc_supports_ips(crtc) &&
6642 pipe_config_supports_ips(dev_priv, pipe_config);
6645 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6646 struct intel_crtc_state *pipe_config)
6648 struct drm_device *dev = crtc->base.dev;
6649 struct drm_i915_private *dev_priv = dev->dev_private;
6650 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6652 /* FIXME should check pixel clock limits on all platforms */
6653 if (INTEL_INFO(dev)->gen < 4) {
6654 int clock_limit = dev_priv->max_cdclk_freq;
6657 * Enable pixel doubling when the dot clock
6658 * is > 90% of the (display) core speed.
6660 * GDG double wide on either pipe,
6661 * otherwise pipe A only.
6663 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6664 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6665 clock_limit *= 2;
6666 pipe_config->double_wide = true;
6669 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6670 return -EINVAL;
6674 * Pipe horizontal size must be even in:
6675 * - DVO ganged mode
6676 * - LVDS dual channel mode
6677 * - Double wide pipe
6679 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6680 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6681 pipe_config->pipe_src_w &= ~1;
6683 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6684 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6686 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6687 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6688 return -EINVAL;
6690 if (HAS_IPS(dev))
6691 hsw_compute_ips_config(crtc, pipe_config);
6693 if (pipe_config->has_pch_encoder)
6694 return ironlake_fdi_compute_config(crtc, pipe_config);
6696 return 0;
6699 static int skylake_get_display_clock_speed(struct drm_device *dev)
6701 struct drm_i915_private *dev_priv = to_i915(dev);
6702 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6703 uint32_t cdctl = I915_READ(CDCLK_CTL);
6704 uint32_t linkrate;
6706 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6707 return 24000; /* 24MHz is the cd freq with NSSC ref */
6709 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6710 return 540000;
6712 linkrate = (I915_READ(DPLL_CTRL1) &
6713 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6715 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6716 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6717 /* vco 8640 */
6718 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6719 case CDCLK_FREQ_450_432:
6720 return 432000;
6721 case CDCLK_FREQ_337_308:
6722 return 308570;
6723 case CDCLK_FREQ_675_617:
6724 return 617140;
6725 default:
6726 WARN(1, "Unknown cd freq selection\n");
6728 } else {
6729 /* vco 8100 */
6730 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6731 case CDCLK_FREQ_450_432:
6732 return 450000;
6733 case CDCLK_FREQ_337_308:
6734 return 337500;
6735 case CDCLK_FREQ_675_617:
6736 return 675000;
6737 default:
6738 WARN(1, "Unknown cd freq selection\n");
6742 /* error case, do as if DPLL0 isn't enabled */
6743 return 24000;
6746 static int broxton_get_display_clock_speed(struct drm_device *dev)
6748 struct drm_i915_private *dev_priv = to_i915(dev);
6749 uint32_t cdctl = I915_READ(CDCLK_CTL);
6750 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6751 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6752 int cdclk;
6754 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6755 return 19200;
6757 cdclk = 19200 * pll_ratio / 2;
6759 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6760 case BXT_CDCLK_CD2X_DIV_SEL_1:
6761 return cdclk; /* 576MHz or 624MHz */
6762 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6763 return cdclk * 2 / 3; /* 384MHz */
6764 case BXT_CDCLK_CD2X_DIV_SEL_2:
6765 return cdclk / 2; /* 288MHz */
6766 case BXT_CDCLK_CD2X_DIV_SEL_4:
6767 return cdclk / 4; /* 144MHz */
6770 /* error case, do as if DE PLL isn't enabled */
6771 return 19200;
6774 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6776 struct drm_i915_private *dev_priv = dev->dev_private;
6777 uint32_t lcpll = I915_READ(LCPLL_CTL);
6778 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6780 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6781 return 800000;
6782 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6783 return 450000;
6784 else if (freq == LCPLL_CLK_FREQ_450)
6785 return 450000;
6786 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6787 return 540000;
6788 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6789 return 337500;
6790 else
6791 return 675000;
6794 static int haswell_get_display_clock_speed(struct drm_device *dev)
6796 struct drm_i915_private *dev_priv = dev->dev_private;
6797 uint32_t lcpll = I915_READ(LCPLL_CTL);
6798 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6800 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6801 return 800000;
6802 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6803 return 450000;
6804 else if (freq == LCPLL_CLK_FREQ_450)
6805 return 450000;
6806 else if (IS_HSW_ULT(dev))
6807 return 337500;
6808 else
6809 return 540000;
6812 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6814 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6815 CCK_DISPLAY_CLOCK_CONTROL);
6818 static int ilk_get_display_clock_speed(struct drm_device *dev)
6820 return 450000;
6823 static int i945_get_display_clock_speed(struct drm_device *dev)
6825 return 400000;
6828 static int i915_get_display_clock_speed(struct drm_device *dev)
6830 return 333333;
6833 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6835 return 200000;
6838 static int pnv_get_display_clock_speed(struct drm_device *dev)
6840 u16 gcfgc = 0;
6842 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6844 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6845 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6846 return 266667;
6847 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6848 return 333333;
6849 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6850 return 444444;
6851 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6852 return 200000;
6853 default:
6854 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6855 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6856 return 133333;
6857 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6858 return 166667;
6862 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6864 u16 gcfgc = 0;
6866 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6868 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6869 return 133333;
6870 else {
6871 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6872 case GC_DISPLAY_CLOCK_333_MHZ:
6873 return 333333;
6874 default:
6875 case GC_DISPLAY_CLOCK_190_200_MHZ:
6876 return 190000;
6881 static int i865_get_display_clock_speed(struct drm_device *dev)
6883 return 266667;
6886 static int i85x_get_display_clock_speed(struct drm_device *dev)
6888 u16 hpllcc = 0;
6891 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6892 * encoding is different :(
6893 * FIXME is this the right way to detect 852GM/852GMV?
6895 if (dev->pdev->revision == 0x1)
6896 return 133333;
6898 pci_bus_read_config_word(dev->pdev->bus,
6899 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6901 /* Assume that the hardware is in the high speed state. This
6902 * should be the default.
6904 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6905 case GC_CLOCK_133_200:
6906 case GC_CLOCK_133_200_2:
6907 case GC_CLOCK_100_200:
6908 return 200000;
6909 case GC_CLOCK_166_250:
6910 return 250000;
6911 case GC_CLOCK_100_133:
6912 return 133333;
6913 case GC_CLOCK_133_266:
6914 case GC_CLOCK_133_266_2:
6915 case GC_CLOCK_166_266:
6916 return 266667;
6919 /* Shouldn't happen */
6920 return 0;
6923 static int i830_get_display_clock_speed(struct drm_device *dev)
6925 return 133333;
6928 static unsigned int intel_hpll_vco(struct drm_device *dev)
6930 struct drm_i915_private *dev_priv = dev->dev_private;
6931 static const unsigned int blb_vco[8] = {
6932 [0] = 3200000,
6933 [1] = 4000000,
6934 [2] = 5333333,
6935 [3] = 4800000,
6936 [4] = 6400000,
6938 static const unsigned int pnv_vco[8] = {
6939 [0] = 3200000,
6940 [1] = 4000000,
6941 [2] = 5333333,
6942 [3] = 4800000,
6943 [4] = 2666667,
6945 static const unsigned int cl_vco[8] = {
6946 [0] = 3200000,
6947 [1] = 4000000,
6948 [2] = 5333333,
6949 [3] = 6400000,
6950 [4] = 3333333,
6951 [5] = 3566667,
6952 [6] = 4266667,
6954 static const unsigned int elk_vco[8] = {
6955 [0] = 3200000,
6956 [1] = 4000000,
6957 [2] = 5333333,
6958 [3] = 4800000,
6960 static const unsigned int ctg_vco[8] = {
6961 [0] = 3200000,
6962 [1] = 4000000,
6963 [2] = 5333333,
6964 [3] = 6400000,
6965 [4] = 2666667,
6966 [5] = 4266667,
6968 const unsigned int *vco_table;
6969 unsigned int vco;
6970 uint8_t tmp = 0;
6972 /* FIXME other chipsets? */
6973 if (IS_GM45(dev))
6974 vco_table = ctg_vco;
6975 else if (IS_G4X(dev))
6976 vco_table = elk_vco;
6977 else if (IS_CRESTLINE(dev))
6978 vco_table = cl_vco;
6979 else if (IS_PINEVIEW(dev))
6980 vco_table = pnv_vco;
6981 else if (IS_G33(dev))
6982 vco_table = blb_vco;
6983 else
6984 return 0;
6986 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6988 vco = vco_table[tmp & 0x7];
6989 if (vco == 0)
6990 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6991 else
6992 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6994 return vco;
6997 static int gm45_get_display_clock_speed(struct drm_device *dev)
6999 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7000 uint16_t tmp = 0;
7002 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7004 cdclk_sel = (tmp >> 12) & 0x1;
7006 switch (vco) {
7007 case 2666667:
7008 case 4000000:
7009 case 5333333:
7010 return cdclk_sel ? 333333 : 222222;
7011 case 3200000:
7012 return cdclk_sel ? 320000 : 228571;
7013 default:
7014 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7015 return 222222;
7019 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7021 static const uint8_t div_3200[] = { 16, 10, 8 };
7022 static const uint8_t div_4000[] = { 20, 12, 10 };
7023 static const uint8_t div_5333[] = { 24, 16, 14 };
7024 const uint8_t *div_table;
7025 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7026 uint16_t tmp = 0;
7028 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7030 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7032 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7033 goto fail;
7035 switch (vco) {
7036 case 3200000:
7037 div_table = div_3200;
7038 break;
7039 case 4000000:
7040 div_table = div_4000;
7041 break;
7042 case 5333333:
7043 div_table = div_5333;
7044 break;
7045 default:
7046 goto fail;
7049 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7051 fail:
7052 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7053 return 200000;
7056 static int g33_get_display_clock_speed(struct drm_device *dev)
7058 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7059 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7060 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7061 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7062 const uint8_t *div_table;
7063 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7064 uint16_t tmp = 0;
7066 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7068 cdclk_sel = (tmp >> 4) & 0x7;
7070 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7071 goto fail;
7073 switch (vco) {
7074 case 3200000:
7075 div_table = div_3200;
7076 break;
7077 case 4000000:
7078 div_table = div_4000;
7079 break;
7080 case 4800000:
7081 div_table = div_4800;
7082 break;
7083 case 5333333:
7084 div_table = div_5333;
7085 break;
7086 default:
7087 goto fail;
7090 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7092 fail:
7093 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7094 return 190476;
7097 static void
7098 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7100 while (*num > DATA_LINK_M_N_MASK ||
7101 *den > DATA_LINK_M_N_MASK) {
7102 *num >>= 1;
7103 *den >>= 1;
7107 static void compute_m_n(unsigned int m, unsigned int n,
7108 uint32_t *ret_m, uint32_t *ret_n)
7110 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7111 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7112 intel_reduce_m_n_ratio(ret_m, ret_n);
7115 void
7116 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7117 int pixel_clock, int link_clock,
7118 struct intel_link_m_n *m_n)
7120 m_n->tu = 64;
7122 compute_m_n(bits_per_pixel * pixel_clock,
7123 link_clock * nlanes * 8,
7124 &m_n->gmch_m, &m_n->gmch_n);
7126 compute_m_n(pixel_clock, link_clock,
7127 &m_n->link_m, &m_n->link_n);
7130 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7132 if (i915.panel_use_ssc >= 0)
7133 return i915.panel_use_ssc != 0;
7134 return dev_priv->vbt.lvds_use_ssc
7135 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7138 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7139 int num_connectors)
7141 struct drm_device *dev = crtc_state->base.crtc->dev;
7142 struct drm_i915_private *dev_priv = dev->dev_private;
7143 int refclk;
7145 WARN_ON(!crtc_state->base.state);
7147 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7148 refclk = 100000;
7149 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7150 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7151 refclk = dev_priv->vbt.lvds_ssc_freq;
7152 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7153 } else if (!IS_GEN2(dev)) {
7154 refclk = 96000;
7155 } else {
7156 refclk = 48000;
7159 return refclk;
7162 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7164 return (1 << dpll->n) << 16 | dpll->m2;
7167 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7169 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7172 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7173 struct intel_crtc_state *crtc_state,
7174 intel_clock_t *reduced_clock)
7176 struct drm_device *dev = crtc->base.dev;
7177 u32 fp, fp2 = 0;
7179 if (IS_PINEVIEW(dev)) {
7180 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7181 if (reduced_clock)
7182 fp2 = pnv_dpll_compute_fp(reduced_clock);
7183 } else {
7184 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7185 if (reduced_clock)
7186 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7189 crtc_state->dpll_hw_state.fp0 = fp;
7191 crtc->lowfreq_avail = false;
7192 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7193 reduced_clock) {
7194 crtc_state->dpll_hw_state.fp1 = fp2;
7195 crtc->lowfreq_avail = true;
7196 } else {
7197 crtc_state->dpll_hw_state.fp1 = fp;
7201 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7202 pipe)
7204 u32 reg_val;
7207 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7208 * and set it to a reasonable value instead.
7210 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7211 reg_val &= 0xffffff00;
7212 reg_val |= 0x00000030;
7213 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7215 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7216 reg_val &= 0x8cffffff;
7217 reg_val = 0x8c000000;
7218 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7220 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7221 reg_val &= 0xffffff00;
7222 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7224 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7225 reg_val &= 0x00ffffff;
7226 reg_val |= 0xb0000000;
7227 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7230 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7231 struct intel_link_m_n *m_n)
7233 struct drm_device *dev = crtc->base.dev;
7234 struct drm_i915_private *dev_priv = dev->dev_private;
7235 int pipe = crtc->pipe;
7237 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7238 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7239 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7240 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7243 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7244 struct intel_link_m_n *m_n,
7245 struct intel_link_m_n *m2_n2)
7247 struct drm_device *dev = crtc->base.dev;
7248 struct drm_i915_private *dev_priv = dev->dev_private;
7249 int pipe = crtc->pipe;
7250 enum transcoder transcoder = crtc->config->cpu_transcoder;
7252 if (INTEL_INFO(dev)->gen >= 5) {
7253 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7254 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7255 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7256 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7257 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7258 * for gen < 8) and if DRRS is supported (to make sure the
7259 * registers are not unnecessarily accessed).
7261 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7262 crtc->config->has_drrs) {
7263 I915_WRITE(PIPE_DATA_M2(transcoder),
7264 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7265 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7266 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7267 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7269 } else {
7270 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7271 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7272 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7273 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7277 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7279 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7281 if (m_n == M1_N1) {
7282 dp_m_n = &crtc->config->dp_m_n;
7283 dp_m2_n2 = &crtc->config->dp_m2_n2;
7284 } else if (m_n == M2_N2) {
7287 * M2_N2 registers are not supported. Hence m2_n2 divider value
7288 * needs to be programmed into M1_N1.
7290 dp_m_n = &crtc->config->dp_m2_n2;
7291 } else {
7292 DRM_ERROR("Unsupported divider value\n");
7293 return;
7296 if (crtc->config->has_pch_encoder)
7297 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7298 else
7299 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7302 static void vlv_compute_dpll(struct intel_crtc *crtc,
7303 struct intel_crtc_state *pipe_config)
7305 u32 dpll, dpll_md;
7308 * Enable DPIO clock input. We should never disable the reference
7309 * clock for pipe B, since VGA hotplug / manual detection depends
7310 * on it.
7312 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7313 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7314 /* We should never disable this, set it here for state tracking */
7315 if (crtc->pipe == PIPE_B)
7316 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7317 dpll |= DPLL_VCO_ENABLE;
7318 pipe_config->dpll_hw_state.dpll = dpll;
7320 dpll_md = (pipe_config->pixel_multiplier - 1)
7321 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7322 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7325 static void vlv_prepare_pll(struct intel_crtc *crtc,
7326 const struct intel_crtc_state *pipe_config)
7328 struct drm_device *dev = crtc->base.dev;
7329 struct drm_i915_private *dev_priv = dev->dev_private;
7330 int pipe = crtc->pipe;
7331 u32 mdiv;
7332 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7333 u32 coreclk, reg_val;
7335 mutex_lock(&dev_priv->sb_lock);
7337 bestn = pipe_config->dpll.n;
7338 bestm1 = pipe_config->dpll.m1;
7339 bestm2 = pipe_config->dpll.m2;
7340 bestp1 = pipe_config->dpll.p1;
7341 bestp2 = pipe_config->dpll.p2;
7343 /* See eDP HDMI DPIO driver vbios notes doc */
7345 /* PLL B needs special handling */
7346 if (pipe == PIPE_B)
7347 vlv_pllb_recal_opamp(dev_priv, pipe);
7349 /* Set up Tx target for periodic Rcomp update */
7350 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7352 /* Disable target IRef on PLL */
7353 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7354 reg_val &= 0x00ffffff;
7355 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7357 /* Disable fast lock */
7358 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7360 /* Set idtafcrecal before PLL is enabled */
7361 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7362 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7363 mdiv |= ((bestn << DPIO_N_SHIFT));
7364 mdiv |= (1 << DPIO_K_SHIFT);
7367 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7368 * but we don't support that).
7369 * Note: don't use the DAC post divider as it seems unstable.
7371 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7372 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7374 mdiv |= DPIO_ENABLE_CALIBRATION;
7375 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7377 /* Set HBR and RBR LPF coefficients */
7378 if (pipe_config->port_clock == 162000 ||
7379 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7380 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7381 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7382 0x009f0003);
7383 else
7384 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7385 0x00d0000f);
7387 if (pipe_config->has_dp_encoder) {
7388 /* Use SSC source */
7389 if (pipe == PIPE_A)
7390 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7391 0x0df40000);
7392 else
7393 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7394 0x0df70000);
7395 } else { /* HDMI or VGA */
7396 /* Use bend source */
7397 if (pipe == PIPE_A)
7398 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7399 0x0df70000);
7400 else
7401 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7402 0x0df40000);
7405 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7406 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7407 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7408 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7409 coreclk |= 0x01000000;
7410 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7412 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7413 mutex_unlock(&dev_priv->sb_lock);
7416 static void chv_compute_dpll(struct intel_crtc *crtc,
7417 struct intel_crtc_state *pipe_config)
7419 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7420 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7421 DPLL_VCO_ENABLE;
7422 if (crtc->pipe != PIPE_A)
7423 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7425 pipe_config->dpll_hw_state.dpll_md =
7426 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7429 static void chv_prepare_pll(struct intel_crtc *crtc,
7430 const struct intel_crtc_state *pipe_config)
7432 struct drm_device *dev = crtc->base.dev;
7433 struct drm_i915_private *dev_priv = dev->dev_private;
7434 int pipe = crtc->pipe;
7435 int dpll_reg = DPLL(crtc->pipe);
7436 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7437 u32 loopfilter, tribuf_calcntr;
7438 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7439 u32 dpio_val;
7440 int vco;
7442 bestn = pipe_config->dpll.n;
7443 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7444 bestm1 = pipe_config->dpll.m1;
7445 bestm2 = pipe_config->dpll.m2 >> 22;
7446 bestp1 = pipe_config->dpll.p1;
7447 bestp2 = pipe_config->dpll.p2;
7448 vco = pipe_config->dpll.vco;
7449 dpio_val = 0;
7450 loopfilter = 0;
7453 * Enable Refclk and SSC
7455 I915_WRITE(dpll_reg,
7456 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7458 mutex_lock(&dev_priv->sb_lock);
7460 /* p1 and p2 divider */
7461 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7462 5 << DPIO_CHV_S1_DIV_SHIFT |
7463 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7464 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7465 1 << DPIO_CHV_K_DIV_SHIFT);
7467 /* Feedback post-divider - m2 */
7468 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7470 /* Feedback refclk divider - n and m1 */
7471 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7472 DPIO_CHV_M1_DIV_BY_2 |
7473 1 << DPIO_CHV_N_DIV_SHIFT);
7475 /* M2 fraction division */
7476 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7478 /* M2 fraction division enable */
7479 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7480 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7481 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7482 if (bestm2_frac)
7483 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7484 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7486 /* Program digital lock detect threshold */
7487 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7488 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7489 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7490 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7491 if (!bestm2_frac)
7492 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7493 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7495 /* Loop filter */
7496 if (vco == 5400000) {
7497 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7498 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7499 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7500 tribuf_calcntr = 0x9;
7501 } else if (vco <= 6200000) {
7502 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7503 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7504 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7505 tribuf_calcntr = 0x9;
7506 } else if (vco <= 6480000) {
7507 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7508 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7509 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7510 tribuf_calcntr = 0x8;
7511 } else {
7512 /* Not supported. Apply the same limits as in the max case */
7513 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7514 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7515 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7516 tribuf_calcntr = 0;
7518 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7520 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7521 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7522 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7523 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7525 /* AFC Recal */
7526 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7527 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7528 DPIO_AFC_RECAL);
7530 mutex_unlock(&dev_priv->sb_lock);
7534 * vlv_force_pll_on - forcibly enable just the PLL
7535 * @dev_priv: i915 private structure
7536 * @pipe: pipe PLL to enable
7537 * @dpll: PLL configuration
7539 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7540 * in cases where we need the PLL enabled even when @pipe is not going to
7541 * be enabled.
7543 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7544 const struct dpll *dpll)
7546 struct intel_crtc *crtc =
7547 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7548 struct intel_crtc_state pipe_config = {
7549 .base.crtc = &crtc->base,
7550 .pixel_multiplier = 1,
7551 .dpll = *dpll,
7554 if (IS_CHERRYVIEW(dev)) {
7555 chv_compute_dpll(crtc, &pipe_config);
7556 chv_prepare_pll(crtc, &pipe_config);
7557 chv_enable_pll(crtc, &pipe_config);
7558 } else {
7559 vlv_compute_dpll(crtc, &pipe_config);
7560 vlv_prepare_pll(crtc, &pipe_config);
7561 vlv_enable_pll(crtc, &pipe_config);
7566 * vlv_force_pll_off - forcibly disable just the PLL
7567 * @dev_priv: i915 private structure
7568 * @pipe: pipe PLL to disable
7570 * Disable the PLL for @pipe. To be used in cases where we need
7571 * the PLL enabled even when @pipe is not going to be enabled.
7573 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7575 if (IS_CHERRYVIEW(dev))
7576 chv_disable_pll(to_i915(dev), pipe);
7577 else
7578 vlv_disable_pll(to_i915(dev), pipe);
7581 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7582 struct intel_crtc_state *crtc_state,
7583 intel_clock_t *reduced_clock,
7584 int num_connectors)
7586 struct drm_device *dev = crtc->base.dev;
7587 struct drm_i915_private *dev_priv = dev->dev_private;
7588 u32 dpll;
7589 bool is_sdvo;
7590 struct dpll *clock = &crtc_state->dpll;
7592 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7594 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7595 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7597 dpll = DPLL_VGA_MODE_DIS;
7599 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7600 dpll |= DPLLB_MODE_LVDS;
7601 else
7602 dpll |= DPLLB_MODE_DAC_SERIAL;
7604 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7605 dpll |= (crtc_state->pixel_multiplier - 1)
7606 << SDVO_MULTIPLIER_SHIFT_HIRES;
7609 if (is_sdvo)
7610 dpll |= DPLL_SDVO_HIGH_SPEED;
7612 if (crtc_state->has_dp_encoder)
7613 dpll |= DPLL_SDVO_HIGH_SPEED;
7615 /* compute bitmask from p1 value */
7616 if (IS_PINEVIEW(dev))
7617 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7618 else {
7619 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7620 if (IS_G4X(dev) && reduced_clock)
7621 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7623 switch (clock->p2) {
7624 case 5:
7625 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7626 break;
7627 case 7:
7628 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7629 break;
7630 case 10:
7631 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7632 break;
7633 case 14:
7634 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7635 break;
7637 if (INTEL_INFO(dev)->gen >= 4)
7638 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7640 if (crtc_state->sdvo_tv_clock)
7641 dpll |= PLL_REF_INPUT_TVCLKINBC;
7642 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7643 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7644 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7645 else
7646 dpll |= PLL_REF_INPUT_DREFCLK;
7648 dpll |= DPLL_VCO_ENABLE;
7649 crtc_state->dpll_hw_state.dpll = dpll;
7651 if (INTEL_INFO(dev)->gen >= 4) {
7652 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7653 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7654 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7658 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7659 struct intel_crtc_state *crtc_state,
7660 intel_clock_t *reduced_clock,
7661 int num_connectors)
7663 struct drm_device *dev = crtc->base.dev;
7664 struct drm_i915_private *dev_priv = dev->dev_private;
7665 u32 dpll;
7666 struct dpll *clock = &crtc_state->dpll;
7668 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7670 dpll = DPLL_VGA_MODE_DIS;
7672 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7673 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7674 } else {
7675 if (clock->p1 == 2)
7676 dpll |= PLL_P1_DIVIDE_BY_TWO;
7677 else
7678 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7679 if (clock->p2 == 4)
7680 dpll |= PLL_P2_DIVIDE_BY_4;
7683 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7684 dpll |= DPLL_DVO_2X_MODE;
7686 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7687 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7688 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7689 else
7690 dpll |= PLL_REF_INPUT_DREFCLK;
7692 dpll |= DPLL_VCO_ENABLE;
7693 crtc_state->dpll_hw_state.dpll = dpll;
7696 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7698 struct drm_device *dev = intel_crtc->base.dev;
7699 struct drm_i915_private *dev_priv = dev->dev_private;
7700 enum pipe pipe = intel_crtc->pipe;
7701 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7702 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7703 uint32_t crtc_vtotal, crtc_vblank_end;
7704 int vsyncshift = 0;
7706 /* We need to be careful not to changed the adjusted mode, for otherwise
7707 * the hw state checker will get angry at the mismatch. */
7708 crtc_vtotal = adjusted_mode->crtc_vtotal;
7709 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7711 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7712 /* the chip adds 2 halflines automatically */
7713 crtc_vtotal -= 1;
7714 crtc_vblank_end -= 1;
7716 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7717 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7718 else
7719 vsyncshift = adjusted_mode->crtc_hsync_start -
7720 adjusted_mode->crtc_htotal / 2;
7721 if (vsyncshift < 0)
7722 vsyncshift += adjusted_mode->crtc_htotal;
7725 if (INTEL_INFO(dev)->gen > 3)
7726 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7728 I915_WRITE(HTOTAL(cpu_transcoder),
7729 (adjusted_mode->crtc_hdisplay - 1) |
7730 ((adjusted_mode->crtc_htotal - 1) << 16));
7731 I915_WRITE(HBLANK(cpu_transcoder),
7732 (adjusted_mode->crtc_hblank_start - 1) |
7733 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7734 I915_WRITE(HSYNC(cpu_transcoder),
7735 (adjusted_mode->crtc_hsync_start - 1) |
7736 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7738 I915_WRITE(VTOTAL(cpu_transcoder),
7739 (adjusted_mode->crtc_vdisplay - 1) |
7740 ((crtc_vtotal - 1) << 16));
7741 I915_WRITE(VBLANK(cpu_transcoder),
7742 (adjusted_mode->crtc_vblank_start - 1) |
7743 ((crtc_vblank_end - 1) << 16));
7744 I915_WRITE(VSYNC(cpu_transcoder),
7745 (adjusted_mode->crtc_vsync_start - 1) |
7746 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7748 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7749 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7750 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7751 * bits. */
7752 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7753 (pipe == PIPE_B || pipe == PIPE_C))
7754 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7756 /* pipesrc controls the size that is scaled from, which should
7757 * always be the user's requested size.
7759 I915_WRITE(PIPESRC(pipe),
7760 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7761 (intel_crtc->config->pipe_src_h - 1));
7764 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7765 struct intel_crtc_state *pipe_config)
7767 struct drm_device *dev = crtc->base.dev;
7768 struct drm_i915_private *dev_priv = dev->dev_private;
7769 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7770 uint32_t tmp;
7772 tmp = I915_READ(HTOTAL(cpu_transcoder));
7773 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7774 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7775 tmp = I915_READ(HBLANK(cpu_transcoder));
7776 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7777 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7778 tmp = I915_READ(HSYNC(cpu_transcoder));
7779 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7780 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7782 tmp = I915_READ(VTOTAL(cpu_transcoder));
7783 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7784 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7785 tmp = I915_READ(VBLANK(cpu_transcoder));
7786 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7787 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7788 tmp = I915_READ(VSYNC(cpu_transcoder));
7789 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7790 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7792 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7793 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7794 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7795 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7798 tmp = I915_READ(PIPESRC(crtc->pipe));
7799 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7800 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7802 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7803 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7806 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7807 struct intel_crtc_state *pipe_config)
7809 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7810 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7811 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7812 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7814 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7815 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7816 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7817 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7819 mode->flags = pipe_config->base.adjusted_mode.flags;
7820 mode->type = DRM_MODE_TYPE_DRIVER;
7822 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7823 mode->flags |= pipe_config->base.adjusted_mode.flags;
7825 mode->hsync = drm_mode_hsync(mode);
7826 mode->vrefresh = drm_mode_vrefresh(mode);
7827 drm_mode_set_name(mode);
7830 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7832 struct drm_device *dev = intel_crtc->base.dev;
7833 struct drm_i915_private *dev_priv = dev->dev_private;
7834 uint32_t pipeconf;
7836 pipeconf = 0;
7838 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7839 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7840 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7842 if (intel_crtc->config->double_wide)
7843 pipeconf |= PIPECONF_DOUBLE_WIDE;
7845 /* only g4x and later have fancy bpc/dither controls */
7846 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7847 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7848 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7849 pipeconf |= PIPECONF_DITHER_EN |
7850 PIPECONF_DITHER_TYPE_SP;
7852 switch (intel_crtc->config->pipe_bpp) {
7853 case 18:
7854 pipeconf |= PIPECONF_6BPC;
7855 break;
7856 case 24:
7857 pipeconf |= PIPECONF_8BPC;
7858 break;
7859 case 30:
7860 pipeconf |= PIPECONF_10BPC;
7861 break;
7862 default:
7863 /* Case prevented by intel_choose_pipe_bpp_dither. */
7864 BUG();
7868 if (HAS_PIPE_CXSR(dev)) {
7869 if (intel_crtc->lowfreq_avail) {
7870 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7871 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7872 } else {
7873 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7877 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7878 if (INTEL_INFO(dev)->gen < 4 ||
7879 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7880 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7881 else
7882 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7883 } else
7884 pipeconf |= PIPECONF_PROGRESSIVE;
7886 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7887 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7889 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7890 POSTING_READ(PIPECONF(intel_crtc->pipe));
7893 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7894 struct intel_crtc_state *crtc_state)
7896 struct drm_device *dev = crtc->base.dev;
7897 struct drm_i915_private *dev_priv = dev->dev_private;
7898 int refclk, num_connectors = 0;
7899 intel_clock_t clock;
7900 bool ok;
7901 bool is_dsi = false;
7902 struct intel_encoder *encoder;
7903 const intel_limit_t *limit;
7904 struct drm_atomic_state *state = crtc_state->base.state;
7905 struct drm_connector *connector;
7906 struct drm_connector_state *connector_state;
7907 int i;
7909 memset(&crtc_state->dpll_hw_state, 0,
7910 sizeof(crtc_state->dpll_hw_state));
7912 for_each_connector_in_state(state, connector, connector_state, i) {
7913 if (connector_state->crtc != &crtc->base)
7914 continue;
7916 encoder = to_intel_encoder(connector_state->best_encoder);
7918 switch (encoder->type) {
7919 case INTEL_OUTPUT_DSI:
7920 is_dsi = true;
7921 break;
7922 default:
7923 break;
7926 num_connectors++;
7929 if (is_dsi)
7930 return 0;
7932 if (!crtc_state->clock_set) {
7933 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7936 * Returns a set of divisors for the desired target clock with
7937 * the given refclk, or FALSE. The returned values represent
7938 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7939 * 2) / p1 / p2.
7941 limit = intel_limit(crtc_state, refclk);
7942 ok = dev_priv->display.find_dpll(limit, crtc_state,
7943 crtc_state->port_clock,
7944 refclk, NULL, &clock);
7945 if (!ok) {
7946 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7947 return -EINVAL;
7950 /* Compat-code for transition, will disappear. */
7951 crtc_state->dpll.n = clock.n;
7952 crtc_state->dpll.m1 = clock.m1;
7953 crtc_state->dpll.m2 = clock.m2;
7954 crtc_state->dpll.p1 = clock.p1;
7955 crtc_state->dpll.p2 = clock.p2;
7958 if (IS_GEN2(dev)) {
7959 i8xx_compute_dpll(crtc, crtc_state, NULL,
7960 num_connectors);
7961 } else if (IS_CHERRYVIEW(dev)) {
7962 chv_compute_dpll(crtc, crtc_state);
7963 } else if (IS_VALLEYVIEW(dev)) {
7964 vlv_compute_dpll(crtc, crtc_state);
7965 } else {
7966 i9xx_compute_dpll(crtc, crtc_state, NULL,
7967 num_connectors);
7970 return 0;
7973 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7974 struct intel_crtc_state *pipe_config)
7976 struct drm_device *dev = crtc->base.dev;
7977 struct drm_i915_private *dev_priv = dev->dev_private;
7978 uint32_t tmp;
7980 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7981 return;
7983 tmp = I915_READ(PFIT_CONTROL);
7984 if (!(tmp & PFIT_ENABLE))
7985 return;
7987 /* Check whether the pfit is attached to our pipe. */
7988 if (INTEL_INFO(dev)->gen < 4) {
7989 if (crtc->pipe != PIPE_B)
7990 return;
7991 } else {
7992 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7993 return;
7996 pipe_config->gmch_pfit.control = tmp;
7997 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7998 if (INTEL_INFO(dev)->gen < 5)
7999 pipe_config->gmch_pfit.lvds_border_bits =
8000 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8003 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8004 struct intel_crtc_state *pipe_config)
8006 struct drm_device *dev = crtc->base.dev;
8007 struct drm_i915_private *dev_priv = dev->dev_private;
8008 int pipe = pipe_config->cpu_transcoder;
8009 intel_clock_t clock;
8010 u32 mdiv;
8011 int refclk = 100000;
8013 /* In case of MIPI DPLL will not even be used */
8014 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8015 return;
8017 mutex_lock(&dev_priv->sb_lock);
8018 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8019 mutex_unlock(&dev_priv->sb_lock);
8021 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8022 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8023 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8024 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8025 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8027 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8030 static void
8031 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8032 struct intel_initial_plane_config *plane_config)
8034 struct drm_device *dev = crtc->base.dev;
8035 struct drm_i915_private *dev_priv = dev->dev_private;
8036 u32 val, base, offset;
8037 int pipe = crtc->pipe, plane = crtc->plane;
8038 int fourcc, pixel_format;
8039 unsigned int aligned_height;
8040 struct drm_framebuffer *fb;
8041 struct intel_framebuffer *intel_fb;
8043 val = I915_READ(DSPCNTR(plane));
8044 if (!(val & DISPLAY_PLANE_ENABLE))
8045 return;
8047 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8048 if (!intel_fb) {
8049 DRM_DEBUG_KMS("failed to alloc fb\n");
8050 return;
8053 fb = &intel_fb->base;
8055 if (INTEL_INFO(dev)->gen >= 4) {
8056 if (val & DISPPLANE_TILED) {
8057 plane_config->tiling = I915_TILING_X;
8058 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8062 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8063 fourcc = i9xx_format_to_fourcc(pixel_format);
8064 fb->pixel_format = fourcc;
8065 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8067 if (INTEL_INFO(dev)->gen >= 4) {
8068 if (plane_config->tiling)
8069 offset = I915_READ(DSPTILEOFF(plane));
8070 else
8071 offset = I915_READ(DSPLINOFF(plane));
8072 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8073 } else {
8074 base = I915_READ(DSPADDR(plane));
8076 plane_config->base = base;
8078 val = I915_READ(PIPESRC(pipe));
8079 fb->width = ((val >> 16) & 0xfff) + 1;
8080 fb->height = ((val >> 0) & 0xfff) + 1;
8082 val = I915_READ(DSPSTRIDE(pipe));
8083 fb->pitches[0] = val & 0xffffffc0;
8085 aligned_height = intel_fb_align_height(dev, fb->height,
8086 fb->pixel_format,
8087 fb->modifier[0]);
8089 plane_config->size = fb->pitches[0] * aligned_height;
8091 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8092 pipe_name(pipe), plane, fb->width, fb->height,
8093 fb->bits_per_pixel, base, fb->pitches[0],
8094 plane_config->size);
8096 plane_config->fb = intel_fb;
8099 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8100 struct intel_crtc_state *pipe_config)
8102 struct drm_device *dev = crtc->base.dev;
8103 struct drm_i915_private *dev_priv = dev->dev_private;
8104 int pipe = pipe_config->cpu_transcoder;
8105 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8106 intel_clock_t clock;
8107 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8108 int refclk = 100000;
8110 mutex_lock(&dev_priv->sb_lock);
8111 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8112 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8113 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8114 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8115 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8116 mutex_unlock(&dev_priv->sb_lock);
8118 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8119 clock.m2 = (pll_dw0 & 0xff) << 22;
8120 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8121 clock.m2 |= pll_dw2 & 0x3fffff;
8122 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8123 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8124 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8126 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8129 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8130 struct intel_crtc_state *pipe_config)
8132 struct drm_device *dev = crtc->base.dev;
8133 struct drm_i915_private *dev_priv = dev->dev_private;
8134 uint32_t tmp;
8136 if (!intel_display_power_is_enabled(dev_priv,
8137 POWER_DOMAIN_PIPE(crtc->pipe)))
8138 return false;
8140 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8141 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8143 tmp = I915_READ(PIPECONF(crtc->pipe));
8144 if (!(tmp & PIPECONF_ENABLE))
8145 return false;
8147 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8148 switch (tmp & PIPECONF_BPC_MASK) {
8149 case PIPECONF_6BPC:
8150 pipe_config->pipe_bpp = 18;
8151 break;
8152 case PIPECONF_8BPC:
8153 pipe_config->pipe_bpp = 24;
8154 break;
8155 case PIPECONF_10BPC:
8156 pipe_config->pipe_bpp = 30;
8157 break;
8158 default:
8159 break;
8163 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8164 pipe_config->limited_color_range = true;
8166 if (INTEL_INFO(dev)->gen < 4)
8167 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8169 intel_get_pipe_timings(crtc, pipe_config);
8171 i9xx_get_pfit_config(crtc, pipe_config);
8173 if (INTEL_INFO(dev)->gen >= 4) {
8174 tmp = I915_READ(DPLL_MD(crtc->pipe));
8175 pipe_config->pixel_multiplier =
8176 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8177 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8178 pipe_config->dpll_hw_state.dpll_md = tmp;
8179 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8180 tmp = I915_READ(DPLL(crtc->pipe));
8181 pipe_config->pixel_multiplier =
8182 ((tmp & SDVO_MULTIPLIER_MASK)
8183 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8184 } else {
8185 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8186 * port and will be fixed up in the encoder->get_config
8187 * function. */
8188 pipe_config->pixel_multiplier = 1;
8190 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8191 if (!IS_VALLEYVIEW(dev)) {
8193 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8194 * on 830. Filter it out here so that we don't
8195 * report errors due to that.
8197 if (IS_I830(dev))
8198 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8200 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8201 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8202 } else {
8203 /* Mask out read-only status bits. */
8204 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8205 DPLL_PORTC_READY_MASK |
8206 DPLL_PORTB_READY_MASK);
8209 if (IS_CHERRYVIEW(dev))
8210 chv_crtc_clock_get(crtc, pipe_config);
8211 else if (IS_VALLEYVIEW(dev))
8212 vlv_crtc_clock_get(crtc, pipe_config);
8213 else
8214 i9xx_crtc_clock_get(crtc, pipe_config);
8217 * Normally the dotclock is filled in by the encoder .get_config()
8218 * but in case the pipe is enabled w/o any ports we need a sane
8219 * default.
8221 pipe_config->base.adjusted_mode.crtc_clock =
8222 pipe_config->port_clock / pipe_config->pixel_multiplier;
8224 return true;
8227 static void ironlake_init_pch_refclk(struct drm_device *dev)
8229 struct drm_i915_private *dev_priv = dev->dev_private;
8230 struct intel_encoder *encoder;
8231 u32 val, final;
8232 bool has_lvds = false;
8233 bool has_cpu_edp = false;
8234 bool has_panel = false;
8235 bool has_ck505 = false;
8236 bool can_ssc = false;
8238 /* We need to take the global config into account */
8239 for_each_intel_encoder(dev, encoder) {
8240 switch (encoder->type) {
8241 case INTEL_OUTPUT_LVDS:
8242 has_panel = true;
8243 has_lvds = true;
8244 break;
8245 case INTEL_OUTPUT_EDP:
8246 has_panel = true;
8247 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8248 has_cpu_edp = true;
8249 break;
8250 default:
8251 break;
8255 if (HAS_PCH_IBX(dev)) {
8256 has_ck505 = dev_priv->vbt.display_clock_mode;
8257 can_ssc = has_ck505;
8258 } else {
8259 has_ck505 = false;
8260 can_ssc = true;
8263 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8264 has_panel, has_lvds, has_ck505);
8266 /* Ironlake: try to setup display ref clock before DPLL
8267 * enabling. This is only under driver's control after
8268 * PCH B stepping, previous chipset stepping should be
8269 * ignoring this setting.
8271 val = I915_READ(PCH_DREF_CONTROL);
8273 /* As we must carefully and slowly disable/enable each source in turn,
8274 * compute the final state we want first and check if we need to
8275 * make any changes at all.
8277 final = val;
8278 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8279 if (has_ck505)
8280 final |= DREF_NONSPREAD_CK505_ENABLE;
8281 else
8282 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8284 final &= ~DREF_SSC_SOURCE_MASK;
8285 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8286 final &= ~DREF_SSC1_ENABLE;
8288 if (has_panel) {
8289 final |= DREF_SSC_SOURCE_ENABLE;
8291 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8292 final |= DREF_SSC1_ENABLE;
8294 if (has_cpu_edp) {
8295 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8296 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8297 else
8298 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8299 } else
8300 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8301 } else {
8302 final |= DREF_SSC_SOURCE_DISABLE;
8303 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8306 if (final == val)
8307 return;
8309 /* Always enable nonspread source */
8310 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8312 if (has_ck505)
8313 val |= DREF_NONSPREAD_CK505_ENABLE;
8314 else
8315 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8317 if (has_panel) {
8318 val &= ~DREF_SSC_SOURCE_MASK;
8319 val |= DREF_SSC_SOURCE_ENABLE;
8321 /* SSC must be turned on before enabling the CPU output */
8322 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8323 DRM_DEBUG_KMS("Using SSC on panel\n");
8324 val |= DREF_SSC1_ENABLE;
8325 } else
8326 val &= ~DREF_SSC1_ENABLE;
8328 /* Get SSC going before enabling the outputs */
8329 I915_WRITE(PCH_DREF_CONTROL, val);
8330 POSTING_READ(PCH_DREF_CONTROL);
8331 udelay(200);
8333 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8335 /* Enable CPU source on CPU attached eDP */
8336 if (has_cpu_edp) {
8337 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8338 DRM_DEBUG_KMS("Using SSC on eDP\n");
8339 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8340 } else
8341 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8342 } else
8343 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8345 I915_WRITE(PCH_DREF_CONTROL, val);
8346 POSTING_READ(PCH_DREF_CONTROL);
8347 udelay(200);
8348 } else {
8349 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8351 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8353 /* Turn off CPU output */
8354 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8356 I915_WRITE(PCH_DREF_CONTROL, val);
8357 POSTING_READ(PCH_DREF_CONTROL);
8358 udelay(200);
8360 /* Turn off the SSC source */
8361 val &= ~DREF_SSC_SOURCE_MASK;
8362 val |= DREF_SSC_SOURCE_DISABLE;
8364 /* Turn off SSC1 */
8365 val &= ~DREF_SSC1_ENABLE;
8367 I915_WRITE(PCH_DREF_CONTROL, val);
8368 POSTING_READ(PCH_DREF_CONTROL);
8369 udelay(200);
8372 BUG_ON(val != final);
8375 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8377 uint32_t tmp;
8379 tmp = I915_READ(SOUTH_CHICKEN2);
8380 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8381 I915_WRITE(SOUTH_CHICKEN2, tmp);
8383 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8384 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8385 DRM_ERROR("FDI mPHY reset assert timeout\n");
8387 tmp = I915_READ(SOUTH_CHICKEN2);
8388 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8389 I915_WRITE(SOUTH_CHICKEN2, tmp);
8391 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8392 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8393 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8396 /* WaMPhyProgramming:hsw */
8397 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8399 uint32_t tmp;
8401 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8402 tmp &= ~(0xFF << 24);
8403 tmp |= (0x12 << 24);
8404 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8406 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8407 tmp |= (1 << 11);
8408 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8410 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8411 tmp |= (1 << 11);
8412 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8414 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8415 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8416 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8418 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8419 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8420 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8422 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8423 tmp &= ~(7 << 13);
8424 tmp |= (5 << 13);
8425 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8427 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8428 tmp &= ~(7 << 13);
8429 tmp |= (5 << 13);
8430 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8432 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8433 tmp &= ~0xFF;
8434 tmp |= 0x1C;
8435 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8437 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8438 tmp &= ~0xFF;
8439 tmp |= 0x1C;
8440 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8442 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8443 tmp &= ~(0xFF << 16);
8444 tmp |= (0x1C << 16);
8445 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8447 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8448 tmp &= ~(0xFF << 16);
8449 tmp |= (0x1C << 16);
8450 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8452 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8453 tmp |= (1 << 27);
8454 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8456 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8457 tmp |= (1 << 27);
8458 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8460 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8461 tmp &= ~(0xF << 28);
8462 tmp |= (4 << 28);
8463 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8465 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8466 tmp &= ~(0xF << 28);
8467 tmp |= (4 << 28);
8468 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8471 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8472 * Programming" based on the parameters passed:
8473 * - Sequence to enable CLKOUT_DP
8474 * - Sequence to enable CLKOUT_DP without spread
8475 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8477 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8478 bool with_fdi)
8480 struct drm_i915_private *dev_priv = dev->dev_private;
8481 uint32_t reg, tmp;
8483 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8484 with_spread = true;
8485 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8486 with_fdi = false;
8488 mutex_lock(&dev_priv->sb_lock);
8490 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8491 tmp &= ~SBI_SSCCTL_DISABLE;
8492 tmp |= SBI_SSCCTL_PATHALT;
8493 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8495 udelay(24);
8497 if (with_spread) {
8498 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8499 tmp &= ~SBI_SSCCTL_PATHALT;
8500 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8502 if (with_fdi) {
8503 lpt_reset_fdi_mphy(dev_priv);
8504 lpt_program_fdi_mphy(dev_priv);
8508 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8509 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8510 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8511 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8513 mutex_unlock(&dev_priv->sb_lock);
8516 /* Sequence to disable CLKOUT_DP */
8517 static void lpt_disable_clkout_dp(struct drm_device *dev)
8519 struct drm_i915_private *dev_priv = dev->dev_private;
8520 uint32_t reg, tmp;
8522 mutex_lock(&dev_priv->sb_lock);
8524 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8525 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8526 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8527 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8529 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8530 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8531 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8532 tmp |= SBI_SSCCTL_PATHALT;
8533 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8534 udelay(32);
8536 tmp |= SBI_SSCCTL_DISABLE;
8537 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8540 mutex_unlock(&dev_priv->sb_lock);
8543 static void lpt_init_pch_refclk(struct drm_device *dev)
8545 struct intel_encoder *encoder;
8546 bool has_vga = false;
8548 for_each_intel_encoder(dev, encoder) {
8549 switch (encoder->type) {
8550 case INTEL_OUTPUT_ANALOG:
8551 has_vga = true;
8552 break;
8553 default:
8554 break;
8558 if (has_vga)
8559 lpt_enable_clkout_dp(dev, true, true);
8560 else
8561 lpt_disable_clkout_dp(dev);
8565 * Initialize reference clocks when the driver loads
8567 void intel_init_pch_refclk(struct drm_device *dev)
8569 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8570 ironlake_init_pch_refclk(dev);
8571 else if (HAS_PCH_LPT(dev))
8572 lpt_init_pch_refclk(dev);
8575 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8577 struct drm_device *dev = crtc_state->base.crtc->dev;
8578 struct drm_i915_private *dev_priv = dev->dev_private;
8579 struct drm_atomic_state *state = crtc_state->base.state;
8580 struct drm_connector *connector;
8581 struct drm_connector_state *connector_state;
8582 struct intel_encoder *encoder;
8583 int num_connectors = 0, i;
8584 bool is_lvds = false;
8586 for_each_connector_in_state(state, connector, connector_state, i) {
8587 if (connector_state->crtc != crtc_state->base.crtc)
8588 continue;
8590 encoder = to_intel_encoder(connector_state->best_encoder);
8592 switch (encoder->type) {
8593 case INTEL_OUTPUT_LVDS:
8594 is_lvds = true;
8595 break;
8596 default:
8597 break;
8599 num_connectors++;
8602 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8603 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8604 dev_priv->vbt.lvds_ssc_freq);
8605 return dev_priv->vbt.lvds_ssc_freq;
8608 return 120000;
8611 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8613 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8615 int pipe = intel_crtc->pipe;
8616 uint32_t val;
8618 val = 0;
8620 switch (intel_crtc->config->pipe_bpp) {
8621 case 18:
8622 val |= PIPECONF_6BPC;
8623 break;
8624 case 24:
8625 val |= PIPECONF_8BPC;
8626 break;
8627 case 30:
8628 val |= PIPECONF_10BPC;
8629 break;
8630 case 36:
8631 val |= PIPECONF_12BPC;
8632 break;
8633 default:
8634 /* Case prevented by intel_choose_pipe_bpp_dither. */
8635 BUG();
8638 if (intel_crtc->config->dither)
8639 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8641 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8642 val |= PIPECONF_INTERLACED_ILK;
8643 else
8644 val |= PIPECONF_PROGRESSIVE;
8646 if (intel_crtc->config->limited_color_range)
8647 val |= PIPECONF_COLOR_RANGE_SELECT;
8649 I915_WRITE(PIPECONF(pipe), val);
8650 POSTING_READ(PIPECONF(pipe));
8654 * Set up the pipe CSC unit.
8656 * Currently only full range RGB to limited range RGB conversion
8657 * is supported, but eventually this should handle various
8658 * RGB<->YCbCr scenarios as well.
8660 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8662 struct drm_device *dev = crtc->dev;
8663 struct drm_i915_private *dev_priv = dev->dev_private;
8664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8665 int pipe = intel_crtc->pipe;
8666 uint16_t coeff = 0x7800; /* 1.0 */
8669 * TODO: Check what kind of values actually come out of the pipe
8670 * with these coeff/postoff values and adjust to get the best
8671 * accuracy. Perhaps we even need to take the bpc value into
8672 * consideration.
8675 if (intel_crtc->config->limited_color_range)
8676 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8679 * GY/GU and RY/RU should be the other way around according
8680 * to BSpec, but reality doesn't agree. Just set them up in
8681 * a way that results in the correct picture.
8683 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8684 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8686 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8687 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8689 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8690 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8692 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8693 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8694 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8696 if (INTEL_INFO(dev)->gen > 6) {
8697 uint16_t postoff = 0;
8699 if (intel_crtc->config->limited_color_range)
8700 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8702 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8703 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8704 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8706 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8707 } else {
8708 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8710 if (intel_crtc->config->limited_color_range)
8711 mode |= CSC_BLACK_SCREEN_OFFSET;
8713 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8717 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8719 struct drm_device *dev = crtc->dev;
8720 struct drm_i915_private *dev_priv = dev->dev_private;
8721 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8722 enum pipe pipe = intel_crtc->pipe;
8723 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8724 uint32_t val;
8726 val = 0;
8728 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8729 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8731 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8732 val |= PIPECONF_INTERLACED_ILK;
8733 else
8734 val |= PIPECONF_PROGRESSIVE;
8736 I915_WRITE(PIPECONF(cpu_transcoder), val);
8737 POSTING_READ(PIPECONF(cpu_transcoder));
8739 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8740 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8742 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8743 val = 0;
8745 switch (intel_crtc->config->pipe_bpp) {
8746 case 18:
8747 val |= PIPEMISC_DITHER_6_BPC;
8748 break;
8749 case 24:
8750 val |= PIPEMISC_DITHER_8_BPC;
8751 break;
8752 case 30:
8753 val |= PIPEMISC_DITHER_10_BPC;
8754 break;
8755 case 36:
8756 val |= PIPEMISC_DITHER_12_BPC;
8757 break;
8758 default:
8759 /* Case prevented by pipe_config_set_bpp. */
8760 BUG();
8763 if (intel_crtc->config->dither)
8764 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8766 I915_WRITE(PIPEMISC(pipe), val);
8770 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8771 struct intel_crtc_state *crtc_state,
8772 intel_clock_t *clock,
8773 bool *has_reduced_clock,
8774 intel_clock_t *reduced_clock)
8776 struct drm_device *dev = crtc->dev;
8777 struct drm_i915_private *dev_priv = dev->dev_private;
8778 int refclk;
8779 const intel_limit_t *limit;
8780 bool ret;
8782 refclk = ironlake_get_refclk(crtc_state);
8785 * Returns a set of divisors for the desired target clock with the given
8786 * refclk, or FALSE. The returned values represent the clock equation:
8787 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8789 limit = intel_limit(crtc_state, refclk);
8790 ret = dev_priv->display.find_dpll(limit, crtc_state,
8791 crtc_state->port_clock,
8792 refclk, NULL, clock);
8793 if (!ret)
8794 return false;
8796 return true;
8799 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8802 * Account for spread spectrum to avoid
8803 * oversubscribing the link. Max center spread
8804 * is 2.5%; use 5% for safety's sake.
8806 u32 bps = target_clock * bpp * 21 / 20;
8807 return DIV_ROUND_UP(bps, link_bw * 8);
8810 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8812 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8815 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8816 struct intel_crtc_state *crtc_state,
8817 u32 *fp,
8818 intel_clock_t *reduced_clock, u32 *fp2)
8820 struct drm_crtc *crtc = &intel_crtc->base;
8821 struct drm_device *dev = crtc->dev;
8822 struct drm_i915_private *dev_priv = dev->dev_private;
8823 struct drm_atomic_state *state = crtc_state->base.state;
8824 struct drm_connector *connector;
8825 struct drm_connector_state *connector_state;
8826 struct intel_encoder *encoder;
8827 uint32_t dpll;
8828 int factor, num_connectors = 0, i;
8829 bool is_lvds = false, is_sdvo = false;
8831 for_each_connector_in_state(state, connector, connector_state, i) {
8832 if (connector_state->crtc != crtc_state->base.crtc)
8833 continue;
8835 encoder = to_intel_encoder(connector_state->best_encoder);
8837 switch (encoder->type) {
8838 case INTEL_OUTPUT_LVDS:
8839 is_lvds = true;
8840 break;
8841 case INTEL_OUTPUT_SDVO:
8842 case INTEL_OUTPUT_HDMI:
8843 is_sdvo = true;
8844 break;
8845 default:
8846 break;
8849 num_connectors++;
8852 /* Enable autotuning of the PLL clock (if permissible) */
8853 factor = 21;
8854 if (is_lvds) {
8855 if ((intel_panel_use_ssc(dev_priv) &&
8856 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8857 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8858 factor = 25;
8859 } else if (crtc_state->sdvo_tv_clock)
8860 factor = 20;
8862 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8863 *fp |= FP_CB_TUNE;
8865 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8866 *fp2 |= FP_CB_TUNE;
8868 dpll = 0;
8870 if (is_lvds)
8871 dpll |= DPLLB_MODE_LVDS;
8872 else
8873 dpll |= DPLLB_MODE_DAC_SERIAL;
8875 dpll |= (crtc_state->pixel_multiplier - 1)
8876 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8878 if (is_sdvo)
8879 dpll |= DPLL_SDVO_HIGH_SPEED;
8880 if (crtc_state->has_dp_encoder)
8881 dpll |= DPLL_SDVO_HIGH_SPEED;
8883 /* compute bitmask from p1 value */
8884 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8885 /* also FPA1 */
8886 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8888 switch (crtc_state->dpll.p2) {
8889 case 5:
8890 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8891 break;
8892 case 7:
8893 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8894 break;
8895 case 10:
8896 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8897 break;
8898 case 14:
8899 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8900 break;
8903 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8904 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8905 else
8906 dpll |= PLL_REF_INPUT_DREFCLK;
8908 return dpll | DPLL_VCO_ENABLE;
8911 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8912 struct intel_crtc_state *crtc_state)
8914 struct drm_device *dev = crtc->base.dev;
8915 intel_clock_t clock, reduced_clock;
8916 u32 dpll = 0, fp = 0, fp2 = 0;
8917 bool ok, has_reduced_clock = false;
8918 bool is_lvds = false;
8919 struct intel_shared_dpll *pll;
8921 memset(&crtc_state->dpll_hw_state, 0,
8922 sizeof(crtc_state->dpll_hw_state));
8924 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8926 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8927 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8929 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8930 &has_reduced_clock, &reduced_clock);
8931 if (!ok && !crtc_state->clock_set) {
8932 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8933 return -EINVAL;
8935 /* Compat-code for transition, will disappear. */
8936 if (!crtc_state->clock_set) {
8937 crtc_state->dpll.n = clock.n;
8938 crtc_state->dpll.m1 = clock.m1;
8939 crtc_state->dpll.m2 = clock.m2;
8940 crtc_state->dpll.p1 = clock.p1;
8941 crtc_state->dpll.p2 = clock.p2;
8944 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8945 if (crtc_state->has_pch_encoder) {
8946 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8947 if (has_reduced_clock)
8948 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8950 dpll = ironlake_compute_dpll(crtc, crtc_state,
8951 &fp, &reduced_clock,
8952 has_reduced_clock ? &fp2 : NULL);
8954 crtc_state->dpll_hw_state.dpll = dpll;
8955 crtc_state->dpll_hw_state.fp0 = fp;
8956 if (has_reduced_clock)
8957 crtc_state->dpll_hw_state.fp1 = fp2;
8958 else
8959 crtc_state->dpll_hw_state.fp1 = fp;
8961 pll = intel_get_shared_dpll(crtc, crtc_state);
8962 if (pll == NULL) {
8963 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8964 pipe_name(crtc->pipe));
8965 return -EINVAL;
8969 if (is_lvds && has_reduced_clock)
8970 crtc->lowfreq_avail = true;
8971 else
8972 crtc->lowfreq_avail = false;
8974 return 0;
8977 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8978 struct intel_link_m_n *m_n)
8980 struct drm_device *dev = crtc->base.dev;
8981 struct drm_i915_private *dev_priv = dev->dev_private;
8982 enum pipe pipe = crtc->pipe;
8984 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8985 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8986 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8987 & ~TU_SIZE_MASK;
8988 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8989 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8990 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8993 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8994 enum transcoder transcoder,
8995 struct intel_link_m_n *m_n,
8996 struct intel_link_m_n *m2_n2)
8998 struct drm_device *dev = crtc->base.dev;
8999 struct drm_i915_private *dev_priv = dev->dev_private;
9000 enum pipe pipe = crtc->pipe;
9002 if (INTEL_INFO(dev)->gen >= 5) {
9003 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9004 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9005 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9006 & ~TU_SIZE_MASK;
9007 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9008 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9009 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9010 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9011 * gen < 8) and if DRRS is supported (to make sure the
9012 * registers are not unnecessarily read).
9014 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9015 crtc->config->has_drrs) {
9016 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9017 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9018 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9019 & ~TU_SIZE_MASK;
9020 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9021 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9022 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9024 } else {
9025 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9026 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9027 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9028 & ~TU_SIZE_MASK;
9029 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9030 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9031 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9035 void intel_dp_get_m_n(struct intel_crtc *crtc,
9036 struct intel_crtc_state *pipe_config)
9038 if (pipe_config->has_pch_encoder)
9039 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9040 else
9041 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9042 &pipe_config->dp_m_n,
9043 &pipe_config->dp_m2_n2);
9046 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9047 struct intel_crtc_state *pipe_config)
9049 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9050 &pipe_config->fdi_m_n, NULL);
9053 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9054 struct intel_crtc_state *pipe_config)
9056 struct drm_device *dev = crtc->base.dev;
9057 struct drm_i915_private *dev_priv = dev->dev_private;
9058 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9059 uint32_t ps_ctrl = 0;
9060 int id = -1;
9061 int i;
9063 /* find scaler attached to this pipe */
9064 for (i = 0; i < crtc->num_scalers; i++) {
9065 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9066 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9067 id = i;
9068 pipe_config->pch_pfit.enabled = true;
9069 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9070 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9071 break;
9075 scaler_state->scaler_id = id;
9076 if (id >= 0) {
9077 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9078 } else {
9079 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9083 static void
9084 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9085 struct intel_initial_plane_config *plane_config)
9087 struct drm_device *dev = crtc->base.dev;
9088 struct drm_i915_private *dev_priv = dev->dev_private;
9089 u32 val, base, offset, stride_mult, tiling;
9090 int pipe = crtc->pipe;
9091 int fourcc, pixel_format;
9092 unsigned int aligned_height;
9093 struct drm_framebuffer *fb;
9094 struct intel_framebuffer *intel_fb;
9096 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9097 if (!intel_fb) {
9098 DRM_DEBUG_KMS("failed to alloc fb\n");
9099 return;
9102 fb = &intel_fb->base;
9104 val = I915_READ(PLANE_CTL(pipe, 0));
9105 if (!(val & PLANE_CTL_ENABLE))
9106 goto error;
9108 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9109 fourcc = skl_format_to_fourcc(pixel_format,
9110 val & PLANE_CTL_ORDER_RGBX,
9111 val & PLANE_CTL_ALPHA_MASK);
9112 fb->pixel_format = fourcc;
9113 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9115 tiling = val & PLANE_CTL_TILED_MASK;
9116 switch (tiling) {
9117 case PLANE_CTL_TILED_LINEAR:
9118 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9119 break;
9120 case PLANE_CTL_TILED_X:
9121 plane_config->tiling = I915_TILING_X;
9122 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9123 break;
9124 case PLANE_CTL_TILED_Y:
9125 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9126 break;
9127 case PLANE_CTL_TILED_YF:
9128 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9129 break;
9130 default:
9131 MISSING_CASE(tiling);
9132 goto error;
9135 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9136 plane_config->base = base;
9138 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9140 val = I915_READ(PLANE_SIZE(pipe, 0));
9141 fb->height = ((val >> 16) & 0xfff) + 1;
9142 fb->width = ((val >> 0) & 0x1fff) + 1;
9144 val = I915_READ(PLANE_STRIDE(pipe, 0));
9145 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9146 fb->pixel_format);
9147 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9149 aligned_height = intel_fb_align_height(dev, fb->height,
9150 fb->pixel_format,
9151 fb->modifier[0]);
9153 plane_config->size = fb->pitches[0] * aligned_height;
9155 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9156 pipe_name(pipe), fb->width, fb->height,
9157 fb->bits_per_pixel, base, fb->pitches[0],
9158 plane_config->size);
9160 plane_config->fb = intel_fb;
9161 return;
9163 error:
9164 kfree(fb);
9167 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9168 struct intel_crtc_state *pipe_config)
9170 struct drm_device *dev = crtc->base.dev;
9171 struct drm_i915_private *dev_priv = dev->dev_private;
9172 uint32_t tmp;
9174 tmp = I915_READ(PF_CTL(crtc->pipe));
9176 if (tmp & PF_ENABLE) {
9177 pipe_config->pch_pfit.enabled = true;
9178 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9179 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9181 /* We currently do not free assignements of panel fitters on
9182 * ivb/hsw (since we don't use the higher upscaling modes which
9183 * differentiates them) so just WARN about this case for now. */
9184 if (IS_GEN7(dev)) {
9185 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9186 PF_PIPE_SEL_IVB(crtc->pipe));
9191 static void
9192 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9193 struct intel_initial_plane_config *plane_config)
9195 struct drm_device *dev = crtc->base.dev;
9196 struct drm_i915_private *dev_priv = dev->dev_private;
9197 u32 val, base, offset;
9198 int pipe = crtc->pipe;
9199 int fourcc, pixel_format;
9200 unsigned int aligned_height;
9201 struct drm_framebuffer *fb;
9202 struct intel_framebuffer *intel_fb;
9204 val = I915_READ(DSPCNTR(pipe));
9205 if (!(val & DISPLAY_PLANE_ENABLE))
9206 return;
9208 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9209 if (!intel_fb) {
9210 DRM_DEBUG_KMS("failed to alloc fb\n");
9211 return;
9214 fb = &intel_fb->base;
9216 if (INTEL_INFO(dev)->gen >= 4) {
9217 if (val & DISPPLANE_TILED) {
9218 plane_config->tiling = I915_TILING_X;
9219 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9223 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9224 fourcc = i9xx_format_to_fourcc(pixel_format);
9225 fb->pixel_format = fourcc;
9226 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9228 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9229 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9230 offset = I915_READ(DSPOFFSET(pipe));
9231 } else {
9232 if (plane_config->tiling)
9233 offset = I915_READ(DSPTILEOFF(pipe));
9234 else
9235 offset = I915_READ(DSPLINOFF(pipe));
9237 plane_config->base = base;
9239 val = I915_READ(PIPESRC(pipe));
9240 fb->width = ((val >> 16) & 0xfff) + 1;
9241 fb->height = ((val >> 0) & 0xfff) + 1;
9243 val = I915_READ(DSPSTRIDE(pipe));
9244 fb->pitches[0] = val & 0xffffffc0;
9246 aligned_height = intel_fb_align_height(dev, fb->height,
9247 fb->pixel_format,
9248 fb->modifier[0]);
9250 plane_config->size = fb->pitches[0] * aligned_height;
9252 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9253 pipe_name(pipe), fb->width, fb->height,
9254 fb->bits_per_pixel, base, fb->pitches[0],
9255 plane_config->size);
9257 plane_config->fb = intel_fb;
9260 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9261 struct intel_crtc_state *pipe_config)
9263 struct drm_device *dev = crtc->base.dev;
9264 struct drm_i915_private *dev_priv = dev->dev_private;
9265 uint32_t tmp;
9267 if (!intel_display_power_is_enabled(dev_priv,
9268 POWER_DOMAIN_PIPE(crtc->pipe)))
9269 return false;
9271 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9272 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9274 tmp = I915_READ(PIPECONF(crtc->pipe));
9275 if (!(tmp & PIPECONF_ENABLE))
9276 return false;
9278 switch (tmp & PIPECONF_BPC_MASK) {
9279 case PIPECONF_6BPC:
9280 pipe_config->pipe_bpp = 18;
9281 break;
9282 case PIPECONF_8BPC:
9283 pipe_config->pipe_bpp = 24;
9284 break;
9285 case PIPECONF_10BPC:
9286 pipe_config->pipe_bpp = 30;
9287 break;
9288 case PIPECONF_12BPC:
9289 pipe_config->pipe_bpp = 36;
9290 break;
9291 default:
9292 break;
9295 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9296 pipe_config->limited_color_range = true;
9298 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9299 struct intel_shared_dpll *pll;
9301 pipe_config->has_pch_encoder = true;
9303 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9304 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9305 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9307 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9309 if (HAS_PCH_IBX(dev_priv->dev)) {
9310 pipe_config->shared_dpll =
9311 (enum intel_dpll_id) crtc->pipe;
9312 } else {
9313 tmp = I915_READ(PCH_DPLL_SEL);
9314 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9315 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9316 else
9317 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9320 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9322 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9323 &pipe_config->dpll_hw_state));
9325 tmp = pipe_config->dpll_hw_state.dpll;
9326 pipe_config->pixel_multiplier =
9327 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9328 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9330 ironlake_pch_clock_get(crtc, pipe_config);
9331 } else {
9332 pipe_config->pixel_multiplier = 1;
9335 intel_get_pipe_timings(crtc, pipe_config);
9337 ironlake_get_pfit_config(crtc, pipe_config);
9339 return true;
9342 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9344 struct drm_device *dev = dev_priv->dev;
9345 struct intel_crtc *crtc;
9347 for_each_intel_crtc(dev, crtc)
9348 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9349 pipe_name(crtc->pipe));
9351 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9352 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9353 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9354 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9355 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9356 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9357 "CPU PWM1 enabled\n");
9358 if (IS_HASWELL(dev))
9359 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9360 "CPU PWM2 enabled\n");
9361 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9362 "PCH PWM1 enabled\n");
9363 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9364 "Utility pin enabled\n");
9365 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9368 * In theory we can still leave IRQs enabled, as long as only the HPD
9369 * interrupts remain enabled. We used to check for that, but since it's
9370 * gen-specific and since we only disable LCPLL after we fully disable
9371 * the interrupts, the check below should be enough.
9373 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9376 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9378 struct drm_device *dev = dev_priv->dev;
9380 if (IS_HASWELL(dev))
9381 return I915_READ(D_COMP_HSW);
9382 else
9383 return I915_READ(D_COMP_BDW);
9386 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9388 struct drm_device *dev = dev_priv->dev;
9390 if (IS_HASWELL(dev)) {
9391 mutex_lock(&dev_priv->rps.hw_lock);
9392 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9393 val))
9394 DRM_ERROR("Failed to write to D_COMP\n");
9395 mutex_unlock(&dev_priv->rps.hw_lock);
9396 } else {
9397 I915_WRITE(D_COMP_BDW, val);
9398 POSTING_READ(D_COMP_BDW);
9403 * This function implements pieces of two sequences from BSpec:
9404 * - Sequence for display software to disable LCPLL
9405 * - Sequence for display software to allow package C8+
9406 * The steps implemented here are just the steps that actually touch the LCPLL
9407 * register. Callers should take care of disabling all the display engine
9408 * functions, doing the mode unset, fixing interrupts, etc.
9410 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9411 bool switch_to_fclk, bool allow_power_down)
9413 uint32_t val;
9415 assert_can_disable_lcpll(dev_priv);
9417 val = I915_READ(LCPLL_CTL);
9419 if (switch_to_fclk) {
9420 val |= LCPLL_CD_SOURCE_FCLK;
9421 I915_WRITE(LCPLL_CTL, val);
9423 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9424 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9425 DRM_ERROR("Switching to FCLK failed\n");
9427 val = I915_READ(LCPLL_CTL);
9430 val |= LCPLL_PLL_DISABLE;
9431 I915_WRITE(LCPLL_CTL, val);
9432 POSTING_READ(LCPLL_CTL);
9434 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9435 DRM_ERROR("LCPLL still locked\n");
9437 val = hsw_read_dcomp(dev_priv);
9438 val |= D_COMP_COMP_DISABLE;
9439 hsw_write_dcomp(dev_priv, val);
9440 ndelay(100);
9442 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9444 DRM_ERROR("D_COMP RCOMP still in progress\n");
9446 if (allow_power_down) {
9447 val = I915_READ(LCPLL_CTL);
9448 val |= LCPLL_POWER_DOWN_ALLOW;
9449 I915_WRITE(LCPLL_CTL, val);
9450 POSTING_READ(LCPLL_CTL);
9455 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9456 * source.
9458 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9460 uint32_t val;
9462 val = I915_READ(LCPLL_CTL);
9464 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9465 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9466 return;
9469 * Make sure we're not on PC8 state before disabling PC8, otherwise
9470 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9472 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9474 if (val & LCPLL_POWER_DOWN_ALLOW) {
9475 val &= ~LCPLL_POWER_DOWN_ALLOW;
9476 I915_WRITE(LCPLL_CTL, val);
9477 POSTING_READ(LCPLL_CTL);
9480 val = hsw_read_dcomp(dev_priv);
9481 val |= D_COMP_COMP_FORCE;
9482 val &= ~D_COMP_COMP_DISABLE;
9483 hsw_write_dcomp(dev_priv, val);
9485 val = I915_READ(LCPLL_CTL);
9486 val &= ~LCPLL_PLL_DISABLE;
9487 I915_WRITE(LCPLL_CTL, val);
9489 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9490 DRM_ERROR("LCPLL not locked yet\n");
9492 if (val & LCPLL_CD_SOURCE_FCLK) {
9493 val = I915_READ(LCPLL_CTL);
9494 val &= ~LCPLL_CD_SOURCE_FCLK;
9495 I915_WRITE(LCPLL_CTL, val);
9497 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9498 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9499 DRM_ERROR("Switching back to LCPLL failed\n");
9502 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9503 intel_update_cdclk(dev_priv->dev);
9507 * Package states C8 and deeper are really deep PC states that can only be
9508 * reached when all the devices on the system allow it, so even if the graphics
9509 * device allows PC8+, it doesn't mean the system will actually get to these
9510 * states. Our driver only allows PC8+ when going into runtime PM.
9512 * The requirements for PC8+ are that all the outputs are disabled, the power
9513 * well is disabled and most interrupts are disabled, and these are also
9514 * requirements for runtime PM. When these conditions are met, we manually do
9515 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9516 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9517 * hang the machine.
9519 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9520 * the state of some registers, so when we come back from PC8+ we need to
9521 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9522 * need to take care of the registers kept by RC6. Notice that this happens even
9523 * if we don't put the device in PCI D3 state (which is what currently happens
9524 * because of the runtime PM support).
9526 * For more, read "Display Sequences for Package C8" on the hardware
9527 * documentation.
9529 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9531 struct drm_device *dev = dev_priv->dev;
9532 uint32_t val;
9534 DRM_DEBUG_KMS("Enabling package C8+\n");
9536 if (HAS_PCH_LPT_LP(dev)) {
9537 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9538 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9539 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9542 lpt_disable_clkout_dp(dev);
9543 hsw_disable_lcpll(dev_priv, true, true);
9546 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9548 struct drm_device *dev = dev_priv->dev;
9549 uint32_t val;
9551 DRM_DEBUG_KMS("Disabling package C8+\n");
9553 hsw_restore_lcpll(dev_priv);
9554 lpt_init_pch_refclk(dev);
9556 if (HAS_PCH_LPT_LP(dev)) {
9557 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9558 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9559 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9562 intel_prepare_ddi(dev);
9565 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9567 struct drm_device *dev = old_state->dev;
9568 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9570 broxton_set_cdclk(dev, req_cdclk);
9573 /* compute the max rate for new configuration */
9574 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9576 struct intel_crtc *intel_crtc;
9577 struct intel_crtc_state *crtc_state;
9578 int max_pixel_rate = 0;
9580 for_each_intel_crtc(state->dev, intel_crtc) {
9581 int pixel_rate;
9583 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9584 if (IS_ERR(crtc_state))
9585 return PTR_ERR(crtc_state);
9587 if (!crtc_state->base.enable)
9588 continue;
9590 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9592 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9593 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9594 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9596 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9599 return max_pixel_rate;
9602 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9604 struct drm_i915_private *dev_priv = dev->dev_private;
9605 uint32_t val, data;
9606 int ret;
9608 if (WARN((I915_READ(LCPLL_CTL) &
9609 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9610 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9611 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9612 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9613 "trying to change cdclk frequency with cdclk not enabled\n"))
9614 return;
9616 mutex_lock(&dev_priv->rps.hw_lock);
9617 ret = sandybridge_pcode_write(dev_priv,
9618 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9619 mutex_unlock(&dev_priv->rps.hw_lock);
9620 if (ret) {
9621 DRM_ERROR("failed to inform pcode about cdclk change\n");
9622 return;
9625 val = I915_READ(LCPLL_CTL);
9626 val |= LCPLL_CD_SOURCE_FCLK;
9627 I915_WRITE(LCPLL_CTL, val);
9629 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9630 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9631 DRM_ERROR("Switching to FCLK failed\n");
9633 val = I915_READ(LCPLL_CTL);
9634 val &= ~LCPLL_CLK_FREQ_MASK;
9636 switch (cdclk) {
9637 case 450000:
9638 val |= LCPLL_CLK_FREQ_450;
9639 data = 0;
9640 break;
9641 case 540000:
9642 val |= LCPLL_CLK_FREQ_54O_BDW;
9643 data = 1;
9644 break;
9645 case 337500:
9646 val |= LCPLL_CLK_FREQ_337_5_BDW;
9647 data = 2;
9648 break;
9649 case 675000:
9650 val |= LCPLL_CLK_FREQ_675_BDW;
9651 data = 3;
9652 break;
9653 default:
9654 WARN(1, "invalid cdclk frequency\n");
9655 return;
9658 I915_WRITE(LCPLL_CTL, val);
9660 val = I915_READ(LCPLL_CTL);
9661 val &= ~LCPLL_CD_SOURCE_FCLK;
9662 I915_WRITE(LCPLL_CTL, val);
9664 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9665 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9666 DRM_ERROR("Switching back to LCPLL failed\n");
9668 mutex_lock(&dev_priv->rps.hw_lock);
9669 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9670 mutex_unlock(&dev_priv->rps.hw_lock);
9672 intel_update_cdclk(dev);
9674 WARN(cdclk != dev_priv->cdclk_freq,
9675 "cdclk requested %d kHz but got %d kHz\n",
9676 cdclk, dev_priv->cdclk_freq);
9679 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9681 struct drm_i915_private *dev_priv = to_i915(state->dev);
9682 int max_pixclk = ilk_max_pixel_rate(state);
9683 int cdclk;
9686 * FIXME should also account for plane ratio
9687 * once 64bpp pixel formats are supported.
9689 if (max_pixclk > 540000)
9690 cdclk = 675000;
9691 else if (max_pixclk > 450000)
9692 cdclk = 540000;
9693 else if (max_pixclk > 337500)
9694 cdclk = 450000;
9695 else
9696 cdclk = 337500;
9699 * FIXME move the cdclk caclulation to
9700 * compute_config() so we can fail gracegully.
9702 if (cdclk > dev_priv->max_cdclk_freq) {
9703 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9704 cdclk, dev_priv->max_cdclk_freq);
9705 cdclk = dev_priv->max_cdclk_freq;
9708 to_intel_atomic_state(state)->cdclk = cdclk;
9710 return 0;
9713 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9715 struct drm_device *dev = old_state->dev;
9716 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9718 broadwell_set_cdclk(dev, req_cdclk);
9721 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9722 struct intel_crtc_state *crtc_state)
9724 if (!intel_ddi_pll_select(crtc, crtc_state))
9725 return -EINVAL;
9727 crtc->lowfreq_avail = false;
9729 return 0;
9732 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9733 enum port port,
9734 struct intel_crtc_state *pipe_config)
9736 switch (port) {
9737 case PORT_A:
9738 pipe_config->ddi_pll_sel = SKL_DPLL0;
9739 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9740 break;
9741 case PORT_B:
9742 pipe_config->ddi_pll_sel = SKL_DPLL1;
9743 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9744 break;
9745 case PORT_C:
9746 pipe_config->ddi_pll_sel = SKL_DPLL2;
9747 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9748 break;
9749 default:
9750 DRM_ERROR("Incorrect port type\n");
9754 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9755 enum port port,
9756 struct intel_crtc_state *pipe_config)
9758 u32 temp, dpll_ctl1;
9760 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9761 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9763 switch (pipe_config->ddi_pll_sel) {
9764 case SKL_DPLL0:
9766 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9767 * of the shared DPLL framework and thus needs to be read out
9768 * separately
9770 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9771 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9772 break;
9773 case SKL_DPLL1:
9774 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9775 break;
9776 case SKL_DPLL2:
9777 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9778 break;
9779 case SKL_DPLL3:
9780 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9781 break;
9785 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9786 enum port port,
9787 struct intel_crtc_state *pipe_config)
9789 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9791 switch (pipe_config->ddi_pll_sel) {
9792 case PORT_CLK_SEL_WRPLL1:
9793 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9794 break;
9795 case PORT_CLK_SEL_WRPLL2:
9796 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9797 break;
9798 case PORT_CLK_SEL_SPLL:
9799 pipe_config->shared_dpll = DPLL_ID_SPLL;
9803 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9804 struct intel_crtc_state *pipe_config)
9806 struct drm_device *dev = crtc->base.dev;
9807 struct drm_i915_private *dev_priv = dev->dev_private;
9808 struct intel_shared_dpll *pll;
9809 enum port port;
9810 uint32_t tmp;
9812 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9814 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9816 if (IS_SKYLAKE(dev))
9817 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9818 else if (IS_BROXTON(dev))
9819 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9820 else
9821 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9823 if (pipe_config->shared_dpll >= 0) {
9824 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9826 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9827 &pipe_config->dpll_hw_state));
9831 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9832 * DDI E. So just check whether this pipe is wired to DDI E and whether
9833 * the PCH transcoder is on.
9835 if (INTEL_INFO(dev)->gen < 9 &&
9836 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9837 pipe_config->has_pch_encoder = true;
9839 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9840 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9841 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9843 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9847 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9848 struct intel_crtc_state *pipe_config)
9850 struct drm_device *dev = crtc->base.dev;
9851 struct drm_i915_private *dev_priv = dev->dev_private;
9852 enum intel_display_power_domain pfit_domain;
9853 uint32_t tmp;
9855 if (!intel_display_power_is_enabled(dev_priv,
9856 POWER_DOMAIN_PIPE(crtc->pipe)))
9857 return false;
9859 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9860 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9862 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9863 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9864 enum pipe trans_edp_pipe;
9865 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9866 default:
9867 WARN(1, "unknown pipe linked to edp transcoder\n");
9868 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9869 case TRANS_DDI_EDP_INPUT_A_ON:
9870 trans_edp_pipe = PIPE_A;
9871 break;
9872 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9873 trans_edp_pipe = PIPE_B;
9874 break;
9875 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9876 trans_edp_pipe = PIPE_C;
9877 break;
9880 if (trans_edp_pipe == crtc->pipe)
9881 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9884 if (!intel_display_power_is_enabled(dev_priv,
9885 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9886 return false;
9888 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9889 if (!(tmp & PIPECONF_ENABLE))
9890 return false;
9892 haswell_get_ddi_port_state(crtc, pipe_config);
9894 intel_get_pipe_timings(crtc, pipe_config);
9896 if (INTEL_INFO(dev)->gen >= 9) {
9897 skl_init_scalers(dev, crtc, pipe_config);
9900 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9902 if (INTEL_INFO(dev)->gen >= 9) {
9903 pipe_config->scaler_state.scaler_id = -1;
9904 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9907 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9908 if (INTEL_INFO(dev)->gen >= 9)
9909 skylake_get_pfit_config(crtc, pipe_config);
9910 else
9911 ironlake_get_pfit_config(crtc, pipe_config);
9914 if (IS_HASWELL(dev))
9915 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9916 (I915_READ(IPS_CTL) & IPS_ENABLE);
9918 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9919 pipe_config->pixel_multiplier =
9920 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9921 } else {
9922 pipe_config->pixel_multiplier = 1;
9925 return true;
9928 static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
9930 struct drm_device *dev = crtc->dev;
9931 struct drm_i915_private *dev_priv = dev->dev_private;
9932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9933 uint32_t cntl = 0, size = 0;
9935 if (on) {
9936 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9937 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9938 unsigned int stride = roundup_pow_of_two(width) * 4;
9940 switch (stride) {
9941 default:
9942 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9943 width, stride);
9944 stride = 256;
9945 /* fallthrough */
9946 case 256:
9947 case 512:
9948 case 1024:
9949 case 2048:
9950 break;
9953 cntl |= CURSOR_ENABLE |
9954 CURSOR_GAMMA_ENABLE |
9955 CURSOR_FORMAT_ARGB |
9956 CURSOR_STRIDE(stride);
9958 size = (height << 12) | width;
9961 if (intel_crtc->cursor_cntl != 0 &&
9962 (intel_crtc->cursor_base != base ||
9963 intel_crtc->cursor_size != size ||
9964 intel_crtc->cursor_cntl != cntl)) {
9965 /* On these chipsets we can only modify the base/size/stride
9966 * whilst the cursor is disabled.
9968 I915_WRITE(CURCNTR(PIPE_A), 0);
9969 POSTING_READ(CURCNTR(PIPE_A));
9970 intel_crtc->cursor_cntl = 0;
9973 if (intel_crtc->cursor_base != base) {
9974 I915_WRITE(CURBASE(PIPE_A), base);
9975 intel_crtc->cursor_base = base;
9978 if (intel_crtc->cursor_size != size) {
9979 I915_WRITE(CURSIZE, size);
9980 intel_crtc->cursor_size = size;
9983 if (intel_crtc->cursor_cntl != cntl) {
9984 I915_WRITE(CURCNTR(PIPE_A), cntl);
9985 POSTING_READ(CURCNTR(PIPE_A));
9986 intel_crtc->cursor_cntl = cntl;
9990 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
9992 struct drm_device *dev = crtc->dev;
9993 struct drm_i915_private *dev_priv = dev->dev_private;
9994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9995 int pipe = intel_crtc->pipe;
9996 uint32_t cntl = 0;
9998 if (on) {
9999 cntl = MCURSOR_GAMMA_ENABLE;
10000 switch (intel_crtc->base.cursor->state->crtc_w) {
10001 case 64:
10002 cntl |= CURSOR_MODE_64_ARGB_AX;
10003 break;
10004 case 128:
10005 cntl |= CURSOR_MODE_128_ARGB_AX;
10006 break;
10007 case 256:
10008 cntl |= CURSOR_MODE_256_ARGB_AX;
10009 break;
10010 default:
10011 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10012 return;
10014 cntl |= pipe << 28; /* Connect to correct pipe */
10016 if (HAS_DDI(dev))
10017 cntl |= CURSOR_PIPE_CSC_ENABLE;
10020 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10021 cntl |= CURSOR_ROTATE_180;
10023 if (intel_crtc->cursor_cntl != cntl) {
10024 I915_WRITE(CURCNTR(pipe), cntl);
10025 POSTING_READ(CURCNTR(pipe));
10026 intel_crtc->cursor_cntl = cntl;
10029 /* and commit changes on next vblank */
10030 I915_WRITE(CURBASE(pipe), base);
10031 POSTING_READ(CURBASE(pipe));
10033 intel_crtc->cursor_base = base;
10036 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10037 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10038 bool on)
10040 struct drm_device *dev = crtc->dev;
10041 struct drm_i915_private *dev_priv = dev->dev_private;
10042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10043 int pipe = intel_crtc->pipe;
10044 struct drm_plane_state *cursor_state = crtc->cursor->state;
10045 int x = cursor_state->crtc_x;
10046 int y = cursor_state->crtc_y;
10047 u32 base = 0, pos = 0;
10049 base = intel_crtc->cursor_addr;
10051 if (x >= intel_crtc->config->pipe_src_w)
10052 on = false;
10054 if (y >= intel_crtc->config->pipe_src_h)
10055 on = false;
10057 if (x < 0) {
10058 if (x + cursor_state->crtc_w <= 0)
10059 on = false;
10061 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10062 x = -x;
10064 pos |= x << CURSOR_X_SHIFT;
10066 if (y < 0) {
10067 if (y + cursor_state->crtc_h <= 0)
10068 on = false;
10070 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10071 y = -y;
10073 pos |= y << CURSOR_Y_SHIFT;
10075 I915_WRITE(CURPOS(pipe), pos);
10077 /* ILK+ do this automagically */
10078 if (HAS_GMCH_DISPLAY(dev) &&
10079 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10080 base += (cursor_state->crtc_h *
10081 cursor_state->crtc_w - 1) * 4;
10084 if (IS_845G(dev) || IS_I865G(dev))
10085 i845_update_cursor(crtc, base, on);
10086 else
10087 i9xx_update_cursor(crtc, base, on);
10090 static bool cursor_size_ok(struct drm_device *dev,
10091 uint32_t width, uint32_t height)
10093 if (width == 0 || height == 0)
10094 return false;
10097 * 845g/865g are special in that they are only limited by
10098 * the width of their cursors, the height is arbitrary up to
10099 * the precision of the register. Everything else requires
10100 * square cursors, limited to a few power-of-two sizes.
10102 if (IS_845G(dev) || IS_I865G(dev)) {
10103 if ((width & 63) != 0)
10104 return false;
10106 if (width > (IS_845G(dev) ? 64 : 512))
10107 return false;
10109 if (height > 1023)
10110 return false;
10111 } else {
10112 switch (width | height) {
10113 case 256:
10114 case 128:
10115 if (IS_GEN2(dev))
10116 return false;
10117 case 64:
10118 break;
10119 default:
10120 return false;
10124 return true;
10127 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10128 u16 *blue, uint32_t start, uint32_t size)
10130 int end = (start + size > 256) ? 256 : start + size, i;
10131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10133 for (i = start; i < end; i++) {
10134 intel_crtc->lut_r[i] = red[i] >> 8;
10135 intel_crtc->lut_g[i] = green[i] >> 8;
10136 intel_crtc->lut_b[i] = blue[i] >> 8;
10139 intel_crtc_load_lut(crtc);
10142 /* VESA 640x480x72Hz mode to set on the pipe */
10143 static struct drm_display_mode load_detect_mode = {
10144 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10145 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10148 struct drm_framebuffer *
10149 __intel_framebuffer_create(struct drm_device *dev,
10150 struct drm_mode_fb_cmd2 *mode_cmd,
10151 struct drm_i915_gem_object *obj)
10153 struct intel_framebuffer *intel_fb;
10154 int ret;
10156 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10157 if (!intel_fb) {
10158 drm_gem_object_unreference(&obj->base);
10159 return ERR_PTR(-ENOMEM);
10162 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10163 if (ret)
10164 goto err;
10166 return &intel_fb->base;
10167 err:
10168 drm_gem_object_unreference(&obj->base);
10169 kfree(intel_fb);
10171 return ERR_PTR(ret);
10174 static struct drm_framebuffer *
10175 intel_framebuffer_create(struct drm_device *dev,
10176 struct drm_mode_fb_cmd2 *mode_cmd,
10177 struct drm_i915_gem_object *obj)
10179 struct drm_framebuffer *fb;
10180 int ret;
10182 ret = i915_mutex_lock_interruptible(dev);
10183 if (ret)
10184 return ERR_PTR(ret);
10185 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10186 mutex_unlock(&dev->struct_mutex);
10188 return fb;
10191 static u32
10192 intel_framebuffer_pitch_for_width(int width, int bpp)
10194 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10195 return ALIGN(pitch, 64);
10198 static u32
10199 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10201 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10202 return PAGE_ALIGN(pitch * mode->vdisplay);
10205 static struct drm_framebuffer *
10206 intel_framebuffer_create_for_mode(struct drm_device *dev,
10207 struct drm_display_mode *mode,
10208 int depth, int bpp)
10210 struct drm_i915_gem_object *obj;
10211 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10213 obj = i915_gem_alloc_object(dev,
10214 intel_framebuffer_size_for_mode(mode, bpp));
10215 if (obj == NULL)
10216 return ERR_PTR(-ENOMEM);
10218 mode_cmd.width = mode->hdisplay;
10219 mode_cmd.height = mode->vdisplay;
10220 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10221 bpp);
10222 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10224 return intel_framebuffer_create(dev, &mode_cmd, obj);
10227 static struct drm_framebuffer *
10228 mode_fits_in_fbdev(struct drm_device *dev,
10229 struct drm_display_mode *mode)
10231 #ifdef CONFIG_DRM_FBDEV_EMULATION
10232 struct drm_i915_private *dev_priv = dev->dev_private;
10233 struct drm_i915_gem_object *obj;
10234 struct drm_framebuffer *fb;
10236 if (!dev_priv->fbdev)
10237 return NULL;
10239 if (!dev_priv->fbdev->fb)
10240 return NULL;
10242 obj = dev_priv->fbdev->fb->obj;
10243 BUG_ON(!obj);
10245 fb = &dev_priv->fbdev->fb->base;
10246 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10247 fb->bits_per_pixel))
10248 return NULL;
10250 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10251 return NULL;
10253 return fb;
10254 #else
10255 return NULL;
10256 #endif
10259 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10260 struct drm_crtc *crtc,
10261 struct drm_display_mode *mode,
10262 struct drm_framebuffer *fb,
10263 int x, int y)
10265 struct drm_plane_state *plane_state;
10266 int hdisplay, vdisplay;
10267 int ret;
10269 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10270 if (IS_ERR(plane_state))
10271 return PTR_ERR(plane_state);
10273 if (mode)
10274 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10275 else
10276 hdisplay = vdisplay = 0;
10278 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10279 if (ret)
10280 return ret;
10281 drm_atomic_set_fb_for_plane(plane_state, fb);
10282 plane_state->crtc_x = 0;
10283 plane_state->crtc_y = 0;
10284 plane_state->crtc_w = hdisplay;
10285 plane_state->crtc_h = vdisplay;
10286 plane_state->src_x = x << 16;
10287 plane_state->src_y = y << 16;
10288 plane_state->src_w = hdisplay << 16;
10289 plane_state->src_h = vdisplay << 16;
10291 return 0;
10294 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10295 struct drm_display_mode *mode,
10296 struct intel_load_detect_pipe *old,
10297 struct drm_modeset_acquire_ctx *ctx)
10299 struct intel_crtc *intel_crtc;
10300 struct intel_encoder *intel_encoder =
10301 intel_attached_encoder(connector);
10302 struct drm_crtc *possible_crtc;
10303 struct drm_encoder *encoder = &intel_encoder->base;
10304 struct drm_crtc *crtc = NULL;
10305 struct drm_device *dev = encoder->dev;
10306 struct drm_framebuffer *fb;
10307 struct drm_mode_config *config = &dev->mode_config;
10308 struct drm_atomic_state *state = NULL;
10309 struct drm_connector_state *connector_state;
10310 struct intel_crtc_state *crtc_state;
10311 int ret, i = -1;
10313 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10314 connector->base.id, connector->name,
10315 encoder->base.id, encoder->name);
10317 retry:
10318 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10319 if (ret)
10320 goto fail;
10323 * Algorithm gets a little messy:
10325 * - if the connector already has an assigned crtc, use it (but make
10326 * sure it's on first)
10328 * - try to find the first unused crtc that can drive this connector,
10329 * and use that if we find one
10332 /* See if we already have a CRTC for this connector */
10333 if (encoder->crtc) {
10334 crtc = encoder->crtc;
10336 ret = drm_modeset_lock(&crtc->mutex, ctx);
10337 if (ret)
10338 goto fail;
10339 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10340 if (ret)
10341 goto fail;
10343 old->dpms_mode = connector->dpms;
10344 old->load_detect_temp = false;
10346 /* Make sure the crtc and connector are running */
10347 if (connector->dpms != DRM_MODE_DPMS_ON)
10348 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10350 return true;
10353 /* Find an unused one (if possible) */
10354 for_each_crtc(dev, possible_crtc) {
10355 i++;
10356 if (!(encoder->possible_crtcs & (1 << i)))
10357 continue;
10358 if (possible_crtc->state->enable)
10359 continue;
10361 crtc = possible_crtc;
10362 break;
10366 * If we didn't find an unused CRTC, don't use any.
10368 if (!crtc) {
10369 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10370 goto fail;
10373 ret = drm_modeset_lock(&crtc->mutex, ctx);
10374 if (ret)
10375 goto fail;
10376 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10377 if (ret)
10378 goto fail;
10380 intel_crtc = to_intel_crtc(crtc);
10381 old->dpms_mode = connector->dpms;
10382 old->load_detect_temp = true;
10383 old->release_fb = NULL;
10385 state = drm_atomic_state_alloc(dev);
10386 if (!state)
10387 return false;
10389 state->acquire_ctx = ctx;
10391 connector_state = drm_atomic_get_connector_state(state, connector);
10392 if (IS_ERR(connector_state)) {
10393 ret = PTR_ERR(connector_state);
10394 goto fail;
10397 connector_state->crtc = crtc;
10398 connector_state->best_encoder = &intel_encoder->base;
10400 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10401 if (IS_ERR(crtc_state)) {
10402 ret = PTR_ERR(crtc_state);
10403 goto fail;
10406 crtc_state->base.active = crtc_state->base.enable = true;
10408 if (!mode)
10409 mode = &load_detect_mode;
10411 /* We need a framebuffer large enough to accommodate all accesses
10412 * that the plane may generate whilst we perform load detection.
10413 * We can not rely on the fbcon either being present (we get called
10414 * during its initialisation to detect all boot displays, or it may
10415 * not even exist) or that it is large enough to satisfy the
10416 * requested mode.
10418 fb = mode_fits_in_fbdev(dev, mode);
10419 if (fb == NULL) {
10420 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10421 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10422 old->release_fb = fb;
10423 } else
10424 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10425 if (IS_ERR(fb)) {
10426 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10427 goto fail;
10430 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10431 if (ret)
10432 goto fail;
10434 drm_mode_copy(&crtc_state->base.mode, mode);
10436 if (drm_atomic_commit(state)) {
10437 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10438 if (old->release_fb)
10439 old->release_fb->funcs->destroy(old->release_fb);
10440 goto fail;
10442 crtc->primary->crtc = crtc;
10444 /* let the connector get through one full cycle before testing */
10445 intel_wait_for_vblank(dev, intel_crtc->pipe);
10446 return true;
10448 fail:
10449 drm_atomic_state_free(state);
10450 state = NULL;
10452 if (ret == -EDEADLK) {
10453 drm_modeset_backoff(ctx);
10454 goto retry;
10457 return false;
10460 void intel_release_load_detect_pipe(struct drm_connector *connector,
10461 struct intel_load_detect_pipe *old,
10462 struct drm_modeset_acquire_ctx *ctx)
10464 struct drm_device *dev = connector->dev;
10465 struct intel_encoder *intel_encoder =
10466 intel_attached_encoder(connector);
10467 struct drm_encoder *encoder = &intel_encoder->base;
10468 struct drm_crtc *crtc = encoder->crtc;
10469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10470 struct drm_atomic_state *state;
10471 struct drm_connector_state *connector_state;
10472 struct intel_crtc_state *crtc_state;
10473 int ret;
10475 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10476 connector->base.id, connector->name,
10477 encoder->base.id, encoder->name);
10479 if (old->load_detect_temp) {
10480 state = drm_atomic_state_alloc(dev);
10481 if (!state)
10482 goto fail;
10484 state->acquire_ctx = ctx;
10486 connector_state = drm_atomic_get_connector_state(state, connector);
10487 if (IS_ERR(connector_state))
10488 goto fail;
10490 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10491 if (IS_ERR(crtc_state))
10492 goto fail;
10494 connector_state->best_encoder = NULL;
10495 connector_state->crtc = NULL;
10497 crtc_state->base.enable = crtc_state->base.active = false;
10499 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10500 0, 0);
10501 if (ret)
10502 goto fail;
10504 ret = drm_atomic_commit(state);
10505 if (ret)
10506 goto fail;
10508 if (old->release_fb) {
10509 drm_framebuffer_unregister_private(old->release_fb);
10510 drm_framebuffer_unreference(old->release_fb);
10513 return;
10516 /* Switch crtc and encoder back off if necessary */
10517 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10518 connector->funcs->dpms(connector, old->dpms_mode);
10520 return;
10521 fail:
10522 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10523 drm_atomic_state_free(state);
10526 static int i9xx_pll_refclk(struct drm_device *dev,
10527 const struct intel_crtc_state *pipe_config)
10529 struct drm_i915_private *dev_priv = dev->dev_private;
10530 u32 dpll = pipe_config->dpll_hw_state.dpll;
10532 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10533 return dev_priv->vbt.lvds_ssc_freq;
10534 else if (HAS_PCH_SPLIT(dev))
10535 return 120000;
10536 else if (!IS_GEN2(dev))
10537 return 96000;
10538 else
10539 return 48000;
10542 /* Returns the clock of the currently programmed mode of the given pipe. */
10543 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10544 struct intel_crtc_state *pipe_config)
10546 struct drm_device *dev = crtc->base.dev;
10547 struct drm_i915_private *dev_priv = dev->dev_private;
10548 int pipe = pipe_config->cpu_transcoder;
10549 u32 dpll = pipe_config->dpll_hw_state.dpll;
10550 u32 fp;
10551 intel_clock_t clock;
10552 int port_clock;
10553 int refclk = i9xx_pll_refclk(dev, pipe_config);
10555 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10556 fp = pipe_config->dpll_hw_state.fp0;
10557 else
10558 fp = pipe_config->dpll_hw_state.fp1;
10560 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10561 if (IS_PINEVIEW(dev)) {
10562 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10563 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10564 } else {
10565 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10566 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10569 if (!IS_GEN2(dev)) {
10570 if (IS_PINEVIEW(dev))
10571 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10572 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10573 else
10574 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10575 DPLL_FPA01_P1_POST_DIV_SHIFT);
10577 switch (dpll & DPLL_MODE_MASK) {
10578 case DPLLB_MODE_DAC_SERIAL:
10579 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10580 5 : 10;
10581 break;
10582 case DPLLB_MODE_LVDS:
10583 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10584 7 : 14;
10585 break;
10586 default:
10587 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10588 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10589 return;
10592 if (IS_PINEVIEW(dev))
10593 port_clock = pnv_calc_dpll_params(refclk, &clock);
10594 else
10595 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10596 } else {
10597 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10598 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10600 if (is_lvds) {
10601 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10602 DPLL_FPA01_P1_POST_DIV_SHIFT);
10604 if (lvds & LVDS_CLKB_POWER_UP)
10605 clock.p2 = 7;
10606 else
10607 clock.p2 = 14;
10608 } else {
10609 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10610 clock.p1 = 2;
10611 else {
10612 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10613 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10615 if (dpll & PLL_P2_DIVIDE_BY_4)
10616 clock.p2 = 4;
10617 else
10618 clock.p2 = 2;
10621 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10625 * This value includes pixel_multiplier. We will use
10626 * port_clock to compute adjusted_mode.crtc_clock in the
10627 * encoder's get_config() function.
10629 pipe_config->port_clock = port_clock;
10632 int intel_dotclock_calculate(int link_freq,
10633 const struct intel_link_m_n *m_n)
10636 * The calculation for the data clock is:
10637 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10638 * But we want to avoid losing precison if possible, so:
10639 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10641 * and the link clock is simpler:
10642 * link_clock = (m * link_clock) / n
10645 if (!m_n->link_n)
10646 return 0;
10648 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10651 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10652 struct intel_crtc_state *pipe_config)
10654 struct drm_device *dev = crtc->base.dev;
10656 /* read out port_clock from the DPLL */
10657 i9xx_crtc_clock_get(crtc, pipe_config);
10660 * This value does not include pixel_multiplier.
10661 * We will check that port_clock and adjusted_mode.crtc_clock
10662 * agree once we know their relationship in the encoder's
10663 * get_config() function.
10665 pipe_config->base.adjusted_mode.crtc_clock =
10666 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10667 &pipe_config->fdi_m_n);
10670 /** Returns the currently programmed mode of the given pipe. */
10671 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10672 struct drm_crtc *crtc)
10674 struct drm_i915_private *dev_priv = dev->dev_private;
10675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10676 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10677 struct drm_display_mode *mode;
10678 struct intel_crtc_state pipe_config;
10679 int htot = I915_READ(HTOTAL(cpu_transcoder));
10680 int hsync = I915_READ(HSYNC(cpu_transcoder));
10681 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10682 int vsync = I915_READ(VSYNC(cpu_transcoder));
10683 enum pipe pipe = intel_crtc->pipe;
10685 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10686 if (!mode)
10687 return NULL;
10690 * Construct a pipe_config sufficient for getting the clock info
10691 * back out of crtc_clock_get.
10693 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10694 * to use a real value here instead.
10696 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10697 pipe_config.pixel_multiplier = 1;
10698 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10699 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10700 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10701 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10703 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10704 mode->hdisplay = (htot & 0xffff) + 1;
10705 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10706 mode->hsync_start = (hsync & 0xffff) + 1;
10707 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10708 mode->vdisplay = (vtot & 0xffff) + 1;
10709 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10710 mode->vsync_start = (vsync & 0xffff) + 1;
10711 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10713 drm_mode_set_name(mode);
10715 return mode;
10718 void intel_mark_busy(struct drm_device *dev)
10720 struct drm_i915_private *dev_priv = dev->dev_private;
10722 if (dev_priv->mm.busy)
10723 return;
10725 intel_runtime_pm_get(dev_priv);
10726 i915_update_gfx_val(dev_priv);
10727 if (INTEL_INFO(dev)->gen >= 6)
10728 gen6_rps_busy(dev_priv);
10729 dev_priv->mm.busy = true;
10732 void intel_mark_idle(struct drm_device *dev)
10734 struct drm_i915_private *dev_priv = dev->dev_private;
10736 if (!dev_priv->mm.busy)
10737 return;
10739 dev_priv->mm.busy = false;
10741 if (INTEL_INFO(dev)->gen >= 6)
10742 gen6_rps_idle(dev->dev_private);
10744 intel_runtime_pm_put(dev_priv);
10747 static void intel_crtc_destroy(struct drm_crtc *crtc)
10749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10750 struct drm_device *dev = crtc->dev;
10751 struct intel_unpin_work *work;
10753 spin_lock_irq(&dev->event_lock);
10754 work = intel_crtc->unpin_work;
10755 intel_crtc->unpin_work = NULL;
10756 spin_unlock_irq(&dev->event_lock);
10758 if (work) {
10759 cancel_work_sync(&work->work);
10760 kfree(work);
10763 drm_crtc_cleanup(crtc);
10765 kfree(intel_crtc);
10768 static void intel_unpin_work_fn(struct work_struct *__work)
10770 struct intel_unpin_work *work =
10771 container_of(__work, struct intel_unpin_work, work);
10772 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10773 struct drm_device *dev = crtc->base.dev;
10774 struct drm_plane *primary = crtc->base.primary;
10776 mutex_lock(&dev->struct_mutex);
10777 intel_unpin_fb_obj(work->old_fb, primary->state);
10778 drm_gem_object_unreference(&work->pending_flip_obj->base);
10780 if (work->flip_queued_req)
10781 i915_gem_request_assign(&work->flip_queued_req, NULL);
10782 mutex_unlock(&dev->struct_mutex);
10784 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10785 drm_framebuffer_unreference(work->old_fb);
10787 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10788 atomic_dec(&crtc->unpin_work_count);
10790 kfree(work);
10793 static void do_intel_finish_page_flip(struct drm_device *dev,
10794 struct drm_crtc *crtc)
10796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10797 struct intel_unpin_work *work;
10798 unsigned long flags;
10800 /* Ignore early vblank irqs */
10801 if (intel_crtc == NULL)
10802 return;
10805 * This is called both by irq handlers and the reset code (to complete
10806 * lost pageflips) so needs the full irqsave spinlocks.
10808 spin_lock_irqsave(&dev->event_lock, flags);
10809 work = intel_crtc->unpin_work;
10811 /* Ensure we don't miss a work->pending update ... */
10812 smp_rmb();
10814 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10815 spin_unlock_irqrestore(&dev->event_lock, flags);
10816 return;
10819 page_flip_completed(intel_crtc);
10821 spin_unlock_irqrestore(&dev->event_lock, flags);
10824 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10826 struct drm_i915_private *dev_priv = dev->dev_private;
10827 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10829 do_intel_finish_page_flip(dev, crtc);
10832 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10834 struct drm_i915_private *dev_priv = dev->dev_private;
10835 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10837 do_intel_finish_page_flip(dev, crtc);
10840 /* Is 'a' after or equal to 'b'? */
10841 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10843 return !((a - b) & 0x80000000);
10846 static bool page_flip_finished(struct intel_crtc *crtc)
10848 struct drm_device *dev = crtc->base.dev;
10849 struct drm_i915_private *dev_priv = dev->dev_private;
10851 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10852 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10853 return true;
10856 * The relevant registers doen't exist on pre-ctg.
10857 * As the flip done interrupt doesn't trigger for mmio
10858 * flips on gmch platforms, a flip count check isn't
10859 * really needed there. But since ctg has the registers,
10860 * include it in the check anyway.
10862 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10863 return true;
10866 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10867 * used the same base address. In that case the mmio flip might
10868 * have completed, but the CS hasn't even executed the flip yet.
10870 * A flip count check isn't enough as the CS might have updated
10871 * the base address just after start of vblank, but before we
10872 * managed to process the interrupt. This means we'd complete the
10873 * CS flip too soon.
10875 * Combining both checks should get us a good enough result. It may
10876 * still happen that the CS flip has been executed, but has not
10877 * yet actually completed. But in case the base address is the same
10878 * anyway, we don't really care.
10880 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10881 crtc->unpin_work->gtt_offset &&
10882 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10883 crtc->unpin_work->flip_count);
10886 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10888 struct drm_i915_private *dev_priv = dev->dev_private;
10889 struct intel_crtc *intel_crtc =
10890 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10891 unsigned long flags;
10895 * This is called both by irq handlers and the reset code (to complete
10896 * lost pageflips) so needs the full irqsave spinlocks.
10898 * NB: An MMIO update of the plane base pointer will also
10899 * generate a page-flip completion irq, i.e. every modeset
10900 * is also accompanied by a spurious intel_prepare_page_flip().
10902 spin_lock_irqsave(&dev->event_lock, flags);
10903 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10904 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10905 spin_unlock_irqrestore(&dev->event_lock, flags);
10908 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10910 /* Ensure that the work item is consistent when activating it ... */
10911 smp_wmb();
10912 atomic_set(&work->pending, INTEL_FLIP_PENDING);
10913 /* and that it is marked active as soon as the irq could fire. */
10914 smp_wmb();
10917 static int intel_gen2_queue_flip(struct drm_device *dev,
10918 struct drm_crtc *crtc,
10919 struct drm_framebuffer *fb,
10920 struct drm_i915_gem_object *obj,
10921 struct drm_i915_gem_request *req,
10922 uint32_t flags)
10924 struct intel_engine_cs *ring = req->ring;
10925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10926 u32 flip_mask;
10927 int ret;
10929 ret = intel_ring_begin(req, 6);
10930 if (ret)
10931 return ret;
10933 /* Can't queue multiple flips, so wait for the previous
10934 * one to finish before executing the next.
10936 if (intel_crtc->plane)
10937 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10938 else
10939 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10940 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10941 intel_ring_emit(ring, MI_NOOP);
10942 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10943 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10944 intel_ring_emit(ring, fb->pitches[0]);
10945 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10946 intel_ring_emit(ring, 0); /* aux display base address, unused */
10948 intel_mark_page_flip_active(intel_crtc->unpin_work);
10949 return 0;
10952 static int intel_gen3_queue_flip(struct drm_device *dev,
10953 struct drm_crtc *crtc,
10954 struct drm_framebuffer *fb,
10955 struct drm_i915_gem_object *obj,
10956 struct drm_i915_gem_request *req,
10957 uint32_t flags)
10959 struct intel_engine_cs *ring = req->ring;
10960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10961 u32 flip_mask;
10962 int ret;
10964 ret = intel_ring_begin(req, 6);
10965 if (ret)
10966 return ret;
10968 if (intel_crtc->plane)
10969 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10970 else
10971 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10972 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10973 intel_ring_emit(ring, MI_NOOP);
10974 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10975 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10976 intel_ring_emit(ring, fb->pitches[0]);
10977 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10978 intel_ring_emit(ring, MI_NOOP);
10980 intel_mark_page_flip_active(intel_crtc->unpin_work);
10981 return 0;
10984 static int intel_gen4_queue_flip(struct drm_device *dev,
10985 struct drm_crtc *crtc,
10986 struct drm_framebuffer *fb,
10987 struct drm_i915_gem_object *obj,
10988 struct drm_i915_gem_request *req,
10989 uint32_t flags)
10991 struct intel_engine_cs *ring = req->ring;
10992 struct drm_i915_private *dev_priv = dev->dev_private;
10993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10994 uint32_t pf, pipesrc;
10995 int ret;
10997 ret = intel_ring_begin(req, 4);
10998 if (ret)
10999 return ret;
11001 /* i965+ uses the linear or tiled offsets from the
11002 * Display Registers (which do not change across a page-flip)
11003 * so we need only reprogram the base address.
11005 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11006 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11007 intel_ring_emit(ring, fb->pitches[0]);
11008 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11009 obj->tiling_mode);
11011 /* XXX Enabling the panel-fitter across page-flip is so far
11012 * untested on non-native modes, so ignore it for now.
11013 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11015 pf = 0;
11016 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11017 intel_ring_emit(ring, pf | pipesrc);
11019 intel_mark_page_flip_active(intel_crtc->unpin_work);
11020 return 0;
11023 static int intel_gen6_queue_flip(struct drm_device *dev,
11024 struct drm_crtc *crtc,
11025 struct drm_framebuffer *fb,
11026 struct drm_i915_gem_object *obj,
11027 struct drm_i915_gem_request *req,
11028 uint32_t flags)
11030 struct intel_engine_cs *ring = req->ring;
11031 struct drm_i915_private *dev_priv = dev->dev_private;
11032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11033 uint32_t pf, pipesrc;
11034 int ret;
11036 ret = intel_ring_begin(req, 4);
11037 if (ret)
11038 return ret;
11040 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11041 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11042 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11043 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11045 /* Contrary to the suggestions in the documentation,
11046 * "Enable Panel Fitter" does not seem to be required when page
11047 * flipping with a non-native mode, and worse causes a normal
11048 * modeset to fail.
11049 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11051 pf = 0;
11052 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11053 intel_ring_emit(ring, pf | pipesrc);
11055 intel_mark_page_flip_active(intel_crtc->unpin_work);
11056 return 0;
11059 static int intel_gen7_queue_flip(struct drm_device *dev,
11060 struct drm_crtc *crtc,
11061 struct drm_framebuffer *fb,
11062 struct drm_i915_gem_object *obj,
11063 struct drm_i915_gem_request *req,
11064 uint32_t flags)
11066 struct intel_engine_cs *ring = req->ring;
11067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11068 uint32_t plane_bit = 0;
11069 int len, ret;
11071 switch (intel_crtc->plane) {
11072 case PLANE_A:
11073 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11074 break;
11075 case PLANE_B:
11076 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11077 break;
11078 case PLANE_C:
11079 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11080 break;
11081 default:
11082 WARN_ONCE(1, "unknown plane in flip command\n");
11083 return -ENODEV;
11086 len = 4;
11087 if (ring->id == RCS) {
11088 len += 6;
11090 * On Gen 8, SRM is now taking an extra dword to accommodate
11091 * 48bits addresses, and we need a NOOP for the batch size to
11092 * stay even.
11094 if (IS_GEN8(dev))
11095 len += 2;
11099 * BSpec MI_DISPLAY_FLIP for IVB:
11100 * "The full packet must be contained within the same cache line."
11102 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11103 * cacheline, if we ever start emitting more commands before
11104 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11105 * then do the cacheline alignment, and finally emit the
11106 * MI_DISPLAY_FLIP.
11108 ret = intel_ring_cacheline_align(req);
11109 if (ret)
11110 return ret;
11112 ret = intel_ring_begin(req, len);
11113 if (ret)
11114 return ret;
11116 /* Unmask the flip-done completion message. Note that the bspec says that
11117 * we should do this for both the BCS and RCS, and that we must not unmask
11118 * more than one flip event at any time (or ensure that one flip message
11119 * can be sent by waiting for flip-done prior to queueing new flips).
11120 * Experimentation says that BCS works despite DERRMR masking all
11121 * flip-done completion events and that unmasking all planes at once
11122 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11123 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11125 if (ring->id == RCS) {
11126 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11127 intel_ring_emit(ring, DERRMR);
11128 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11129 DERRMR_PIPEB_PRI_FLIP_DONE |
11130 DERRMR_PIPEC_PRI_FLIP_DONE));
11131 if (IS_GEN8(dev))
11132 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11133 MI_SRM_LRM_GLOBAL_GTT);
11134 else
11135 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11136 MI_SRM_LRM_GLOBAL_GTT);
11137 intel_ring_emit(ring, DERRMR);
11138 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11139 if (IS_GEN8(dev)) {
11140 intel_ring_emit(ring, 0);
11141 intel_ring_emit(ring, MI_NOOP);
11145 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11146 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11147 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11148 intel_ring_emit(ring, (MI_NOOP));
11150 intel_mark_page_flip_active(intel_crtc->unpin_work);
11151 return 0;
11154 static bool use_mmio_flip(struct intel_engine_cs *ring,
11155 struct drm_i915_gem_object *obj)
11158 * This is not being used for older platforms, because
11159 * non-availability of flip done interrupt forces us to use
11160 * CS flips. Older platforms derive flip done using some clever
11161 * tricks involving the flip_pending status bits and vblank irqs.
11162 * So using MMIO flips there would disrupt this mechanism.
11165 if (ring == NULL)
11166 return true;
11168 if (INTEL_INFO(ring->dev)->gen < 5)
11169 return false;
11171 if (i915.use_mmio_flip < 0)
11172 return false;
11173 else if (i915.use_mmio_flip > 0)
11174 return true;
11175 else if (i915.enable_execlists)
11176 return true;
11177 else
11178 return ring != i915_gem_request_get_ring(obj->last_write_req);
11181 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11182 struct intel_unpin_work *work)
11184 struct drm_device *dev = intel_crtc->base.dev;
11185 struct drm_i915_private *dev_priv = dev->dev_private;
11186 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11187 const enum pipe pipe = intel_crtc->pipe;
11188 u32 ctl, stride;
11190 ctl = I915_READ(PLANE_CTL(pipe, 0));
11191 ctl &= ~PLANE_CTL_TILED_MASK;
11192 switch (fb->modifier[0]) {
11193 case DRM_FORMAT_MOD_NONE:
11194 break;
11195 case I915_FORMAT_MOD_X_TILED:
11196 ctl |= PLANE_CTL_TILED_X;
11197 break;
11198 case I915_FORMAT_MOD_Y_TILED:
11199 ctl |= PLANE_CTL_TILED_Y;
11200 break;
11201 case I915_FORMAT_MOD_Yf_TILED:
11202 ctl |= PLANE_CTL_TILED_YF;
11203 break;
11204 default:
11205 MISSING_CASE(fb->modifier[0]);
11209 * The stride is either expressed as a multiple of 64 bytes chunks for
11210 * linear buffers or in number of tiles for tiled buffers.
11212 stride = fb->pitches[0] /
11213 intel_fb_stride_alignment(dev, fb->modifier[0],
11214 fb->pixel_format);
11217 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11218 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11220 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11221 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11223 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11224 POSTING_READ(PLANE_SURF(pipe, 0));
11227 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11228 struct intel_unpin_work *work)
11230 struct drm_device *dev = intel_crtc->base.dev;
11231 struct drm_i915_private *dev_priv = dev->dev_private;
11232 struct intel_framebuffer *intel_fb =
11233 to_intel_framebuffer(intel_crtc->base.primary->fb);
11234 struct drm_i915_gem_object *obj = intel_fb->obj;
11235 u32 dspcntr;
11236 u32 reg;
11238 reg = DSPCNTR(intel_crtc->plane);
11239 dspcntr = I915_READ(reg);
11241 if (obj->tiling_mode != I915_TILING_NONE)
11242 dspcntr |= DISPPLANE_TILED;
11243 else
11244 dspcntr &= ~DISPPLANE_TILED;
11246 I915_WRITE(reg, dspcntr);
11248 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11249 POSTING_READ(DSPSURF(intel_crtc->plane));
11253 * XXX: This is the temporary way to update the plane registers until we get
11254 * around to using the usual plane update functions for MMIO flips
11256 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11258 struct intel_crtc *crtc = mmio_flip->crtc;
11259 struct intel_unpin_work *work;
11261 spin_lock_irq(&crtc->base.dev->event_lock);
11262 work = crtc->unpin_work;
11263 spin_unlock_irq(&crtc->base.dev->event_lock);
11264 if (work == NULL)
11265 return;
11267 intel_mark_page_flip_active(work);
11269 intel_pipe_update_start(crtc);
11271 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11272 skl_do_mmio_flip(crtc, work);
11273 else
11274 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11275 ilk_do_mmio_flip(crtc, work);
11277 intel_pipe_update_end(crtc);
11280 static void intel_mmio_flip_work_func(struct work_struct *work)
11282 struct intel_mmio_flip *mmio_flip =
11283 container_of(work, struct intel_mmio_flip, work);
11285 if (mmio_flip->req) {
11286 WARN_ON(__i915_wait_request(mmio_flip->req,
11287 mmio_flip->crtc->reset_counter,
11288 false, NULL,
11289 &mmio_flip->i915->rps.mmioflips));
11290 i915_gem_request_unreference__unlocked(mmio_flip->req);
11293 intel_do_mmio_flip(mmio_flip);
11294 kfree(mmio_flip);
11297 static int intel_queue_mmio_flip(struct drm_device *dev,
11298 struct drm_crtc *crtc,
11299 struct drm_framebuffer *fb,
11300 struct drm_i915_gem_object *obj,
11301 struct intel_engine_cs *ring,
11302 uint32_t flags)
11304 struct intel_mmio_flip *mmio_flip;
11306 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11307 if (mmio_flip == NULL)
11308 return -ENOMEM;
11310 mmio_flip->i915 = to_i915(dev);
11311 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11312 mmio_flip->crtc = to_intel_crtc(crtc);
11314 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11315 schedule_work(&mmio_flip->work);
11317 return 0;
11320 static int intel_default_queue_flip(struct drm_device *dev,
11321 struct drm_crtc *crtc,
11322 struct drm_framebuffer *fb,
11323 struct drm_i915_gem_object *obj,
11324 struct drm_i915_gem_request *req,
11325 uint32_t flags)
11327 return -ENODEV;
11330 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11331 struct drm_crtc *crtc)
11333 struct drm_i915_private *dev_priv = dev->dev_private;
11334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11335 struct intel_unpin_work *work = intel_crtc->unpin_work;
11336 u32 addr;
11338 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11339 return true;
11341 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11342 return false;
11344 if (!work->enable_stall_check)
11345 return false;
11347 if (work->flip_ready_vblank == 0) {
11348 if (work->flip_queued_req &&
11349 !i915_gem_request_completed(work->flip_queued_req, true))
11350 return false;
11352 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11355 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11356 return false;
11358 /* Potential stall - if we see that the flip has happened,
11359 * assume a missed interrupt. */
11360 if (INTEL_INFO(dev)->gen >= 4)
11361 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11362 else
11363 addr = I915_READ(DSPADDR(intel_crtc->plane));
11365 /* There is a potential issue here with a false positive after a flip
11366 * to the same address. We could address this by checking for a
11367 * non-incrementing frame counter.
11369 return addr == work->gtt_offset;
11372 void intel_check_page_flip(struct drm_device *dev, int pipe)
11374 struct drm_i915_private *dev_priv = dev->dev_private;
11375 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11377 struct intel_unpin_work *work;
11379 WARN_ON(!in_interrupt());
11381 if (crtc == NULL)
11382 return;
11384 spin_lock(&dev->event_lock);
11385 work = intel_crtc->unpin_work;
11386 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11387 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11388 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11389 page_flip_completed(intel_crtc);
11390 work = NULL;
11392 if (work != NULL &&
11393 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11394 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11395 spin_unlock(&dev->event_lock);
11398 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11399 struct drm_framebuffer *fb,
11400 struct drm_pending_vblank_event *event,
11401 uint32_t page_flip_flags)
11403 struct drm_device *dev = crtc->dev;
11404 struct drm_i915_private *dev_priv = dev->dev_private;
11405 struct drm_framebuffer *old_fb = crtc->primary->fb;
11406 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11408 struct drm_plane *primary = crtc->primary;
11409 enum pipe pipe = intel_crtc->pipe;
11410 struct intel_unpin_work *work;
11411 struct intel_engine_cs *ring;
11412 bool mmio_flip;
11413 struct drm_i915_gem_request *request = NULL;
11414 int ret;
11417 * drm_mode_page_flip_ioctl() should already catch this, but double
11418 * check to be safe. In the future we may enable pageflipping from
11419 * a disabled primary plane.
11421 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11422 return -EBUSY;
11424 /* Can't change pixel format via MI display flips. */
11425 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11426 return -EINVAL;
11429 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11430 * Note that pitch changes could also affect these register.
11432 if (INTEL_INFO(dev)->gen > 3 &&
11433 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11434 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11435 return -EINVAL;
11437 if (i915_terminally_wedged(&dev_priv->gpu_error))
11438 goto out_hang;
11440 work = kzalloc(sizeof(*work), GFP_KERNEL);
11441 if (work == NULL)
11442 return -ENOMEM;
11444 work->event = event;
11445 work->crtc = crtc;
11446 work->old_fb = old_fb;
11447 INIT_WORK(&work->work, intel_unpin_work_fn);
11449 ret = drm_crtc_vblank_get(crtc);
11450 if (ret)
11451 goto free_work;
11453 /* We borrow the event spin lock for protecting unpin_work */
11454 spin_lock_irq(&dev->event_lock);
11455 if (intel_crtc->unpin_work) {
11456 /* Before declaring the flip queue wedged, check if
11457 * the hardware completed the operation behind our backs.
11459 if (__intel_pageflip_stall_check(dev, crtc)) {
11460 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11461 page_flip_completed(intel_crtc);
11462 } else {
11463 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11464 spin_unlock_irq(&dev->event_lock);
11466 drm_crtc_vblank_put(crtc);
11467 kfree(work);
11468 return -EBUSY;
11471 intel_crtc->unpin_work = work;
11472 spin_unlock_irq(&dev->event_lock);
11474 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11475 flush_workqueue(dev_priv->wq);
11477 /* Reference the objects for the scheduled work. */
11478 drm_framebuffer_reference(work->old_fb);
11479 drm_gem_object_reference(&obj->base);
11481 crtc->primary->fb = fb;
11482 update_state_fb(crtc->primary);
11484 work->pending_flip_obj = obj;
11486 ret = i915_mutex_lock_interruptible(dev);
11487 if (ret)
11488 goto cleanup;
11490 atomic_inc(&intel_crtc->unpin_work_count);
11491 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11493 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11494 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11496 if (IS_VALLEYVIEW(dev)) {
11497 ring = &dev_priv->ring[BCS];
11498 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11499 /* vlv: DISPLAY_FLIP fails to change tiling */
11500 ring = NULL;
11501 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11502 ring = &dev_priv->ring[BCS];
11503 } else if (INTEL_INFO(dev)->gen >= 7) {
11504 ring = i915_gem_request_get_ring(obj->last_write_req);
11505 if (ring == NULL || ring->id != RCS)
11506 ring = &dev_priv->ring[BCS];
11507 } else {
11508 ring = &dev_priv->ring[RCS];
11511 mmio_flip = use_mmio_flip(ring, obj);
11513 /* When using CS flips, we want to emit semaphores between rings.
11514 * However, when using mmio flips we will create a task to do the
11515 * synchronisation, so all we want here is to pin the framebuffer
11516 * into the display plane and skip any waits.
11518 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11519 crtc->primary->state,
11520 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11521 if (ret)
11522 goto cleanup_pending;
11524 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11525 obj, 0);
11526 work->gtt_offset += intel_crtc->dspaddr_offset;
11528 if (mmio_flip) {
11529 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11530 page_flip_flags);
11531 if (ret)
11532 goto cleanup_unpin;
11534 i915_gem_request_assign(&work->flip_queued_req,
11535 obj->last_write_req);
11536 } else {
11537 if (!request) {
11538 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11539 if (ret)
11540 goto cleanup_unpin;
11543 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11544 page_flip_flags);
11545 if (ret)
11546 goto cleanup_unpin;
11548 i915_gem_request_assign(&work->flip_queued_req, request);
11551 if (request)
11552 i915_add_request_no_flush(request);
11554 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11555 work->enable_stall_check = true;
11557 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11558 to_intel_plane(primary)->frontbuffer_bit);
11559 mutex_unlock(&dev->struct_mutex);
11561 intel_fbc_disable_crtc(intel_crtc);
11562 intel_frontbuffer_flip_prepare(dev,
11563 to_intel_plane(primary)->frontbuffer_bit);
11565 trace_i915_flip_request(intel_crtc->plane, obj);
11567 return 0;
11569 cleanup_unpin:
11570 intel_unpin_fb_obj(fb, crtc->primary->state);
11571 cleanup_pending:
11572 if (request)
11573 i915_gem_request_cancel(request);
11574 atomic_dec(&intel_crtc->unpin_work_count);
11575 mutex_unlock(&dev->struct_mutex);
11576 cleanup:
11577 crtc->primary->fb = old_fb;
11578 update_state_fb(crtc->primary);
11580 drm_gem_object_unreference_unlocked(&obj->base);
11581 drm_framebuffer_unreference(work->old_fb);
11583 spin_lock_irq(&dev->event_lock);
11584 intel_crtc->unpin_work = NULL;
11585 spin_unlock_irq(&dev->event_lock);
11587 drm_crtc_vblank_put(crtc);
11588 free_work:
11589 kfree(work);
11591 if (ret == -EIO) {
11592 struct drm_atomic_state *state;
11593 struct drm_plane_state *plane_state;
11595 out_hang:
11596 state = drm_atomic_state_alloc(dev);
11597 if (!state)
11598 return -ENOMEM;
11599 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11601 retry:
11602 plane_state = drm_atomic_get_plane_state(state, primary);
11603 ret = PTR_ERR_OR_ZERO(plane_state);
11604 if (!ret) {
11605 drm_atomic_set_fb_for_plane(plane_state, fb);
11607 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11608 if (!ret)
11609 ret = drm_atomic_commit(state);
11612 if (ret == -EDEADLK) {
11613 drm_modeset_backoff(state->acquire_ctx);
11614 drm_atomic_state_clear(state);
11615 goto retry;
11618 if (ret)
11619 drm_atomic_state_free(state);
11621 if (ret == 0 && event) {
11622 spin_lock_irq(&dev->event_lock);
11623 drm_send_vblank_event(dev, pipe, event);
11624 spin_unlock_irq(&dev->event_lock);
11627 return ret;
11632 * intel_wm_need_update - Check whether watermarks need updating
11633 * @plane: drm plane
11634 * @state: new plane state
11636 * Check current plane state versus the new one to determine whether
11637 * watermarks need to be recalculated.
11639 * Returns true or false.
11641 static bool intel_wm_need_update(struct drm_plane *plane,
11642 struct drm_plane_state *state)
11644 /* Update watermarks on tiling changes. */
11645 if (!plane->state->fb || !state->fb ||
11646 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11647 plane->state->rotation != state->rotation)
11648 return true;
11650 if (plane->state->crtc_w != state->crtc_w)
11651 return true;
11653 return false;
11656 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11657 struct drm_plane_state *plane_state)
11659 struct drm_crtc *crtc = crtc_state->crtc;
11660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11661 struct drm_plane *plane = plane_state->plane;
11662 struct drm_device *dev = crtc->dev;
11663 struct drm_i915_private *dev_priv = dev->dev_private;
11664 struct intel_plane_state *old_plane_state =
11665 to_intel_plane_state(plane->state);
11666 int idx = intel_crtc->base.base.id, ret;
11667 int i = drm_plane_index(plane);
11668 bool mode_changed = needs_modeset(crtc_state);
11669 bool was_crtc_enabled = crtc->state->active;
11670 bool is_crtc_enabled = crtc_state->active;
11672 bool turn_off, turn_on, visible, was_visible;
11673 struct drm_framebuffer *fb = plane_state->fb;
11675 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11676 plane->type != DRM_PLANE_TYPE_CURSOR) {
11677 ret = skl_update_scaler_plane(
11678 to_intel_crtc_state(crtc_state),
11679 to_intel_plane_state(plane_state));
11680 if (ret)
11681 return ret;
11685 * Disabling a plane is always okay; we just need to update
11686 * fb tracking in a special way since cleanup_fb() won't
11687 * get called by the plane helpers.
11689 if (old_plane_state->base.fb && !fb)
11690 intel_crtc->atomic.disabled_planes |= 1 << i;
11692 was_visible = old_plane_state->visible;
11693 visible = to_intel_plane_state(plane_state)->visible;
11695 if (!was_crtc_enabled && WARN_ON(was_visible))
11696 was_visible = false;
11698 if (!is_crtc_enabled && WARN_ON(visible))
11699 visible = false;
11701 if (!was_visible && !visible)
11702 return 0;
11704 turn_off = was_visible && (!visible || mode_changed);
11705 turn_on = visible && (!was_visible || mode_changed);
11707 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11708 plane->base.id, fb ? fb->base.id : -1);
11710 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11711 plane->base.id, was_visible, visible,
11712 turn_off, turn_on, mode_changed);
11714 if (turn_on) {
11715 intel_crtc->atomic.update_wm_pre = true;
11716 /* must disable cxsr around plane enable/disable */
11717 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11718 intel_crtc->atomic.disable_cxsr = true;
11719 /* to potentially re-enable cxsr */
11720 intel_crtc->atomic.wait_vblank = true;
11721 intel_crtc->atomic.update_wm_post = true;
11723 } else if (turn_off) {
11724 intel_crtc->atomic.update_wm_post = true;
11725 /* must disable cxsr around plane enable/disable */
11726 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11727 if (is_crtc_enabled)
11728 intel_crtc->atomic.wait_vblank = true;
11729 intel_crtc->atomic.disable_cxsr = true;
11731 } else if (intel_wm_need_update(plane, plane_state)) {
11732 intel_crtc->atomic.update_wm_pre = true;
11735 if (visible || was_visible)
11736 intel_crtc->atomic.fb_bits |=
11737 to_intel_plane(plane)->frontbuffer_bit;
11739 switch (plane->type) {
11740 case DRM_PLANE_TYPE_PRIMARY:
11741 intel_crtc->atomic.wait_for_flips = true;
11742 intel_crtc->atomic.pre_disable_primary = turn_off;
11743 intel_crtc->atomic.post_enable_primary = turn_on;
11745 if (turn_off) {
11747 * FIXME: Actually if we will still have any other
11748 * plane enabled on the pipe we could let IPS enabled
11749 * still, but for now lets consider that when we make
11750 * primary invisible by setting DSPCNTR to 0 on
11751 * update_primary_plane function IPS needs to be
11752 * disable.
11754 intel_crtc->atomic.disable_ips = true;
11756 intel_crtc->atomic.disable_fbc = true;
11760 * FBC does not work on some platforms for rotated
11761 * planes, so disable it when rotation is not 0 and
11762 * update it when rotation is set back to 0.
11764 * FIXME: This is redundant with the fbc update done in
11765 * the primary plane enable function except that that
11766 * one is done too late. We eventually need to unify
11767 * this.
11770 if (visible &&
11771 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11772 dev_priv->fbc.crtc == intel_crtc &&
11773 plane_state->rotation != BIT(DRM_ROTATE_0))
11774 intel_crtc->atomic.disable_fbc = true;
11777 * BDW signals flip done immediately if the plane
11778 * is disabled, even if the plane enable is already
11779 * armed to occur at the next vblank :(
11781 if (turn_on && IS_BROADWELL(dev))
11782 intel_crtc->atomic.wait_vblank = true;
11784 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11785 break;
11786 case DRM_PLANE_TYPE_CURSOR:
11787 break;
11788 case DRM_PLANE_TYPE_OVERLAY:
11789 if (turn_off && !mode_changed) {
11790 intel_crtc->atomic.wait_vblank = true;
11791 intel_crtc->atomic.update_sprite_watermarks |=
11792 1 << i;
11795 return 0;
11798 static bool encoders_cloneable(const struct intel_encoder *a,
11799 const struct intel_encoder *b)
11801 /* masks could be asymmetric, so check both ways */
11802 return a == b || (a->cloneable & (1 << b->type) &&
11803 b->cloneable & (1 << a->type));
11806 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11807 struct intel_crtc *crtc,
11808 struct intel_encoder *encoder)
11810 struct intel_encoder *source_encoder;
11811 struct drm_connector *connector;
11812 struct drm_connector_state *connector_state;
11813 int i;
11815 for_each_connector_in_state(state, connector, connector_state, i) {
11816 if (connector_state->crtc != &crtc->base)
11817 continue;
11819 source_encoder =
11820 to_intel_encoder(connector_state->best_encoder);
11821 if (!encoders_cloneable(encoder, source_encoder))
11822 return false;
11825 return true;
11828 static bool check_encoder_cloning(struct drm_atomic_state *state,
11829 struct intel_crtc *crtc)
11831 struct intel_encoder *encoder;
11832 struct drm_connector *connector;
11833 struct drm_connector_state *connector_state;
11834 int i;
11836 for_each_connector_in_state(state, connector, connector_state, i) {
11837 if (connector_state->crtc != &crtc->base)
11838 continue;
11840 encoder = to_intel_encoder(connector_state->best_encoder);
11841 if (!check_single_encoder_cloning(state, crtc, encoder))
11842 return false;
11845 return true;
11848 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11849 struct drm_crtc_state *crtc_state)
11851 struct drm_device *dev = crtc->dev;
11852 struct drm_i915_private *dev_priv = dev->dev_private;
11853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11854 struct intel_crtc_state *pipe_config =
11855 to_intel_crtc_state(crtc_state);
11856 struct drm_atomic_state *state = crtc_state->state;
11857 int ret;
11858 bool mode_changed = needs_modeset(crtc_state);
11860 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11861 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11862 return -EINVAL;
11865 if (mode_changed && !crtc_state->active)
11866 intel_crtc->atomic.update_wm_post = true;
11868 if (mode_changed && crtc_state->enable &&
11869 dev_priv->display.crtc_compute_clock &&
11870 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11871 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11872 pipe_config);
11873 if (ret)
11874 return ret;
11877 ret = 0;
11878 if (INTEL_INFO(dev)->gen >= 9) {
11879 if (mode_changed)
11880 ret = skl_update_scaler_crtc(pipe_config);
11882 if (!ret)
11883 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11884 pipe_config);
11887 return ret;
11890 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11891 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11892 .load_lut = intel_crtc_load_lut,
11893 .atomic_begin = intel_begin_crtc_commit,
11894 .atomic_flush = intel_finish_crtc_commit,
11895 .atomic_check = intel_crtc_atomic_check,
11898 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11900 struct intel_connector *connector;
11902 for_each_intel_connector(dev, connector) {
11903 if (connector->base.encoder) {
11904 connector->base.state->best_encoder =
11905 connector->base.encoder;
11906 connector->base.state->crtc =
11907 connector->base.encoder->crtc;
11908 } else {
11909 connector->base.state->best_encoder = NULL;
11910 connector->base.state->crtc = NULL;
11915 static void
11916 connected_sink_compute_bpp(struct intel_connector *connector,
11917 struct intel_crtc_state *pipe_config)
11919 int bpp = pipe_config->pipe_bpp;
11921 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11922 connector->base.base.id,
11923 connector->base.name);
11925 /* Don't use an invalid EDID bpc value */
11926 if (connector->base.display_info.bpc &&
11927 connector->base.display_info.bpc * 3 < bpp) {
11928 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11929 bpp, connector->base.display_info.bpc*3);
11930 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11933 /* Clamp bpp to 8 on screens without EDID 1.4 */
11934 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11935 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11936 bpp);
11937 pipe_config->pipe_bpp = 24;
11941 static int
11942 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11943 struct intel_crtc_state *pipe_config)
11945 struct drm_device *dev = crtc->base.dev;
11946 struct drm_atomic_state *state;
11947 struct drm_connector *connector;
11948 struct drm_connector_state *connector_state;
11949 int bpp, i;
11951 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11952 bpp = 10*3;
11953 else if (INTEL_INFO(dev)->gen >= 5)
11954 bpp = 12*3;
11955 else
11956 bpp = 8*3;
11959 pipe_config->pipe_bpp = bpp;
11961 state = pipe_config->base.state;
11963 /* Clamp display bpp to EDID value */
11964 for_each_connector_in_state(state, connector, connector_state, i) {
11965 if (connector_state->crtc != &crtc->base)
11966 continue;
11968 connected_sink_compute_bpp(to_intel_connector(connector),
11969 pipe_config);
11972 return bpp;
11975 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11977 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11978 "type: 0x%x flags: 0x%x\n",
11979 mode->crtc_clock,
11980 mode->crtc_hdisplay, mode->crtc_hsync_start,
11981 mode->crtc_hsync_end, mode->crtc_htotal,
11982 mode->crtc_vdisplay, mode->crtc_vsync_start,
11983 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11986 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11987 struct intel_crtc_state *pipe_config,
11988 const char *context)
11990 struct drm_device *dev = crtc->base.dev;
11991 struct drm_plane *plane;
11992 struct intel_plane *intel_plane;
11993 struct intel_plane_state *state;
11994 struct drm_framebuffer *fb;
11996 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11997 context, pipe_config, pipe_name(crtc->pipe));
11999 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12000 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12001 pipe_config->pipe_bpp, pipe_config->dither);
12002 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12003 pipe_config->has_pch_encoder,
12004 pipe_config->fdi_lanes,
12005 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12006 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12007 pipe_config->fdi_m_n.tu);
12008 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12009 pipe_config->has_dp_encoder,
12010 pipe_config->lane_count,
12011 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12012 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12013 pipe_config->dp_m_n.tu);
12015 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12016 pipe_config->has_dp_encoder,
12017 pipe_config->lane_count,
12018 pipe_config->dp_m2_n2.gmch_m,
12019 pipe_config->dp_m2_n2.gmch_n,
12020 pipe_config->dp_m2_n2.link_m,
12021 pipe_config->dp_m2_n2.link_n,
12022 pipe_config->dp_m2_n2.tu);
12024 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12025 pipe_config->has_audio,
12026 pipe_config->has_infoframe);
12028 DRM_DEBUG_KMS("requested mode:\n");
12029 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12030 DRM_DEBUG_KMS("adjusted mode:\n");
12031 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12032 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12033 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12034 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12035 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12036 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12037 crtc->num_scalers,
12038 pipe_config->scaler_state.scaler_users,
12039 pipe_config->scaler_state.scaler_id);
12040 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12041 pipe_config->gmch_pfit.control,
12042 pipe_config->gmch_pfit.pgm_ratios,
12043 pipe_config->gmch_pfit.lvds_border_bits);
12044 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12045 pipe_config->pch_pfit.pos,
12046 pipe_config->pch_pfit.size,
12047 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12048 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12049 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12051 if (IS_BROXTON(dev)) {
12052 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12053 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12054 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12055 pipe_config->ddi_pll_sel,
12056 pipe_config->dpll_hw_state.ebb0,
12057 pipe_config->dpll_hw_state.ebb4,
12058 pipe_config->dpll_hw_state.pll0,
12059 pipe_config->dpll_hw_state.pll1,
12060 pipe_config->dpll_hw_state.pll2,
12061 pipe_config->dpll_hw_state.pll3,
12062 pipe_config->dpll_hw_state.pll6,
12063 pipe_config->dpll_hw_state.pll8,
12064 pipe_config->dpll_hw_state.pll9,
12065 pipe_config->dpll_hw_state.pll10,
12066 pipe_config->dpll_hw_state.pcsdw12);
12067 } else if (IS_SKYLAKE(dev)) {
12068 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12069 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12070 pipe_config->ddi_pll_sel,
12071 pipe_config->dpll_hw_state.ctrl1,
12072 pipe_config->dpll_hw_state.cfgcr1,
12073 pipe_config->dpll_hw_state.cfgcr2);
12074 } else if (HAS_DDI(dev)) {
12075 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12076 pipe_config->ddi_pll_sel,
12077 pipe_config->dpll_hw_state.wrpll,
12078 pipe_config->dpll_hw_state.spll);
12079 } else {
12080 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12081 "fp0: 0x%x, fp1: 0x%x\n",
12082 pipe_config->dpll_hw_state.dpll,
12083 pipe_config->dpll_hw_state.dpll_md,
12084 pipe_config->dpll_hw_state.fp0,
12085 pipe_config->dpll_hw_state.fp1);
12088 DRM_DEBUG_KMS("planes on this crtc\n");
12089 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12090 intel_plane = to_intel_plane(plane);
12091 if (intel_plane->pipe != crtc->pipe)
12092 continue;
12094 state = to_intel_plane_state(plane->state);
12095 fb = state->base.fb;
12096 if (!fb) {
12097 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12098 "disabled, scaler_id = %d\n",
12099 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12100 plane->base.id, intel_plane->pipe,
12101 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12102 drm_plane_index(plane), state->scaler_id);
12103 continue;
12106 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12107 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12108 plane->base.id, intel_plane->pipe,
12109 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12110 drm_plane_index(plane));
12111 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12112 fb->base.id, fb->width, fb->height, fb->pixel_format);
12113 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12114 state->scaler_id,
12115 state->src.x1 >> 16, state->src.y1 >> 16,
12116 drm_rect_width(&state->src) >> 16,
12117 drm_rect_height(&state->src) >> 16,
12118 state->dst.x1, state->dst.y1,
12119 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12123 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12125 struct drm_device *dev = state->dev;
12126 struct intel_encoder *encoder;
12127 struct drm_connector *connector;
12128 struct drm_connector_state *connector_state;
12129 unsigned int used_ports = 0;
12130 int i;
12133 * Walk the connector list instead of the encoder
12134 * list to detect the problem on ddi platforms
12135 * where there's just one encoder per digital port.
12137 for_each_connector_in_state(state, connector, connector_state, i) {
12138 if (!connector_state->best_encoder)
12139 continue;
12141 encoder = to_intel_encoder(connector_state->best_encoder);
12143 WARN_ON(!connector_state->crtc);
12145 switch (encoder->type) {
12146 unsigned int port_mask;
12147 case INTEL_OUTPUT_UNKNOWN:
12148 if (WARN_ON(!HAS_DDI(dev)))
12149 break;
12150 case INTEL_OUTPUT_DISPLAYPORT:
12151 case INTEL_OUTPUT_HDMI:
12152 case INTEL_OUTPUT_EDP:
12153 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12155 /* the same port mustn't appear more than once */
12156 if (used_ports & port_mask)
12157 return false;
12159 used_ports |= port_mask;
12160 default:
12161 break;
12165 return true;
12168 static void
12169 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12171 struct drm_crtc_state tmp_state;
12172 struct intel_crtc_scaler_state scaler_state;
12173 struct intel_dpll_hw_state dpll_hw_state;
12174 enum intel_dpll_id shared_dpll;
12175 uint32_t ddi_pll_sel;
12176 bool force_thru;
12178 /* FIXME: before the switch to atomic started, a new pipe_config was
12179 * kzalloc'd. Code that depends on any field being zero should be
12180 * fixed, so that the crtc_state can be safely duplicated. For now,
12181 * only fields that are know to not cause problems are preserved. */
12183 tmp_state = crtc_state->base;
12184 scaler_state = crtc_state->scaler_state;
12185 shared_dpll = crtc_state->shared_dpll;
12186 dpll_hw_state = crtc_state->dpll_hw_state;
12187 ddi_pll_sel = crtc_state->ddi_pll_sel;
12188 force_thru = crtc_state->pch_pfit.force_thru;
12190 memset(crtc_state, 0, sizeof *crtc_state);
12192 crtc_state->base = tmp_state;
12193 crtc_state->scaler_state = scaler_state;
12194 crtc_state->shared_dpll = shared_dpll;
12195 crtc_state->dpll_hw_state = dpll_hw_state;
12196 crtc_state->ddi_pll_sel = ddi_pll_sel;
12197 crtc_state->pch_pfit.force_thru = force_thru;
12200 static int
12201 intel_modeset_pipe_config(struct drm_crtc *crtc,
12202 struct intel_crtc_state *pipe_config)
12204 struct drm_atomic_state *state = pipe_config->base.state;
12205 struct intel_encoder *encoder;
12206 struct drm_connector *connector;
12207 struct drm_connector_state *connector_state;
12208 int base_bpp, ret = -EINVAL;
12209 int i;
12210 bool retry = true;
12212 clear_intel_crtc_state(pipe_config);
12214 pipe_config->cpu_transcoder =
12215 (enum transcoder) to_intel_crtc(crtc)->pipe;
12218 * Sanitize sync polarity flags based on requested ones. If neither
12219 * positive or negative polarity is requested, treat this as meaning
12220 * negative polarity.
12222 if (!(pipe_config->base.adjusted_mode.flags &
12223 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12224 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12226 if (!(pipe_config->base.adjusted_mode.flags &
12227 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12228 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12230 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12231 pipe_config);
12232 if (base_bpp < 0)
12233 goto fail;
12236 * Determine the real pipe dimensions. Note that stereo modes can
12237 * increase the actual pipe size due to the frame doubling and
12238 * insertion of additional space for blanks between the frame. This
12239 * is stored in the crtc timings. We use the requested mode to do this
12240 * computation to clearly distinguish it from the adjusted mode, which
12241 * can be changed by the connectors in the below retry loop.
12243 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12244 &pipe_config->pipe_src_w,
12245 &pipe_config->pipe_src_h);
12247 encoder_retry:
12248 /* Ensure the port clock defaults are reset when retrying. */
12249 pipe_config->port_clock = 0;
12250 pipe_config->pixel_multiplier = 1;
12252 /* Fill in default crtc timings, allow encoders to overwrite them. */
12253 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12254 CRTC_STEREO_DOUBLE);
12256 /* Pass our mode to the connectors and the CRTC to give them a chance to
12257 * adjust it according to limitations or connector properties, and also
12258 * a chance to reject the mode entirely.
12260 for_each_connector_in_state(state, connector, connector_state, i) {
12261 if (connector_state->crtc != crtc)
12262 continue;
12264 encoder = to_intel_encoder(connector_state->best_encoder);
12266 if (!(encoder->compute_config(encoder, pipe_config))) {
12267 DRM_DEBUG_KMS("Encoder config failure\n");
12268 goto fail;
12272 /* Set default port clock if not overwritten by the encoder. Needs to be
12273 * done afterwards in case the encoder adjusts the mode. */
12274 if (!pipe_config->port_clock)
12275 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12276 * pipe_config->pixel_multiplier;
12278 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12279 if (ret < 0) {
12280 DRM_DEBUG_KMS("CRTC fixup failed\n");
12281 goto fail;
12284 if (ret == RETRY) {
12285 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12286 ret = -EINVAL;
12287 goto fail;
12290 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12291 retry = false;
12292 goto encoder_retry;
12295 /* Dithering seems to not pass-through bits correctly when it should, so
12296 * only enable it on 6bpc panels. */
12297 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12298 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12299 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12301 fail:
12302 return ret;
12305 static void
12306 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12308 struct drm_crtc *crtc;
12309 struct drm_crtc_state *crtc_state;
12310 int i;
12312 /* Double check state. */
12313 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12314 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12316 /* Update hwmode for vblank functions */
12317 if (crtc->state->active)
12318 crtc->hwmode = crtc->state->adjusted_mode;
12319 else
12320 crtc->hwmode.crtc_clock = 0;
12324 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12326 int diff;
12328 if (clock1 == clock2)
12329 return true;
12331 if (!clock1 || !clock2)
12332 return false;
12334 diff = abs(clock1 - clock2);
12336 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12337 return true;
12339 return false;
12342 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12343 list_for_each_entry((intel_crtc), \
12344 &(dev)->mode_config.crtc_list, \
12345 base.head) \
12346 if (mask & (1 <<(intel_crtc)->pipe))
12348 static bool
12349 intel_compare_m_n(unsigned int m, unsigned int n,
12350 unsigned int m2, unsigned int n2,
12351 bool exact)
12353 if (m == m2 && n == n2)
12354 return true;
12356 if (exact || !m || !n || !m2 || !n2)
12357 return false;
12359 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12361 if (m > m2) {
12362 while (m > m2) {
12363 m2 <<= 1;
12364 n2 <<= 1;
12366 } else if (m < m2) {
12367 while (m < m2) {
12368 m <<= 1;
12369 n <<= 1;
12373 return m == m2 && n == n2;
12376 static bool
12377 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12378 struct intel_link_m_n *m2_n2,
12379 bool adjust)
12381 if (m_n->tu == m2_n2->tu &&
12382 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12383 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12384 intel_compare_m_n(m_n->link_m, m_n->link_n,
12385 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12386 if (adjust)
12387 *m2_n2 = *m_n;
12389 return true;
12392 return false;
12395 static bool
12396 intel_pipe_config_compare(struct drm_device *dev,
12397 struct intel_crtc_state *current_config,
12398 struct intel_crtc_state *pipe_config,
12399 bool adjust)
12401 bool ret = true;
12403 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12404 do { \
12405 if (!adjust) \
12406 DRM_ERROR(fmt, ##__VA_ARGS__); \
12407 else \
12408 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12409 } while (0)
12411 #define PIPE_CONF_CHECK_X(name) \
12412 if (current_config->name != pipe_config->name) { \
12413 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12414 "(expected 0x%08x, found 0x%08x)\n", \
12415 current_config->name, \
12416 pipe_config->name); \
12417 ret = false; \
12420 #define PIPE_CONF_CHECK_I(name) \
12421 if (current_config->name != pipe_config->name) { \
12422 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12423 "(expected %i, found %i)\n", \
12424 current_config->name, \
12425 pipe_config->name); \
12426 ret = false; \
12429 #define PIPE_CONF_CHECK_M_N(name) \
12430 if (!intel_compare_link_m_n(&current_config->name, \
12431 &pipe_config->name,\
12432 adjust)) { \
12433 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12434 "(expected tu %i gmch %i/%i link %i/%i, " \
12435 "found tu %i, gmch %i/%i link %i/%i)\n", \
12436 current_config->name.tu, \
12437 current_config->name.gmch_m, \
12438 current_config->name.gmch_n, \
12439 current_config->name.link_m, \
12440 current_config->name.link_n, \
12441 pipe_config->name.tu, \
12442 pipe_config->name.gmch_m, \
12443 pipe_config->name.gmch_n, \
12444 pipe_config->name.link_m, \
12445 pipe_config->name.link_n); \
12446 ret = false; \
12449 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12450 if (!intel_compare_link_m_n(&current_config->name, \
12451 &pipe_config->name, adjust) && \
12452 !intel_compare_link_m_n(&current_config->alt_name, \
12453 &pipe_config->name, adjust)) { \
12454 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12455 "(expected tu %i gmch %i/%i link %i/%i, " \
12456 "or tu %i gmch %i/%i link %i/%i, " \
12457 "found tu %i, gmch %i/%i link %i/%i)\n", \
12458 current_config->name.tu, \
12459 current_config->name.gmch_m, \
12460 current_config->name.gmch_n, \
12461 current_config->name.link_m, \
12462 current_config->name.link_n, \
12463 current_config->alt_name.tu, \
12464 current_config->alt_name.gmch_m, \
12465 current_config->alt_name.gmch_n, \
12466 current_config->alt_name.link_m, \
12467 current_config->alt_name.link_n, \
12468 pipe_config->name.tu, \
12469 pipe_config->name.gmch_m, \
12470 pipe_config->name.gmch_n, \
12471 pipe_config->name.link_m, \
12472 pipe_config->name.link_n); \
12473 ret = false; \
12476 /* This is required for BDW+ where there is only one set of registers for
12477 * switching between high and low RR.
12478 * This macro can be used whenever a comparison has to be made between one
12479 * hw state and multiple sw state variables.
12481 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12482 if ((current_config->name != pipe_config->name) && \
12483 (current_config->alt_name != pipe_config->name)) { \
12484 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12485 "(expected %i or %i, found %i)\n", \
12486 current_config->name, \
12487 current_config->alt_name, \
12488 pipe_config->name); \
12489 ret = false; \
12492 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12493 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12494 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12495 "(expected %i, found %i)\n", \
12496 current_config->name & (mask), \
12497 pipe_config->name & (mask)); \
12498 ret = false; \
12501 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12502 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12503 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12504 "(expected %i, found %i)\n", \
12505 current_config->name, \
12506 pipe_config->name); \
12507 ret = false; \
12510 #define PIPE_CONF_QUIRK(quirk) \
12511 ((current_config->quirks | pipe_config->quirks) & (quirk))
12513 PIPE_CONF_CHECK_I(cpu_transcoder);
12515 PIPE_CONF_CHECK_I(has_pch_encoder);
12516 PIPE_CONF_CHECK_I(fdi_lanes);
12517 PIPE_CONF_CHECK_M_N(fdi_m_n);
12519 PIPE_CONF_CHECK_I(has_dp_encoder);
12520 PIPE_CONF_CHECK_I(lane_count);
12522 if (INTEL_INFO(dev)->gen < 8) {
12523 PIPE_CONF_CHECK_M_N(dp_m_n);
12525 if (current_config->has_drrs)
12526 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12527 } else
12528 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12530 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12531 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12532 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12533 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12534 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12535 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12537 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12538 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12539 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12540 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12541 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12542 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12544 PIPE_CONF_CHECK_I(pixel_multiplier);
12545 PIPE_CONF_CHECK_I(has_hdmi_sink);
12546 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12547 IS_VALLEYVIEW(dev))
12548 PIPE_CONF_CHECK_I(limited_color_range);
12549 PIPE_CONF_CHECK_I(has_infoframe);
12551 PIPE_CONF_CHECK_I(has_audio);
12553 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12554 DRM_MODE_FLAG_INTERLACE);
12556 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12557 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12558 DRM_MODE_FLAG_PHSYNC);
12559 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12560 DRM_MODE_FLAG_NHSYNC);
12561 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12562 DRM_MODE_FLAG_PVSYNC);
12563 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12564 DRM_MODE_FLAG_NVSYNC);
12567 PIPE_CONF_CHECK_X(gmch_pfit.control);
12568 /* pfit ratios are autocomputed by the hw on gen4+ */
12569 if (INTEL_INFO(dev)->gen < 4)
12570 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12571 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12573 if (!adjust) {
12574 PIPE_CONF_CHECK_I(pipe_src_w);
12575 PIPE_CONF_CHECK_I(pipe_src_h);
12577 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12578 if (current_config->pch_pfit.enabled) {
12579 PIPE_CONF_CHECK_X(pch_pfit.pos);
12580 PIPE_CONF_CHECK_X(pch_pfit.size);
12583 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12586 /* BDW+ don't expose a synchronous way to read the state */
12587 if (IS_HASWELL(dev))
12588 PIPE_CONF_CHECK_I(ips_enabled);
12590 PIPE_CONF_CHECK_I(double_wide);
12592 PIPE_CONF_CHECK_X(ddi_pll_sel);
12594 PIPE_CONF_CHECK_I(shared_dpll);
12595 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12596 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12597 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12598 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12599 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12600 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12601 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12602 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12603 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12605 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12606 PIPE_CONF_CHECK_I(pipe_bpp);
12608 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12609 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12611 #undef PIPE_CONF_CHECK_X
12612 #undef PIPE_CONF_CHECK_I
12613 #undef PIPE_CONF_CHECK_I_ALT
12614 #undef PIPE_CONF_CHECK_FLAGS
12615 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12616 #undef PIPE_CONF_QUIRK
12617 #undef INTEL_ERR_OR_DBG_KMS
12619 return ret;
12622 static void check_wm_state(struct drm_device *dev)
12624 struct drm_i915_private *dev_priv = dev->dev_private;
12625 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12626 struct intel_crtc *intel_crtc;
12627 int plane;
12629 if (INTEL_INFO(dev)->gen < 9)
12630 return;
12632 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12633 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12635 for_each_intel_crtc(dev, intel_crtc) {
12636 struct skl_ddb_entry *hw_entry, *sw_entry;
12637 const enum pipe pipe = intel_crtc->pipe;
12639 if (!intel_crtc->active)
12640 continue;
12642 /* planes */
12643 for_each_plane(dev_priv, pipe, plane) {
12644 hw_entry = &hw_ddb.plane[pipe][plane];
12645 sw_entry = &sw_ddb->plane[pipe][plane];
12647 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12648 continue;
12650 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12651 "(expected (%u,%u), found (%u,%u))\n",
12652 pipe_name(pipe), plane + 1,
12653 sw_entry->start, sw_entry->end,
12654 hw_entry->start, hw_entry->end);
12657 /* cursor */
12658 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12659 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12661 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12662 continue;
12664 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12665 "(expected (%u,%u), found (%u,%u))\n",
12666 pipe_name(pipe),
12667 sw_entry->start, sw_entry->end,
12668 hw_entry->start, hw_entry->end);
12672 static void
12673 check_connector_state(struct drm_device *dev,
12674 struct drm_atomic_state *old_state)
12676 struct drm_connector_state *old_conn_state;
12677 struct drm_connector *connector;
12678 int i;
12680 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12681 struct drm_encoder *encoder = connector->encoder;
12682 struct drm_connector_state *state = connector->state;
12684 /* This also checks the encoder/connector hw state with the
12685 * ->get_hw_state callbacks. */
12686 intel_connector_check_state(to_intel_connector(connector));
12688 I915_STATE_WARN(state->best_encoder != encoder,
12689 "connector's atomic encoder doesn't match legacy encoder\n");
12693 static void
12694 check_encoder_state(struct drm_device *dev)
12696 struct intel_encoder *encoder;
12697 struct intel_connector *connector;
12699 for_each_intel_encoder(dev, encoder) {
12700 bool enabled = false;
12701 enum pipe pipe;
12703 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12704 encoder->base.base.id,
12705 encoder->base.name);
12707 for_each_intel_connector(dev, connector) {
12708 if (connector->base.state->best_encoder != &encoder->base)
12709 continue;
12710 enabled = true;
12712 I915_STATE_WARN(connector->base.state->crtc !=
12713 encoder->base.crtc,
12714 "connector's crtc doesn't match encoder crtc\n");
12717 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12718 "encoder's enabled state mismatch "
12719 "(expected %i, found %i)\n",
12720 !!encoder->base.crtc, enabled);
12722 if (!encoder->base.crtc) {
12723 bool active;
12725 active = encoder->get_hw_state(encoder, &pipe);
12726 I915_STATE_WARN(active,
12727 "encoder detached but still enabled on pipe %c.\n",
12728 pipe_name(pipe));
12733 static void
12734 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12736 struct drm_i915_private *dev_priv = dev->dev_private;
12737 struct intel_encoder *encoder;
12738 struct drm_crtc_state *old_crtc_state;
12739 struct drm_crtc *crtc;
12740 int i;
12742 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12744 struct intel_crtc_state *pipe_config, *sw_config;
12745 bool active;
12747 if (!needs_modeset(crtc->state) &&
12748 !to_intel_crtc_state(crtc->state)->update_pipe)
12749 continue;
12751 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12752 pipe_config = to_intel_crtc_state(old_crtc_state);
12753 memset(pipe_config, 0, sizeof(*pipe_config));
12754 pipe_config->base.crtc = crtc;
12755 pipe_config->base.state = old_state;
12757 DRM_DEBUG_KMS("[CRTC:%d]\n",
12758 crtc->base.id);
12760 active = dev_priv->display.get_pipe_config(intel_crtc,
12761 pipe_config);
12763 /* hw state is inconsistent with the pipe quirk */
12764 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12765 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12766 active = crtc->state->active;
12768 I915_STATE_WARN(crtc->state->active != active,
12769 "crtc active state doesn't match with hw state "
12770 "(expected %i, found %i)\n", crtc->state->active, active);
12772 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12773 "transitional active state does not match atomic hw state "
12774 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12776 for_each_encoder_on_crtc(dev, crtc, encoder) {
12777 enum pipe pipe;
12779 active = encoder->get_hw_state(encoder, &pipe);
12780 I915_STATE_WARN(active != crtc->state->active,
12781 "[ENCODER:%i] active %i with crtc active %i\n",
12782 encoder->base.base.id, active, crtc->state->active);
12784 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12785 "Encoder connected to wrong pipe %c\n",
12786 pipe_name(pipe));
12788 if (active)
12789 encoder->get_config(encoder, pipe_config);
12792 if (!crtc->state->active)
12793 continue;
12795 sw_config = to_intel_crtc_state(crtc->state);
12796 if (!intel_pipe_config_compare(dev, sw_config,
12797 pipe_config, false)) {
12798 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12799 intel_dump_pipe_config(intel_crtc, pipe_config,
12800 "[hw state]");
12801 intel_dump_pipe_config(intel_crtc, sw_config,
12802 "[sw state]");
12807 static void
12808 check_shared_dpll_state(struct drm_device *dev)
12810 struct drm_i915_private *dev_priv = dev->dev_private;
12811 struct intel_crtc *crtc;
12812 struct intel_dpll_hw_state dpll_hw_state;
12813 int i;
12815 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12816 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12817 int enabled_crtcs = 0, active_crtcs = 0;
12818 bool active;
12820 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12822 DRM_DEBUG_KMS("%s\n", pll->name);
12824 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12826 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12827 "more active pll users than references: %i vs %i\n",
12828 pll->active, hweight32(pll->config.crtc_mask));
12829 I915_STATE_WARN(pll->active && !pll->on,
12830 "pll in active use but not on in sw tracking\n");
12831 I915_STATE_WARN(pll->on && !pll->active,
12832 "pll in on but not on in use in sw tracking\n");
12833 I915_STATE_WARN(pll->on != active,
12834 "pll on state mismatch (expected %i, found %i)\n",
12835 pll->on, active);
12837 for_each_intel_crtc(dev, crtc) {
12838 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12839 enabled_crtcs++;
12840 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12841 active_crtcs++;
12843 I915_STATE_WARN(pll->active != active_crtcs,
12844 "pll active crtcs mismatch (expected %i, found %i)\n",
12845 pll->active, active_crtcs);
12846 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12847 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12848 hweight32(pll->config.crtc_mask), enabled_crtcs);
12850 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12851 sizeof(dpll_hw_state)),
12852 "pll hw state mismatch\n");
12856 static void
12857 intel_modeset_check_state(struct drm_device *dev,
12858 struct drm_atomic_state *old_state)
12860 check_wm_state(dev);
12861 check_connector_state(dev, old_state);
12862 check_encoder_state(dev);
12863 check_crtc_state(dev, old_state);
12864 check_shared_dpll_state(dev);
12867 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12868 int dotclock)
12871 * FDI already provided one idea for the dotclock.
12872 * Yell if the encoder disagrees.
12874 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12875 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12876 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12879 static void update_scanline_offset(struct intel_crtc *crtc)
12881 struct drm_device *dev = crtc->base.dev;
12884 * The scanline counter increments at the leading edge of hsync.
12886 * On most platforms it starts counting from vtotal-1 on the
12887 * first active line. That means the scanline counter value is
12888 * always one less than what we would expect. Ie. just after
12889 * start of vblank, which also occurs at start of hsync (on the
12890 * last active line), the scanline counter will read vblank_start-1.
12892 * On gen2 the scanline counter starts counting from 1 instead
12893 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12894 * to keep the value positive), instead of adding one.
12896 * On HSW+ the behaviour of the scanline counter depends on the output
12897 * type. For DP ports it behaves like most other platforms, but on HDMI
12898 * there's an extra 1 line difference. So we need to add two instead of
12899 * one to the value.
12901 if (IS_GEN2(dev)) {
12902 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12903 int vtotal;
12905 vtotal = adjusted_mode->crtc_vtotal;
12906 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12907 vtotal /= 2;
12909 crtc->scanline_offset = vtotal - 1;
12910 } else if (HAS_DDI(dev) &&
12911 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12912 crtc->scanline_offset = 2;
12913 } else
12914 crtc->scanline_offset = 1;
12917 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12919 struct drm_device *dev = state->dev;
12920 struct drm_i915_private *dev_priv = to_i915(dev);
12921 struct intel_shared_dpll_config *shared_dpll = NULL;
12922 struct intel_crtc *intel_crtc;
12923 struct intel_crtc_state *intel_crtc_state;
12924 struct drm_crtc *crtc;
12925 struct drm_crtc_state *crtc_state;
12926 int i;
12928 if (!dev_priv->display.crtc_compute_clock)
12929 return;
12931 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12932 int dpll;
12934 intel_crtc = to_intel_crtc(crtc);
12935 intel_crtc_state = to_intel_crtc_state(crtc_state);
12936 dpll = intel_crtc_state->shared_dpll;
12938 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12939 continue;
12941 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12943 if (!shared_dpll)
12944 shared_dpll = intel_atomic_get_shared_dpll_state(state);
12946 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12951 * This implements the workaround described in the "notes" section of the mode
12952 * set sequence documentation. When going from no pipes or single pipe to
12953 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12954 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12956 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12958 struct drm_crtc_state *crtc_state;
12959 struct intel_crtc *intel_crtc;
12960 struct drm_crtc *crtc;
12961 struct intel_crtc_state *first_crtc_state = NULL;
12962 struct intel_crtc_state *other_crtc_state = NULL;
12963 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12964 int i;
12966 /* look at all crtc's that are going to be enabled in during modeset */
12967 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12968 intel_crtc = to_intel_crtc(crtc);
12970 if (!crtc_state->active || !needs_modeset(crtc_state))
12971 continue;
12973 if (first_crtc_state) {
12974 other_crtc_state = to_intel_crtc_state(crtc_state);
12975 break;
12976 } else {
12977 first_crtc_state = to_intel_crtc_state(crtc_state);
12978 first_pipe = intel_crtc->pipe;
12982 /* No workaround needed? */
12983 if (!first_crtc_state)
12984 return 0;
12986 /* w/a possibly needed, check how many crtc's are already enabled. */
12987 for_each_intel_crtc(state->dev, intel_crtc) {
12988 struct intel_crtc_state *pipe_config;
12990 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12991 if (IS_ERR(pipe_config))
12992 return PTR_ERR(pipe_config);
12994 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12996 if (!pipe_config->base.active ||
12997 needs_modeset(&pipe_config->base))
12998 continue;
13000 /* 2 or more enabled crtcs means no need for w/a */
13001 if (enabled_pipe != INVALID_PIPE)
13002 return 0;
13004 enabled_pipe = intel_crtc->pipe;
13007 if (enabled_pipe != INVALID_PIPE)
13008 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13009 else if (other_crtc_state)
13010 other_crtc_state->hsw_workaround_pipe = first_pipe;
13012 return 0;
13015 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13017 struct drm_crtc *crtc;
13018 struct drm_crtc_state *crtc_state;
13019 int ret = 0;
13021 /* add all active pipes to the state */
13022 for_each_crtc(state->dev, crtc) {
13023 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13024 if (IS_ERR(crtc_state))
13025 return PTR_ERR(crtc_state);
13027 if (!crtc_state->active || needs_modeset(crtc_state))
13028 continue;
13030 crtc_state->mode_changed = true;
13032 ret = drm_atomic_add_affected_connectors(state, crtc);
13033 if (ret)
13034 break;
13036 ret = drm_atomic_add_affected_planes(state, crtc);
13037 if (ret)
13038 break;
13041 return ret;
13044 static int intel_modeset_checks(struct drm_atomic_state *state)
13046 struct drm_device *dev = state->dev;
13047 struct drm_i915_private *dev_priv = dev->dev_private;
13048 int ret;
13050 if (!check_digital_port_conflicts(state)) {
13051 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13052 return -EINVAL;
13056 * See if the config requires any additional preparation, e.g.
13057 * to adjust global state with pipes off. We need to do this
13058 * here so we can get the modeset_pipe updated config for the new
13059 * mode set on this crtc. For other crtcs we need to use the
13060 * adjusted_mode bits in the crtc directly.
13062 if (dev_priv->display.modeset_calc_cdclk) {
13063 unsigned int cdclk;
13065 ret = dev_priv->display.modeset_calc_cdclk(state);
13067 cdclk = to_intel_atomic_state(state)->cdclk;
13068 if (!ret && cdclk != dev_priv->cdclk_freq)
13069 ret = intel_modeset_all_pipes(state);
13071 if (ret < 0)
13072 return ret;
13073 } else
13074 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13076 intel_modeset_clear_plls(state);
13078 if (IS_HASWELL(dev))
13079 return haswell_mode_set_planes_workaround(state);
13081 return 0;
13085 * intel_atomic_check - validate state object
13086 * @dev: drm device
13087 * @state: state to validate
13089 static int intel_atomic_check(struct drm_device *dev,
13090 struct drm_atomic_state *state)
13092 struct drm_crtc *crtc;
13093 struct drm_crtc_state *crtc_state;
13094 int ret, i;
13095 bool any_ms = false;
13097 ret = drm_atomic_helper_check_modeset(dev, state);
13098 if (ret)
13099 return ret;
13101 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13102 struct intel_crtc_state *pipe_config =
13103 to_intel_crtc_state(crtc_state);
13105 memset(&to_intel_crtc(crtc)->atomic, 0,
13106 sizeof(struct intel_crtc_atomic_commit));
13108 /* Catch I915_MODE_FLAG_INHERITED */
13109 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13110 crtc_state->mode_changed = true;
13112 if (!crtc_state->enable) {
13113 if (needs_modeset(crtc_state))
13114 any_ms = true;
13115 continue;
13118 if (!needs_modeset(crtc_state))
13119 continue;
13121 /* FIXME: For only active_changed we shouldn't need to do any
13122 * state recomputation at all. */
13124 ret = drm_atomic_add_affected_connectors(state, crtc);
13125 if (ret)
13126 return ret;
13128 ret = intel_modeset_pipe_config(crtc, pipe_config);
13129 if (ret)
13130 return ret;
13132 if (i915.fastboot &&
13133 intel_pipe_config_compare(state->dev,
13134 to_intel_crtc_state(crtc->state),
13135 pipe_config, true)) {
13136 crtc_state->mode_changed = false;
13137 to_intel_crtc_state(crtc_state)->update_pipe = true;
13140 if (needs_modeset(crtc_state)) {
13141 any_ms = true;
13143 ret = drm_atomic_add_affected_planes(state, crtc);
13144 if (ret)
13145 return ret;
13148 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13149 needs_modeset(crtc_state) ?
13150 "[modeset]" : "[fastset]");
13153 if (any_ms) {
13154 ret = intel_modeset_checks(state);
13156 if (ret)
13157 return ret;
13158 } else
13159 to_intel_atomic_state(state)->cdclk =
13160 to_i915(state->dev)->cdclk_freq;
13162 return drm_atomic_helper_check_planes(state->dev, state);
13166 * intel_atomic_commit - commit validated state object
13167 * @dev: DRM device
13168 * @state: the top-level driver state object
13169 * @async: asynchronous commit
13171 * This function commits a top-level state object that has been validated
13172 * with drm_atomic_helper_check().
13174 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13175 * we can only handle plane-related operations and do not yet support
13176 * asynchronous commit.
13178 * RETURNS
13179 * Zero for success or -errno.
13181 static int intel_atomic_commit(struct drm_device *dev,
13182 struct drm_atomic_state *state,
13183 bool async)
13185 struct drm_i915_private *dev_priv = dev->dev_private;
13186 struct drm_crtc *crtc;
13187 struct drm_crtc_state *crtc_state;
13188 int ret = 0;
13189 int i;
13190 bool any_ms = false;
13192 if (async) {
13193 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13194 return -EINVAL;
13197 ret = drm_atomic_helper_prepare_planes(dev, state);
13198 if (ret)
13199 return ret;
13201 drm_atomic_helper_swap_state(dev, state);
13203 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13206 if (!needs_modeset(crtc->state))
13207 continue;
13209 any_ms = true;
13210 intel_pre_plane_update(intel_crtc);
13212 if (crtc_state->active) {
13213 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13214 dev_priv->display.crtc_disable(crtc);
13215 intel_crtc->active = false;
13216 intel_disable_shared_dpll(intel_crtc);
13220 /* Only after disabling all output pipelines that will be changed can we
13221 * update the the output configuration. */
13222 intel_modeset_update_crtc_state(state);
13224 if (any_ms) {
13225 intel_shared_dpll_commit(state);
13227 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13228 modeset_update_crtc_power_domains(state);
13231 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13232 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13234 bool modeset = needs_modeset(crtc->state);
13235 bool update_pipe = !modeset &&
13236 to_intel_crtc_state(crtc->state)->update_pipe;
13237 unsigned long put_domains = 0;
13239 if (modeset && crtc->state->active) {
13240 update_scanline_offset(to_intel_crtc(crtc));
13241 dev_priv->display.crtc_enable(crtc);
13244 if (update_pipe) {
13245 put_domains = modeset_get_crtc_power_domains(crtc);
13247 /* make sure intel_modeset_check_state runs */
13248 any_ms = true;
13251 if (!modeset)
13252 intel_pre_plane_update(intel_crtc);
13254 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13256 if (put_domains)
13257 modeset_put_power_domains(dev_priv, put_domains);
13259 intel_post_plane_update(intel_crtc);
13262 /* FIXME: add subpixel order */
13264 drm_atomic_helper_wait_for_vblanks(dev, state);
13265 drm_atomic_helper_cleanup_planes(dev, state);
13267 if (any_ms)
13268 intel_modeset_check_state(dev, state);
13270 drm_atomic_state_free(state);
13272 return 0;
13275 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13277 struct drm_device *dev = crtc->dev;
13278 struct drm_atomic_state *state;
13279 struct drm_crtc_state *crtc_state;
13280 int ret;
13282 state = drm_atomic_state_alloc(dev);
13283 if (!state) {
13284 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13285 crtc->base.id);
13286 return;
13289 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13291 retry:
13292 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13293 ret = PTR_ERR_OR_ZERO(crtc_state);
13294 if (!ret) {
13295 if (!crtc_state->active)
13296 goto out;
13298 crtc_state->mode_changed = true;
13299 ret = drm_atomic_commit(state);
13302 if (ret == -EDEADLK) {
13303 drm_atomic_state_clear(state);
13304 drm_modeset_backoff(state->acquire_ctx);
13305 goto retry;
13308 if (ret)
13309 out:
13310 drm_atomic_state_free(state);
13313 #undef for_each_intel_crtc_masked
13315 static const struct drm_crtc_funcs intel_crtc_funcs = {
13316 .gamma_set = intel_crtc_gamma_set,
13317 .set_config = drm_atomic_helper_set_config,
13318 .destroy = intel_crtc_destroy,
13319 .page_flip = intel_crtc_page_flip,
13320 .atomic_duplicate_state = intel_crtc_duplicate_state,
13321 .atomic_destroy_state = intel_crtc_destroy_state,
13324 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13325 struct intel_shared_dpll *pll,
13326 struct intel_dpll_hw_state *hw_state)
13328 uint32_t val;
13330 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13331 return false;
13333 val = I915_READ(PCH_DPLL(pll->id));
13334 hw_state->dpll = val;
13335 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13336 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13338 return val & DPLL_VCO_ENABLE;
13341 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13342 struct intel_shared_dpll *pll)
13344 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13345 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13348 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13349 struct intel_shared_dpll *pll)
13351 /* PCH refclock must be enabled first */
13352 ibx_assert_pch_refclk_enabled(dev_priv);
13354 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13356 /* Wait for the clocks to stabilize. */
13357 POSTING_READ(PCH_DPLL(pll->id));
13358 udelay(150);
13360 /* The pixel multiplier can only be updated once the
13361 * DPLL is enabled and the clocks are stable.
13363 * So write it again.
13365 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13366 POSTING_READ(PCH_DPLL(pll->id));
13367 udelay(200);
13370 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13371 struct intel_shared_dpll *pll)
13373 struct drm_device *dev = dev_priv->dev;
13374 struct intel_crtc *crtc;
13376 /* Make sure no transcoder isn't still depending on us. */
13377 for_each_intel_crtc(dev, crtc) {
13378 if (intel_crtc_to_shared_dpll(crtc) == pll)
13379 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13382 I915_WRITE(PCH_DPLL(pll->id), 0);
13383 POSTING_READ(PCH_DPLL(pll->id));
13384 udelay(200);
13387 static char *ibx_pch_dpll_names[] = {
13388 "PCH DPLL A",
13389 "PCH DPLL B",
13392 static void ibx_pch_dpll_init(struct drm_device *dev)
13394 struct drm_i915_private *dev_priv = dev->dev_private;
13395 int i;
13397 dev_priv->num_shared_dpll = 2;
13399 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13400 dev_priv->shared_dplls[i].id = i;
13401 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13402 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13403 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13404 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13405 dev_priv->shared_dplls[i].get_hw_state =
13406 ibx_pch_dpll_get_hw_state;
13410 static void intel_shared_dpll_init(struct drm_device *dev)
13412 struct drm_i915_private *dev_priv = dev->dev_private;
13414 if (HAS_DDI(dev))
13415 intel_ddi_pll_init(dev);
13416 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13417 ibx_pch_dpll_init(dev);
13418 else
13419 dev_priv->num_shared_dpll = 0;
13421 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13425 * intel_prepare_plane_fb - Prepare fb for usage on plane
13426 * @plane: drm plane to prepare for
13427 * @fb: framebuffer to prepare for presentation
13429 * Prepares a framebuffer for usage on a display plane. Generally this
13430 * involves pinning the underlying object and updating the frontbuffer tracking
13431 * bits. Some older platforms need special physical address handling for
13432 * cursor planes.
13434 * Returns 0 on success, negative error code on failure.
13437 intel_prepare_plane_fb(struct drm_plane *plane,
13438 const struct drm_plane_state *new_state)
13440 struct drm_device *dev = plane->dev;
13441 struct drm_framebuffer *fb = new_state->fb;
13442 struct intel_plane *intel_plane = to_intel_plane(plane);
13443 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13444 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13445 int ret = 0;
13447 if (!obj)
13448 return 0;
13450 mutex_lock(&dev->struct_mutex);
13452 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13453 INTEL_INFO(dev)->cursor_needs_physical) {
13454 int align = IS_I830(dev) ? 16 * 1024 : 256;
13455 ret = i915_gem_object_attach_phys(obj, align);
13456 if (ret)
13457 DRM_DEBUG_KMS("failed to attach phys object\n");
13458 } else {
13459 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13462 if (ret == 0)
13463 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13465 mutex_unlock(&dev->struct_mutex);
13467 return ret;
13471 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13472 * @plane: drm plane to clean up for
13473 * @fb: old framebuffer that was on plane
13475 * Cleans up a framebuffer that has just been removed from a plane.
13477 void
13478 intel_cleanup_plane_fb(struct drm_plane *plane,
13479 const struct drm_plane_state *old_state)
13481 struct drm_device *dev = plane->dev;
13482 struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13484 if (!obj)
13485 return;
13487 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13488 !INTEL_INFO(dev)->cursor_needs_physical) {
13489 mutex_lock(&dev->struct_mutex);
13490 intel_unpin_fb_obj(old_state->fb, old_state);
13491 mutex_unlock(&dev->struct_mutex);
13496 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13498 int max_scale;
13499 struct drm_device *dev;
13500 struct drm_i915_private *dev_priv;
13501 int crtc_clock, cdclk;
13503 if (!intel_crtc || !crtc_state)
13504 return DRM_PLANE_HELPER_NO_SCALING;
13506 dev = intel_crtc->base.dev;
13507 dev_priv = dev->dev_private;
13508 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13509 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13511 if (!crtc_clock || !cdclk)
13512 return DRM_PLANE_HELPER_NO_SCALING;
13515 * skl max scale is lower of:
13516 * close to 3 but not 3, -1 is for that purpose
13517 * or
13518 * cdclk/crtc_clock
13520 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13522 return max_scale;
13525 static int
13526 intel_check_primary_plane(struct drm_plane *plane,
13527 struct intel_crtc_state *crtc_state,
13528 struct intel_plane_state *state)
13530 struct drm_crtc *crtc = state->base.crtc;
13531 struct drm_framebuffer *fb = state->base.fb;
13532 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13533 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13534 bool can_position = false;
13536 /* use scaler when colorkey is not required */
13537 if (INTEL_INFO(plane->dev)->gen >= 9 &&
13538 state->ckey.flags == I915_SET_COLORKEY_NONE) {
13539 min_scale = 1;
13540 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13541 can_position = true;
13544 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13545 &state->dst, &state->clip,
13546 min_scale, max_scale,
13547 can_position, true,
13548 &state->visible);
13551 static void
13552 intel_commit_primary_plane(struct drm_plane *plane,
13553 struct intel_plane_state *state)
13555 struct drm_crtc *crtc = state->base.crtc;
13556 struct drm_framebuffer *fb = state->base.fb;
13557 struct drm_device *dev = plane->dev;
13558 struct drm_i915_private *dev_priv = dev->dev_private;
13559 struct intel_crtc *intel_crtc;
13560 struct drm_rect *src = &state->src;
13562 crtc = crtc ? crtc : plane->crtc;
13563 intel_crtc = to_intel_crtc(crtc);
13565 plane->fb = fb;
13566 crtc->x = src->x1 >> 16;
13567 crtc->y = src->y1 >> 16;
13569 if (!crtc->state->active)
13570 return;
13572 dev_priv->display.update_primary_plane(crtc, fb,
13573 state->src.x1 >> 16,
13574 state->src.y1 >> 16);
13577 static void
13578 intel_disable_primary_plane(struct drm_plane *plane,
13579 struct drm_crtc *crtc)
13581 struct drm_device *dev = plane->dev;
13582 struct drm_i915_private *dev_priv = dev->dev_private;
13584 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13587 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13588 struct drm_crtc_state *old_crtc_state)
13590 struct drm_device *dev = crtc->dev;
13591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13592 struct intel_crtc_state *old_intel_state =
13593 to_intel_crtc_state(old_crtc_state);
13594 bool modeset = needs_modeset(crtc->state);
13596 if (intel_crtc->atomic.update_wm_pre)
13597 intel_update_watermarks(crtc);
13599 /* Perform vblank evasion around commit operation */
13600 if (crtc->state->active)
13601 intel_pipe_update_start(intel_crtc);
13603 if (modeset)
13604 return;
13606 if (to_intel_crtc_state(crtc->state)->update_pipe)
13607 intel_update_pipe_config(intel_crtc, old_intel_state);
13608 else if (INTEL_INFO(dev)->gen >= 9)
13609 skl_detach_scalers(intel_crtc);
13612 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13613 struct drm_crtc_state *old_crtc_state)
13615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13617 if (crtc->state->active)
13618 intel_pipe_update_end(intel_crtc);
13622 * intel_plane_destroy - destroy a plane
13623 * @plane: plane to destroy
13625 * Common destruction function for all types of planes (primary, cursor,
13626 * sprite).
13628 void intel_plane_destroy(struct drm_plane *plane)
13630 struct intel_plane *intel_plane = to_intel_plane(plane);
13631 drm_plane_cleanup(plane);
13632 kfree(intel_plane);
13635 const struct drm_plane_funcs intel_plane_funcs = {
13636 .update_plane = drm_atomic_helper_update_plane,
13637 .disable_plane = drm_atomic_helper_disable_plane,
13638 .destroy = intel_plane_destroy,
13639 .set_property = drm_atomic_helper_plane_set_property,
13640 .atomic_get_property = intel_plane_atomic_get_property,
13641 .atomic_set_property = intel_plane_atomic_set_property,
13642 .atomic_duplicate_state = intel_plane_duplicate_state,
13643 .atomic_destroy_state = intel_plane_destroy_state,
13647 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13648 int pipe)
13650 struct intel_plane *primary;
13651 struct intel_plane_state *state;
13652 const uint32_t *intel_primary_formats;
13653 unsigned int num_formats;
13655 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13656 if (primary == NULL)
13657 return NULL;
13659 state = intel_create_plane_state(&primary->base);
13660 if (!state) {
13661 kfree(primary);
13662 return NULL;
13664 primary->base.state = &state->base;
13666 primary->can_scale = false;
13667 primary->max_downscale = 1;
13668 if (INTEL_INFO(dev)->gen >= 9) {
13669 primary->can_scale = true;
13670 state->scaler_id = -1;
13672 primary->pipe = pipe;
13673 primary->plane = pipe;
13674 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13675 primary->check_plane = intel_check_primary_plane;
13676 primary->commit_plane = intel_commit_primary_plane;
13677 primary->disable_plane = intel_disable_primary_plane;
13678 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13679 primary->plane = !pipe;
13681 if (INTEL_INFO(dev)->gen >= 9) {
13682 intel_primary_formats = skl_primary_formats;
13683 num_formats = ARRAY_SIZE(skl_primary_formats);
13684 } else if (INTEL_INFO(dev)->gen >= 4) {
13685 intel_primary_formats = i965_primary_formats;
13686 num_formats = ARRAY_SIZE(i965_primary_formats);
13687 } else {
13688 intel_primary_formats = i8xx_primary_formats;
13689 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13692 drm_universal_plane_init(dev, &primary->base, 0,
13693 &intel_plane_funcs,
13694 intel_primary_formats, num_formats,
13695 DRM_PLANE_TYPE_PRIMARY);
13697 if (INTEL_INFO(dev)->gen >= 4)
13698 intel_create_rotation_property(dev, primary);
13700 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13702 return &primary->base;
13705 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13707 if (!dev->mode_config.rotation_property) {
13708 unsigned long flags = BIT(DRM_ROTATE_0) |
13709 BIT(DRM_ROTATE_180);
13711 if (INTEL_INFO(dev)->gen >= 9)
13712 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13714 dev->mode_config.rotation_property =
13715 drm_mode_create_rotation_property(dev, flags);
13717 if (dev->mode_config.rotation_property)
13718 drm_object_attach_property(&plane->base.base,
13719 dev->mode_config.rotation_property,
13720 plane->base.state->rotation);
13723 static int
13724 intel_check_cursor_plane(struct drm_plane *plane,
13725 struct intel_crtc_state *crtc_state,
13726 struct intel_plane_state *state)
13728 struct drm_crtc *crtc = crtc_state->base.crtc;
13729 struct drm_framebuffer *fb = state->base.fb;
13730 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13731 enum pipe pipe = to_intel_plane(plane)->pipe;
13732 unsigned stride;
13733 int ret;
13735 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13736 &state->dst, &state->clip,
13737 DRM_PLANE_HELPER_NO_SCALING,
13738 DRM_PLANE_HELPER_NO_SCALING,
13739 true, true, &state->visible);
13740 if (ret)
13741 return ret;
13743 /* if we want to turn off the cursor ignore width and height */
13744 if (!obj)
13745 return 0;
13747 /* Check for which cursor types we support */
13748 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13749 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13750 state->base.crtc_w, state->base.crtc_h);
13751 return -EINVAL;
13754 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13755 if (obj->base.size < stride * state->base.crtc_h) {
13756 DRM_DEBUG_KMS("buffer is too small\n");
13757 return -ENOMEM;
13760 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13761 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13762 return -EINVAL;
13766 * There's something wrong with the cursor on CHV pipe C.
13767 * If it straddles the left edge of the screen then
13768 * moving it away from the edge or disabling it often
13769 * results in a pipe underrun, and often that can lead to
13770 * dead pipe (constant underrun reported, and it scans
13771 * out just a solid color). To recover from that, the
13772 * display power well must be turned off and on again.
13773 * Refuse the put the cursor into that compromised position.
13775 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
13776 state->visible && state->base.crtc_x < 0) {
13777 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13778 return -EINVAL;
13781 return 0;
13784 static void
13785 intel_disable_cursor_plane(struct drm_plane *plane,
13786 struct drm_crtc *crtc)
13788 intel_crtc_update_cursor(crtc, false);
13791 static void
13792 intel_commit_cursor_plane(struct drm_plane *plane,
13793 struct intel_plane_state *state)
13795 struct drm_crtc *crtc = state->base.crtc;
13796 struct drm_device *dev = plane->dev;
13797 struct intel_crtc *intel_crtc;
13798 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13799 uint32_t addr;
13801 crtc = crtc ? crtc : plane->crtc;
13802 intel_crtc = to_intel_crtc(crtc);
13804 if (!obj)
13805 addr = 0;
13806 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13807 addr = i915_gem_obj_ggtt_offset(obj);
13808 else
13809 addr = obj->phys_handle->busaddr;
13811 intel_crtc->cursor_addr = addr;
13813 if (crtc->state->active)
13814 intel_crtc_update_cursor(crtc, state->visible);
13817 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13818 int pipe)
13820 struct intel_plane *cursor;
13821 struct intel_plane_state *state;
13823 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13824 if (cursor == NULL)
13825 return NULL;
13827 state = intel_create_plane_state(&cursor->base);
13828 if (!state) {
13829 kfree(cursor);
13830 return NULL;
13832 cursor->base.state = &state->base;
13834 cursor->can_scale = false;
13835 cursor->max_downscale = 1;
13836 cursor->pipe = pipe;
13837 cursor->plane = pipe;
13838 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13839 cursor->check_plane = intel_check_cursor_plane;
13840 cursor->commit_plane = intel_commit_cursor_plane;
13841 cursor->disable_plane = intel_disable_cursor_plane;
13843 drm_universal_plane_init(dev, &cursor->base, 0,
13844 &intel_plane_funcs,
13845 intel_cursor_formats,
13846 ARRAY_SIZE(intel_cursor_formats),
13847 DRM_PLANE_TYPE_CURSOR);
13849 if (INTEL_INFO(dev)->gen >= 4) {
13850 if (!dev->mode_config.rotation_property)
13851 dev->mode_config.rotation_property =
13852 drm_mode_create_rotation_property(dev,
13853 BIT(DRM_ROTATE_0) |
13854 BIT(DRM_ROTATE_180));
13855 if (dev->mode_config.rotation_property)
13856 drm_object_attach_property(&cursor->base.base,
13857 dev->mode_config.rotation_property,
13858 state->base.rotation);
13861 if (INTEL_INFO(dev)->gen >=9)
13862 state->scaler_id = -1;
13864 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13866 return &cursor->base;
13869 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13870 struct intel_crtc_state *crtc_state)
13872 int i;
13873 struct intel_scaler *intel_scaler;
13874 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13876 for (i = 0; i < intel_crtc->num_scalers; i++) {
13877 intel_scaler = &scaler_state->scalers[i];
13878 intel_scaler->in_use = 0;
13879 intel_scaler->mode = PS_SCALER_MODE_DYN;
13882 scaler_state->scaler_id = -1;
13885 static void intel_crtc_init(struct drm_device *dev, int pipe)
13887 struct drm_i915_private *dev_priv = dev->dev_private;
13888 struct intel_crtc *intel_crtc;
13889 struct intel_crtc_state *crtc_state = NULL;
13890 struct drm_plane *primary = NULL;
13891 struct drm_plane *cursor = NULL;
13892 int i, ret;
13894 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13895 if (intel_crtc == NULL)
13896 return;
13898 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13899 if (!crtc_state)
13900 goto fail;
13901 intel_crtc->config = crtc_state;
13902 intel_crtc->base.state = &crtc_state->base;
13903 crtc_state->base.crtc = &intel_crtc->base;
13905 /* initialize shared scalers */
13906 if (INTEL_INFO(dev)->gen >= 9) {
13907 if (pipe == PIPE_C)
13908 intel_crtc->num_scalers = 1;
13909 else
13910 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13912 skl_init_scalers(dev, intel_crtc, crtc_state);
13915 primary = intel_primary_plane_create(dev, pipe);
13916 if (!primary)
13917 goto fail;
13919 cursor = intel_cursor_plane_create(dev, pipe);
13920 if (!cursor)
13921 goto fail;
13923 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13924 cursor, &intel_crtc_funcs);
13925 if (ret)
13926 goto fail;
13928 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13929 for (i = 0; i < 256; i++) {
13930 intel_crtc->lut_r[i] = i;
13931 intel_crtc->lut_g[i] = i;
13932 intel_crtc->lut_b[i] = i;
13936 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13937 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13939 intel_crtc->pipe = pipe;
13940 intel_crtc->plane = pipe;
13941 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13942 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13943 intel_crtc->plane = !pipe;
13946 intel_crtc->cursor_base = ~0;
13947 intel_crtc->cursor_cntl = ~0;
13948 intel_crtc->cursor_size = ~0;
13950 intel_crtc->wm.cxsr_allowed = true;
13952 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13953 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13954 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13955 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13957 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13959 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13960 return;
13962 fail:
13963 if (primary)
13964 drm_plane_cleanup(primary);
13965 if (cursor)
13966 drm_plane_cleanup(cursor);
13967 kfree(crtc_state);
13968 kfree(intel_crtc);
13971 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13973 struct drm_encoder *encoder = connector->base.encoder;
13974 struct drm_device *dev = connector->base.dev;
13976 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13978 if (!encoder || WARN_ON(!encoder->crtc))
13979 return INVALID_PIPE;
13981 return to_intel_crtc(encoder->crtc)->pipe;
13984 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13985 struct drm_file *file)
13987 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13988 struct drm_crtc *drmmode_crtc;
13989 struct intel_crtc *crtc;
13991 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13993 if (!drmmode_crtc) {
13994 DRM_ERROR("no such CRTC id\n");
13995 return -ENOENT;
13998 crtc = to_intel_crtc(drmmode_crtc);
13999 pipe_from_crtc_id->pipe = crtc->pipe;
14001 return 0;
14004 static int intel_encoder_clones(struct intel_encoder *encoder)
14006 struct drm_device *dev = encoder->base.dev;
14007 struct intel_encoder *source_encoder;
14008 int index_mask = 0;
14009 int entry = 0;
14011 for_each_intel_encoder(dev, source_encoder) {
14012 if (encoders_cloneable(encoder, source_encoder))
14013 index_mask |= (1 << entry);
14015 entry++;
14018 return index_mask;
14021 static bool has_edp_a(struct drm_device *dev)
14023 struct drm_i915_private *dev_priv = dev->dev_private;
14025 if (!IS_MOBILE(dev))
14026 return false;
14028 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14029 return false;
14031 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14032 return false;
14034 return true;
14037 static bool intel_crt_present(struct drm_device *dev)
14039 struct drm_i915_private *dev_priv = dev->dev_private;
14041 if (INTEL_INFO(dev)->gen >= 9)
14042 return false;
14044 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14045 return false;
14047 if (IS_CHERRYVIEW(dev))
14048 return false;
14050 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14051 return false;
14053 return true;
14056 static void intel_setup_outputs(struct drm_device *dev)
14058 struct drm_i915_private *dev_priv = dev->dev_private;
14059 struct intel_encoder *encoder;
14060 bool dpd_is_edp = false;
14062 intel_lvds_init(dev);
14064 if (intel_crt_present(dev))
14065 intel_crt_init(dev);
14067 if (IS_BROXTON(dev)) {
14069 * FIXME: Broxton doesn't support port detection via the
14070 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14071 * detect the ports.
14073 intel_ddi_init(dev, PORT_A);
14074 intel_ddi_init(dev, PORT_B);
14075 intel_ddi_init(dev, PORT_C);
14076 } else if (HAS_DDI(dev)) {
14077 int found;
14080 * Haswell uses DDI functions to detect digital outputs.
14081 * On SKL pre-D0 the strap isn't connected, so we assume
14082 * it's there.
14084 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14085 /* WaIgnoreDDIAStrap: skl */
14086 if (found || IS_SKYLAKE(dev))
14087 intel_ddi_init(dev, PORT_A);
14089 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14090 * register */
14091 found = I915_READ(SFUSE_STRAP);
14093 if (found & SFUSE_STRAP_DDIB_DETECTED)
14094 intel_ddi_init(dev, PORT_B);
14095 if (found & SFUSE_STRAP_DDIC_DETECTED)
14096 intel_ddi_init(dev, PORT_C);
14097 if (found & SFUSE_STRAP_DDID_DETECTED)
14098 intel_ddi_init(dev, PORT_D);
14100 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14102 if (IS_SKYLAKE(dev) &&
14103 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14104 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14105 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14106 intel_ddi_init(dev, PORT_E);
14108 } else if (HAS_PCH_SPLIT(dev)) {
14109 int found;
14110 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14112 if (has_edp_a(dev))
14113 intel_dp_init(dev, DP_A, PORT_A);
14115 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14116 /* PCH SDVOB multiplex with HDMIB */
14117 found = intel_sdvo_init(dev, PCH_SDVOB, true);
14118 if (!found)
14119 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14120 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14121 intel_dp_init(dev, PCH_DP_B, PORT_B);
14124 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14125 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14127 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14128 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14130 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14131 intel_dp_init(dev, PCH_DP_C, PORT_C);
14133 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14134 intel_dp_init(dev, PCH_DP_D, PORT_D);
14135 } else if (IS_VALLEYVIEW(dev)) {
14137 * The DP_DETECTED bit is the latched state of the DDC
14138 * SDA pin at boot. However since eDP doesn't require DDC
14139 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14140 * eDP ports may have been muxed to an alternate function.
14141 * Thus we can't rely on the DP_DETECTED bit alone to detect
14142 * eDP ports. Consult the VBT as well as DP_DETECTED to
14143 * detect eDP ports.
14145 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14146 !intel_dp_is_edp(dev, PORT_B))
14147 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14148 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14149 intel_dp_is_edp(dev, PORT_B))
14150 intel_dp_init(dev, VLV_DP_B, PORT_B);
14152 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14153 !intel_dp_is_edp(dev, PORT_C))
14154 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14155 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14156 intel_dp_is_edp(dev, PORT_C))
14157 intel_dp_init(dev, VLV_DP_C, PORT_C);
14159 if (IS_CHERRYVIEW(dev)) {
14160 /* eDP not supported on port D, so don't check VBT */
14161 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14162 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14163 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14164 intel_dp_init(dev, CHV_DP_D, PORT_D);
14167 intel_dsi_init(dev);
14168 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14169 bool found = false;
14171 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14172 DRM_DEBUG_KMS("probing SDVOB\n");
14173 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14174 if (!found && IS_G4X(dev)) {
14175 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14176 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14179 if (!found && IS_G4X(dev))
14180 intel_dp_init(dev, DP_B, PORT_B);
14183 /* Before G4X SDVOC doesn't have its own detect register */
14185 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14186 DRM_DEBUG_KMS("probing SDVOC\n");
14187 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14190 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14192 if (IS_G4X(dev)) {
14193 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14194 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14196 if (IS_G4X(dev))
14197 intel_dp_init(dev, DP_C, PORT_C);
14200 if (IS_G4X(dev) &&
14201 (I915_READ(DP_D) & DP_DETECTED))
14202 intel_dp_init(dev, DP_D, PORT_D);
14203 } else if (IS_GEN2(dev))
14204 intel_dvo_init(dev);
14206 if (SUPPORTS_TV(dev))
14207 intel_tv_init(dev);
14209 intel_psr_init(dev);
14211 for_each_intel_encoder(dev, encoder) {
14212 encoder->base.possible_crtcs = encoder->crtc_mask;
14213 encoder->base.possible_clones =
14214 intel_encoder_clones(encoder);
14217 intel_init_pch_refclk(dev);
14219 drm_helper_move_panel_connectors_to_head(dev);
14222 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14224 struct drm_device *dev = fb->dev;
14225 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14227 drm_framebuffer_cleanup(fb);
14228 mutex_lock(&dev->struct_mutex);
14229 WARN_ON(!intel_fb->obj->framebuffer_references--);
14230 drm_gem_object_unreference(&intel_fb->obj->base);
14231 mutex_unlock(&dev->struct_mutex);
14232 kfree(intel_fb);
14235 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14236 struct drm_file *file,
14237 unsigned int *handle)
14239 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14240 struct drm_i915_gem_object *obj = intel_fb->obj;
14242 if (obj->userptr.mm) {
14243 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14244 return -EINVAL;
14247 return drm_gem_handle_create(file, &obj->base, handle);
14250 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14251 struct drm_file *file,
14252 unsigned flags, unsigned color,
14253 struct drm_clip_rect *clips,
14254 unsigned num_clips)
14256 struct drm_device *dev = fb->dev;
14257 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14258 struct drm_i915_gem_object *obj = intel_fb->obj;
14260 mutex_lock(&dev->struct_mutex);
14261 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14262 mutex_unlock(&dev->struct_mutex);
14264 return 0;
14267 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14268 .destroy = intel_user_framebuffer_destroy,
14269 .create_handle = intel_user_framebuffer_create_handle,
14270 .dirty = intel_user_framebuffer_dirty,
14273 static
14274 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14275 uint32_t pixel_format)
14277 u32 gen = INTEL_INFO(dev)->gen;
14279 if (gen >= 9) {
14280 /* "The stride in bytes must not exceed the of the size of 8K
14281 * pixels and 32K bytes."
14283 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14284 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14285 return 32*1024;
14286 } else if (gen >= 4) {
14287 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14288 return 16*1024;
14289 else
14290 return 32*1024;
14291 } else if (gen >= 3) {
14292 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14293 return 8*1024;
14294 else
14295 return 16*1024;
14296 } else {
14297 /* XXX DSPC is limited to 4k tiled */
14298 return 8*1024;
14302 static int intel_framebuffer_init(struct drm_device *dev,
14303 struct intel_framebuffer *intel_fb,
14304 struct drm_mode_fb_cmd2 *mode_cmd,
14305 struct drm_i915_gem_object *obj)
14307 unsigned int aligned_height;
14308 int ret;
14309 u32 pitch_limit, stride_alignment;
14311 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14313 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14314 /* Enforce that fb modifier and tiling mode match, but only for
14315 * X-tiled. This is needed for FBC. */
14316 if (!!(obj->tiling_mode == I915_TILING_X) !=
14317 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14318 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14319 return -EINVAL;
14321 } else {
14322 if (obj->tiling_mode == I915_TILING_X)
14323 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14324 else if (obj->tiling_mode == I915_TILING_Y) {
14325 DRM_DEBUG("No Y tiling for legacy addfb\n");
14326 return -EINVAL;
14330 /* Passed in modifier sanity checking. */
14331 switch (mode_cmd->modifier[0]) {
14332 case I915_FORMAT_MOD_Y_TILED:
14333 case I915_FORMAT_MOD_Yf_TILED:
14334 if (INTEL_INFO(dev)->gen < 9) {
14335 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14336 mode_cmd->modifier[0]);
14337 return -EINVAL;
14339 case DRM_FORMAT_MOD_NONE:
14340 case I915_FORMAT_MOD_X_TILED:
14341 break;
14342 default:
14343 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14344 mode_cmd->modifier[0]);
14345 return -EINVAL;
14348 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14349 mode_cmd->pixel_format);
14350 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14351 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14352 mode_cmd->pitches[0], stride_alignment);
14353 return -EINVAL;
14356 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14357 mode_cmd->pixel_format);
14358 if (mode_cmd->pitches[0] > pitch_limit) {
14359 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14360 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14361 "tiled" : "linear",
14362 mode_cmd->pitches[0], pitch_limit);
14363 return -EINVAL;
14366 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14367 mode_cmd->pitches[0] != obj->stride) {
14368 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14369 mode_cmd->pitches[0], obj->stride);
14370 return -EINVAL;
14373 /* Reject formats not supported by any plane early. */
14374 switch (mode_cmd->pixel_format) {
14375 case DRM_FORMAT_C8:
14376 case DRM_FORMAT_RGB565:
14377 case DRM_FORMAT_XRGB8888:
14378 case DRM_FORMAT_ARGB8888:
14379 break;
14380 case DRM_FORMAT_XRGB1555:
14381 if (INTEL_INFO(dev)->gen > 3) {
14382 DRM_DEBUG("unsupported pixel format: %s\n",
14383 drm_get_format_name(mode_cmd->pixel_format));
14384 return -EINVAL;
14386 break;
14387 case DRM_FORMAT_ABGR8888:
14388 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14389 DRM_DEBUG("unsupported pixel format: %s\n",
14390 drm_get_format_name(mode_cmd->pixel_format));
14391 return -EINVAL;
14393 break;
14394 case DRM_FORMAT_XBGR8888:
14395 case DRM_FORMAT_XRGB2101010:
14396 case DRM_FORMAT_XBGR2101010:
14397 if (INTEL_INFO(dev)->gen < 4) {
14398 DRM_DEBUG("unsupported pixel format: %s\n",
14399 drm_get_format_name(mode_cmd->pixel_format));
14400 return -EINVAL;
14402 break;
14403 case DRM_FORMAT_ABGR2101010:
14404 if (!IS_VALLEYVIEW(dev)) {
14405 DRM_DEBUG("unsupported pixel format: %s\n",
14406 drm_get_format_name(mode_cmd->pixel_format));
14407 return -EINVAL;
14409 break;
14410 case DRM_FORMAT_YUYV:
14411 case DRM_FORMAT_UYVY:
14412 case DRM_FORMAT_YVYU:
14413 case DRM_FORMAT_VYUY:
14414 if (INTEL_INFO(dev)->gen < 5) {
14415 DRM_DEBUG("unsupported pixel format: %s\n",
14416 drm_get_format_name(mode_cmd->pixel_format));
14417 return -EINVAL;
14419 break;
14420 default:
14421 DRM_DEBUG("unsupported pixel format: %s\n",
14422 drm_get_format_name(mode_cmd->pixel_format));
14423 return -EINVAL;
14426 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14427 if (mode_cmd->offsets[0] != 0)
14428 return -EINVAL;
14430 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14431 mode_cmd->pixel_format,
14432 mode_cmd->modifier[0]);
14433 /* FIXME drm helper for size checks (especially planar formats)? */
14434 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14435 return -EINVAL;
14437 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14438 intel_fb->obj = obj;
14439 intel_fb->obj->framebuffer_references++;
14441 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14442 if (ret) {
14443 DRM_ERROR("framebuffer init failed %d\n", ret);
14444 return ret;
14447 return 0;
14450 static struct drm_framebuffer *
14451 intel_user_framebuffer_create(struct drm_device *dev,
14452 struct drm_file *filp,
14453 struct drm_mode_fb_cmd2 *user_mode_cmd)
14455 struct drm_i915_gem_object *obj;
14456 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14458 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14459 mode_cmd.handles[0]));
14460 if (&obj->base == NULL)
14461 return ERR_PTR(-ENOENT);
14463 return intel_framebuffer_create(dev, &mode_cmd, obj);
14466 #ifndef CONFIG_DRM_FBDEV_EMULATION
14467 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14470 #endif
14472 static const struct drm_mode_config_funcs intel_mode_funcs = {
14473 .fb_create = intel_user_framebuffer_create,
14474 .output_poll_changed = intel_fbdev_output_poll_changed,
14475 .atomic_check = intel_atomic_check,
14476 .atomic_commit = intel_atomic_commit,
14477 .atomic_state_alloc = intel_atomic_state_alloc,
14478 .atomic_state_clear = intel_atomic_state_clear,
14481 /* Set up chip specific display functions */
14482 static void intel_init_display(struct drm_device *dev)
14484 struct drm_i915_private *dev_priv = dev->dev_private;
14486 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14487 dev_priv->display.find_dpll = g4x_find_best_dpll;
14488 else if (IS_CHERRYVIEW(dev))
14489 dev_priv->display.find_dpll = chv_find_best_dpll;
14490 else if (IS_VALLEYVIEW(dev))
14491 dev_priv->display.find_dpll = vlv_find_best_dpll;
14492 else if (IS_PINEVIEW(dev))
14493 dev_priv->display.find_dpll = pnv_find_best_dpll;
14494 else
14495 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14497 if (INTEL_INFO(dev)->gen >= 9) {
14498 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14499 dev_priv->display.get_initial_plane_config =
14500 skylake_get_initial_plane_config;
14501 dev_priv->display.crtc_compute_clock =
14502 haswell_crtc_compute_clock;
14503 dev_priv->display.crtc_enable = haswell_crtc_enable;
14504 dev_priv->display.crtc_disable = haswell_crtc_disable;
14505 dev_priv->display.update_primary_plane =
14506 skylake_update_primary_plane;
14507 } else if (HAS_DDI(dev)) {
14508 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14509 dev_priv->display.get_initial_plane_config =
14510 ironlake_get_initial_plane_config;
14511 dev_priv->display.crtc_compute_clock =
14512 haswell_crtc_compute_clock;
14513 dev_priv->display.crtc_enable = haswell_crtc_enable;
14514 dev_priv->display.crtc_disable = haswell_crtc_disable;
14515 dev_priv->display.update_primary_plane =
14516 ironlake_update_primary_plane;
14517 } else if (HAS_PCH_SPLIT(dev)) {
14518 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14519 dev_priv->display.get_initial_plane_config =
14520 ironlake_get_initial_plane_config;
14521 dev_priv->display.crtc_compute_clock =
14522 ironlake_crtc_compute_clock;
14523 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14524 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14525 dev_priv->display.update_primary_plane =
14526 ironlake_update_primary_plane;
14527 } else if (IS_VALLEYVIEW(dev)) {
14528 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14529 dev_priv->display.get_initial_plane_config =
14530 i9xx_get_initial_plane_config;
14531 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14532 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14533 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14534 dev_priv->display.update_primary_plane =
14535 i9xx_update_primary_plane;
14536 } else {
14537 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14538 dev_priv->display.get_initial_plane_config =
14539 i9xx_get_initial_plane_config;
14540 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14541 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14542 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14543 dev_priv->display.update_primary_plane =
14544 i9xx_update_primary_plane;
14547 /* Returns the core display clock speed */
14548 if (IS_SKYLAKE(dev))
14549 dev_priv->display.get_display_clock_speed =
14550 skylake_get_display_clock_speed;
14551 else if (IS_BROXTON(dev))
14552 dev_priv->display.get_display_clock_speed =
14553 broxton_get_display_clock_speed;
14554 else if (IS_BROADWELL(dev))
14555 dev_priv->display.get_display_clock_speed =
14556 broadwell_get_display_clock_speed;
14557 else if (IS_HASWELL(dev))
14558 dev_priv->display.get_display_clock_speed =
14559 haswell_get_display_clock_speed;
14560 else if (IS_VALLEYVIEW(dev))
14561 dev_priv->display.get_display_clock_speed =
14562 valleyview_get_display_clock_speed;
14563 else if (IS_GEN5(dev))
14564 dev_priv->display.get_display_clock_speed =
14565 ilk_get_display_clock_speed;
14566 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14567 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14568 dev_priv->display.get_display_clock_speed =
14569 i945_get_display_clock_speed;
14570 else if (IS_GM45(dev))
14571 dev_priv->display.get_display_clock_speed =
14572 gm45_get_display_clock_speed;
14573 else if (IS_CRESTLINE(dev))
14574 dev_priv->display.get_display_clock_speed =
14575 i965gm_get_display_clock_speed;
14576 else if (IS_PINEVIEW(dev))
14577 dev_priv->display.get_display_clock_speed =
14578 pnv_get_display_clock_speed;
14579 else if (IS_G33(dev) || IS_G4X(dev))
14580 dev_priv->display.get_display_clock_speed =
14581 g33_get_display_clock_speed;
14582 else if (IS_I915G(dev))
14583 dev_priv->display.get_display_clock_speed =
14584 i915_get_display_clock_speed;
14585 else if (IS_I945GM(dev) || IS_845G(dev))
14586 dev_priv->display.get_display_clock_speed =
14587 i9xx_misc_get_display_clock_speed;
14588 else if (IS_PINEVIEW(dev))
14589 dev_priv->display.get_display_clock_speed =
14590 pnv_get_display_clock_speed;
14591 else if (IS_I915GM(dev))
14592 dev_priv->display.get_display_clock_speed =
14593 i915gm_get_display_clock_speed;
14594 else if (IS_I865G(dev))
14595 dev_priv->display.get_display_clock_speed =
14596 i865_get_display_clock_speed;
14597 else if (IS_I85X(dev))
14598 dev_priv->display.get_display_clock_speed =
14599 i85x_get_display_clock_speed;
14600 else { /* 830 */
14601 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14602 dev_priv->display.get_display_clock_speed =
14603 i830_get_display_clock_speed;
14606 if (IS_GEN5(dev)) {
14607 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14608 } else if (IS_GEN6(dev)) {
14609 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14610 } else if (IS_IVYBRIDGE(dev)) {
14611 /* FIXME: detect B0+ stepping and use auto training */
14612 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14613 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14614 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14615 if (IS_BROADWELL(dev)) {
14616 dev_priv->display.modeset_commit_cdclk =
14617 broadwell_modeset_commit_cdclk;
14618 dev_priv->display.modeset_calc_cdclk =
14619 broadwell_modeset_calc_cdclk;
14621 } else if (IS_VALLEYVIEW(dev)) {
14622 dev_priv->display.modeset_commit_cdclk =
14623 valleyview_modeset_commit_cdclk;
14624 dev_priv->display.modeset_calc_cdclk =
14625 valleyview_modeset_calc_cdclk;
14626 } else if (IS_BROXTON(dev)) {
14627 dev_priv->display.modeset_commit_cdclk =
14628 broxton_modeset_commit_cdclk;
14629 dev_priv->display.modeset_calc_cdclk =
14630 broxton_modeset_calc_cdclk;
14633 switch (INTEL_INFO(dev)->gen) {
14634 case 2:
14635 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14636 break;
14638 case 3:
14639 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14640 break;
14642 case 4:
14643 case 5:
14644 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14645 break;
14647 case 6:
14648 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14649 break;
14650 case 7:
14651 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14652 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14653 break;
14654 case 9:
14655 /* Drop through - unsupported since execlist only. */
14656 default:
14657 /* Default just returns -ENODEV to indicate unsupported */
14658 dev_priv->display.queue_flip = intel_default_queue_flip;
14661 mutex_init(&dev_priv->pps_mutex);
14665 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14666 * resume, or other times. This quirk makes sure that's the case for
14667 * affected systems.
14669 static void quirk_pipea_force(struct drm_device *dev)
14671 struct drm_i915_private *dev_priv = dev->dev_private;
14673 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14674 DRM_INFO("applying pipe a force quirk\n");
14677 static void quirk_pipeb_force(struct drm_device *dev)
14679 struct drm_i915_private *dev_priv = dev->dev_private;
14681 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14682 DRM_INFO("applying pipe b force quirk\n");
14686 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14688 static void quirk_ssc_force_disable(struct drm_device *dev)
14690 struct drm_i915_private *dev_priv = dev->dev_private;
14691 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14692 DRM_INFO("applying lvds SSC disable quirk\n");
14696 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14697 * brightness value
14699 static void quirk_invert_brightness(struct drm_device *dev)
14701 struct drm_i915_private *dev_priv = dev->dev_private;
14702 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14703 DRM_INFO("applying inverted panel brightness quirk\n");
14706 /* Some VBT's incorrectly indicate no backlight is present */
14707 static void quirk_backlight_present(struct drm_device *dev)
14709 struct drm_i915_private *dev_priv = dev->dev_private;
14710 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14711 DRM_INFO("applying backlight present quirk\n");
14714 struct intel_quirk {
14715 int device;
14716 int subsystem_vendor;
14717 int subsystem_device;
14718 void (*hook)(struct drm_device *dev);
14721 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14722 struct intel_dmi_quirk {
14723 void (*hook)(struct drm_device *dev);
14724 const struct dmi_system_id (*dmi_id_list)[];
14727 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14729 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14730 return 1;
14733 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14735 .dmi_id_list = &(const struct dmi_system_id[]) {
14737 .callback = intel_dmi_reverse_brightness,
14738 .ident = "NCR Corporation",
14739 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14740 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14743 { } /* terminating entry */
14745 .hook = quirk_invert_brightness,
14749 static struct intel_quirk intel_quirks[] = {
14750 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14751 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14753 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14754 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14756 /* 830 needs to leave pipe A & dpll A up */
14757 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14759 /* 830 needs to leave pipe B & dpll B up */
14760 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14762 /* Lenovo U160 cannot use SSC on LVDS */
14763 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14765 /* Sony Vaio Y cannot use SSC on LVDS */
14766 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14768 /* Acer Aspire 5734Z must invert backlight brightness */
14769 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14771 /* Acer/eMachines G725 */
14772 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14774 /* Acer/eMachines e725 */
14775 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14777 /* Acer/Packard Bell NCL20 */
14778 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14780 /* Acer Aspire 4736Z */
14781 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14783 /* Acer Aspire 5336 */
14784 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14786 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14787 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14789 /* Acer C720 Chromebook (Core i3 4005U) */
14790 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14792 /* Apple Macbook 2,1 (Core 2 T7400) */
14793 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14795 /* Apple Macbook 4,1 */
14796 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14798 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14799 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14801 /* HP Chromebook 14 (Celeron 2955U) */
14802 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14804 /* Dell Chromebook 11 */
14805 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14807 /* Dell Chromebook 11 (2015 version) */
14808 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14811 static void intel_init_quirks(struct drm_device *dev)
14813 struct pci_dev *d = dev->pdev;
14814 int i;
14816 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14817 struct intel_quirk *q = &intel_quirks[i];
14819 if (d->device == q->device &&
14820 (d->subsystem_vendor == q->subsystem_vendor ||
14821 q->subsystem_vendor == PCI_ANY_ID) &&
14822 (d->subsystem_device == q->subsystem_device ||
14823 q->subsystem_device == PCI_ANY_ID))
14824 q->hook(dev);
14826 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14827 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14828 intel_dmi_quirks[i].hook(dev);
14832 /* Disable the VGA plane that we never use */
14833 static void i915_disable_vga(struct drm_device *dev)
14835 struct drm_i915_private *dev_priv = dev->dev_private;
14836 u8 sr1;
14837 u32 vga_reg = i915_vgacntrl_reg(dev);
14839 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14840 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14841 outb(SR01, VGA_SR_INDEX);
14842 sr1 = inb(VGA_SR_DATA);
14843 outb(sr1 | 1<<5, VGA_SR_DATA);
14844 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14845 udelay(300);
14847 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14848 POSTING_READ(vga_reg);
14851 void intel_modeset_init_hw(struct drm_device *dev)
14853 intel_update_cdclk(dev);
14854 intel_prepare_ddi(dev);
14855 intel_init_clock_gating(dev);
14856 intel_enable_gt_powersave(dev);
14859 void intel_modeset_init(struct drm_device *dev)
14861 struct drm_i915_private *dev_priv = dev->dev_private;
14862 int sprite, ret;
14863 enum pipe pipe;
14864 struct intel_crtc *crtc;
14866 drm_mode_config_init(dev);
14868 dev->mode_config.min_width = 0;
14869 dev->mode_config.min_height = 0;
14871 dev->mode_config.preferred_depth = 24;
14872 dev->mode_config.prefer_shadow = 1;
14874 dev->mode_config.allow_fb_modifiers = true;
14876 dev->mode_config.funcs = &intel_mode_funcs;
14878 intel_init_quirks(dev);
14880 intel_init_pm(dev);
14882 if (INTEL_INFO(dev)->num_pipes == 0)
14883 return;
14886 * There may be no VBT; and if the BIOS enabled SSC we can
14887 * just keep using it to avoid unnecessary flicker. Whereas if the
14888 * BIOS isn't using it, don't assume it will work even if the VBT
14889 * indicates as much.
14891 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14892 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14893 DREF_SSC1_ENABLE);
14895 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14896 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14897 bios_lvds_use_ssc ? "en" : "dis",
14898 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14899 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14903 intel_init_display(dev);
14904 intel_init_audio(dev);
14906 if (IS_GEN2(dev)) {
14907 dev->mode_config.max_width = 2048;
14908 dev->mode_config.max_height = 2048;
14909 } else if (IS_GEN3(dev)) {
14910 dev->mode_config.max_width = 4096;
14911 dev->mode_config.max_height = 4096;
14912 } else {
14913 dev->mode_config.max_width = 8192;
14914 dev->mode_config.max_height = 8192;
14917 if (IS_845G(dev) || IS_I865G(dev)) {
14918 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14919 dev->mode_config.cursor_height = 1023;
14920 } else if (IS_GEN2(dev)) {
14921 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14922 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14923 } else {
14924 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14925 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14928 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14930 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14931 INTEL_INFO(dev)->num_pipes,
14932 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14934 for_each_pipe(dev_priv, pipe) {
14935 intel_crtc_init(dev, pipe);
14936 for_each_sprite(dev_priv, pipe, sprite) {
14937 ret = intel_plane_init(dev, pipe, sprite);
14938 if (ret)
14939 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14940 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14944 intel_update_czclk(dev_priv);
14945 intel_update_cdclk(dev);
14947 intel_shared_dpll_init(dev);
14949 /* Just disable it once at startup */
14950 i915_disable_vga(dev);
14951 intel_setup_outputs(dev);
14953 /* Just in case the BIOS is doing something questionable. */
14954 intel_fbc_disable(dev_priv);
14956 drm_modeset_lock_all(dev);
14957 intel_modeset_setup_hw_state(dev);
14958 drm_modeset_unlock_all(dev);
14960 for_each_intel_crtc(dev, crtc) {
14961 struct intel_initial_plane_config plane_config = {};
14963 if (!crtc->active)
14964 continue;
14967 * Note that reserving the BIOS fb up front prevents us
14968 * from stuffing other stolen allocations like the ring
14969 * on top. This prevents some ugliness at boot time, and
14970 * can even allow for smooth boot transitions if the BIOS
14971 * fb is large enough for the active pipe configuration.
14973 dev_priv->display.get_initial_plane_config(crtc,
14974 &plane_config);
14977 * If the fb is shared between multiple heads, we'll
14978 * just get the first one.
14980 intel_find_initial_plane_obj(crtc, &plane_config);
14984 static void intel_enable_pipe_a(struct drm_device *dev)
14986 struct intel_connector *connector;
14987 struct drm_connector *crt = NULL;
14988 struct intel_load_detect_pipe load_detect_temp;
14989 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14991 /* We can't just switch on the pipe A, we need to set things up with a
14992 * proper mode and output configuration. As a gross hack, enable pipe A
14993 * by enabling the load detect pipe once. */
14994 for_each_intel_connector(dev, connector) {
14995 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14996 crt = &connector->base;
14997 break;
15001 if (!crt)
15002 return;
15004 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15005 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15008 static bool
15009 intel_check_plane_mapping(struct intel_crtc *crtc)
15011 struct drm_device *dev = crtc->base.dev;
15012 struct drm_i915_private *dev_priv = dev->dev_private;
15013 u32 val;
15015 if (INTEL_INFO(dev)->num_pipes == 1)
15016 return true;
15018 val = I915_READ(DSPCNTR(!crtc->plane));
15020 if ((val & DISPLAY_PLANE_ENABLE) &&
15021 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15022 return false;
15024 return true;
15027 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15029 struct drm_device *dev = crtc->base.dev;
15030 struct intel_encoder *encoder;
15032 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15033 return true;
15035 return false;
15038 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15040 struct drm_device *dev = crtc->base.dev;
15041 struct drm_i915_private *dev_priv = dev->dev_private;
15042 u32 reg;
15044 /* Clear any frame start delays used for debugging left by the BIOS */
15045 reg = PIPECONF(crtc->config->cpu_transcoder);
15046 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15048 /* restore vblank interrupts to correct state */
15049 drm_crtc_vblank_reset(&crtc->base);
15050 if (crtc->active) {
15051 struct intel_plane *plane;
15053 drm_crtc_vblank_on(&crtc->base);
15055 /* Disable everything but the primary plane */
15056 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15057 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15058 continue;
15060 plane->disable_plane(&plane->base, &crtc->base);
15064 /* We need to sanitize the plane -> pipe mapping first because this will
15065 * disable the crtc (and hence change the state) if it is wrong. Note
15066 * that gen4+ has a fixed plane -> pipe mapping. */
15067 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15068 bool plane;
15070 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15071 crtc->base.base.id);
15073 /* Pipe has the wrong plane attached and the plane is active.
15074 * Temporarily change the plane mapping and disable everything
15075 * ... */
15076 plane = crtc->plane;
15077 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15078 crtc->plane = !plane;
15079 intel_crtc_disable_noatomic(&crtc->base);
15080 crtc->plane = plane;
15083 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15084 crtc->pipe == PIPE_A && !crtc->active) {
15085 /* BIOS forgot to enable pipe A, this mostly happens after
15086 * resume. Force-enable the pipe to fix this, the update_dpms
15087 * call below we restore the pipe to the right state, but leave
15088 * the required bits on. */
15089 intel_enable_pipe_a(dev);
15092 /* Adjust the state of the output pipe according to whether we
15093 * have active connectors/encoders. */
15094 if (!intel_crtc_has_encoders(crtc))
15095 intel_crtc_disable_noatomic(&crtc->base);
15097 if (crtc->active != crtc->base.state->active) {
15098 struct intel_encoder *encoder;
15100 /* This can happen either due to bugs in the get_hw_state
15101 * functions or because of calls to intel_crtc_disable_noatomic,
15102 * or because the pipe is force-enabled due to the
15103 * pipe A quirk. */
15104 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15105 crtc->base.base.id,
15106 crtc->base.state->enable ? "enabled" : "disabled",
15107 crtc->active ? "enabled" : "disabled");
15109 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15110 crtc->base.state->active = crtc->active;
15111 crtc->base.enabled = crtc->active;
15113 /* Because we only establish the connector -> encoder ->
15114 * crtc links if something is active, this means the
15115 * crtc is now deactivated. Break the links. connector
15116 * -> encoder links are only establish when things are
15117 * actually up, hence no need to break them. */
15118 WARN_ON(crtc->active);
15120 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15121 encoder->base.crtc = NULL;
15124 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15126 * We start out with underrun reporting disabled to avoid races.
15127 * For correct bookkeeping mark this on active crtcs.
15129 * Also on gmch platforms we dont have any hardware bits to
15130 * disable the underrun reporting. Which means we need to start
15131 * out with underrun reporting disabled also on inactive pipes,
15132 * since otherwise we'll complain about the garbage we read when
15133 * e.g. coming up after runtime pm.
15135 * No protection against concurrent access is required - at
15136 * worst a fifo underrun happens which also sets this to false.
15138 crtc->cpu_fifo_underrun_disabled = true;
15139 crtc->pch_fifo_underrun_disabled = true;
15143 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15145 struct intel_connector *connector;
15146 struct drm_device *dev = encoder->base.dev;
15147 bool active = false;
15149 /* We need to check both for a crtc link (meaning that the
15150 * encoder is active and trying to read from a pipe) and the
15151 * pipe itself being active. */
15152 bool has_active_crtc = encoder->base.crtc &&
15153 to_intel_crtc(encoder->base.crtc)->active;
15155 for_each_intel_connector(dev, connector) {
15156 if (connector->base.encoder != &encoder->base)
15157 continue;
15159 active = true;
15160 break;
15163 if (active && !has_active_crtc) {
15164 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15165 encoder->base.base.id,
15166 encoder->base.name);
15168 /* Connector is active, but has no active pipe. This is
15169 * fallout from our resume register restoring. Disable
15170 * the encoder manually again. */
15171 if (encoder->base.crtc) {
15172 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15173 encoder->base.base.id,
15174 encoder->base.name);
15175 encoder->disable(encoder);
15176 if (encoder->post_disable)
15177 encoder->post_disable(encoder);
15179 encoder->base.crtc = NULL;
15181 /* Inconsistent output/port/pipe state happens presumably due to
15182 * a bug in one of the get_hw_state functions. Or someplace else
15183 * in our code, like the register restore mess on resume. Clamp
15184 * things to off as a safer default. */
15185 for_each_intel_connector(dev, connector) {
15186 if (connector->encoder != encoder)
15187 continue;
15188 connector->base.dpms = DRM_MODE_DPMS_OFF;
15189 connector->base.encoder = NULL;
15192 /* Enabled encoders without active connectors will be fixed in
15193 * the crtc fixup. */
15196 void i915_redisable_vga_power_on(struct drm_device *dev)
15198 struct drm_i915_private *dev_priv = dev->dev_private;
15199 u32 vga_reg = i915_vgacntrl_reg(dev);
15201 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15202 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15203 i915_disable_vga(dev);
15207 void i915_redisable_vga(struct drm_device *dev)
15209 struct drm_i915_private *dev_priv = dev->dev_private;
15211 /* This function can be called both from intel_modeset_setup_hw_state or
15212 * at a very early point in our resume sequence, where the power well
15213 * structures are not yet restored. Since this function is at a very
15214 * paranoid "someone might have enabled VGA while we were not looking"
15215 * level, just check if the power well is enabled instead of trying to
15216 * follow the "don't touch the power well if we don't need it" policy
15217 * the rest of the driver uses. */
15218 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15219 return;
15221 i915_redisable_vga_power_on(dev);
15224 static bool primary_get_hw_state(struct intel_plane *plane)
15226 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15228 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15231 /* FIXME read out full plane state for all planes */
15232 static void readout_plane_state(struct intel_crtc *crtc)
15234 struct drm_plane *primary = crtc->base.primary;
15235 struct intel_plane_state *plane_state =
15236 to_intel_plane_state(primary->state);
15238 plane_state->visible =
15239 primary_get_hw_state(to_intel_plane(primary));
15241 if (plane_state->visible)
15242 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15245 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15247 struct drm_i915_private *dev_priv = dev->dev_private;
15248 enum pipe pipe;
15249 struct intel_crtc *crtc;
15250 struct intel_encoder *encoder;
15251 struct intel_connector *connector;
15252 int i;
15254 for_each_intel_crtc(dev, crtc) {
15255 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15256 memset(crtc->config, 0, sizeof(*crtc->config));
15257 crtc->config->base.crtc = &crtc->base;
15259 crtc->active = dev_priv->display.get_pipe_config(crtc,
15260 crtc->config);
15262 crtc->base.state->active = crtc->active;
15263 crtc->base.enabled = crtc->active;
15265 readout_plane_state(crtc);
15267 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15268 crtc->base.base.id,
15269 crtc->active ? "enabled" : "disabled");
15272 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15273 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15275 pll->on = pll->get_hw_state(dev_priv, pll,
15276 &pll->config.hw_state);
15277 pll->active = 0;
15278 pll->config.crtc_mask = 0;
15279 for_each_intel_crtc(dev, crtc) {
15280 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15281 pll->active++;
15282 pll->config.crtc_mask |= 1 << crtc->pipe;
15286 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15287 pll->name, pll->config.crtc_mask, pll->on);
15289 if (pll->config.crtc_mask)
15290 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15293 for_each_intel_encoder(dev, encoder) {
15294 pipe = 0;
15296 if (encoder->get_hw_state(encoder, &pipe)) {
15297 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15298 encoder->base.crtc = &crtc->base;
15299 encoder->get_config(encoder, crtc->config);
15300 } else {
15301 encoder->base.crtc = NULL;
15304 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15305 encoder->base.base.id,
15306 encoder->base.name,
15307 encoder->base.crtc ? "enabled" : "disabled",
15308 pipe_name(pipe));
15311 for_each_intel_connector(dev, connector) {
15312 if (connector->get_hw_state(connector)) {
15313 connector->base.dpms = DRM_MODE_DPMS_ON;
15314 connector->base.encoder = &connector->encoder->base;
15315 } else {
15316 connector->base.dpms = DRM_MODE_DPMS_OFF;
15317 connector->base.encoder = NULL;
15319 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15320 connector->base.base.id,
15321 connector->base.name,
15322 connector->base.encoder ? "enabled" : "disabled");
15325 for_each_intel_crtc(dev, crtc) {
15326 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15328 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15329 if (crtc->base.state->active) {
15330 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15331 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15332 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15335 * The initial mode needs to be set in order to keep
15336 * the atomic core happy. It wants a valid mode if the
15337 * crtc's enabled, so we do the above call.
15339 * At this point some state updated by the connectors
15340 * in their ->detect() callback has not run yet, so
15341 * no recalculation can be done yet.
15343 * Even if we could do a recalculation and modeset
15344 * right now it would cause a double modeset if
15345 * fbdev or userspace chooses a different initial mode.
15347 * If that happens, someone indicated they wanted a
15348 * mode change, which means it's safe to do a full
15349 * recalculation.
15351 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15353 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15354 update_scanline_offset(crtc);
15359 /* Scan out the current hw modeset state,
15360 * and sanitizes it to the current state
15362 static void
15363 intel_modeset_setup_hw_state(struct drm_device *dev)
15365 struct drm_i915_private *dev_priv = dev->dev_private;
15366 enum pipe pipe;
15367 struct intel_crtc *crtc;
15368 struct intel_encoder *encoder;
15369 int i;
15371 intel_modeset_readout_hw_state(dev);
15373 /* HW state is read out, now we need to sanitize this mess. */
15374 for_each_intel_encoder(dev, encoder) {
15375 intel_sanitize_encoder(encoder);
15378 for_each_pipe(dev_priv, pipe) {
15379 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15380 intel_sanitize_crtc(crtc);
15381 intel_dump_pipe_config(crtc, crtc->config,
15382 "[setup_hw_state]");
15385 intel_modeset_update_connector_atomic_state(dev);
15387 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15388 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15390 if (!pll->on || pll->active)
15391 continue;
15393 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15395 pll->disable(dev_priv, pll);
15396 pll->on = false;
15399 if (IS_VALLEYVIEW(dev))
15400 vlv_wm_get_hw_state(dev);
15401 else if (IS_GEN9(dev))
15402 skl_wm_get_hw_state(dev);
15403 else if (HAS_PCH_SPLIT(dev))
15404 ilk_wm_get_hw_state(dev);
15406 for_each_intel_crtc(dev, crtc) {
15407 unsigned long put_domains;
15409 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15410 if (WARN_ON(put_domains))
15411 modeset_put_power_domains(dev_priv, put_domains);
15413 intel_display_set_init_power(dev_priv, false);
15416 void intel_display_resume(struct drm_device *dev)
15418 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15419 struct intel_connector *conn;
15420 struct intel_plane *plane;
15421 struct drm_crtc *crtc;
15422 int ret;
15424 if (!state)
15425 return;
15427 state->acquire_ctx = dev->mode_config.acquire_ctx;
15429 /* preserve complete old state, including dpll */
15430 intel_atomic_get_shared_dpll_state(state);
15432 for_each_crtc(dev, crtc) {
15433 struct drm_crtc_state *crtc_state =
15434 drm_atomic_get_crtc_state(state, crtc);
15436 ret = PTR_ERR_OR_ZERO(crtc_state);
15437 if (ret)
15438 goto err;
15440 /* force a restore */
15441 crtc_state->mode_changed = true;
15444 for_each_intel_plane(dev, plane) {
15445 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15446 if (ret)
15447 goto err;
15450 for_each_intel_connector(dev, conn) {
15451 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15452 if (ret)
15453 goto err;
15456 intel_modeset_setup_hw_state(dev);
15458 i915_redisable_vga(dev);
15459 ret = drm_atomic_commit(state);
15460 if (!ret)
15461 return;
15463 err:
15464 DRM_ERROR("Restoring old state failed with %i\n", ret);
15465 drm_atomic_state_free(state);
15468 void intel_modeset_gem_init(struct drm_device *dev)
15470 struct drm_crtc *c;
15471 struct drm_i915_gem_object *obj;
15472 int ret;
15474 mutex_lock(&dev->struct_mutex);
15475 intel_init_gt_powersave(dev);
15476 mutex_unlock(&dev->struct_mutex);
15478 intel_modeset_init_hw(dev);
15480 intel_setup_overlay(dev);
15483 * Make sure any fbs we allocated at startup are properly
15484 * pinned & fenced. When we do the allocation it's too early
15485 * for this.
15487 for_each_crtc(dev, c) {
15488 obj = intel_fb_obj(c->primary->fb);
15489 if (obj == NULL)
15490 continue;
15492 mutex_lock(&dev->struct_mutex);
15493 ret = intel_pin_and_fence_fb_obj(c->primary,
15494 c->primary->fb,
15495 c->primary->state,
15496 NULL, NULL);
15497 mutex_unlock(&dev->struct_mutex);
15498 if (ret) {
15499 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15500 to_intel_crtc(c)->pipe);
15501 drm_framebuffer_unreference(c->primary->fb);
15502 c->primary->fb = NULL;
15503 c->primary->crtc = c->primary->state->crtc = NULL;
15504 update_state_fb(c->primary);
15505 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15509 intel_backlight_register(dev);
15512 void intel_connector_unregister(struct intel_connector *intel_connector)
15514 struct drm_connector *connector = &intel_connector->base;
15516 intel_panel_destroy_backlight(connector);
15517 drm_connector_unregister(connector);
15520 void intel_modeset_cleanup(struct drm_device *dev)
15522 struct drm_i915_private *dev_priv = dev->dev_private;
15523 struct drm_connector *connector;
15525 intel_disable_gt_powersave(dev);
15527 intel_backlight_unregister(dev);
15530 * Interrupts and polling as the first thing to avoid creating havoc.
15531 * Too much stuff here (turning of connectors, ...) would
15532 * experience fancy races otherwise.
15534 intel_irq_uninstall(dev_priv);
15537 * Due to the hpd irq storm handling the hotplug work can re-arm the
15538 * poll handlers. Hence disable polling after hpd handling is shut down.
15540 drm_kms_helper_poll_fini(dev);
15542 intel_unregister_dsm_handler();
15544 intel_fbc_disable(dev_priv);
15546 /* flush any delayed tasks or pending work */
15547 flush_scheduled_work();
15549 /* destroy the backlight and sysfs files before encoders/connectors */
15550 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15551 struct intel_connector *intel_connector;
15553 intel_connector = to_intel_connector(connector);
15554 intel_connector->unregister(intel_connector);
15557 drm_mode_config_cleanup(dev);
15559 intel_cleanup_overlay(dev);
15561 mutex_lock(&dev->struct_mutex);
15562 intel_cleanup_gt_powersave(dev);
15563 mutex_unlock(&dev->struct_mutex);
15567 * Return which encoder is currently attached for connector.
15569 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15571 return &intel_attached_encoder(connector)->base;
15574 void intel_connector_attach_encoder(struct intel_connector *connector,
15575 struct intel_encoder *encoder)
15577 connector->encoder = encoder;
15578 drm_mode_connector_attach_encoder(&connector->base,
15579 &encoder->base);
15583 * set vga decode state - true == enable VGA decode
15585 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15587 struct drm_i915_private *dev_priv = dev->dev_private;
15588 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15589 u16 gmch_ctrl;
15591 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15592 DRM_ERROR("failed to read control word\n");
15593 return -EIO;
15596 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15597 return 0;
15599 if (state)
15600 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15601 else
15602 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15604 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15605 DRM_ERROR("failed to write control word\n");
15606 return -EIO;
15609 return 0;
15612 struct intel_display_error_state {
15614 u32 power_well_driver;
15616 int num_transcoders;
15618 struct intel_cursor_error_state {
15619 u32 control;
15620 u32 position;
15621 u32 base;
15622 u32 size;
15623 } cursor[I915_MAX_PIPES];
15625 struct intel_pipe_error_state {
15626 bool power_domain_on;
15627 u32 source;
15628 u32 stat;
15629 } pipe[I915_MAX_PIPES];
15631 struct intel_plane_error_state {
15632 u32 control;
15633 u32 stride;
15634 u32 size;
15635 u32 pos;
15636 u32 addr;
15637 u32 surface;
15638 u32 tile_offset;
15639 } plane[I915_MAX_PIPES];
15641 struct intel_transcoder_error_state {
15642 bool power_domain_on;
15643 enum transcoder cpu_transcoder;
15645 u32 conf;
15647 u32 htotal;
15648 u32 hblank;
15649 u32 hsync;
15650 u32 vtotal;
15651 u32 vblank;
15652 u32 vsync;
15653 } transcoder[4];
15656 struct intel_display_error_state *
15657 intel_display_capture_error_state(struct drm_device *dev)
15659 struct drm_i915_private *dev_priv = dev->dev_private;
15660 struct intel_display_error_state *error;
15661 int transcoders[] = {
15662 TRANSCODER_A,
15663 TRANSCODER_B,
15664 TRANSCODER_C,
15665 TRANSCODER_EDP,
15667 int i;
15669 if (INTEL_INFO(dev)->num_pipes == 0)
15670 return NULL;
15672 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15673 if (error == NULL)
15674 return NULL;
15676 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15677 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15679 for_each_pipe(dev_priv, i) {
15680 error->pipe[i].power_domain_on =
15681 __intel_display_power_is_enabled(dev_priv,
15682 POWER_DOMAIN_PIPE(i));
15683 if (!error->pipe[i].power_domain_on)
15684 continue;
15686 error->cursor[i].control = I915_READ(CURCNTR(i));
15687 error->cursor[i].position = I915_READ(CURPOS(i));
15688 error->cursor[i].base = I915_READ(CURBASE(i));
15690 error->plane[i].control = I915_READ(DSPCNTR(i));
15691 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15692 if (INTEL_INFO(dev)->gen <= 3) {
15693 error->plane[i].size = I915_READ(DSPSIZE(i));
15694 error->plane[i].pos = I915_READ(DSPPOS(i));
15696 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15697 error->plane[i].addr = I915_READ(DSPADDR(i));
15698 if (INTEL_INFO(dev)->gen >= 4) {
15699 error->plane[i].surface = I915_READ(DSPSURF(i));
15700 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15703 error->pipe[i].source = I915_READ(PIPESRC(i));
15705 if (HAS_GMCH_DISPLAY(dev))
15706 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15709 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15710 if (HAS_DDI(dev_priv->dev))
15711 error->num_transcoders++; /* Account for eDP. */
15713 for (i = 0; i < error->num_transcoders; i++) {
15714 enum transcoder cpu_transcoder = transcoders[i];
15716 error->transcoder[i].power_domain_on =
15717 __intel_display_power_is_enabled(dev_priv,
15718 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15719 if (!error->transcoder[i].power_domain_on)
15720 continue;
15722 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15724 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15725 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15726 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15727 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15728 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15729 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15730 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15733 return error;
15736 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15738 void
15739 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15740 struct drm_device *dev,
15741 struct intel_display_error_state *error)
15743 struct drm_i915_private *dev_priv = dev->dev_private;
15744 int i;
15746 if (!error)
15747 return;
15749 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15750 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15751 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15752 error->power_well_driver);
15753 for_each_pipe(dev_priv, i) {
15754 err_printf(m, "Pipe [%d]:\n", i);
15755 err_printf(m, " Power: %s\n",
15756 error->pipe[i].power_domain_on ? "on" : "off");
15757 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15758 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15760 err_printf(m, "Plane [%d]:\n", i);
15761 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15762 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15763 if (INTEL_INFO(dev)->gen <= 3) {
15764 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15765 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15767 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15768 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15769 if (INTEL_INFO(dev)->gen >= 4) {
15770 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15771 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15774 err_printf(m, "Cursor [%d]:\n", i);
15775 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15776 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15777 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15780 for (i = 0; i < error->num_transcoders; i++) {
15781 err_printf(m, "CPU transcoder: %c\n",
15782 transcoder_name(error->transcoder[i].cpu_transcoder));
15783 err_printf(m, " Power: %s\n",
15784 error->transcoder[i].power_domain_on ? "on" : "off");
15785 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15786 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15787 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15788 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15789 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15790 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15791 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15795 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15797 struct intel_crtc *crtc;
15799 for_each_intel_crtc(dev, crtc) {
15800 struct intel_unpin_work *work;
15802 spin_lock_irq(&dev->event_lock);
15804 work = crtc->unpin_work;
15806 if (work && work->event &&
15807 work->event->base.file_priv == file) {
15808 kfree(work->event);
15809 work->event = NULL;
15812 spin_unlock_irq(&dev->event_lock);