2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
29 #include <linux/i2c.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/hdmi.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
41 static struct drm_device
*intel_hdmi_to_dev(struct intel_hdmi
*intel_hdmi
)
43 return hdmi_to_dig_port(intel_hdmi
)->base
.base
.dev
;
47 assert_hdmi_port_disabled(struct intel_hdmi
*intel_hdmi
)
49 struct drm_device
*dev
= intel_hdmi_to_dev(intel_hdmi
);
50 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
51 uint32_t enabled_bits
;
53 enabled_bits
= HAS_DDI(dev
) ? DDI_BUF_CTL_ENABLE
: SDVO_ENABLE
;
55 WARN(I915_READ(intel_hdmi
->hdmi_reg
) & enabled_bits
,
56 "HDMI port enabled, expecting disabled\n");
59 struct intel_hdmi
*enc_to_intel_hdmi(struct drm_encoder
*encoder
)
61 struct intel_digital_port
*intel_dig_port
=
62 container_of(encoder
, struct intel_digital_port
, base
.base
);
63 return &intel_dig_port
->hdmi
;
66 static struct intel_hdmi
*intel_attached_hdmi(struct drm_connector
*connector
)
68 return enc_to_intel_hdmi(&intel_attached_encoder(connector
)->base
);
71 static u32
g4x_infoframe_index(enum hdmi_infoframe_type type
)
74 case HDMI_INFOFRAME_TYPE_AVI
:
75 return VIDEO_DIP_SELECT_AVI
;
76 case HDMI_INFOFRAME_TYPE_SPD
:
77 return VIDEO_DIP_SELECT_SPD
;
78 case HDMI_INFOFRAME_TYPE_VENDOR
:
79 return VIDEO_DIP_SELECT_VENDOR
;
81 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type
);
86 static u32
g4x_infoframe_enable(enum hdmi_infoframe_type type
)
89 case HDMI_INFOFRAME_TYPE_AVI
:
90 return VIDEO_DIP_ENABLE_AVI
;
91 case HDMI_INFOFRAME_TYPE_SPD
:
92 return VIDEO_DIP_ENABLE_SPD
;
93 case HDMI_INFOFRAME_TYPE_VENDOR
:
94 return VIDEO_DIP_ENABLE_VENDOR
;
96 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type
);
101 static u32
hsw_infoframe_enable(enum hdmi_infoframe_type type
)
104 case HDMI_INFOFRAME_TYPE_AVI
:
105 return VIDEO_DIP_ENABLE_AVI_HSW
;
106 case HDMI_INFOFRAME_TYPE_SPD
:
107 return VIDEO_DIP_ENABLE_SPD_HSW
;
108 case HDMI_INFOFRAME_TYPE_VENDOR
:
109 return VIDEO_DIP_ENABLE_VS_HSW
;
111 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type
);
116 static u32
hsw_dip_data_reg(struct drm_i915_private
*dev_priv
,
117 enum transcoder cpu_transcoder
,
118 enum hdmi_infoframe_type type
,
122 case HDMI_INFOFRAME_TYPE_AVI
:
123 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder
, i
);
124 case HDMI_INFOFRAME_TYPE_SPD
:
125 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder
, i
);
126 case HDMI_INFOFRAME_TYPE_VENDOR
:
127 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder
, i
);
129 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type
);
134 static void g4x_write_infoframe(struct drm_encoder
*encoder
,
135 enum hdmi_infoframe_type type
,
136 const void *frame
, ssize_t len
)
138 const uint32_t *data
= frame
;
139 struct drm_device
*dev
= encoder
->dev
;
140 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
141 u32 val
= I915_READ(VIDEO_DIP_CTL
);
144 WARN(!(val
& VIDEO_DIP_ENABLE
), "Writing DIP with CTL reg disabled\n");
146 val
&= ~(VIDEO_DIP_SELECT_MASK
| 0xf); /* clear DIP data offset */
147 val
|= g4x_infoframe_index(type
);
149 val
&= ~g4x_infoframe_enable(type
);
151 I915_WRITE(VIDEO_DIP_CTL
, val
);
154 for (i
= 0; i
< len
; i
+= 4) {
155 I915_WRITE(VIDEO_DIP_DATA
, *data
);
158 /* Write every possible data byte to force correct ECC calculation. */
159 for (; i
< VIDEO_DIP_DATA_SIZE
; i
+= 4)
160 I915_WRITE(VIDEO_DIP_DATA
, 0);
163 val
|= g4x_infoframe_enable(type
);
164 val
&= ~VIDEO_DIP_FREQ_MASK
;
165 val
|= VIDEO_DIP_FREQ_VSYNC
;
167 I915_WRITE(VIDEO_DIP_CTL
, val
);
168 POSTING_READ(VIDEO_DIP_CTL
);
171 static bool g4x_infoframe_enabled(struct drm_encoder
*encoder
)
173 struct drm_device
*dev
= encoder
->dev
;
174 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
175 struct intel_digital_port
*intel_dig_port
= enc_to_dig_port(encoder
);
176 u32 val
= I915_READ(VIDEO_DIP_CTL
);
178 if ((val
& VIDEO_DIP_ENABLE
) == 0)
181 if ((val
& VIDEO_DIP_PORT_MASK
) != VIDEO_DIP_PORT(intel_dig_port
->port
))
184 return val
& (VIDEO_DIP_ENABLE_AVI
|
185 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_SPD
);
188 static void ibx_write_infoframe(struct drm_encoder
*encoder
,
189 enum hdmi_infoframe_type type
,
190 const void *frame
, ssize_t len
)
192 const uint32_t *data
= frame
;
193 struct drm_device
*dev
= encoder
->dev
;
194 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
195 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
196 int i
, reg
= TVIDEO_DIP_CTL(intel_crtc
->pipe
);
197 u32 val
= I915_READ(reg
);
199 WARN(!(val
& VIDEO_DIP_ENABLE
), "Writing DIP with CTL reg disabled\n");
201 val
&= ~(VIDEO_DIP_SELECT_MASK
| 0xf); /* clear DIP data offset */
202 val
|= g4x_infoframe_index(type
);
204 val
&= ~g4x_infoframe_enable(type
);
206 I915_WRITE(reg
, val
);
209 for (i
= 0; i
< len
; i
+= 4) {
210 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc
->pipe
), *data
);
213 /* Write every possible data byte to force correct ECC calculation. */
214 for (; i
< VIDEO_DIP_DATA_SIZE
; i
+= 4)
215 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc
->pipe
), 0);
218 val
|= g4x_infoframe_enable(type
);
219 val
&= ~VIDEO_DIP_FREQ_MASK
;
220 val
|= VIDEO_DIP_FREQ_VSYNC
;
222 I915_WRITE(reg
, val
);
226 static bool ibx_infoframe_enabled(struct drm_encoder
*encoder
)
228 struct drm_device
*dev
= encoder
->dev
;
229 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
230 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
231 struct intel_digital_port
*intel_dig_port
= enc_to_dig_port(encoder
);
232 int reg
= TVIDEO_DIP_CTL(intel_crtc
->pipe
);
233 u32 val
= I915_READ(reg
);
235 if ((val
& VIDEO_DIP_ENABLE
) == 0)
238 if ((val
& VIDEO_DIP_PORT_MASK
) != VIDEO_DIP_PORT(intel_dig_port
->port
))
241 return val
& (VIDEO_DIP_ENABLE_AVI
|
242 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_GAMUT
|
243 VIDEO_DIP_ENABLE_SPD
| VIDEO_DIP_ENABLE_GCP
);
246 static void cpt_write_infoframe(struct drm_encoder
*encoder
,
247 enum hdmi_infoframe_type type
,
248 const void *frame
, ssize_t len
)
250 const uint32_t *data
= frame
;
251 struct drm_device
*dev
= encoder
->dev
;
252 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
253 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
254 int i
, reg
= TVIDEO_DIP_CTL(intel_crtc
->pipe
);
255 u32 val
= I915_READ(reg
);
257 WARN(!(val
& VIDEO_DIP_ENABLE
), "Writing DIP with CTL reg disabled\n");
259 val
&= ~(VIDEO_DIP_SELECT_MASK
| 0xf); /* clear DIP data offset */
260 val
|= g4x_infoframe_index(type
);
262 /* The DIP control register spec says that we need to update the AVI
263 * infoframe without clearing its enable bit */
264 if (type
!= HDMI_INFOFRAME_TYPE_AVI
)
265 val
&= ~g4x_infoframe_enable(type
);
267 I915_WRITE(reg
, val
);
270 for (i
= 0; i
< len
; i
+= 4) {
271 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc
->pipe
), *data
);
274 /* Write every possible data byte to force correct ECC calculation. */
275 for (; i
< VIDEO_DIP_DATA_SIZE
; i
+= 4)
276 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc
->pipe
), 0);
279 val
|= g4x_infoframe_enable(type
);
280 val
&= ~VIDEO_DIP_FREQ_MASK
;
281 val
|= VIDEO_DIP_FREQ_VSYNC
;
283 I915_WRITE(reg
, val
);
287 static bool cpt_infoframe_enabled(struct drm_encoder
*encoder
)
289 struct drm_device
*dev
= encoder
->dev
;
290 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
291 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
292 int reg
= TVIDEO_DIP_CTL(intel_crtc
->pipe
);
293 u32 val
= I915_READ(reg
);
295 if ((val
& VIDEO_DIP_ENABLE
) == 0)
298 return val
& (VIDEO_DIP_ENABLE_AVI
|
299 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_GAMUT
|
300 VIDEO_DIP_ENABLE_SPD
| VIDEO_DIP_ENABLE_GCP
);
303 static void vlv_write_infoframe(struct drm_encoder
*encoder
,
304 enum hdmi_infoframe_type type
,
305 const void *frame
, ssize_t len
)
307 const uint32_t *data
= frame
;
308 struct drm_device
*dev
= encoder
->dev
;
309 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
310 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
311 int i
, reg
= VLV_TVIDEO_DIP_CTL(intel_crtc
->pipe
);
312 u32 val
= I915_READ(reg
);
314 WARN(!(val
& VIDEO_DIP_ENABLE
), "Writing DIP with CTL reg disabled\n");
316 val
&= ~(VIDEO_DIP_SELECT_MASK
| 0xf); /* clear DIP data offset */
317 val
|= g4x_infoframe_index(type
);
319 val
&= ~g4x_infoframe_enable(type
);
321 I915_WRITE(reg
, val
);
324 for (i
= 0; i
< len
; i
+= 4) {
325 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc
->pipe
), *data
);
328 /* Write every possible data byte to force correct ECC calculation. */
329 for (; i
< VIDEO_DIP_DATA_SIZE
; i
+= 4)
330 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc
->pipe
), 0);
333 val
|= g4x_infoframe_enable(type
);
334 val
&= ~VIDEO_DIP_FREQ_MASK
;
335 val
|= VIDEO_DIP_FREQ_VSYNC
;
337 I915_WRITE(reg
, val
);
341 static bool vlv_infoframe_enabled(struct drm_encoder
*encoder
)
343 struct drm_device
*dev
= encoder
->dev
;
344 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
345 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
346 struct intel_digital_port
*intel_dig_port
= enc_to_dig_port(encoder
);
347 int reg
= VLV_TVIDEO_DIP_CTL(intel_crtc
->pipe
);
348 u32 val
= I915_READ(reg
);
350 if ((val
& VIDEO_DIP_ENABLE
) == 0)
353 if ((val
& VIDEO_DIP_PORT_MASK
) != VIDEO_DIP_PORT(intel_dig_port
->port
))
356 return val
& (VIDEO_DIP_ENABLE_AVI
|
357 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_GAMUT
|
358 VIDEO_DIP_ENABLE_SPD
| VIDEO_DIP_ENABLE_GCP
);
361 static void hsw_write_infoframe(struct drm_encoder
*encoder
,
362 enum hdmi_infoframe_type type
,
363 const void *frame
, ssize_t len
)
365 const uint32_t *data
= frame
;
366 struct drm_device
*dev
= encoder
->dev
;
367 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
368 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
369 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
370 u32 ctl_reg
= HSW_TVIDEO_DIP_CTL(cpu_transcoder
);
373 u32 val
= I915_READ(ctl_reg
);
375 data_reg
= hsw_dip_data_reg(dev_priv
, cpu_transcoder
, type
, 0);
379 val
&= ~hsw_infoframe_enable(type
);
380 I915_WRITE(ctl_reg
, val
);
383 for (i
= 0; i
< len
; i
+= 4) {
384 I915_WRITE(hsw_dip_data_reg(dev_priv
, cpu_transcoder
,
385 type
, i
>> 2), *data
);
388 /* Write every possible data byte to force correct ECC calculation. */
389 for (; i
< VIDEO_DIP_DATA_SIZE
; i
+= 4)
390 I915_WRITE(hsw_dip_data_reg(dev_priv
, cpu_transcoder
,
394 val
|= hsw_infoframe_enable(type
);
395 I915_WRITE(ctl_reg
, val
);
396 POSTING_READ(ctl_reg
);
399 static bool hsw_infoframe_enabled(struct drm_encoder
*encoder
)
401 struct drm_device
*dev
= encoder
->dev
;
402 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
403 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
404 u32 ctl_reg
= HSW_TVIDEO_DIP_CTL(intel_crtc
->config
->cpu_transcoder
);
405 u32 val
= I915_READ(ctl_reg
);
407 return val
& (VIDEO_DIP_ENABLE_VSC_HSW
| VIDEO_DIP_ENABLE_AVI_HSW
|
408 VIDEO_DIP_ENABLE_GCP_HSW
| VIDEO_DIP_ENABLE_VS_HSW
|
409 VIDEO_DIP_ENABLE_GMP_HSW
| VIDEO_DIP_ENABLE_SPD_HSW
);
413 * The data we write to the DIP data buffer registers is 1 byte bigger than the
414 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
415 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
416 * used for both technologies.
418 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
419 * DW1: DB3 | DB2 | DB1 | DB0
420 * DW2: DB7 | DB6 | DB5 | DB4
423 * (HB is Header Byte, DB is Data Byte)
425 * The hdmi pack() functions don't know about that hardware specific hole so we
426 * trick them by giving an offset into the buffer and moving back the header
429 static void intel_write_infoframe(struct drm_encoder
*encoder
,
430 union hdmi_infoframe
*frame
)
432 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(encoder
);
433 uint8_t buffer
[VIDEO_DIP_DATA_SIZE
];
436 /* see comment above for the reason for this offset */
437 len
= hdmi_infoframe_pack(frame
, buffer
+ 1, sizeof(buffer
) - 1);
441 /* Insert the 'hole' (see big comment above) at position 3 */
442 buffer
[0] = buffer
[1];
443 buffer
[1] = buffer
[2];
444 buffer
[2] = buffer
[3];
448 intel_hdmi
->write_infoframe(encoder
, frame
->any
.type
, buffer
, len
);
451 static void intel_hdmi_set_avi_infoframe(struct drm_encoder
*encoder
,
452 const struct drm_display_mode
*adjusted_mode
)
454 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(encoder
);
455 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
456 union hdmi_infoframe frame
;
459 ret
= drm_hdmi_avi_infoframe_from_display_mode(&frame
.avi
,
462 DRM_ERROR("couldn't fill AVI infoframe\n");
466 if (intel_hdmi
->rgb_quant_range_selectable
) {
467 if (intel_crtc
->config
->limited_color_range
)
468 frame
.avi
.quantization_range
=
469 HDMI_QUANTIZATION_RANGE_LIMITED
;
471 frame
.avi
.quantization_range
=
472 HDMI_QUANTIZATION_RANGE_FULL
;
475 intel_write_infoframe(encoder
, &frame
);
478 static void intel_hdmi_set_spd_infoframe(struct drm_encoder
*encoder
)
480 union hdmi_infoframe frame
;
483 ret
= hdmi_spd_infoframe_init(&frame
.spd
, "Intel", "Integrated gfx");
485 DRM_ERROR("couldn't fill SPD infoframe\n");
489 frame
.spd
.sdi
= HDMI_SPD_SDI_PC
;
491 intel_write_infoframe(encoder
, &frame
);
495 intel_hdmi_set_hdmi_infoframe(struct drm_encoder
*encoder
,
496 const struct drm_display_mode
*adjusted_mode
)
498 union hdmi_infoframe frame
;
501 ret
= drm_hdmi_vendor_infoframe_from_display_mode(&frame
.vendor
.hdmi
,
506 intel_write_infoframe(encoder
, &frame
);
509 static void g4x_set_infoframes(struct drm_encoder
*encoder
,
511 const struct drm_display_mode
*adjusted_mode
)
513 struct drm_i915_private
*dev_priv
= encoder
->dev
->dev_private
;
514 struct intel_digital_port
*intel_dig_port
= enc_to_dig_port(encoder
);
515 struct intel_hdmi
*intel_hdmi
= &intel_dig_port
->hdmi
;
516 u32 reg
= VIDEO_DIP_CTL
;
517 u32 val
= I915_READ(reg
);
518 u32 port
= VIDEO_DIP_PORT(intel_dig_port
->port
);
520 assert_hdmi_port_disabled(intel_hdmi
);
522 /* If the registers were not initialized yet, they might be zeroes,
523 * which means we're selecting the AVI DIP and we're setting its
524 * frequency to once. This seems to really confuse the HW and make
525 * things stop working (the register spec says the AVI always needs to
526 * be sent every VSync). So here we avoid writing to the register more
527 * than we need and also explicitly select the AVI DIP and explicitly
528 * set its frequency to every VSync. Avoiding to write it twice seems to
529 * be enough to solve the problem, but being defensive shouldn't hurt us
531 val
|= VIDEO_DIP_SELECT_AVI
| VIDEO_DIP_FREQ_VSYNC
;
534 if (!(val
& VIDEO_DIP_ENABLE
))
536 if (port
!= (val
& VIDEO_DIP_PORT_MASK
)) {
537 DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
538 (val
& VIDEO_DIP_PORT_MASK
) >> 29);
541 val
&= ~(VIDEO_DIP_ENABLE
| VIDEO_DIP_ENABLE_AVI
|
542 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_SPD
);
543 I915_WRITE(reg
, val
);
548 if (port
!= (val
& VIDEO_DIP_PORT_MASK
)) {
549 if (val
& VIDEO_DIP_ENABLE
) {
550 DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
551 (val
& VIDEO_DIP_PORT_MASK
) >> 29);
554 val
&= ~VIDEO_DIP_PORT_MASK
;
558 val
|= VIDEO_DIP_ENABLE
;
559 val
&= ~(VIDEO_DIP_ENABLE_AVI
|
560 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_SPD
);
562 I915_WRITE(reg
, val
);
565 intel_hdmi_set_avi_infoframe(encoder
, adjusted_mode
);
566 intel_hdmi_set_spd_infoframe(encoder
);
567 intel_hdmi_set_hdmi_infoframe(encoder
, adjusted_mode
);
570 static bool hdmi_sink_is_deep_color(struct drm_encoder
*encoder
)
572 struct drm_device
*dev
= encoder
->dev
;
573 struct drm_connector
*connector
;
575 WARN_ON(!drm_modeset_is_locked(&dev
->mode_config
.connection_mutex
));
578 * HDMI cloning is only supported on g4x which doesn't
579 * support deep color or GCP infoframes anyway so no
580 * need to worry about multiple HDMI sinks here.
582 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
, head
)
583 if (connector
->encoder
== encoder
)
584 return connector
->display_info
.bpc
> 8;
590 * Determine if default_phase=1 can be indicated in the GCP infoframe.
592 * From HDMI specification 1.4a:
593 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
594 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
595 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
596 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
599 static bool gcp_default_phase_possible(int pipe_bpp
,
600 const struct drm_display_mode
*mode
)
602 unsigned int pixels_per_group
;
606 /* 4 pixels in 5 clocks */
607 pixels_per_group
= 4;
610 /* 2 pixels in 3 clocks */
611 pixels_per_group
= 2;
614 /* 1 pixel in 2 clocks */
615 pixels_per_group
= 1;
618 /* phase information not relevant for 8bpc */
622 return mode
->crtc_hdisplay
% pixels_per_group
== 0 &&
623 mode
->crtc_htotal
% pixels_per_group
== 0 &&
624 mode
->crtc_hblank_start
% pixels_per_group
== 0 &&
625 mode
->crtc_hblank_end
% pixels_per_group
== 0 &&
626 mode
->crtc_hsync_start
% pixels_per_group
== 0 &&
627 mode
->crtc_hsync_end
% pixels_per_group
== 0 &&
628 ((mode
->flags
& DRM_MODE_FLAG_INTERLACE
) == 0 ||
629 mode
->crtc_htotal
/2 % pixels_per_group
== 0);
632 static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder
*encoder
)
634 struct drm_i915_private
*dev_priv
= encoder
->dev
->dev_private
;
635 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->crtc
);
638 if (HAS_DDI(dev_priv
))
639 reg
= HSW_TVIDEO_DIP_GCP(crtc
->config
->cpu_transcoder
);
640 else if (IS_VALLEYVIEW(dev_priv
))
641 reg
= VLV_TVIDEO_DIP_GCP(crtc
->pipe
);
642 else if (HAS_PCH_SPLIT(dev_priv
->dev
))
643 reg
= TVIDEO_DIP_GCP(crtc
->pipe
);
647 /* Indicate color depth whenever the sink supports deep color */
648 if (hdmi_sink_is_deep_color(encoder
))
649 val
|= GCP_COLOR_INDICATION
;
651 /* Enable default_phase whenever the display mode is suitably aligned */
652 if (gcp_default_phase_possible(crtc
->config
->pipe_bpp
,
653 &crtc
->config
->base
.adjusted_mode
))
654 val
|= GCP_DEFAULT_PHASE_ENABLE
;
656 I915_WRITE(reg
, val
);
661 static void ibx_set_infoframes(struct drm_encoder
*encoder
,
663 const struct drm_display_mode
*adjusted_mode
)
665 struct drm_i915_private
*dev_priv
= encoder
->dev
->dev_private
;
666 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
667 struct intel_digital_port
*intel_dig_port
= enc_to_dig_port(encoder
);
668 struct intel_hdmi
*intel_hdmi
= &intel_dig_port
->hdmi
;
669 u32 reg
= TVIDEO_DIP_CTL(intel_crtc
->pipe
);
670 u32 val
= I915_READ(reg
);
671 u32 port
= VIDEO_DIP_PORT(intel_dig_port
->port
);
673 assert_hdmi_port_disabled(intel_hdmi
);
675 /* See the big comment in g4x_set_infoframes() */
676 val
|= VIDEO_DIP_SELECT_AVI
| VIDEO_DIP_FREQ_VSYNC
;
679 if (!(val
& VIDEO_DIP_ENABLE
))
681 val
&= ~(VIDEO_DIP_ENABLE
| VIDEO_DIP_ENABLE_AVI
|
682 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_GAMUT
|
683 VIDEO_DIP_ENABLE_SPD
| VIDEO_DIP_ENABLE_GCP
);
684 I915_WRITE(reg
, val
);
689 if (port
!= (val
& VIDEO_DIP_PORT_MASK
)) {
690 WARN(val
& VIDEO_DIP_ENABLE
,
691 "DIP already enabled on port %c\n",
692 (val
& VIDEO_DIP_PORT_MASK
) >> 29);
693 val
&= ~VIDEO_DIP_PORT_MASK
;
697 val
|= VIDEO_DIP_ENABLE
;
698 val
&= ~(VIDEO_DIP_ENABLE_AVI
|
699 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_GAMUT
|
700 VIDEO_DIP_ENABLE_SPD
| VIDEO_DIP_ENABLE_GCP
);
702 if (intel_hdmi_set_gcp_infoframe(encoder
))
703 val
|= VIDEO_DIP_ENABLE_GCP
;
705 I915_WRITE(reg
, val
);
708 intel_hdmi_set_avi_infoframe(encoder
, adjusted_mode
);
709 intel_hdmi_set_spd_infoframe(encoder
);
710 intel_hdmi_set_hdmi_infoframe(encoder
, adjusted_mode
);
713 static void cpt_set_infoframes(struct drm_encoder
*encoder
,
715 const struct drm_display_mode
*adjusted_mode
)
717 struct drm_i915_private
*dev_priv
= encoder
->dev
->dev_private
;
718 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
719 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(encoder
);
720 u32 reg
= TVIDEO_DIP_CTL(intel_crtc
->pipe
);
721 u32 val
= I915_READ(reg
);
723 assert_hdmi_port_disabled(intel_hdmi
);
725 /* See the big comment in g4x_set_infoframes() */
726 val
|= VIDEO_DIP_SELECT_AVI
| VIDEO_DIP_FREQ_VSYNC
;
729 if (!(val
& VIDEO_DIP_ENABLE
))
731 val
&= ~(VIDEO_DIP_ENABLE
| VIDEO_DIP_ENABLE_AVI
|
732 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_GAMUT
|
733 VIDEO_DIP_ENABLE_SPD
| VIDEO_DIP_ENABLE_GCP
);
734 I915_WRITE(reg
, val
);
739 /* Set both together, unset both together: see the spec. */
740 val
|= VIDEO_DIP_ENABLE
| VIDEO_DIP_ENABLE_AVI
;
741 val
&= ~(VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_GAMUT
|
742 VIDEO_DIP_ENABLE_SPD
| VIDEO_DIP_ENABLE_GCP
);
744 if (intel_hdmi_set_gcp_infoframe(encoder
))
745 val
|= VIDEO_DIP_ENABLE_GCP
;
747 I915_WRITE(reg
, val
);
750 intel_hdmi_set_avi_infoframe(encoder
, adjusted_mode
);
751 intel_hdmi_set_spd_infoframe(encoder
);
752 intel_hdmi_set_hdmi_infoframe(encoder
, adjusted_mode
);
755 static void vlv_set_infoframes(struct drm_encoder
*encoder
,
757 const struct drm_display_mode
*adjusted_mode
)
759 struct drm_i915_private
*dev_priv
= encoder
->dev
->dev_private
;
760 struct intel_digital_port
*intel_dig_port
= enc_to_dig_port(encoder
);
761 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
762 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(encoder
);
763 u32 reg
= VLV_TVIDEO_DIP_CTL(intel_crtc
->pipe
);
764 u32 val
= I915_READ(reg
);
765 u32 port
= VIDEO_DIP_PORT(intel_dig_port
->port
);
767 assert_hdmi_port_disabled(intel_hdmi
);
769 /* See the big comment in g4x_set_infoframes() */
770 val
|= VIDEO_DIP_SELECT_AVI
| VIDEO_DIP_FREQ_VSYNC
;
773 if (!(val
& VIDEO_DIP_ENABLE
))
775 val
&= ~(VIDEO_DIP_ENABLE
| VIDEO_DIP_ENABLE_AVI
|
776 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_GAMUT
|
777 VIDEO_DIP_ENABLE_SPD
| VIDEO_DIP_ENABLE_GCP
);
778 I915_WRITE(reg
, val
);
783 if (port
!= (val
& VIDEO_DIP_PORT_MASK
)) {
784 WARN(val
& VIDEO_DIP_ENABLE
,
785 "DIP already enabled on port %c\n",
786 (val
& VIDEO_DIP_PORT_MASK
) >> 29);
787 val
&= ~VIDEO_DIP_PORT_MASK
;
791 val
|= VIDEO_DIP_ENABLE
;
792 val
&= ~(VIDEO_DIP_ENABLE_AVI
|
793 VIDEO_DIP_ENABLE_VENDOR
| VIDEO_DIP_ENABLE_GAMUT
|
794 VIDEO_DIP_ENABLE_SPD
| VIDEO_DIP_ENABLE_GCP
);
796 if (intel_hdmi_set_gcp_infoframe(encoder
))
797 val
|= VIDEO_DIP_ENABLE_GCP
;
799 I915_WRITE(reg
, val
);
802 intel_hdmi_set_avi_infoframe(encoder
, adjusted_mode
);
803 intel_hdmi_set_spd_infoframe(encoder
);
804 intel_hdmi_set_hdmi_infoframe(encoder
, adjusted_mode
);
807 static void hsw_set_infoframes(struct drm_encoder
*encoder
,
809 const struct drm_display_mode
*adjusted_mode
)
811 struct drm_i915_private
*dev_priv
= encoder
->dev
->dev_private
;
812 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->crtc
);
813 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(encoder
);
814 u32 reg
= HSW_TVIDEO_DIP_CTL(intel_crtc
->config
->cpu_transcoder
);
815 u32 val
= I915_READ(reg
);
817 assert_hdmi_port_disabled(intel_hdmi
);
819 val
&= ~(VIDEO_DIP_ENABLE_VSC_HSW
| VIDEO_DIP_ENABLE_AVI_HSW
|
820 VIDEO_DIP_ENABLE_GCP_HSW
| VIDEO_DIP_ENABLE_VS_HSW
|
821 VIDEO_DIP_ENABLE_GMP_HSW
| VIDEO_DIP_ENABLE_SPD_HSW
);
824 I915_WRITE(reg
, val
);
829 if (intel_hdmi_set_gcp_infoframe(encoder
))
830 val
|= VIDEO_DIP_ENABLE_GCP_HSW
;
832 I915_WRITE(reg
, val
);
835 intel_hdmi_set_avi_infoframe(encoder
, adjusted_mode
);
836 intel_hdmi_set_spd_infoframe(encoder
);
837 intel_hdmi_set_hdmi_infoframe(encoder
, adjusted_mode
);
840 static void intel_hdmi_prepare(struct intel_encoder
*encoder
)
842 struct drm_device
*dev
= encoder
->base
.dev
;
843 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
844 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->base
.crtc
);
845 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(&encoder
->base
);
846 const struct drm_display_mode
*adjusted_mode
= &crtc
->config
->base
.adjusted_mode
;
849 hdmi_val
= SDVO_ENCODING_HDMI
;
850 if (!HAS_PCH_SPLIT(dev
) && crtc
->config
->limited_color_range
)
851 hdmi_val
|= HDMI_COLOR_RANGE_16_235
;
852 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PVSYNC
)
853 hdmi_val
|= SDVO_VSYNC_ACTIVE_HIGH
;
854 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PHSYNC
)
855 hdmi_val
|= SDVO_HSYNC_ACTIVE_HIGH
;
857 if (crtc
->config
->pipe_bpp
> 24)
858 hdmi_val
|= HDMI_COLOR_FORMAT_12bpc
;
860 hdmi_val
|= SDVO_COLOR_FORMAT_8bpc
;
862 if (crtc
->config
->has_hdmi_sink
)
863 hdmi_val
|= HDMI_MODE_SELECT_HDMI
;
865 if (HAS_PCH_CPT(dev
))
866 hdmi_val
|= SDVO_PIPE_SEL_CPT(crtc
->pipe
);
867 else if (IS_CHERRYVIEW(dev
))
868 hdmi_val
|= SDVO_PIPE_SEL_CHV(crtc
->pipe
);
870 hdmi_val
|= SDVO_PIPE_SEL(crtc
->pipe
);
872 I915_WRITE(intel_hdmi
->hdmi_reg
, hdmi_val
);
873 POSTING_READ(intel_hdmi
->hdmi_reg
);
876 static bool intel_hdmi_get_hw_state(struct intel_encoder
*encoder
,
879 struct drm_device
*dev
= encoder
->base
.dev
;
880 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
881 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(&encoder
->base
);
882 enum intel_display_power_domain power_domain
;
885 power_domain
= intel_display_port_power_domain(encoder
);
886 if (!intel_display_power_is_enabled(dev_priv
, power_domain
))
889 tmp
= I915_READ(intel_hdmi
->hdmi_reg
);
891 if (!(tmp
& SDVO_ENABLE
))
894 if (HAS_PCH_CPT(dev
))
895 *pipe
= PORT_TO_PIPE_CPT(tmp
);
896 else if (IS_CHERRYVIEW(dev
))
897 *pipe
= SDVO_PORT_TO_PIPE_CHV(tmp
);
899 *pipe
= PORT_TO_PIPE(tmp
);
904 static void intel_hdmi_get_config(struct intel_encoder
*encoder
,
905 struct intel_crtc_state
*pipe_config
)
907 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(&encoder
->base
);
908 struct drm_device
*dev
= encoder
->base
.dev
;
909 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
913 tmp
= I915_READ(intel_hdmi
->hdmi_reg
);
915 if (tmp
& SDVO_HSYNC_ACTIVE_HIGH
)
916 flags
|= DRM_MODE_FLAG_PHSYNC
;
918 flags
|= DRM_MODE_FLAG_NHSYNC
;
920 if (tmp
& SDVO_VSYNC_ACTIVE_HIGH
)
921 flags
|= DRM_MODE_FLAG_PVSYNC
;
923 flags
|= DRM_MODE_FLAG_NVSYNC
;
925 if (tmp
& HDMI_MODE_SELECT_HDMI
)
926 pipe_config
->has_hdmi_sink
= true;
928 if (intel_hdmi
->infoframe_enabled(&encoder
->base
))
929 pipe_config
->has_infoframe
= true;
931 if (tmp
& SDVO_AUDIO_ENABLE
)
932 pipe_config
->has_audio
= true;
934 if (!HAS_PCH_SPLIT(dev
) &&
935 tmp
& HDMI_COLOR_RANGE_16_235
)
936 pipe_config
->limited_color_range
= true;
938 pipe_config
->base
.adjusted_mode
.flags
|= flags
;
940 if ((tmp
& SDVO_COLOR_FORMAT_MASK
) == HDMI_COLOR_FORMAT_12bpc
)
941 dotclock
= pipe_config
->port_clock
* 2 / 3;
943 dotclock
= pipe_config
->port_clock
;
945 if (pipe_config
->pixel_multiplier
)
946 dotclock
/= pipe_config
->pixel_multiplier
;
948 if (HAS_PCH_SPLIT(dev_priv
->dev
))
949 ironlake_check_encoder_dotclock(pipe_config
, dotclock
);
951 pipe_config
->base
.adjusted_mode
.crtc_clock
= dotclock
;
954 static void intel_enable_hdmi_audio(struct intel_encoder
*encoder
)
956 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->base
.crtc
);
958 WARN_ON(!crtc
->config
->has_hdmi_sink
);
959 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
960 pipe_name(crtc
->pipe
));
961 intel_audio_codec_enable(encoder
);
964 static void g4x_enable_hdmi(struct intel_encoder
*encoder
)
966 struct drm_device
*dev
= encoder
->base
.dev
;
967 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
968 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->base
.crtc
);
969 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(&encoder
->base
);
972 temp
= I915_READ(intel_hdmi
->hdmi_reg
);
975 if (crtc
->config
->has_audio
)
976 temp
|= SDVO_AUDIO_ENABLE
;
978 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
979 POSTING_READ(intel_hdmi
->hdmi_reg
);
981 if (crtc
->config
->has_audio
)
982 intel_enable_hdmi_audio(encoder
);
985 static void ibx_enable_hdmi(struct intel_encoder
*encoder
)
987 struct drm_device
*dev
= encoder
->base
.dev
;
988 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
989 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->base
.crtc
);
990 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(&encoder
->base
);
993 temp
= I915_READ(intel_hdmi
->hdmi_reg
);
996 if (crtc
->config
->has_audio
)
997 temp
|= SDVO_AUDIO_ENABLE
;
1000 * HW workaround, need to write this twice for issue
1001 * that may result in first write getting masked.
1003 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1004 POSTING_READ(intel_hdmi
->hdmi_reg
);
1005 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1006 POSTING_READ(intel_hdmi
->hdmi_reg
);
1009 * HW workaround, need to toggle enable bit off and on
1010 * for 12bpc with pixel repeat.
1012 * FIXME: BSpec says this should be done at the end of
1013 * of the modeset sequence, so not sure if this isn't too soon.
1015 if (crtc
->config
->pipe_bpp
> 24 &&
1016 crtc
->config
->pixel_multiplier
> 1) {
1017 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
& ~SDVO_ENABLE
);
1018 POSTING_READ(intel_hdmi
->hdmi_reg
);
1021 * HW workaround, need to write this twice for issue
1022 * that may result in first write getting masked.
1024 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1025 POSTING_READ(intel_hdmi
->hdmi_reg
);
1026 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1027 POSTING_READ(intel_hdmi
->hdmi_reg
);
1030 if (crtc
->config
->has_audio
)
1031 intel_enable_hdmi_audio(encoder
);
1034 static void cpt_enable_hdmi(struct intel_encoder
*encoder
)
1036 struct drm_device
*dev
= encoder
->base
.dev
;
1037 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1038 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->base
.crtc
);
1039 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(&encoder
->base
);
1040 enum pipe pipe
= crtc
->pipe
;
1043 temp
= I915_READ(intel_hdmi
->hdmi_reg
);
1045 temp
|= SDVO_ENABLE
;
1046 if (crtc
->config
->has_audio
)
1047 temp
|= SDVO_AUDIO_ENABLE
;
1050 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
1052 * The procedure for 12bpc is as follows:
1053 * 1. disable HDMI clock gating
1054 * 2. enable HDMI with 8bpc
1055 * 3. enable HDMI with 12bpc
1056 * 4. enable HDMI clock gating
1059 if (crtc
->config
->pipe_bpp
> 24) {
1060 I915_WRITE(TRANS_CHICKEN1(pipe
),
1061 I915_READ(TRANS_CHICKEN1(pipe
)) |
1062 TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE
);
1064 temp
&= ~SDVO_COLOR_FORMAT_MASK
;
1065 temp
|= SDVO_COLOR_FORMAT_8bpc
;
1068 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1069 POSTING_READ(intel_hdmi
->hdmi_reg
);
1071 if (crtc
->config
->pipe_bpp
> 24) {
1072 temp
&= ~SDVO_COLOR_FORMAT_MASK
;
1073 temp
|= HDMI_COLOR_FORMAT_12bpc
;
1075 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1076 POSTING_READ(intel_hdmi
->hdmi_reg
);
1078 I915_WRITE(TRANS_CHICKEN1(pipe
),
1079 I915_READ(TRANS_CHICKEN1(pipe
)) &
1080 ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE
);
1083 if (crtc
->config
->has_audio
)
1084 intel_enable_hdmi_audio(encoder
);
1087 static void vlv_enable_hdmi(struct intel_encoder
*encoder
)
1091 static void intel_disable_hdmi(struct intel_encoder
*encoder
)
1093 struct drm_device
*dev
= encoder
->base
.dev
;
1094 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1095 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(&encoder
->base
);
1096 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->base
.crtc
);
1099 temp
= I915_READ(intel_hdmi
->hdmi_reg
);
1101 temp
&= ~(SDVO_ENABLE
| SDVO_AUDIO_ENABLE
);
1102 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1103 POSTING_READ(intel_hdmi
->hdmi_reg
);
1106 * HW workaround for IBX, we need to move the port
1107 * to transcoder A after disabling it to allow the
1108 * matching DP port to be enabled on transcoder A.
1110 if (HAS_PCH_IBX(dev
) && crtc
->pipe
== PIPE_B
) {
1111 temp
&= ~SDVO_PIPE_B_SELECT
;
1112 temp
|= SDVO_ENABLE
;
1114 * HW workaround, need to write this twice for issue
1115 * that may result in first write getting masked.
1117 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1118 POSTING_READ(intel_hdmi
->hdmi_reg
);
1119 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1120 POSTING_READ(intel_hdmi
->hdmi_reg
);
1122 temp
&= ~SDVO_ENABLE
;
1123 I915_WRITE(intel_hdmi
->hdmi_reg
, temp
);
1124 POSTING_READ(intel_hdmi
->hdmi_reg
);
1127 intel_hdmi
->set_infoframes(&encoder
->base
, false, NULL
);
1130 static void g4x_disable_hdmi(struct intel_encoder
*encoder
)
1132 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->base
.crtc
);
1134 if (crtc
->config
->has_audio
)
1135 intel_audio_codec_disable(encoder
);
1137 intel_disable_hdmi(encoder
);
1140 static void pch_disable_hdmi(struct intel_encoder
*encoder
)
1142 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->base
.crtc
);
1144 if (crtc
->config
->has_audio
)
1145 intel_audio_codec_disable(encoder
);
1148 static void pch_post_disable_hdmi(struct intel_encoder
*encoder
)
1150 intel_disable_hdmi(encoder
);
1153 static int hdmi_port_clock_limit(struct intel_hdmi
*hdmi
, bool respect_dvi_limit
)
1155 struct drm_device
*dev
= intel_hdmi_to_dev(hdmi
);
1157 if ((respect_dvi_limit
&& !hdmi
->has_hdmi_sink
) || IS_G4X(dev
))
1159 else if (IS_HASWELL(dev
) || INTEL_INFO(dev
)->gen
>= 8)
1165 static enum drm_mode_status
1166 hdmi_port_clock_valid(struct intel_hdmi
*hdmi
,
1167 int clock
, bool respect_dvi_limit
)
1169 struct drm_device
*dev
= intel_hdmi_to_dev(hdmi
);
1172 return MODE_CLOCK_LOW
;
1173 if (clock
> hdmi_port_clock_limit(hdmi
, respect_dvi_limit
))
1174 return MODE_CLOCK_HIGH
;
1176 /* BXT DPLL can't generate 223-240 MHz */
1177 if (IS_BROXTON(dev
) && clock
> 223333 && clock
< 240000)
1178 return MODE_CLOCK_RANGE
;
1180 /* CHV DPLL can't generate 216-240 MHz */
1181 if (IS_CHERRYVIEW(dev
) && clock
> 216000 && clock
< 240000)
1182 return MODE_CLOCK_RANGE
;
1187 static enum drm_mode_status
1188 intel_hdmi_mode_valid(struct drm_connector
*connector
,
1189 struct drm_display_mode
*mode
)
1191 struct intel_hdmi
*hdmi
= intel_attached_hdmi(connector
);
1192 struct drm_device
*dev
= intel_hdmi_to_dev(hdmi
);
1193 enum drm_mode_status status
;
1196 if (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
1197 return MODE_NO_DBLESCAN
;
1199 clock
= mode
->clock
;
1200 if (mode
->flags
& DRM_MODE_FLAG_DBLCLK
)
1203 /* check if we can do 8bpc */
1204 status
= hdmi_port_clock_valid(hdmi
, clock
, true);
1206 /* if we can't do 8bpc we may still be able to do 12bpc */
1207 if (!HAS_GMCH_DISPLAY(dev
) && status
!= MODE_OK
)
1208 status
= hdmi_port_clock_valid(hdmi
, clock
* 3 / 2, true);
1213 static bool hdmi_12bpc_possible(struct intel_crtc_state
*crtc_state
)
1215 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
1216 struct drm_atomic_state
*state
;
1217 struct intel_encoder
*encoder
;
1218 struct drm_connector
*connector
;
1219 struct drm_connector_state
*connector_state
;
1220 int count
= 0, count_hdmi
= 0;
1223 if (HAS_GMCH_DISPLAY(dev
))
1226 state
= crtc_state
->base
.state
;
1228 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
1229 if (connector_state
->crtc
!= crtc_state
->base
.crtc
)
1232 encoder
= to_intel_encoder(connector_state
->best_encoder
);
1234 count_hdmi
+= encoder
->type
== INTEL_OUTPUT_HDMI
;
1239 * HDMI 12bpc affects the clocks, so it's only possible
1240 * when not cloning with other encoder types.
1242 return count_hdmi
> 0 && count_hdmi
== count
;
1245 bool intel_hdmi_compute_config(struct intel_encoder
*encoder
,
1246 struct intel_crtc_state
*pipe_config
)
1248 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(&encoder
->base
);
1249 struct drm_device
*dev
= encoder
->base
.dev
;
1250 struct drm_display_mode
*adjusted_mode
= &pipe_config
->base
.adjusted_mode
;
1251 int clock_8bpc
= pipe_config
->base
.adjusted_mode
.crtc_clock
;
1252 int clock_12bpc
= clock_8bpc
* 3 / 2;
1255 pipe_config
->has_hdmi_sink
= intel_hdmi
->has_hdmi_sink
;
1257 if (pipe_config
->has_hdmi_sink
)
1258 pipe_config
->has_infoframe
= true;
1260 if (intel_hdmi
->color_range_auto
) {
1261 /* See CEA-861-E - 5.1 Default Encoding Parameters */
1262 pipe_config
->limited_color_range
=
1263 pipe_config
->has_hdmi_sink
&&
1264 drm_match_cea_mode(adjusted_mode
) > 1;
1266 pipe_config
->limited_color_range
=
1267 intel_hdmi
->limited_color_range
;
1270 if (adjusted_mode
->flags
& DRM_MODE_FLAG_DBLCLK
) {
1271 pipe_config
->pixel_multiplier
= 2;
1276 if (HAS_PCH_SPLIT(dev
) && !HAS_DDI(dev
))
1277 pipe_config
->has_pch_encoder
= true;
1279 if (pipe_config
->has_hdmi_sink
&& intel_hdmi
->has_audio
)
1280 pipe_config
->has_audio
= true;
1283 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
1284 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1285 * outputs. We also need to check that the higher clock still fits
1288 if (pipe_config
->pipe_bpp
> 8*3 && pipe_config
->has_hdmi_sink
&&
1289 hdmi_port_clock_valid(intel_hdmi
, clock_12bpc
, false) == MODE_OK
&&
1290 hdmi_12bpc_possible(pipe_config
)) {
1291 DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
1294 /* Need to adjust the port link by 1.5x for 12bpc. */
1295 pipe_config
->port_clock
= clock_12bpc
;
1297 DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
1300 pipe_config
->port_clock
= clock_8bpc
;
1303 if (!pipe_config
->bw_constrained
) {
1304 DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp
);
1305 pipe_config
->pipe_bpp
= desired_bpp
;
1308 if (hdmi_port_clock_valid(intel_hdmi
, pipe_config
->port_clock
,
1309 false) != MODE_OK
) {
1310 DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
1314 /* Set user selected PAR to incoming mode's member */
1315 adjusted_mode
->picture_aspect_ratio
= intel_hdmi
->aspect_ratio
;
1321 intel_hdmi_unset_edid(struct drm_connector
*connector
)
1323 struct intel_hdmi
*intel_hdmi
= intel_attached_hdmi(connector
);
1325 intel_hdmi
->has_hdmi_sink
= false;
1326 intel_hdmi
->has_audio
= false;
1327 intel_hdmi
->rgb_quant_range_selectable
= false;
1329 kfree(to_intel_connector(connector
)->detect_edid
);
1330 to_intel_connector(connector
)->detect_edid
= NULL
;
1334 intel_hdmi_set_edid(struct drm_connector
*connector
, bool force
)
1336 struct drm_i915_private
*dev_priv
= to_i915(connector
->dev
);
1337 struct intel_hdmi
*intel_hdmi
= intel_attached_hdmi(connector
);
1338 struct edid
*edid
= NULL
;
1339 bool connected
= false;
1341 intel_display_power_get(dev_priv
, POWER_DOMAIN_GMBUS
);
1344 edid
= drm_get_edid(connector
,
1345 intel_gmbus_get_adapter(dev_priv
,
1346 intel_hdmi
->ddc_bus
));
1348 intel_display_power_put(dev_priv
, POWER_DOMAIN_GMBUS
);
1350 to_intel_connector(connector
)->detect_edid
= edid
;
1351 if (edid
&& edid
->input
& DRM_EDID_INPUT_DIGITAL
) {
1352 intel_hdmi
->rgb_quant_range_selectable
=
1353 drm_rgb_quant_range_selectable(edid
);
1355 intel_hdmi
->has_audio
= drm_detect_monitor_audio(edid
);
1356 if (intel_hdmi
->force_audio
!= HDMI_AUDIO_AUTO
)
1357 intel_hdmi
->has_audio
=
1358 intel_hdmi
->force_audio
== HDMI_AUDIO_ON
;
1360 if (intel_hdmi
->force_audio
!= HDMI_AUDIO_OFF_DVI
)
1361 intel_hdmi
->has_hdmi_sink
=
1362 drm_detect_hdmi_monitor(edid
);
1370 static enum drm_connector_status
1371 intel_hdmi_detect(struct drm_connector
*connector
, bool force
)
1373 enum drm_connector_status status
;
1374 struct intel_hdmi
*intel_hdmi
= intel_attached_hdmi(connector
);
1375 struct drm_i915_private
*dev_priv
= to_i915(connector
->dev
);
1376 bool live_status
= false;
1379 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1380 connector
->base
.id
, connector
->name
);
1382 intel_display_power_get(dev_priv
, POWER_DOMAIN_GMBUS
);
1384 for (try = 0; !live_status
&& try < 4; try++) {
1387 live_status
= intel_digital_port_connected(dev_priv
,
1388 hdmi_to_dig_port(intel_hdmi
));
1392 DRM_DEBUG_KMS("Live status not up!");
1394 intel_hdmi_unset_edid(connector
);
1396 if (intel_hdmi_set_edid(connector
, live_status
)) {
1397 struct intel_hdmi
*intel_hdmi
= intel_attached_hdmi(connector
);
1399 hdmi_to_dig_port(intel_hdmi
)->base
.type
= INTEL_OUTPUT_HDMI
;
1400 status
= connector_status_connected
;
1402 status
= connector_status_disconnected
;
1404 intel_display_power_put(dev_priv
, POWER_DOMAIN_GMBUS
);
1410 intel_hdmi_force(struct drm_connector
*connector
)
1412 struct intel_hdmi
*intel_hdmi
= intel_attached_hdmi(connector
);
1414 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
1415 connector
->base
.id
, connector
->name
);
1417 intel_hdmi_unset_edid(connector
);
1419 if (connector
->status
!= connector_status_connected
)
1422 intel_hdmi_set_edid(connector
, true);
1423 hdmi_to_dig_port(intel_hdmi
)->base
.type
= INTEL_OUTPUT_HDMI
;
1426 static int intel_hdmi_get_modes(struct drm_connector
*connector
)
1430 edid
= to_intel_connector(connector
)->detect_edid
;
1434 return intel_connector_update_modes(connector
, edid
);
1438 intel_hdmi_detect_audio(struct drm_connector
*connector
)
1440 bool has_audio
= false;
1443 edid
= to_intel_connector(connector
)->detect_edid
;
1444 if (edid
&& edid
->input
& DRM_EDID_INPUT_DIGITAL
)
1445 has_audio
= drm_detect_monitor_audio(edid
);
1451 intel_hdmi_set_property(struct drm_connector
*connector
,
1452 struct drm_property
*property
,
1455 struct intel_hdmi
*intel_hdmi
= intel_attached_hdmi(connector
);
1456 struct intel_digital_port
*intel_dig_port
=
1457 hdmi_to_dig_port(intel_hdmi
);
1458 struct drm_i915_private
*dev_priv
= connector
->dev
->dev_private
;
1461 ret
= drm_object_property_set_value(&connector
->base
, property
, val
);
1465 if (property
== dev_priv
->force_audio_property
) {
1466 enum hdmi_force_audio i
= val
;
1469 if (i
== intel_hdmi
->force_audio
)
1472 intel_hdmi
->force_audio
= i
;
1474 if (i
== HDMI_AUDIO_AUTO
)
1475 has_audio
= intel_hdmi_detect_audio(connector
);
1477 has_audio
= (i
== HDMI_AUDIO_ON
);
1479 if (i
== HDMI_AUDIO_OFF_DVI
)
1480 intel_hdmi
->has_hdmi_sink
= 0;
1482 intel_hdmi
->has_audio
= has_audio
;
1486 if (property
== dev_priv
->broadcast_rgb_property
) {
1487 bool old_auto
= intel_hdmi
->color_range_auto
;
1488 bool old_range
= intel_hdmi
->limited_color_range
;
1491 case INTEL_BROADCAST_RGB_AUTO
:
1492 intel_hdmi
->color_range_auto
= true;
1494 case INTEL_BROADCAST_RGB_FULL
:
1495 intel_hdmi
->color_range_auto
= false;
1496 intel_hdmi
->limited_color_range
= false;
1498 case INTEL_BROADCAST_RGB_LIMITED
:
1499 intel_hdmi
->color_range_auto
= false;
1500 intel_hdmi
->limited_color_range
= true;
1506 if (old_auto
== intel_hdmi
->color_range_auto
&&
1507 old_range
== intel_hdmi
->limited_color_range
)
1513 if (property
== connector
->dev
->mode_config
.aspect_ratio_property
) {
1515 case DRM_MODE_PICTURE_ASPECT_NONE
:
1516 intel_hdmi
->aspect_ratio
= HDMI_PICTURE_ASPECT_NONE
;
1518 case DRM_MODE_PICTURE_ASPECT_4_3
:
1519 intel_hdmi
->aspect_ratio
= HDMI_PICTURE_ASPECT_4_3
;
1521 case DRM_MODE_PICTURE_ASPECT_16_9
:
1522 intel_hdmi
->aspect_ratio
= HDMI_PICTURE_ASPECT_16_9
;
1533 if (intel_dig_port
->base
.base
.crtc
)
1534 intel_crtc_restore_mode(intel_dig_port
->base
.base
.crtc
);
1539 static void intel_hdmi_pre_enable(struct intel_encoder
*encoder
)
1541 struct intel_hdmi
*intel_hdmi
= enc_to_intel_hdmi(&encoder
->base
);
1542 struct intel_crtc
*intel_crtc
= to_intel_crtc(encoder
->base
.crtc
);
1543 const struct drm_display_mode
*adjusted_mode
= &intel_crtc
->config
->base
.adjusted_mode
;
1545 intel_hdmi_prepare(encoder
);
1547 intel_hdmi
->set_infoframes(&encoder
->base
,
1548 intel_crtc
->config
->has_hdmi_sink
,
1552 static void vlv_hdmi_pre_enable(struct intel_encoder
*encoder
)
1554 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
1555 struct intel_hdmi
*intel_hdmi
= &dport
->hdmi
;
1556 struct drm_device
*dev
= encoder
->base
.dev
;
1557 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1558 struct intel_crtc
*intel_crtc
=
1559 to_intel_crtc(encoder
->base
.crtc
);
1560 const struct drm_display_mode
*adjusted_mode
= &intel_crtc
->config
->base
.adjusted_mode
;
1561 enum dpio_channel port
= vlv_dport_to_channel(dport
);
1562 int pipe
= intel_crtc
->pipe
;
1565 /* Enable clock channels for this port */
1566 mutex_lock(&dev_priv
->sb_lock
);
1567 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW8(port
));
1574 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW8(port
), val
);
1577 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW5(port
), 0);
1578 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW4(port
), 0x2b245f5f);
1579 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW2(port
), 0x5578b83a);
1580 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW3(port
), 0x0c782040);
1581 vlv_dpio_write(dev_priv
, pipe
, VLV_TX3_DW4(port
), 0x2b247878);
1582 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW11(port
), 0x00030000);
1583 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW9(port
), 0x00002000);
1584 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW5(port
), DPIO_TX_OCALINIT_EN
);
1586 /* Program lane clock */
1587 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW14(port
), 0x00760018);
1588 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW23(port
), 0x00400888);
1589 mutex_unlock(&dev_priv
->sb_lock
);
1591 intel_hdmi
->set_infoframes(&encoder
->base
,
1592 intel_crtc
->config
->has_hdmi_sink
,
1595 g4x_enable_hdmi(encoder
);
1597 vlv_wait_port_ready(dev_priv
, dport
, 0x0);
1600 static void vlv_hdmi_pre_pll_enable(struct intel_encoder
*encoder
)
1602 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
1603 struct drm_device
*dev
= encoder
->base
.dev
;
1604 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1605 struct intel_crtc
*intel_crtc
=
1606 to_intel_crtc(encoder
->base
.crtc
);
1607 enum dpio_channel port
= vlv_dport_to_channel(dport
);
1608 int pipe
= intel_crtc
->pipe
;
1610 intel_hdmi_prepare(encoder
);
1612 /* Program Tx lane resets to default */
1613 mutex_lock(&dev_priv
->sb_lock
);
1614 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW0(port
),
1615 DPIO_PCS_TX_LANE2_RESET
|
1616 DPIO_PCS_TX_LANE1_RESET
);
1617 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW1(port
),
1618 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN
|
1619 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN
|
1620 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT
) |
1621 DPIO_PCS_CLK_SOFT_RESET
);
1623 /* Fix up inter-pair skew failure */
1624 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW12(port
), 0x00750f00);
1625 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW11(port
), 0x00001500);
1626 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW14(port
), 0x40400000);
1628 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW9(port
), 0x00002000);
1629 vlv_dpio_write(dev_priv
, pipe
, VLV_TX_DW5(port
), DPIO_TX_OCALINIT_EN
);
1630 mutex_unlock(&dev_priv
->sb_lock
);
1633 static void chv_data_lane_soft_reset(struct intel_encoder
*encoder
,
1636 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1637 enum dpio_channel ch
= vlv_dport_to_channel(enc_to_dig_port(&encoder
->base
));
1638 struct intel_crtc
*crtc
= to_intel_crtc(encoder
->base
.crtc
);
1639 enum pipe pipe
= crtc
->pipe
;
1642 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW0(ch
));
1644 val
&= ~(DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
);
1646 val
|= DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
;
1647 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW0(ch
), val
);
1649 if (crtc
->config
->lane_count
> 2) {
1650 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW0(ch
));
1652 val
&= ~(DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
);
1654 val
|= DPIO_PCS_TX_LANE2_RESET
| DPIO_PCS_TX_LANE1_RESET
;
1655 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW0(ch
), val
);
1658 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW1(ch
));
1659 val
|= CHV_PCS_REQ_SOFTRESET_EN
;
1661 val
&= ~DPIO_PCS_CLK_SOFT_RESET
;
1663 val
|= DPIO_PCS_CLK_SOFT_RESET
;
1664 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW1(ch
), val
);
1666 if (crtc
->config
->lane_count
> 2) {
1667 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW1(ch
));
1668 val
|= CHV_PCS_REQ_SOFTRESET_EN
;
1670 val
&= ~DPIO_PCS_CLK_SOFT_RESET
;
1672 val
|= DPIO_PCS_CLK_SOFT_RESET
;
1673 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW1(ch
), val
);
1677 static void chv_hdmi_pre_pll_enable(struct intel_encoder
*encoder
)
1679 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
1680 struct drm_device
*dev
= encoder
->base
.dev
;
1681 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1682 struct intel_crtc
*intel_crtc
=
1683 to_intel_crtc(encoder
->base
.crtc
);
1684 enum dpio_channel ch
= vlv_dport_to_channel(dport
);
1685 enum pipe pipe
= intel_crtc
->pipe
;
1688 intel_hdmi_prepare(encoder
);
1691 * Must trick the second common lane into life.
1692 * Otherwise we can't even access the PLL.
1694 if (ch
== DPIO_CH0
&& pipe
== PIPE_B
)
1695 dport
->release_cl2_override
=
1696 !chv_phy_powergate_ch(dev_priv
, DPIO_PHY0
, DPIO_CH1
, true);
1698 chv_phy_powergate_lanes(encoder
, true, 0x0);
1700 mutex_lock(&dev_priv
->sb_lock
);
1702 /* Assert data lane reset */
1703 chv_data_lane_soft_reset(encoder
, true);
1705 /* program left/right clock distribution */
1706 if (pipe
!= PIPE_B
) {
1707 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
);
1708 val
&= ~(CHV_BUFLEFTENA1_MASK
| CHV_BUFRIGHTENA1_MASK
);
1710 val
|= CHV_BUFLEFTENA1_FORCE
;
1712 val
|= CHV_BUFRIGHTENA1_FORCE
;
1713 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
, val
);
1715 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
);
1716 val
&= ~(CHV_BUFLEFTENA2_MASK
| CHV_BUFRIGHTENA2_MASK
);
1718 val
|= CHV_BUFLEFTENA2_FORCE
;
1720 val
|= CHV_BUFRIGHTENA2_FORCE
;
1721 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
, val
);
1724 /* program clock channel usage */
1725 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW8(ch
));
1726 val
|= CHV_PCS_USEDCLKCHANNEL_OVRRIDE
;
1728 val
&= ~CHV_PCS_USEDCLKCHANNEL
;
1730 val
|= CHV_PCS_USEDCLKCHANNEL
;
1731 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW8(ch
), val
);
1733 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW8(ch
));
1734 val
|= CHV_PCS_USEDCLKCHANNEL_OVRRIDE
;
1736 val
&= ~CHV_PCS_USEDCLKCHANNEL
;
1738 val
|= CHV_PCS_USEDCLKCHANNEL
;
1739 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW8(ch
), val
);
1742 * This a a bit weird since generally CL
1743 * matches the pipe, but here we need to
1744 * pick the CL based on the port.
1746 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW19(ch
));
1748 val
&= ~CHV_CMN_USEDCLKCHANNEL
;
1750 val
|= CHV_CMN_USEDCLKCHANNEL
;
1751 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW19(ch
), val
);
1753 mutex_unlock(&dev_priv
->sb_lock
);
1756 static void chv_hdmi_post_pll_disable(struct intel_encoder
*encoder
)
1758 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1759 enum pipe pipe
= to_intel_crtc(encoder
->base
.crtc
)->pipe
;
1762 mutex_lock(&dev_priv
->sb_lock
);
1764 /* disable left/right clock distribution */
1765 if (pipe
!= PIPE_B
) {
1766 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
);
1767 val
&= ~(CHV_BUFLEFTENA1_MASK
| CHV_BUFRIGHTENA1_MASK
);
1768 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW5_CH0
, val
);
1770 val
= vlv_dpio_read(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
);
1771 val
&= ~(CHV_BUFLEFTENA2_MASK
| CHV_BUFRIGHTENA2_MASK
);
1772 vlv_dpio_write(dev_priv
, pipe
, _CHV_CMN_DW1_CH1
, val
);
1775 mutex_unlock(&dev_priv
->sb_lock
);
1778 * Leave the power down bit cleared for at least one
1779 * lane so that chv_powergate_phy_ch() will power
1780 * on something when the channel is otherwise unused.
1781 * When the port is off and the override is removed
1782 * the lanes power down anyway, so otherwise it doesn't
1783 * really matter what the state of power down bits is
1786 chv_phy_powergate_lanes(encoder
, false, 0x0);
1789 static void vlv_hdmi_post_disable(struct intel_encoder
*encoder
)
1791 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
1792 struct drm_i915_private
*dev_priv
= encoder
->base
.dev
->dev_private
;
1793 struct intel_crtc
*intel_crtc
=
1794 to_intel_crtc(encoder
->base
.crtc
);
1795 enum dpio_channel port
= vlv_dport_to_channel(dport
);
1796 int pipe
= intel_crtc
->pipe
;
1798 /* Reset lanes to avoid HDMI flicker (VLV w/a) */
1799 mutex_lock(&dev_priv
->sb_lock
);
1800 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW0(port
), 0x00000000);
1801 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS_DW1(port
), 0x00e00060);
1802 mutex_unlock(&dev_priv
->sb_lock
);
1805 static void chv_hdmi_post_disable(struct intel_encoder
*encoder
)
1807 struct drm_device
*dev
= encoder
->base
.dev
;
1808 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1810 mutex_lock(&dev_priv
->sb_lock
);
1812 /* Assert data lane reset */
1813 chv_data_lane_soft_reset(encoder
, true);
1815 mutex_unlock(&dev_priv
->sb_lock
);
1818 static void chv_hdmi_pre_enable(struct intel_encoder
*encoder
)
1820 struct intel_digital_port
*dport
= enc_to_dig_port(&encoder
->base
);
1821 struct intel_hdmi
*intel_hdmi
= &dport
->hdmi
;
1822 struct drm_device
*dev
= encoder
->base
.dev
;
1823 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1824 struct intel_crtc
*intel_crtc
=
1825 to_intel_crtc(encoder
->base
.crtc
);
1826 const struct drm_display_mode
*adjusted_mode
= &intel_crtc
->config
->base
.adjusted_mode
;
1827 enum dpio_channel ch
= vlv_dport_to_channel(dport
);
1828 int pipe
= intel_crtc
->pipe
;
1829 int data
, i
, stagger
;
1832 mutex_lock(&dev_priv
->sb_lock
);
1834 /* allow hardware to manage TX FIFO reset source */
1835 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW11(ch
));
1836 val
&= ~DPIO_LANEDESKEW_STRAP_OVRD
;
1837 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW11(ch
), val
);
1839 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW11(ch
));
1840 val
&= ~DPIO_LANEDESKEW_STRAP_OVRD
;
1841 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW11(ch
), val
);
1843 /* Program Tx latency optimal setting */
1844 for (i
= 0; i
< 4; i
++) {
1845 /* Set the upar bit */
1846 data
= (i
== 1) ? 0x0 : 0x1;
1847 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW14(ch
, i
),
1848 data
<< DPIO_UPAR_SHIFT
);
1851 /* Data lane stagger programming */
1852 if (intel_crtc
->config
->port_clock
> 270000)
1854 else if (intel_crtc
->config
->port_clock
> 135000)
1856 else if (intel_crtc
->config
->port_clock
> 67500)
1858 else if (intel_crtc
->config
->port_clock
> 33750)
1863 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW11(ch
));
1864 val
|= DPIO_TX2_STAGGER_MASK(0x1f);
1865 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW11(ch
), val
);
1867 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW11(ch
));
1868 val
|= DPIO_TX2_STAGGER_MASK(0x1f);
1869 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW11(ch
), val
);
1871 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW12(ch
),
1872 DPIO_LANESTAGGER_STRAP(stagger
) |
1873 DPIO_LANESTAGGER_STRAP_OVRD
|
1874 DPIO_TX1_STAGGER_MASK(0x1f) |
1875 DPIO_TX1_STAGGER_MULT(6) |
1876 DPIO_TX2_STAGGER_MULT(0));
1878 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW12(ch
),
1879 DPIO_LANESTAGGER_STRAP(stagger
) |
1880 DPIO_LANESTAGGER_STRAP_OVRD
|
1881 DPIO_TX1_STAGGER_MASK(0x1f) |
1882 DPIO_TX1_STAGGER_MULT(7) |
1883 DPIO_TX2_STAGGER_MULT(5));
1885 /* Deassert data lane reset */
1886 chv_data_lane_soft_reset(encoder
, false);
1888 /* Clear calc init */
1889 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW10(ch
));
1890 val
&= ~(DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
);
1891 val
&= ~(DPIO_PCS_TX1DEEMP_MASK
| DPIO_PCS_TX2DEEMP_MASK
);
1892 val
|= DPIO_PCS_TX1DEEMP_9P5
| DPIO_PCS_TX2DEEMP_9P5
;
1893 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW10(ch
), val
);
1895 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW10(ch
));
1896 val
&= ~(DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
);
1897 val
&= ~(DPIO_PCS_TX1DEEMP_MASK
| DPIO_PCS_TX2DEEMP_MASK
);
1898 val
|= DPIO_PCS_TX1DEEMP_9P5
| DPIO_PCS_TX2DEEMP_9P5
;
1899 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW10(ch
), val
);
1901 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW9(ch
));
1902 val
&= ~(DPIO_PCS_TX1MARGIN_MASK
| DPIO_PCS_TX2MARGIN_MASK
);
1903 val
|= DPIO_PCS_TX1MARGIN_000
| DPIO_PCS_TX2MARGIN_000
;
1904 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW9(ch
), val
);
1906 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW9(ch
));
1907 val
&= ~(DPIO_PCS_TX1MARGIN_MASK
| DPIO_PCS_TX2MARGIN_MASK
);
1908 val
|= DPIO_PCS_TX1MARGIN_000
| DPIO_PCS_TX2MARGIN_000
;
1909 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW9(ch
), val
);
1911 /* FIXME: Program the support xxx V-dB */
1913 for (i
= 0; i
< 4; i
++) {
1914 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_TX_DW4(ch
, i
));
1915 val
&= ~DPIO_SWING_DEEMPH9P5_MASK
;
1916 val
|= 128 << DPIO_SWING_DEEMPH9P5_SHIFT
;
1917 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW4(ch
, i
), val
);
1920 for (i
= 0; i
< 4; i
++) {
1921 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_TX_DW2(ch
, i
));
1923 val
&= ~DPIO_SWING_MARGIN000_MASK
;
1924 val
|= 102 << DPIO_SWING_MARGIN000_SHIFT
;
1927 * Supposedly this value shouldn't matter when unique transition
1928 * scale is disabled, but in fact it does matter. Let's just
1929 * always program the same value and hope it's OK.
1931 val
&= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT
);
1932 val
|= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT
;
1934 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW2(ch
, i
), val
);
1938 * The document said it needs to set bit 27 for ch0 and bit 26
1939 * for ch1. Might be a typo in the doc.
1940 * For now, for this unique transition scale selection, set bit
1941 * 27 for ch0 and ch1.
1943 for (i
= 0; i
< 4; i
++) {
1944 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_TX_DW3(ch
, i
));
1945 val
&= ~DPIO_TX_UNIQ_TRANS_SCALE_EN
;
1946 vlv_dpio_write(dev_priv
, pipe
, CHV_TX_DW3(ch
, i
), val
);
1949 /* Start swing calculation */
1950 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS01_DW10(ch
));
1951 val
|= DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
;
1952 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS01_DW10(ch
), val
);
1954 val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PCS23_DW10(ch
));
1955 val
|= DPIO_PCS_SWING_CALC_TX0_TX2
| DPIO_PCS_SWING_CALC_TX1_TX3
;
1956 vlv_dpio_write(dev_priv
, pipe
, VLV_PCS23_DW10(ch
), val
);
1958 mutex_unlock(&dev_priv
->sb_lock
);
1960 intel_hdmi
->set_infoframes(&encoder
->base
,
1961 intel_crtc
->config
->has_hdmi_sink
,
1964 g4x_enable_hdmi(encoder
);
1966 vlv_wait_port_ready(dev_priv
, dport
, 0x0);
1968 /* Second common lane will stay alive on its own now */
1969 if (dport
->release_cl2_override
) {
1970 chv_phy_powergate_ch(dev_priv
, DPIO_PHY0
, DPIO_CH1
, false);
1971 dport
->release_cl2_override
= false;
1975 static void intel_hdmi_destroy(struct drm_connector
*connector
)
1977 kfree(to_intel_connector(connector
)->detect_edid
);
1978 drm_connector_cleanup(connector
);
1982 static const struct drm_connector_funcs intel_hdmi_connector_funcs
= {
1983 .dpms
= drm_atomic_helper_connector_dpms
,
1984 .detect
= intel_hdmi_detect
,
1985 .force
= intel_hdmi_force
,
1986 .fill_modes
= drm_helper_probe_single_connector_modes
,
1987 .set_property
= intel_hdmi_set_property
,
1988 .atomic_get_property
= intel_connector_atomic_get_property
,
1989 .destroy
= intel_hdmi_destroy
,
1990 .atomic_destroy_state
= drm_atomic_helper_connector_destroy_state
,
1991 .atomic_duplicate_state
= drm_atomic_helper_connector_duplicate_state
,
1994 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs
= {
1995 .get_modes
= intel_hdmi_get_modes
,
1996 .mode_valid
= intel_hdmi_mode_valid
,
1997 .best_encoder
= intel_best_encoder
,
2000 static const struct drm_encoder_funcs intel_hdmi_enc_funcs
= {
2001 .destroy
= intel_encoder_destroy
,
2005 intel_hdmi_add_properties(struct intel_hdmi
*intel_hdmi
, struct drm_connector
*connector
)
2007 intel_attach_force_audio_property(connector
);
2008 intel_attach_broadcast_rgb_property(connector
);
2009 intel_hdmi
->color_range_auto
= true;
2010 intel_attach_aspect_ratio_property(connector
);
2011 intel_hdmi
->aspect_ratio
= HDMI_PICTURE_ASPECT_NONE
;
2014 void intel_hdmi_init_connector(struct intel_digital_port
*intel_dig_port
,
2015 struct intel_connector
*intel_connector
)
2017 struct drm_connector
*connector
= &intel_connector
->base
;
2018 struct intel_hdmi
*intel_hdmi
= &intel_dig_port
->hdmi
;
2019 struct intel_encoder
*intel_encoder
= &intel_dig_port
->base
;
2020 struct drm_device
*dev
= intel_encoder
->base
.dev
;
2021 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2022 enum port port
= intel_dig_port
->port
;
2023 uint8_t alternate_ddc_pin
;
2025 drm_connector_init(dev
, connector
, &intel_hdmi_connector_funcs
,
2026 DRM_MODE_CONNECTOR_HDMIA
);
2027 drm_connector_helper_add(connector
, &intel_hdmi_connector_helper_funcs
);
2029 connector
->interlace_allowed
= 1;
2030 connector
->doublescan_allowed
= 0;
2031 connector
->stereo_allowed
= 1;
2035 if (IS_BROXTON(dev_priv
))
2036 intel_hdmi
->ddc_bus
= GMBUS_PIN_1_BXT
;
2038 intel_hdmi
->ddc_bus
= GMBUS_PIN_DPB
;
2040 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
2041 * interrupts to check the external panel connection.
2043 if (IS_BROXTON(dev_priv
) && (INTEL_REVID(dev
) < BXT_REVID_B0
))
2044 intel_encoder
->hpd_pin
= HPD_PORT_A
;
2046 intel_encoder
->hpd_pin
= HPD_PORT_B
;
2049 if (IS_BROXTON(dev_priv
))
2050 intel_hdmi
->ddc_bus
= GMBUS_PIN_2_BXT
;
2052 intel_hdmi
->ddc_bus
= GMBUS_PIN_DPC
;
2053 intel_encoder
->hpd_pin
= HPD_PORT_C
;
2056 if (WARN_ON(IS_BROXTON(dev_priv
)))
2057 intel_hdmi
->ddc_bus
= GMBUS_PIN_DISABLED
;
2058 else if (IS_CHERRYVIEW(dev_priv
))
2059 intel_hdmi
->ddc_bus
= GMBUS_PIN_DPD_CHV
;
2061 intel_hdmi
->ddc_bus
= GMBUS_PIN_DPD
;
2062 intel_encoder
->hpd_pin
= HPD_PORT_D
;
2065 /* On SKL PORT E doesn't have seperate GMBUS pin
2066 * We rely on VBT to set a proper alternate GMBUS pin. */
2068 dev_priv
->vbt
.ddi_port_info
[PORT_E
].alternate_ddc_pin
;
2069 switch (alternate_ddc_pin
) {
2071 intel_hdmi
->ddc_bus
= GMBUS_PIN_DPB
;
2074 intel_hdmi
->ddc_bus
= GMBUS_PIN_DPC
;
2077 intel_hdmi
->ddc_bus
= GMBUS_PIN_DPD
;
2080 MISSING_CASE(alternate_ddc_pin
);
2082 intel_encoder
->hpd_pin
= HPD_PORT_E
;
2085 intel_encoder
->hpd_pin
= HPD_PORT_A
;
2086 /* Internal port only for eDP. */
2091 if (IS_VALLEYVIEW(dev
)) {
2092 intel_hdmi
->write_infoframe
= vlv_write_infoframe
;
2093 intel_hdmi
->set_infoframes
= vlv_set_infoframes
;
2094 intel_hdmi
->infoframe_enabled
= vlv_infoframe_enabled
;
2095 } else if (IS_G4X(dev
)) {
2096 intel_hdmi
->write_infoframe
= g4x_write_infoframe
;
2097 intel_hdmi
->set_infoframes
= g4x_set_infoframes
;
2098 intel_hdmi
->infoframe_enabled
= g4x_infoframe_enabled
;
2099 } else if (HAS_DDI(dev
)) {
2100 intel_hdmi
->write_infoframe
= hsw_write_infoframe
;
2101 intel_hdmi
->set_infoframes
= hsw_set_infoframes
;
2102 intel_hdmi
->infoframe_enabled
= hsw_infoframe_enabled
;
2103 } else if (HAS_PCH_IBX(dev
)) {
2104 intel_hdmi
->write_infoframe
= ibx_write_infoframe
;
2105 intel_hdmi
->set_infoframes
= ibx_set_infoframes
;
2106 intel_hdmi
->infoframe_enabled
= ibx_infoframe_enabled
;
2108 intel_hdmi
->write_infoframe
= cpt_write_infoframe
;
2109 intel_hdmi
->set_infoframes
= cpt_set_infoframes
;
2110 intel_hdmi
->infoframe_enabled
= cpt_infoframe_enabled
;
2114 intel_connector
->get_hw_state
= intel_ddi_connector_get_hw_state
;
2116 intel_connector
->get_hw_state
= intel_connector_get_hw_state
;
2117 intel_connector
->unregister
= intel_connector_unregister
;
2119 intel_hdmi_add_properties(intel_hdmi
, connector
);
2121 intel_connector_attach_encoder(intel_connector
, intel_encoder
);
2122 drm_connector_register(connector
);
2123 intel_hdmi
->attached_connector
= intel_connector
;
2125 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2126 * 0xd. Failure to do so will result in spurious interrupts being
2127 * generated on the port when a cable is not attached.
2129 if (IS_G4X(dev
) && !IS_GM45(dev
)) {
2130 u32 temp
= I915_READ(PEG_BAND_GAP_DATA
);
2131 I915_WRITE(PEG_BAND_GAP_DATA
, (temp
& ~0xf) | 0xd);
2135 void intel_hdmi_init(struct drm_device
*dev
, int hdmi_reg
, enum port port
)
2137 struct intel_digital_port
*intel_dig_port
;
2138 struct intel_encoder
*intel_encoder
;
2139 struct intel_connector
*intel_connector
;
2141 intel_dig_port
= kzalloc(sizeof(*intel_dig_port
), GFP_KERNEL
);
2142 if (!intel_dig_port
)
2145 intel_connector
= intel_connector_alloc();
2146 if (!intel_connector
) {
2147 kfree(intel_dig_port
);
2151 intel_encoder
= &intel_dig_port
->base
;
2153 drm_encoder_init(dev
, &intel_encoder
->base
, &intel_hdmi_enc_funcs
,
2154 DRM_MODE_ENCODER_TMDS
);
2156 intel_encoder
->compute_config
= intel_hdmi_compute_config
;
2157 if (HAS_PCH_SPLIT(dev
)) {
2158 intel_encoder
->disable
= pch_disable_hdmi
;
2159 intel_encoder
->post_disable
= pch_post_disable_hdmi
;
2161 intel_encoder
->disable
= g4x_disable_hdmi
;
2163 intel_encoder
->get_hw_state
= intel_hdmi_get_hw_state
;
2164 intel_encoder
->get_config
= intel_hdmi_get_config
;
2165 if (IS_CHERRYVIEW(dev
)) {
2166 intel_encoder
->pre_pll_enable
= chv_hdmi_pre_pll_enable
;
2167 intel_encoder
->pre_enable
= chv_hdmi_pre_enable
;
2168 intel_encoder
->enable
= vlv_enable_hdmi
;
2169 intel_encoder
->post_disable
= chv_hdmi_post_disable
;
2170 intel_encoder
->post_pll_disable
= chv_hdmi_post_pll_disable
;
2171 } else if (IS_VALLEYVIEW(dev
)) {
2172 intel_encoder
->pre_pll_enable
= vlv_hdmi_pre_pll_enable
;
2173 intel_encoder
->pre_enable
= vlv_hdmi_pre_enable
;
2174 intel_encoder
->enable
= vlv_enable_hdmi
;
2175 intel_encoder
->post_disable
= vlv_hdmi_post_disable
;
2177 intel_encoder
->pre_enable
= intel_hdmi_pre_enable
;
2178 if (HAS_PCH_CPT(dev
))
2179 intel_encoder
->enable
= cpt_enable_hdmi
;
2180 else if (HAS_PCH_IBX(dev
))
2181 intel_encoder
->enable
= ibx_enable_hdmi
;
2183 intel_encoder
->enable
= g4x_enable_hdmi
;
2186 intel_encoder
->type
= INTEL_OUTPUT_HDMI
;
2187 if (IS_CHERRYVIEW(dev
)) {
2189 intel_encoder
->crtc_mask
= 1 << 2;
2191 intel_encoder
->crtc_mask
= (1 << 0) | (1 << 1);
2193 intel_encoder
->crtc_mask
= (1 << 0) | (1 << 1) | (1 << 2);
2195 intel_encoder
->cloneable
= 1 << INTEL_OUTPUT_ANALOG
;
2197 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
2198 * to work on real hardware. And since g4x can send infoframes to
2199 * only one port anyway, nothing is lost by allowing it.
2202 intel_encoder
->cloneable
|= 1 << INTEL_OUTPUT_HDMI
;
2204 intel_dig_port
->port
= port
;
2205 intel_dig_port
->hdmi
.hdmi_reg
= hdmi_reg
;
2206 intel_dig_port
->dp
.output_reg
= 0;
2208 intel_hdmi_init_connector(intel_dig_port
, intel_connector
);