2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
28 #include <linux/cpufreq.h>
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
55 static void bxt_init_clock_gating(struct drm_device
*dev
)
57 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
59 /* WaDisableSDEUnitClockGating:bxt */
60 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
61 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
65 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
67 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
68 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ
);
71 static void i915_pineview_get_mem_freq(struct drm_device
*dev
)
73 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
76 tmp
= I915_READ(CLKCFG
);
78 switch (tmp
& CLKCFG_FSB_MASK
) {
80 dev_priv
->fsb_freq
= 533; /* 133*4 */
83 dev_priv
->fsb_freq
= 800; /* 200*4 */
86 dev_priv
->fsb_freq
= 667; /* 167*4 */
89 dev_priv
->fsb_freq
= 400; /* 100*4 */
93 switch (tmp
& CLKCFG_MEM_MASK
) {
95 dev_priv
->mem_freq
= 533;
98 dev_priv
->mem_freq
= 667;
101 dev_priv
->mem_freq
= 800;
105 /* detect pineview DDR3 setting */
106 tmp
= I915_READ(CSHRDDR3CTL
);
107 dev_priv
->is_ddr3
= (tmp
& CSHRDDR3CTL_DDR3
) ? 1 : 0;
110 static void i915_ironlake_get_mem_freq(struct drm_device
*dev
)
112 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
115 ddrpll
= I915_READ16(DDRMPLL1
);
116 csipll
= I915_READ16(CSIPLL0
);
118 switch (ddrpll
& 0xff) {
120 dev_priv
->mem_freq
= 800;
123 dev_priv
->mem_freq
= 1066;
126 dev_priv
->mem_freq
= 1333;
129 dev_priv
->mem_freq
= 1600;
132 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
134 dev_priv
->mem_freq
= 0;
138 dev_priv
->ips
.r_t
= dev_priv
->mem_freq
;
140 switch (csipll
& 0x3ff) {
142 dev_priv
->fsb_freq
= 3200;
145 dev_priv
->fsb_freq
= 3733;
148 dev_priv
->fsb_freq
= 4266;
151 dev_priv
->fsb_freq
= 4800;
154 dev_priv
->fsb_freq
= 5333;
157 dev_priv
->fsb_freq
= 5866;
160 dev_priv
->fsb_freq
= 6400;
163 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
165 dev_priv
->fsb_freq
= 0;
169 if (dev_priv
->fsb_freq
== 3200) {
170 dev_priv
->ips
.c_m
= 0;
171 } else if (dev_priv
->fsb_freq
> 3200 && dev_priv
->fsb_freq
<= 4800) {
172 dev_priv
->ips
.c_m
= 1;
174 dev_priv
->ips
.c_m
= 2;
178 static const struct cxsr_latency cxsr_latency_table
[] = {
179 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
180 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
181 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
182 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
183 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
185 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
186 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
187 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
188 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
189 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
191 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
192 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
193 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
194 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
195 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
197 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
198 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
199 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
200 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
201 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
203 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
204 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
205 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
206 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
207 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
209 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
210 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
211 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
212 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
213 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
216 static const struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
,
221 const struct cxsr_latency
*latency
;
224 if (fsb
== 0 || mem
== 0)
227 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
228 latency
= &cxsr_latency_table
[i
];
229 if (is_desktop
== latency
->is_desktop
&&
230 is_ddr3
== latency
->is_ddr3
&&
231 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
235 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
240 static void chv_set_memory_dvfs(struct drm_i915_private
*dev_priv
, bool enable
)
244 mutex_lock(&dev_priv
->rps
.hw_lock
);
246 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
);
248 val
&= ~FORCE_DDR_HIGH_FREQ
;
250 val
|= FORCE_DDR_HIGH_FREQ
;
251 val
&= ~FORCE_DDR_LOW_FREQ
;
252 val
|= FORCE_DDR_FREQ_REQ_ACK
;
253 vlv_punit_write(dev_priv
, PUNIT_REG_DDR_SETUP2
, val
);
255 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
) &
256 FORCE_DDR_FREQ_REQ_ACK
) == 0, 3))
257 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
259 mutex_unlock(&dev_priv
->rps
.hw_lock
);
262 static void chv_set_memory_pm5(struct drm_i915_private
*dev_priv
, bool enable
)
266 mutex_lock(&dev_priv
->rps
.hw_lock
);
268 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
);
270 val
|= DSP_MAXFIFO_PM5_ENABLE
;
272 val
&= ~DSP_MAXFIFO_PM5_ENABLE
;
273 vlv_punit_write(dev_priv
, PUNIT_REG_DSPFREQ
, val
);
275 mutex_unlock(&dev_priv
->rps
.hw_lock
);
278 #define FW_WM(value, plane) \
279 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
281 void intel_set_memory_cxsr(struct drm_i915_private
*dev_priv
, bool enable
)
283 struct drm_device
*dev
= dev_priv
->dev
;
286 if (IS_VALLEYVIEW(dev
)) {
287 I915_WRITE(FW_BLC_SELF_VLV
, enable
? FW_CSPWRDWNEN
: 0);
288 POSTING_READ(FW_BLC_SELF_VLV
);
289 dev_priv
->wm
.vlv
.cxsr
= enable
;
290 } else if (IS_G4X(dev
) || IS_CRESTLINE(dev
)) {
291 I915_WRITE(FW_BLC_SELF
, enable
? FW_BLC_SELF_EN
: 0);
292 POSTING_READ(FW_BLC_SELF
);
293 } else if (IS_PINEVIEW(dev
)) {
294 val
= I915_READ(DSPFW3
) & ~PINEVIEW_SELF_REFRESH_EN
;
295 val
|= enable
? PINEVIEW_SELF_REFRESH_EN
: 0;
296 I915_WRITE(DSPFW3
, val
);
297 POSTING_READ(DSPFW3
);
298 } else if (IS_I945G(dev
) || IS_I945GM(dev
)) {
299 val
= enable
? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN
) :
300 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN
);
301 I915_WRITE(FW_BLC_SELF
, val
);
302 POSTING_READ(FW_BLC_SELF
);
303 } else if (IS_I915GM(dev
)) {
304 val
= enable
? _MASKED_BIT_ENABLE(INSTPM_SELF_EN
) :
305 _MASKED_BIT_DISABLE(INSTPM_SELF_EN
);
306 I915_WRITE(INSTPM
, val
);
307 POSTING_READ(INSTPM
);
312 DRM_DEBUG_KMS("memory self-refresh is %s\n",
313 enable
? "enabled" : "disabled");
318 * Latency for FIFO fetches is dependent on several factors:
319 * - memory configuration (speed, channels)
321 * - current MCH state
322 * It can be fairly high in some situations, so here we assume a fairly
323 * pessimal value. It's a tradeoff between extra memory fetches (if we
324 * set this value too high, the FIFO will fetch frequently to stay full)
325 * and power consumption (set it too low to save power and we might see
326 * FIFO underruns and display "flicker").
328 * A value of 5us seems to be a good balance; safe for very low end
329 * platforms but not overly aggressive on lower latency configs.
331 static const int pessimal_latency_ns
= 5000;
333 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
334 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
336 static int vlv_get_fifo_size(struct drm_device
*dev
,
337 enum pipe pipe
, int plane
)
339 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
340 int sprite0_start
, sprite1_start
, size
;
343 uint32_t dsparb
, dsparb2
, dsparb3
;
345 dsparb
= I915_READ(DSPARB
);
346 dsparb2
= I915_READ(DSPARB2
);
347 sprite0_start
= VLV_FIFO_START(dsparb
, dsparb2
, 0, 0);
348 sprite1_start
= VLV_FIFO_START(dsparb
, dsparb2
, 8, 4);
351 dsparb
= I915_READ(DSPARB
);
352 dsparb2
= I915_READ(DSPARB2
);
353 sprite0_start
= VLV_FIFO_START(dsparb
, dsparb2
, 16, 8);
354 sprite1_start
= VLV_FIFO_START(dsparb
, dsparb2
, 24, 12);
357 dsparb2
= I915_READ(DSPARB2
);
358 dsparb3
= I915_READ(DSPARB3
);
359 sprite0_start
= VLV_FIFO_START(dsparb3
, dsparb2
, 0, 16);
360 sprite1_start
= VLV_FIFO_START(dsparb3
, dsparb2
, 8, 20);
368 size
= sprite0_start
;
371 size
= sprite1_start
- sprite0_start
;
374 size
= 512 - 1 - sprite1_start
;
380 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
381 pipe_name(pipe
), plane
== 0 ? "primary" : "sprite",
382 plane
== 0 ? plane_name(pipe
) : sprite_name(pipe
, plane
- 1),
388 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
390 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
391 uint32_t dsparb
= I915_READ(DSPARB
);
394 size
= dsparb
& 0x7f;
396 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
398 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
399 plane
? "B" : "A", size
);
404 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
406 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
407 uint32_t dsparb
= I915_READ(DSPARB
);
410 size
= dsparb
& 0x1ff;
412 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
413 size
>>= 1; /* Convert to cachelines */
415 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
416 plane
? "B" : "A", size
);
421 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
423 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
424 uint32_t dsparb
= I915_READ(DSPARB
);
427 size
= dsparb
& 0x7f;
428 size
>>= 2; /* Convert to cachelines */
430 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
437 /* Pineview has different values for various configs */
438 static const struct intel_watermark_params pineview_display_wm
= {
439 .fifo_size
= PINEVIEW_DISPLAY_FIFO
,
440 .max_wm
= PINEVIEW_MAX_WM
,
441 .default_wm
= PINEVIEW_DFT_WM
,
442 .guard_size
= PINEVIEW_GUARD_WM
,
443 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
445 static const struct intel_watermark_params pineview_display_hplloff_wm
= {
446 .fifo_size
= PINEVIEW_DISPLAY_FIFO
,
447 .max_wm
= PINEVIEW_MAX_WM
,
448 .default_wm
= PINEVIEW_DFT_HPLLOFF_WM
,
449 .guard_size
= PINEVIEW_GUARD_WM
,
450 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
452 static const struct intel_watermark_params pineview_cursor_wm
= {
453 .fifo_size
= PINEVIEW_CURSOR_FIFO
,
454 .max_wm
= PINEVIEW_CURSOR_MAX_WM
,
455 .default_wm
= PINEVIEW_CURSOR_DFT_WM
,
456 .guard_size
= PINEVIEW_CURSOR_GUARD_WM
,
457 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
459 static const struct intel_watermark_params pineview_cursor_hplloff_wm
= {
460 .fifo_size
= PINEVIEW_CURSOR_FIFO
,
461 .max_wm
= PINEVIEW_CURSOR_MAX_WM
,
462 .default_wm
= PINEVIEW_CURSOR_DFT_WM
,
463 .guard_size
= PINEVIEW_CURSOR_GUARD_WM
,
464 .cacheline_size
= PINEVIEW_FIFO_LINE_SIZE
,
466 static const struct intel_watermark_params g4x_wm_info
= {
467 .fifo_size
= G4X_FIFO_SIZE
,
468 .max_wm
= G4X_MAX_WM
,
469 .default_wm
= G4X_MAX_WM
,
471 .cacheline_size
= G4X_FIFO_LINE_SIZE
,
473 static const struct intel_watermark_params g4x_cursor_wm_info
= {
474 .fifo_size
= I965_CURSOR_FIFO
,
475 .max_wm
= I965_CURSOR_MAX_WM
,
476 .default_wm
= I965_CURSOR_DFT_WM
,
478 .cacheline_size
= G4X_FIFO_LINE_SIZE
,
480 static const struct intel_watermark_params valleyview_wm_info
= {
481 .fifo_size
= VALLEYVIEW_FIFO_SIZE
,
482 .max_wm
= VALLEYVIEW_MAX_WM
,
483 .default_wm
= VALLEYVIEW_MAX_WM
,
485 .cacheline_size
= G4X_FIFO_LINE_SIZE
,
487 static const struct intel_watermark_params valleyview_cursor_wm_info
= {
488 .fifo_size
= I965_CURSOR_FIFO
,
489 .max_wm
= VALLEYVIEW_CURSOR_MAX_WM
,
490 .default_wm
= I965_CURSOR_DFT_WM
,
492 .cacheline_size
= G4X_FIFO_LINE_SIZE
,
494 static const struct intel_watermark_params i965_cursor_wm_info
= {
495 .fifo_size
= I965_CURSOR_FIFO
,
496 .max_wm
= I965_CURSOR_MAX_WM
,
497 .default_wm
= I965_CURSOR_DFT_WM
,
499 .cacheline_size
= I915_FIFO_LINE_SIZE
,
501 static const struct intel_watermark_params i945_wm_info
= {
502 .fifo_size
= I945_FIFO_SIZE
,
503 .max_wm
= I915_MAX_WM
,
506 .cacheline_size
= I915_FIFO_LINE_SIZE
,
508 static const struct intel_watermark_params i915_wm_info
= {
509 .fifo_size
= I915_FIFO_SIZE
,
510 .max_wm
= I915_MAX_WM
,
513 .cacheline_size
= I915_FIFO_LINE_SIZE
,
515 static const struct intel_watermark_params i830_a_wm_info
= {
516 .fifo_size
= I855GM_FIFO_SIZE
,
517 .max_wm
= I915_MAX_WM
,
520 .cacheline_size
= I830_FIFO_LINE_SIZE
,
522 static const struct intel_watermark_params i830_bc_wm_info
= {
523 .fifo_size
= I855GM_FIFO_SIZE
,
524 .max_wm
= I915_MAX_WM
/2,
527 .cacheline_size
= I830_FIFO_LINE_SIZE
,
529 static const struct intel_watermark_params i845_wm_info
= {
530 .fifo_size
= I830_FIFO_SIZE
,
531 .max_wm
= I915_MAX_WM
,
534 .cacheline_size
= I830_FIFO_LINE_SIZE
,
538 * intel_calculate_wm - calculate watermark level
539 * @clock_in_khz: pixel clock
540 * @wm: chip FIFO params
541 * @pixel_size: display pixel size
542 * @latency_ns: memory latency for the platform
544 * Calculate the watermark level (the level at which the display plane will
545 * start fetching from memory again). Each chip has a different display
546 * FIFO size and allocation, so the caller needs to figure that out and pass
547 * in the correct intel_watermark_params structure.
549 * As the pixel clock runs, the FIFO will be drained at a rate that depends
550 * on the pixel size. When it reaches the watermark level, it'll start
551 * fetching FIFO line sized based chunks from memory until the FIFO fills
552 * past the watermark point. If the FIFO drains completely, a FIFO underrun
553 * will occur, and a display engine hang could result.
555 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
556 const struct intel_watermark_params
*wm
,
559 unsigned long latency_ns
)
561 long entries_required
, wm_size
;
564 * Note: we need to make sure we don't overflow for various clock &
566 * clocks go from a few thousand to several hundred thousand.
567 * latency is usually a few thousand
569 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
571 entries_required
= DIV_ROUND_UP(entries_required
, wm
->cacheline_size
);
573 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required
);
575 wm_size
= fifo_size
- (entries_required
+ wm
->guard_size
);
577 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size
);
579 /* Don't promote wm_size to unsigned... */
580 if (wm_size
> (long)wm
->max_wm
)
581 wm_size
= wm
->max_wm
;
583 wm_size
= wm
->default_wm
;
586 * Bspec seems to indicate that the value shouldn't be lower than
587 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
588 * Lets go for 8 which is the burst size since certain platforms
589 * already use a hardcoded 8 (which is what the spec says should be
598 static struct drm_crtc
*single_enabled_crtc(struct drm_device
*dev
)
600 struct drm_crtc
*crtc
, *enabled
= NULL
;
602 for_each_crtc(dev
, crtc
) {
603 if (intel_crtc_active(crtc
)) {
613 static void pineview_update_wm(struct drm_crtc
*unused_crtc
)
615 struct drm_device
*dev
= unused_crtc
->dev
;
616 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
617 struct drm_crtc
*crtc
;
618 const struct cxsr_latency
*latency
;
622 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->is_ddr3
,
623 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
625 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
626 intel_set_memory_cxsr(dev_priv
, false);
630 crtc
= single_enabled_crtc(dev
);
632 const struct drm_display_mode
*adjusted_mode
= &to_intel_crtc(crtc
)->config
->base
.adjusted_mode
;
633 int pixel_size
= crtc
->primary
->state
->fb
->bits_per_pixel
/ 8;
634 int clock
= adjusted_mode
->crtc_clock
;
637 wm
= intel_calculate_wm(clock
, &pineview_display_wm
,
638 pineview_display_wm
.fifo_size
,
639 pixel_size
, latency
->display_sr
);
640 reg
= I915_READ(DSPFW1
);
641 reg
&= ~DSPFW_SR_MASK
;
642 reg
|= FW_WM(wm
, SR
);
643 I915_WRITE(DSPFW1
, reg
);
644 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
647 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
,
648 pineview_display_wm
.fifo_size
,
649 pixel_size
, latency
->cursor_sr
);
650 reg
= I915_READ(DSPFW3
);
651 reg
&= ~DSPFW_CURSOR_SR_MASK
;
652 reg
|= FW_WM(wm
, CURSOR_SR
);
653 I915_WRITE(DSPFW3
, reg
);
655 /* Display HPLL off SR */
656 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
657 pineview_display_hplloff_wm
.fifo_size
,
658 pixel_size
, latency
->display_hpll_disable
);
659 reg
= I915_READ(DSPFW3
);
660 reg
&= ~DSPFW_HPLL_SR_MASK
;
661 reg
|= FW_WM(wm
, HPLL_SR
);
662 I915_WRITE(DSPFW3
, reg
);
664 /* cursor HPLL off SR */
665 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
,
666 pineview_display_hplloff_wm
.fifo_size
,
667 pixel_size
, latency
->cursor_hpll_disable
);
668 reg
= I915_READ(DSPFW3
);
669 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
670 reg
|= FW_WM(wm
, HPLL_CURSOR
);
671 I915_WRITE(DSPFW3
, reg
);
672 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
674 intel_set_memory_cxsr(dev_priv
, true);
676 intel_set_memory_cxsr(dev_priv
, false);
680 static bool g4x_compute_wm0(struct drm_device
*dev
,
682 const struct intel_watermark_params
*display
,
683 int display_latency_ns
,
684 const struct intel_watermark_params
*cursor
,
685 int cursor_latency_ns
,
689 struct drm_crtc
*crtc
;
690 const struct drm_display_mode
*adjusted_mode
;
691 int htotal
, hdisplay
, clock
, pixel_size
;
692 int line_time_us
, line_count
;
693 int entries
, tlb_miss
;
695 crtc
= intel_get_crtc_for_plane(dev
, plane
);
696 if (!intel_crtc_active(crtc
)) {
697 *cursor_wm
= cursor
->guard_size
;
698 *plane_wm
= display
->guard_size
;
702 adjusted_mode
= &to_intel_crtc(crtc
)->config
->base
.adjusted_mode
;
703 clock
= adjusted_mode
->crtc_clock
;
704 htotal
= adjusted_mode
->crtc_htotal
;
705 hdisplay
= to_intel_crtc(crtc
)->config
->pipe_src_w
;
706 pixel_size
= crtc
->primary
->state
->fb
->bits_per_pixel
/ 8;
708 /* Use the small buffer method to calculate plane watermark */
709 entries
= ((clock
* pixel_size
/ 1000) * display_latency_ns
) / 1000;
710 tlb_miss
= display
->fifo_size
*display
->cacheline_size
- hdisplay
* 8;
713 entries
= DIV_ROUND_UP(entries
, display
->cacheline_size
);
714 *plane_wm
= entries
+ display
->guard_size
;
715 if (*plane_wm
> (int)display
->max_wm
)
716 *plane_wm
= display
->max_wm
;
718 /* Use the large buffer method to calculate cursor watermark */
719 line_time_us
= max(htotal
* 1000 / clock
, 1);
720 line_count
= (cursor_latency_ns
/ line_time_us
+ 1000) / 1000;
721 entries
= line_count
* crtc
->cursor
->state
->crtc_w
* pixel_size
;
722 tlb_miss
= cursor
->fifo_size
*cursor
->cacheline_size
- hdisplay
* 8;
725 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
726 *cursor_wm
= entries
+ cursor
->guard_size
;
727 if (*cursor_wm
> (int)cursor
->max_wm
)
728 *cursor_wm
= (int)cursor
->max_wm
;
734 * Check the wm result.
736 * If any calculated watermark values is larger than the maximum value that
737 * can be programmed into the associated watermark register, that watermark
740 static bool g4x_check_srwm(struct drm_device
*dev
,
741 int display_wm
, int cursor_wm
,
742 const struct intel_watermark_params
*display
,
743 const struct intel_watermark_params
*cursor
)
745 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
746 display_wm
, cursor_wm
);
748 if (display_wm
> display
->max_wm
) {
749 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
750 display_wm
, display
->max_wm
);
754 if (cursor_wm
> cursor
->max_wm
) {
755 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
756 cursor_wm
, cursor
->max_wm
);
760 if (!(display_wm
|| cursor_wm
)) {
761 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
768 static bool g4x_compute_srwm(struct drm_device
*dev
,
771 const struct intel_watermark_params
*display
,
772 const struct intel_watermark_params
*cursor
,
773 int *display_wm
, int *cursor_wm
)
775 struct drm_crtc
*crtc
;
776 const struct drm_display_mode
*adjusted_mode
;
777 int hdisplay
, htotal
, pixel_size
, clock
;
778 unsigned long line_time_us
;
779 int line_count
, line_size
;
784 *display_wm
= *cursor_wm
= 0;
788 crtc
= intel_get_crtc_for_plane(dev
, plane
);
789 adjusted_mode
= &to_intel_crtc(crtc
)->config
->base
.adjusted_mode
;
790 clock
= adjusted_mode
->crtc_clock
;
791 htotal
= adjusted_mode
->crtc_htotal
;
792 hdisplay
= to_intel_crtc(crtc
)->config
->pipe_src_w
;
793 pixel_size
= crtc
->primary
->state
->fb
->bits_per_pixel
/ 8;
795 line_time_us
= max(htotal
* 1000 / clock
, 1);
796 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
797 line_size
= hdisplay
* pixel_size
;
799 /* Use the minimum of the small and large buffer method for primary */
800 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
801 large
= line_count
* line_size
;
803 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
804 *display_wm
= entries
+ display
->guard_size
;
806 /* calculate the self-refresh watermark for display cursor */
807 entries
= line_count
* pixel_size
* crtc
->cursor
->state
->crtc_w
;
808 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
809 *cursor_wm
= entries
+ cursor
->guard_size
;
811 return g4x_check_srwm(dev
,
812 *display_wm
, *cursor_wm
,
816 #define FW_WM_VLV(value, plane) \
817 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
819 static void vlv_write_wm_values(struct intel_crtc
*crtc
,
820 const struct vlv_wm_values
*wm
)
822 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
823 enum pipe pipe
= crtc
->pipe
;
825 I915_WRITE(VLV_DDL(pipe
),
826 (wm
->ddl
[pipe
].cursor
<< DDL_CURSOR_SHIFT
) |
827 (wm
->ddl
[pipe
].sprite
[1] << DDL_SPRITE_SHIFT(1)) |
828 (wm
->ddl
[pipe
].sprite
[0] << DDL_SPRITE_SHIFT(0)) |
829 (wm
->ddl
[pipe
].primary
<< DDL_PLANE_SHIFT
));
832 FW_WM(wm
->sr
.plane
, SR
) |
833 FW_WM(wm
->pipe
[PIPE_B
].cursor
, CURSORB
) |
834 FW_WM_VLV(wm
->pipe
[PIPE_B
].primary
, PLANEB
) |
835 FW_WM_VLV(wm
->pipe
[PIPE_A
].primary
, PLANEA
));
837 FW_WM_VLV(wm
->pipe
[PIPE_A
].sprite
[1], SPRITEB
) |
838 FW_WM(wm
->pipe
[PIPE_A
].cursor
, CURSORA
) |
839 FW_WM_VLV(wm
->pipe
[PIPE_A
].sprite
[0], SPRITEA
));
841 FW_WM(wm
->sr
.cursor
, CURSOR_SR
));
843 if (IS_CHERRYVIEW(dev_priv
)) {
844 I915_WRITE(DSPFW7_CHV
,
845 FW_WM_VLV(wm
->pipe
[PIPE_B
].sprite
[1], SPRITED
) |
846 FW_WM_VLV(wm
->pipe
[PIPE_B
].sprite
[0], SPRITEC
));
847 I915_WRITE(DSPFW8_CHV
,
848 FW_WM_VLV(wm
->pipe
[PIPE_C
].sprite
[1], SPRITEF
) |
849 FW_WM_VLV(wm
->pipe
[PIPE_C
].sprite
[0], SPRITEE
));
850 I915_WRITE(DSPFW9_CHV
,
851 FW_WM_VLV(wm
->pipe
[PIPE_C
].primary
, PLANEC
) |
852 FW_WM(wm
->pipe
[PIPE_C
].cursor
, CURSORC
));
854 FW_WM(wm
->sr
.plane
>> 9, SR_HI
) |
855 FW_WM(wm
->pipe
[PIPE_C
].sprite
[1] >> 8, SPRITEF_HI
) |
856 FW_WM(wm
->pipe
[PIPE_C
].sprite
[0] >> 8, SPRITEE_HI
) |
857 FW_WM(wm
->pipe
[PIPE_C
].primary
>> 8, PLANEC_HI
) |
858 FW_WM(wm
->pipe
[PIPE_B
].sprite
[1] >> 8, SPRITED_HI
) |
859 FW_WM(wm
->pipe
[PIPE_B
].sprite
[0] >> 8, SPRITEC_HI
) |
860 FW_WM(wm
->pipe
[PIPE_B
].primary
>> 8, PLANEB_HI
) |
861 FW_WM(wm
->pipe
[PIPE_A
].sprite
[1] >> 8, SPRITEB_HI
) |
862 FW_WM(wm
->pipe
[PIPE_A
].sprite
[0] >> 8, SPRITEA_HI
) |
863 FW_WM(wm
->pipe
[PIPE_A
].primary
>> 8, PLANEA_HI
));
866 FW_WM_VLV(wm
->pipe
[PIPE_B
].sprite
[1], SPRITED
) |
867 FW_WM_VLV(wm
->pipe
[PIPE_B
].sprite
[0], SPRITEC
));
869 FW_WM(wm
->sr
.plane
>> 9, SR_HI
) |
870 FW_WM(wm
->pipe
[PIPE_B
].sprite
[1] >> 8, SPRITED_HI
) |
871 FW_WM(wm
->pipe
[PIPE_B
].sprite
[0] >> 8, SPRITEC_HI
) |
872 FW_WM(wm
->pipe
[PIPE_B
].primary
>> 8, PLANEB_HI
) |
873 FW_WM(wm
->pipe
[PIPE_A
].sprite
[1] >> 8, SPRITEB_HI
) |
874 FW_WM(wm
->pipe
[PIPE_A
].sprite
[0] >> 8, SPRITEA_HI
) |
875 FW_WM(wm
->pipe
[PIPE_A
].primary
>> 8, PLANEA_HI
));
878 /* zero (unused) WM1 watermarks */
879 I915_WRITE(DSPFW4
, 0);
880 I915_WRITE(DSPFW5
, 0);
881 I915_WRITE(DSPFW6
, 0);
882 I915_WRITE(DSPHOWM1
, 0);
884 POSTING_READ(DSPFW1
);
892 VLV_WM_LEVEL_DDR_DVFS
,
895 /* latency must be in 0.1us units. */
896 static unsigned int vlv_wm_method2(unsigned int pixel_rate
,
897 unsigned int pipe_htotal
,
898 unsigned int horiz_pixels
,
899 unsigned int bytes_per_pixel
,
900 unsigned int latency
)
904 ret
= (latency
* pixel_rate
) / (pipe_htotal
* 10000);
905 ret
= (ret
+ 1) * horiz_pixels
* bytes_per_pixel
;
906 ret
= DIV_ROUND_UP(ret
, 64);
911 static void vlv_setup_wm_latency(struct drm_device
*dev
)
913 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
915 /* all latencies in usec */
916 dev_priv
->wm
.pri_latency
[VLV_WM_LEVEL_PM2
] = 3;
918 dev_priv
->wm
.max_level
= VLV_WM_LEVEL_PM2
;
920 if (IS_CHERRYVIEW(dev_priv
)) {
921 dev_priv
->wm
.pri_latency
[VLV_WM_LEVEL_PM5
] = 12;
922 dev_priv
->wm
.pri_latency
[VLV_WM_LEVEL_DDR_DVFS
] = 33;
924 dev_priv
->wm
.max_level
= VLV_WM_LEVEL_DDR_DVFS
;
928 static uint16_t vlv_compute_wm_level(struct intel_plane
*plane
,
929 struct intel_crtc
*crtc
,
930 const struct intel_plane_state
*state
,
933 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
934 int clock
, htotal
, pixel_size
, width
, wm
;
936 if (dev_priv
->wm
.pri_latency
[level
] == 0)
942 pixel_size
= drm_format_plane_cpp(state
->base
.fb
->pixel_format
, 0);
943 clock
= crtc
->config
->base
.adjusted_mode
.crtc_clock
;
944 htotal
= crtc
->config
->base
.adjusted_mode
.crtc_htotal
;
945 width
= crtc
->config
->pipe_src_w
;
946 if (WARN_ON(htotal
== 0))
949 if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
) {
951 * FIXME the formula gives values that are
952 * too big for the cursor FIFO, and hence we
953 * would never be able to use cursors. For
954 * now just hardcode the watermark.
958 wm
= vlv_wm_method2(clock
, htotal
, width
, pixel_size
,
959 dev_priv
->wm
.pri_latency
[level
] * 10);
962 return min_t(int, wm
, USHRT_MAX
);
965 static void vlv_compute_fifo(struct intel_crtc
*crtc
)
967 struct drm_device
*dev
= crtc
->base
.dev
;
968 struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
969 struct intel_plane
*plane
;
970 unsigned int total_rate
= 0;
971 const int fifo_size
= 512 - 1;
972 int fifo_extra
, fifo_left
= fifo_size
;
974 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
975 struct intel_plane_state
*state
=
976 to_intel_plane_state(plane
->base
.state
);
978 if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
)
981 if (state
->visible
) {
982 wm_state
->num_active_planes
++;
983 total_rate
+= drm_format_plane_cpp(state
->base
.fb
->pixel_format
, 0);
987 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
988 struct intel_plane_state
*state
=
989 to_intel_plane_state(plane
->base
.state
);
992 if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
) {
993 plane
->wm
.fifo_size
= 63;
997 if (!state
->visible
) {
998 plane
->wm
.fifo_size
= 0;
1002 rate
= drm_format_plane_cpp(state
->base
.fb
->pixel_format
, 0);
1003 plane
->wm
.fifo_size
= fifo_size
* rate
/ total_rate
;
1004 fifo_left
-= plane
->wm
.fifo_size
;
1007 fifo_extra
= DIV_ROUND_UP(fifo_left
, wm_state
->num_active_planes
?: 1);
1009 /* spread the remainder evenly */
1010 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
1016 if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
)
1019 /* give it all to the first plane if none are active */
1020 if (plane
->wm
.fifo_size
== 0 &&
1021 wm_state
->num_active_planes
)
1024 plane_extra
= min(fifo_extra
, fifo_left
);
1025 plane
->wm
.fifo_size
+= plane_extra
;
1026 fifo_left
-= plane_extra
;
1029 WARN_ON(fifo_left
!= 0);
1032 static void vlv_invert_wms(struct intel_crtc
*crtc
)
1034 struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
1037 for (level
= 0; level
< wm_state
->num_levels
; level
++) {
1038 struct drm_device
*dev
= crtc
->base
.dev
;
1039 const int sr_fifo_size
= INTEL_INFO(dev
)->num_pipes
* 512 - 1;
1040 struct intel_plane
*plane
;
1042 wm_state
->sr
[level
].plane
= sr_fifo_size
- wm_state
->sr
[level
].plane
;
1043 wm_state
->sr
[level
].cursor
= 63 - wm_state
->sr
[level
].cursor
;
1045 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
1046 switch (plane
->base
.type
) {
1048 case DRM_PLANE_TYPE_CURSOR
:
1049 wm_state
->wm
[level
].cursor
= plane
->wm
.fifo_size
-
1050 wm_state
->wm
[level
].cursor
;
1052 case DRM_PLANE_TYPE_PRIMARY
:
1053 wm_state
->wm
[level
].primary
= plane
->wm
.fifo_size
-
1054 wm_state
->wm
[level
].primary
;
1056 case DRM_PLANE_TYPE_OVERLAY
:
1057 sprite
= plane
->plane
;
1058 wm_state
->wm
[level
].sprite
[sprite
] = plane
->wm
.fifo_size
-
1059 wm_state
->wm
[level
].sprite
[sprite
];
1066 static void vlv_compute_wm(struct intel_crtc
*crtc
)
1068 struct drm_device
*dev
= crtc
->base
.dev
;
1069 struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
1070 struct intel_plane
*plane
;
1071 int sr_fifo_size
= INTEL_INFO(dev
)->num_pipes
* 512 - 1;
1074 memset(wm_state
, 0, sizeof(*wm_state
));
1076 wm_state
->cxsr
= crtc
->pipe
!= PIPE_C
&& crtc
->wm
.cxsr_allowed
;
1077 wm_state
->num_levels
= to_i915(dev
)->wm
.max_level
+ 1;
1079 wm_state
->num_active_planes
= 0;
1081 vlv_compute_fifo(crtc
);
1083 if (wm_state
->num_active_planes
!= 1)
1084 wm_state
->cxsr
= false;
1086 if (wm_state
->cxsr
) {
1087 for (level
= 0; level
< wm_state
->num_levels
; level
++) {
1088 wm_state
->sr
[level
].plane
= sr_fifo_size
;
1089 wm_state
->sr
[level
].cursor
= 63;
1093 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
1094 struct intel_plane_state
*state
=
1095 to_intel_plane_state(plane
->base
.state
);
1097 if (!state
->visible
)
1100 /* normal watermarks */
1101 for (level
= 0; level
< wm_state
->num_levels
; level
++) {
1102 int wm
= vlv_compute_wm_level(plane
, crtc
, state
, level
);
1103 int max_wm
= plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
? 63 : 511;
1106 if (WARN_ON(level
== 0 && wm
> max_wm
))
1109 if (wm
> plane
->wm
.fifo_size
)
1112 switch (plane
->base
.type
) {
1114 case DRM_PLANE_TYPE_CURSOR
:
1115 wm_state
->wm
[level
].cursor
= wm
;
1117 case DRM_PLANE_TYPE_PRIMARY
:
1118 wm_state
->wm
[level
].primary
= wm
;
1120 case DRM_PLANE_TYPE_OVERLAY
:
1121 sprite
= plane
->plane
;
1122 wm_state
->wm
[level
].sprite
[sprite
] = wm
;
1127 wm_state
->num_levels
= level
;
1129 if (!wm_state
->cxsr
)
1132 /* maxfifo watermarks */
1133 switch (plane
->base
.type
) {
1135 case DRM_PLANE_TYPE_CURSOR
:
1136 for (level
= 0; level
< wm_state
->num_levels
; level
++)
1137 wm_state
->sr
[level
].cursor
=
1138 wm_state
->wm
[level
].cursor
;
1140 case DRM_PLANE_TYPE_PRIMARY
:
1141 for (level
= 0; level
< wm_state
->num_levels
; level
++)
1142 wm_state
->sr
[level
].plane
=
1143 min(wm_state
->sr
[level
].plane
,
1144 wm_state
->wm
[level
].primary
);
1146 case DRM_PLANE_TYPE_OVERLAY
:
1147 sprite
= plane
->plane
;
1148 for (level
= 0; level
< wm_state
->num_levels
; level
++)
1149 wm_state
->sr
[level
].plane
=
1150 min(wm_state
->sr
[level
].plane
,
1151 wm_state
->wm
[level
].sprite
[sprite
]);
1156 /* clear any (partially) filled invalid levels */
1157 for (level
= wm_state
->num_levels
; level
< to_i915(dev
)->wm
.max_level
+ 1; level
++) {
1158 memset(&wm_state
->wm
[level
], 0, sizeof(wm_state
->wm
[level
]));
1159 memset(&wm_state
->sr
[level
], 0, sizeof(wm_state
->sr
[level
]));
1162 vlv_invert_wms(crtc
);
1165 #define VLV_FIFO(plane, value) \
1166 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1168 static void vlv_pipe_set_fifo_size(struct intel_crtc
*crtc
)
1170 struct drm_device
*dev
= crtc
->base
.dev
;
1171 struct drm_i915_private
*dev_priv
= to_i915(dev
);
1172 struct intel_plane
*plane
;
1173 int sprite0_start
= 0, sprite1_start
= 0, fifo_size
= 0;
1175 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
1176 if (plane
->base
.type
== DRM_PLANE_TYPE_CURSOR
) {
1177 WARN_ON(plane
->wm
.fifo_size
!= 63);
1181 if (plane
->base
.type
== DRM_PLANE_TYPE_PRIMARY
)
1182 sprite0_start
= plane
->wm
.fifo_size
;
1183 else if (plane
->plane
== 0)
1184 sprite1_start
= sprite0_start
+ plane
->wm
.fifo_size
;
1186 fifo_size
= sprite1_start
+ plane
->wm
.fifo_size
;
1189 WARN_ON(fifo_size
!= 512 - 1);
1191 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1192 pipe_name(crtc
->pipe
), sprite0_start
,
1193 sprite1_start
, fifo_size
);
1195 switch (crtc
->pipe
) {
1196 uint32_t dsparb
, dsparb2
, dsparb3
;
1198 dsparb
= I915_READ(DSPARB
);
1199 dsparb2
= I915_READ(DSPARB2
);
1201 dsparb
&= ~(VLV_FIFO(SPRITEA
, 0xff) |
1202 VLV_FIFO(SPRITEB
, 0xff));
1203 dsparb
|= (VLV_FIFO(SPRITEA
, sprite0_start
) |
1204 VLV_FIFO(SPRITEB
, sprite1_start
));
1206 dsparb2
&= ~(VLV_FIFO(SPRITEA_HI
, 0x1) |
1207 VLV_FIFO(SPRITEB_HI
, 0x1));
1208 dsparb2
|= (VLV_FIFO(SPRITEA_HI
, sprite0_start
>> 8) |
1209 VLV_FIFO(SPRITEB_HI
, sprite1_start
>> 8));
1211 I915_WRITE(DSPARB
, dsparb
);
1212 I915_WRITE(DSPARB2
, dsparb2
);
1215 dsparb
= I915_READ(DSPARB
);
1216 dsparb2
= I915_READ(DSPARB2
);
1218 dsparb
&= ~(VLV_FIFO(SPRITEC
, 0xff) |
1219 VLV_FIFO(SPRITED
, 0xff));
1220 dsparb
|= (VLV_FIFO(SPRITEC
, sprite0_start
) |
1221 VLV_FIFO(SPRITED
, sprite1_start
));
1223 dsparb2
&= ~(VLV_FIFO(SPRITEC_HI
, 0xff) |
1224 VLV_FIFO(SPRITED_HI
, 0xff));
1225 dsparb2
|= (VLV_FIFO(SPRITEC_HI
, sprite0_start
>> 8) |
1226 VLV_FIFO(SPRITED_HI
, sprite1_start
>> 8));
1228 I915_WRITE(DSPARB
, dsparb
);
1229 I915_WRITE(DSPARB2
, dsparb2
);
1232 dsparb3
= I915_READ(DSPARB3
);
1233 dsparb2
= I915_READ(DSPARB2
);
1235 dsparb3
&= ~(VLV_FIFO(SPRITEE
, 0xff) |
1236 VLV_FIFO(SPRITEF
, 0xff));
1237 dsparb3
|= (VLV_FIFO(SPRITEE
, sprite0_start
) |
1238 VLV_FIFO(SPRITEF
, sprite1_start
));
1240 dsparb2
&= ~(VLV_FIFO(SPRITEE_HI
, 0xff) |
1241 VLV_FIFO(SPRITEF_HI
, 0xff));
1242 dsparb2
|= (VLV_FIFO(SPRITEE_HI
, sprite0_start
>> 8) |
1243 VLV_FIFO(SPRITEF_HI
, sprite1_start
>> 8));
1245 I915_WRITE(DSPARB3
, dsparb3
);
1246 I915_WRITE(DSPARB2
, dsparb2
);
1255 static void vlv_merge_wm(struct drm_device
*dev
,
1256 struct vlv_wm_values
*wm
)
1258 struct intel_crtc
*crtc
;
1259 int num_active_crtcs
= 0;
1261 wm
->level
= to_i915(dev
)->wm
.max_level
;
1264 for_each_intel_crtc(dev
, crtc
) {
1265 const struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
1270 if (!wm_state
->cxsr
)
1274 wm
->level
= min_t(int, wm
->level
, wm_state
->num_levels
- 1);
1277 if (num_active_crtcs
!= 1)
1280 if (num_active_crtcs
> 1)
1281 wm
->level
= VLV_WM_LEVEL_PM2
;
1283 for_each_intel_crtc(dev
, crtc
) {
1284 struct vlv_wm_state
*wm_state
= &crtc
->wm_state
;
1285 enum pipe pipe
= crtc
->pipe
;
1290 wm
->pipe
[pipe
] = wm_state
->wm
[wm
->level
];
1292 wm
->sr
= wm_state
->sr
[wm
->level
];
1294 wm
->ddl
[pipe
].primary
= DDL_PRECISION_HIGH
| 2;
1295 wm
->ddl
[pipe
].sprite
[0] = DDL_PRECISION_HIGH
| 2;
1296 wm
->ddl
[pipe
].sprite
[1] = DDL_PRECISION_HIGH
| 2;
1297 wm
->ddl
[pipe
].cursor
= DDL_PRECISION_HIGH
| 2;
1301 static void vlv_update_wm(struct drm_crtc
*crtc
)
1303 struct drm_device
*dev
= crtc
->dev
;
1304 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1305 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1306 enum pipe pipe
= intel_crtc
->pipe
;
1307 struct vlv_wm_values wm
= {};
1309 vlv_compute_wm(intel_crtc
);
1310 vlv_merge_wm(dev
, &wm
);
1312 if (memcmp(&dev_priv
->wm
.vlv
, &wm
, sizeof(wm
)) == 0) {
1313 /* FIXME should be part of crtc atomic commit */
1314 vlv_pipe_set_fifo_size(intel_crtc
);
1318 if (wm
.level
< VLV_WM_LEVEL_DDR_DVFS
&&
1319 dev_priv
->wm
.vlv
.level
>= VLV_WM_LEVEL_DDR_DVFS
)
1320 chv_set_memory_dvfs(dev_priv
, false);
1322 if (wm
.level
< VLV_WM_LEVEL_PM5
&&
1323 dev_priv
->wm
.vlv
.level
>= VLV_WM_LEVEL_PM5
)
1324 chv_set_memory_pm5(dev_priv
, false);
1326 if (!wm
.cxsr
&& dev_priv
->wm
.vlv
.cxsr
)
1327 intel_set_memory_cxsr(dev_priv
, false);
1329 /* FIXME should be part of crtc atomic commit */
1330 vlv_pipe_set_fifo_size(intel_crtc
);
1332 vlv_write_wm_values(intel_crtc
, &wm
);
1334 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1335 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1336 pipe_name(pipe
), wm
.pipe
[pipe
].primary
, wm
.pipe
[pipe
].cursor
,
1337 wm
.pipe
[pipe
].sprite
[0], wm
.pipe
[pipe
].sprite
[1],
1338 wm
.sr
.plane
, wm
.sr
.cursor
, wm
.level
, wm
.cxsr
);
1340 if (wm
.cxsr
&& !dev_priv
->wm
.vlv
.cxsr
)
1341 intel_set_memory_cxsr(dev_priv
, true);
1343 if (wm
.level
>= VLV_WM_LEVEL_PM5
&&
1344 dev_priv
->wm
.vlv
.level
< VLV_WM_LEVEL_PM5
)
1345 chv_set_memory_pm5(dev_priv
, true);
1347 if (wm
.level
>= VLV_WM_LEVEL_DDR_DVFS
&&
1348 dev_priv
->wm
.vlv
.level
< VLV_WM_LEVEL_DDR_DVFS
)
1349 chv_set_memory_dvfs(dev_priv
, true);
1351 dev_priv
->wm
.vlv
= wm
;
1354 #define single_plane_enabled(mask) is_power_of_2(mask)
1356 static void g4x_update_wm(struct drm_crtc
*crtc
)
1358 struct drm_device
*dev
= crtc
->dev
;
1359 static const int sr_latency_ns
= 12000;
1360 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1361 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
;
1362 int plane_sr
, cursor_sr
;
1363 unsigned int enabled
= 0;
1366 if (g4x_compute_wm0(dev
, PIPE_A
,
1367 &g4x_wm_info
, pessimal_latency_ns
,
1368 &g4x_cursor_wm_info
, pessimal_latency_ns
,
1369 &planea_wm
, &cursora_wm
))
1370 enabled
|= 1 << PIPE_A
;
1372 if (g4x_compute_wm0(dev
, PIPE_B
,
1373 &g4x_wm_info
, pessimal_latency_ns
,
1374 &g4x_cursor_wm_info
, pessimal_latency_ns
,
1375 &planeb_wm
, &cursorb_wm
))
1376 enabled
|= 1 << PIPE_B
;
1378 if (single_plane_enabled(enabled
) &&
1379 g4x_compute_srwm(dev
, ffs(enabled
) - 1,
1382 &g4x_cursor_wm_info
,
1383 &plane_sr
, &cursor_sr
)) {
1384 cxsr_enabled
= true;
1386 cxsr_enabled
= false;
1387 intel_set_memory_cxsr(dev_priv
, false);
1388 plane_sr
= cursor_sr
= 0;
1391 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1392 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393 planea_wm
, cursora_wm
,
1394 planeb_wm
, cursorb_wm
,
1395 plane_sr
, cursor_sr
);
1398 FW_WM(plane_sr
, SR
) |
1399 FW_WM(cursorb_wm
, CURSORB
) |
1400 FW_WM(planeb_wm
, PLANEB
) |
1401 FW_WM(planea_wm
, PLANEA
));
1403 (I915_READ(DSPFW2
) & ~DSPFW_CURSORA_MASK
) |
1404 FW_WM(cursora_wm
, CURSORA
));
1405 /* HPLL off in SR has some issues on G4x... disable it */
1407 (I915_READ(DSPFW3
) & ~(DSPFW_HPLL_SR_EN
| DSPFW_CURSOR_SR_MASK
)) |
1408 FW_WM(cursor_sr
, CURSOR_SR
));
1411 intel_set_memory_cxsr(dev_priv
, true);
1414 static void i965_update_wm(struct drm_crtc
*unused_crtc
)
1416 struct drm_device
*dev
= unused_crtc
->dev
;
1417 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1418 struct drm_crtc
*crtc
;
1423 /* Calc sr entries for one plane configs */
1424 crtc
= single_enabled_crtc(dev
);
1426 /* self-refresh has much higher latency */
1427 static const int sr_latency_ns
= 12000;
1428 const struct drm_display_mode
*adjusted_mode
= &to_intel_crtc(crtc
)->config
->base
.adjusted_mode
;
1429 int clock
= adjusted_mode
->crtc_clock
;
1430 int htotal
= adjusted_mode
->crtc_htotal
;
1431 int hdisplay
= to_intel_crtc(crtc
)->config
->pipe_src_w
;
1432 int pixel_size
= crtc
->primary
->state
->fb
->bits_per_pixel
/ 8;
1433 unsigned long line_time_us
;
1436 line_time_us
= max(htotal
* 1000 / clock
, 1);
1438 /* Use ns/us then divide to preserve precision */
1439 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
1440 pixel_size
* hdisplay
;
1441 entries
= DIV_ROUND_UP(entries
, I915_FIFO_LINE_SIZE
);
1442 srwm
= I965_FIFO_SIZE
- entries
;
1446 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1449 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
1450 pixel_size
* crtc
->cursor
->state
->crtc_w
;
1451 entries
= DIV_ROUND_UP(entries
,
1452 i965_cursor_wm_info
.cacheline_size
);
1453 cursor_sr
= i965_cursor_wm_info
.fifo_size
-
1454 (entries
+ i965_cursor_wm_info
.guard_size
);
1456 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
1457 cursor_sr
= i965_cursor_wm_info
.max_wm
;
1459 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1460 "cursor %d\n", srwm
, cursor_sr
);
1462 cxsr_enabled
= true;
1464 cxsr_enabled
= false;
1465 /* Turn off self refresh if both pipes are enabled */
1466 intel_set_memory_cxsr(dev_priv
, false);
1469 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1472 /* 965 has limitations... */
1473 I915_WRITE(DSPFW1
, FW_WM(srwm
, SR
) |
1477 I915_WRITE(DSPFW2
, FW_WM(8, CURSORA
) |
1478 FW_WM(8, PLANEC_OLD
));
1479 /* update cursor SR watermark */
1480 I915_WRITE(DSPFW3
, FW_WM(cursor_sr
, CURSOR_SR
));
1483 intel_set_memory_cxsr(dev_priv
, true);
1488 static void i9xx_update_wm(struct drm_crtc
*unused_crtc
)
1490 struct drm_device
*dev
= unused_crtc
->dev
;
1491 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1492 const struct intel_watermark_params
*wm_info
;
1497 int planea_wm
, planeb_wm
;
1498 struct drm_crtc
*crtc
, *enabled
= NULL
;
1501 wm_info
= &i945_wm_info
;
1502 else if (!IS_GEN2(dev
))
1503 wm_info
= &i915_wm_info
;
1505 wm_info
= &i830_a_wm_info
;
1507 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
1508 crtc
= intel_get_crtc_for_plane(dev
, 0);
1509 if (intel_crtc_active(crtc
)) {
1510 const struct drm_display_mode
*adjusted_mode
;
1511 int cpp
= crtc
->primary
->state
->fb
->bits_per_pixel
/ 8;
1515 adjusted_mode
= &to_intel_crtc(crtc
)->config
->base
.adjusted_mode
;
1516 planea_wm
= intel_calculate_wm(adjusted_mode
->crtc_clock
,
1517 wm_info
, fifo_size
, cpp
,
1518 pessimal_latency_ns
);
1521 planea_wm
= fifo_size
- wm_info
->guard_size
;
1522 if (planea_wm
> (long)wm_info
->max_wm
)
1523 planea_wm
= wm_info
->max_wm
;
1527 wm_info
= &i830_bc_wm_info
;
1529 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
1530 crtc
= intel_get_crtc_for_plane(dev
, 1);
1531 if (intel_crtc_active(crtc
)) {
1532 const struct drm_display_mode
*adjusted_mode
;
1533 int cpp
= crtc
->primary
->state
->fb
->bits_per_pixel
/ 8;
1537 adjusted_mode
= &to_intel_crtc(crtc
)->config
->base
.adjusted_mode
;
1538 planeb_wm
= intel_calculate_wm(adjusted_mode
->crtc_clock
,
1539 wm_info
, fifo_size
, cpp
,
1540 pessimal_latency_ns
);
1541 if (enabled
== NULL
)
1546 planeb_wm
= fifo_size
- wm_info
->guard_size
;
1547 if (planeb_wm
> (long)wm_info
->max_wm
)
1548 planeb_wm
= wm_info
->max_wm
;
1551 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
1553 if (IS_I915GM(dev
) && enabled
) {
1554 struct drm_i915_gem_object
*obj
;
1556 obj
= intel_fb_obj(enabled
->primary
->state
->fb
);
1558 /* self-refresh seems busted with untiled */
1559 if (obj
->tiling_mode
== I915_TILING_NONE
)
1564 * Overlay gets an aggressive default since video jitter is bad.
1568 /* Play safe and disable self-refresh before adjusting watermarks. */
1569 intel_set_memory_cxsr(dev_priv
, false);
1571 /* Calc sr entries for one plane configs */
1572 if (HAS_FW_BLC(dev
) && enabled
) {
1573 /* self-refresh has much higher latency */
1574 static const int sr_latency_ns
= 6000;
1575 const struct drm_display_mode
*adjusted_mode
= &to_intel_crtc(enabled
)->config
->base
.adjusted_mode
;
1576 int clock
= adjusted_mode
->crtc_clock
;
1577 int htotal
= adjusted_mode
->crtc_htotal
;
1578 int hdisplay
= to_intel_crtc(enabled
)->config
->pipe_src_w
;
1579 int pixel_size
= enabled
->primary
->state
->fb
->bits_per_pixel
/ 8;
1580 unsigned long line_time_us
;
1583 line_time_us
= max(htotal
* 1000 / clock
, 1);
1585 /* Use ns/us then divide to preserve precision */
1586 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
1587 pixel_size
* hdisplay
;
1588 entries
= DIV_ROUND_UP(entries
, wm_info
->cacheline_size
);
1589 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries
);
1590 srwm
= wm_info
->fifo_size
- entries
;
1594 if (IS_I945G(dev
) || IS_I945GM(dev
))
1595 I915_WRITE(FW_BLC_SELF
,
1596 FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
1597 else if (IS_I915GM(dev
))
1598 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
1601 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1602 planea_wm
, planeb_wm
, cwm
, srwm
);
1604 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
1605 fwater_hi
= (cwm
& 0x1f);
1607 /* Set request length to 8 cachelines per fetch */
1608 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
1609 fwater_hi
= fwater_hi
| (1 << 8);
1611 I915_WRITE(FW_BLC
, fwater_lo
);
1612 I915_WRITE(FW_BLC2
, fwater_hi
);
1615 intel_set_memory_cxsr(dev_priv
, true);
1618 static void i845_update_wm(struct drm_crtc
*unused_crtc
)
1620 struct drm_device
*dev
= unused_crtc
->dev
;
1621 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1622 struct drm_crtc
*crtc
;
1623 const struct drm_display_mode
*adjusted_mode
;
1627 crtc
= single_enabled_crtc(dev
);
1631 adjusted_mode
= &to_intel_crtc(crtc
)->config
->base
.adjusted_mode
;
1632 planea_wm
= intel_calculate_wm(adjusted_mode
->crtc_clock
,
1634 dev_priv
->display
.get_fifo_size(dev
, 0),
1635 4, pessimal_latency_ns
);
1636 fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
1637 fwater_lo
|= (3<<8) | planea_wm
;
1639 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
1641 I915_WRITE(FW_BLC
, fwater_lo
);
1644 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state
*pipe_config
)
1646 uint32_t pixel_rate
;
1648 pixel_rate
= pipe_config
->base
.adjusted_mode
.crtc_clock
;
1650 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1651 * adjust the pixel_rate here. */
1653 if (pipe_config
->pch_pfit
.enabled
) {
1654 uint64_t pipe_w
, pipe_h
, pfit_w
, pfit_h
;
1655 uint32_t pfit_size
= pipe_config
->pch_pfit
.size
;
1657 pipe_w
= pipe_config
->pipe_src_w
;
1658 pipe_h
= pipe_config
->pipe_src_h
;
1660 pfit_w
= (pfit_size
>> 16) & 0xFFFF;
1661 pfit_h
= pfit_size
& 0xFFFF;
1662 if (pipe_w
< pfit_w
)
1664 if (pipe_h
< pfit_h
)
1667 pixel_rate
= div_u64((uint64_t) pixel_rate
* pipe_w
* pipe_h
,
1674 /* latency must be in 0.1us units. */
1675 static uint32_t ilk_wm_method1(uint32_t pixel_rate
, uint8_t bytes_per_pixel
,
1680 if (WARN(latency
== 0, "Latency value missing\n"))
1683 ret
= (uint64_t) pixel_rate
* bytes_per_pixel
* latency
;
1684 ret
= DIV_ROUND_UP_ULL(ret
, 64 * 10000) + 2;
1689 /* latency must be in 0.1us units. */
1690 static uint32_t ilk_wm_method2(uint32_t pixel_rate
, uint32_t pipe_htotal
,
1691 uint32_t horiz_pixels
, uint8_t bytes_per_pixel
,
1696 if (WARN(latency
== 0, "Latency value missing\n"))
1699 ret
= (latency
* pixel_rate
) / (pipe_htotal
* 10000);
1700 ret
= (ret
+ 1) * horiz_pixels
* bytes_per_pixel
;
1701 ret
= DIV_ROUND_UP(ret
, 64) + 2;
1705 static uint32_t ilk_wm_fbc(uint32_t pri_val
, uint32_t horiz_pixels
,
1706 uint8_t bytes_per_pixel
)
1708 return DIV_ROUND_UP(pri_val
* 64, horiz_pixels
* bytes_per_pixel
) + 2;
1711 struct skl_pipe_wm_parameters
{
1713 uint32_t pipe_htotal
;
1714 uint32_t pixel_rate
; /* in KHz */
1715 struct intel_plane_wm_parameters plane
[I915_MAX_PLANES
];
1718 struct ilk_wm_maximums
{
1725 /* used in computing the new watermarks state */
1726 struct intel_wm_config
{
1727 unsigned int num_pipes_active
;
1728 bool sprites_enabled
;
1729 bool sprites_scaled
;
1733 * For both WM_PIPE and WM_LP.
1734 * mem_value must be in 0.1us units.
1736 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state
*cstate
,
1737 const struct intel_plane_state
*pstate
,
1741 int bpp
= pstate
->base
.fb
? pstate
->base
.fb
->bits_per_pixel
/ 8 : 0;
1742 uint32_t method1
, method2
;
1744 if (!cstate
->base
.active
|| !pstate
->visible
)
1747 method1
= ilk_wm_method1(ilk_pipe_pixel_rate(cstate
), bpp
, mem_value
);
1752 method2
= ilk_wm_method2(ilk_pipe_pixel_rate(cstate
),
1753 cstate
->base
.adjusted_mode
.crtc_htotal
,
1754 drm_rect_width(&pstate
->dst
),
1758 return min(method1
, method2
);
1762 * For both WM_PIPE and WM_LP.
1763 * mem_value must be in 0.1us units.
1765 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state
*cstate
,
1766 const struct intel_plane_state
*pstate
,
1769 int bpp
= pstate
->base
.fb
? pstate
->base
.fb
->bits_per_pixel
/ 8 : 0;
1770 uint32_t method1
, method2
;
1772 if (!cstate
->base
.active
|| !pstate
->visible
)
1775 method1
= ilk_wm_method1(ilk_pipe_pixel_rate(cstate
), bpp
, mem_value
);
1776 method2
= ilk_wm_method2(ilk_pipe_pixel_rate(cstate
),
1777 cstate
->base
.adjusted_mode
.crtc_htotal
,
1778 drm_rect_width(&pstate
->dst
),
1781 return min(method1
, method2
);
1785 * For both WM_PIPE and WM_LP.
1786 * mem_value must be in 0.1us units.
1788 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state
*cstate
,
1789 const struct intel_plane_state
*pstate
,
1792 int bpp
= pstate
->base
.fb
? pstate
->base
.fb
->bits_per_pixel
/ 8 : 0;
1794 if (!cstate
->base
.active
|| !pstate
->visible
)
1797 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate
),
1798 cstate
->base
.adjusted_mode
.crtc_htotal
,
1799 drm_rect_width(&pstate
->dst
),
1804 /* Only for WM_LP. */
1805 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state
*cstate
,
1806 const struct intel_plane_state
*pstate
,
1809 int bpp
= pstate
->base
.fb
? pstate
->base
.fb
->bits_per_pixel
/ 8 : 0;
1811 if (!cstate
->base
.active
|| !pstate
->visible
)
1814 return ilk_wm_fbc(pri_val
, drm_rect_width(&pstate
->dst
), bpp
);
1817 static unsigned int ilk_display_fifo_size(const struct drm_device
*dev
)
1819 if (INTEL_INFO(dev
)->gen
>= 8)
1821 else if (INTEL_INFO(dev
)->gen
>= 7)
1827 static unsigned int ilk_plane_wm_reg_max(const struct drm_device
*dev
,
1828 int level
, bool is_sprite
)
1830 if (INTEL_INFO(dev
)->gen
>= 8)
1831 /* BDW primary/sprite plane watermarks */
1832 return level
== 0 ? 255 : 2047;
1833 else if (INTEL_INFO(dev
)->gen
>= 7)
1834 /* IVB/HSW primary/sprite plane watermarks */
1835 return level
== 0 ? 127 : 1023;
1836 else if (!is_sprite
)
1837 /* ILK/SNB primary plane watermarks */
1838 return level
== 0 ? 127 : 511;
1840 /* ILK/SNB sprite plane watermarks */
1841 return level
== 0 ? 63 : 255;
1844 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device
*dev
,
1847 if (INTEL_INFO(dev
)->gen
>= 7)
1848 return level
== 0 ? 63 : 255;
1850 return level
== 0 ? 31 : 63;
1853 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device
*dev
)
1855 if (INTEL_INFO(dev
)->gen
>= 8)
1861 /* Calculate the maximum primary/sprite plane watermark */
1862 static unsigned int ilk_plane_wm_max(const struct drm_device
*dev
,
1864 const struct intel_wm_config
*config
,
1865 enum intel_ddb_partitioning ddb_partitioning
,
1868 unsigned int fifo_size
= ilk_display_fifo_size(dev
);
1870 /* if sprites aren't enabled, sprites get nothing */
1871 if (is_sprite
&& !config
->sprites_enabled
)
1874 /* HSW allows LP1+ watermarks even with multiple pipes */
1875 if (level
== 0 || config
->num_pipes_active
> 1) {
1876 fifo_size
/= INTEL_INFO(dev
)->num_pipes
;
1879 * For some reason the non self refresh
1880 * FIFO size is only half of the self
1881 * refresh FIFO size on ILK/SNB.
1883 if (INTEL_INFO(dev
)->gen
<= 6)
1887 if (config
->sprites_enabled
) {
1888 /* level 0 is always calculated with 1:1 split */
1889 if (level
> 0 && ddb_partitioning
== INTEL_DDB_PART_5_6
) {
1898 /* clamp to max that the registers can hold */
1899 return min(fifo_size
, ilk_plane_wm_reg_max(dev
, level
, is_sprite
));
1902 /* Calculate the maximum cursor plane watermark */
1903 static unsigned int ilk_cursor_wm_max(const struct drm_device
*dev
,
1905 const struct intel_wm_config
*config
)
1907 /* HSW LP1+ watermarks w/ multiple pipes */
1908 if (level
> 0 && config
->num_pipes_active
> 1)
1911 /* otherwise just report max that registers can hold */
1912 return ilk_cursor_wm_reg_max(dev
, level
);
1915 static void ilk_compute_wm_maximums(const struct drm_device
*dev
,
1917 const struct intel_wm_config
*config
,
1918 enum intel_ddb_partitioning ddb_partitioning
,
1919 struct ilk_wm_maximums
*max
)
1921 max
->pri
= ilk_plane_wm_max(dev
, level
, config
, ddb_partitioning
, false);
1922 max
->spr
= ilk_plane_wm_max(dev
, level
, config
, ddb_partitioning
, true);
1923 max
->cur
= ilk_cursor_wm_max(dev
, level
, config
);
1924 max
->fbc
= ilk_fbc_wm_reg_max(dev
);
1927 static void ilk_compute_wm_reg_maximums(struct drm_device
*dev
,
1929 struct ilk_wm_maximums
*max
)
1931 max
->pri
= ilk_plane_wm_reg_max(dev
, level
, false);
1932 max
->spr
= ilk_plane_wm_reg_max(dev
, level
, true);
1933 max
->cur
= ilk_cursor_wm_reg_max(dev
, level
);
1934 max
->fbc
= ilk_fbc_wm_reg_max(dev
);
1937 static bool ilk_validate_wm_level(int level
,
1938 const struct ilk_wm_maximums
*max
,
1939 struct intel_wm_level
*result
)
1943 /* already determined to be invalid? */
1944 if (!result
->enable
)
1947 result
->enable
= result
->pri_val
<= max
->pri
&&
1948 result
->spr_val
<= max
->spr
&&
1949 result
->cur_val
<= max
->cur
;
1951 ret
= result
->enable
;
1954 * HACK until we can pre-compute everything,
1955 * and thus fail gracefully if LP0 watermarks
1958 if (level
== 0 && !result
->enable
) {
1959 if (result
->pri_val
> max
->pri
)
1960 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1961 level
, result
->pri_val
, max
->pri
);
1962 if (result
->spr_val
> max
->spr
)
1963 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1964 level
, result
->spr_val
, max
->spr
);
1965 if (result
->cur_val
> max
->cur
)
1966 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1967 level
, result
->cur_val
, max
->cur
);
1969 result
->pri_val
= min_t(uint32_t, result
->pri_val
, max
->pri
);
1970 result
->spr_val
= min_t(uint32_t, result
->spr_val
, max
->spr
);
1971 result
->cur_val
= min_t(uint32_t, result
->cur_val
, max
->cur
);
1972 result
->enable
= true;
1978 static void ilk_compute_wm_level(const struct drm_i915_private
*dev_priv
,
1979 const struct intel_crtc
*intel_crtc
,
1981 struct intel_crtc_state
*cstate
,
1982 struct intel_wm_level
*result
)
1984 struct intel_plane
*intel_plane
;
1985 uint16_t pri_latency
= dev_priv
->wm
.pri_latency
[level
];
1986 uint16_t spr_latency
= dev_priv
->wm
.spr_latency
[level
];
1987 uint16_t cur_latency
= dev_priv
->wm
.cur_latency
[level
];
1989 /* WM1+ latency values stored in 0.5us units */
1996 for_each_intel_plane_on_crtc(dev_priv
->dev
, intel_crtc
, intel_plane
) {
1997 struct intel_plane_state
*pstate
=
1998 to_intel_plane_state(intel_plane
->base
.state
);
2000 switch (intel_plane
->base
.type
) {
2001 case DRM_PLANE_TYPE_PRIMARY
:
2002 result
->pri_val
= ilk_compute_pri_wm(cstate
, pstate
,
2005 result
->fbc_val
= ilk_compute_fbc_wm(cstate
, pstate
,
2008 case DRM_PLANE_TYPE_OVERLAY
:
2009 result
->spr_val
= ilk_compute_spr_wm(cstate
, pstate
,
2012 case DRM_PLANE_TYPE_CURSOR
:
2013 result
->cur_val
= ilk_compute_cur_wm(cstate
, pstate
,
2019 result
->enable
= true;
2023 hsw_compute_linetime_wm(struct drm_device
*dev
, struct drm_crtc
*crtc
)
2025 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2026 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2027 const struct drm_display_mode
*adjusted_mode
= &intel_crtc
->config
->base
.adjusted_mode
;
2028 u32 linetime
, ips_linetime
;
2030 if (!intel_crtc
->active
)
2033 /* The WM are computed with base on how long it takes to fill a single
2034 * row at the given clock rate, multiplied by 8.
2036 linetime
= DIV_ROUND_CLOSEST(adjusted_mode
->crtc_htotal
* 1000 * 8,
2037 adjusted_mode
->crtc_clock
);
2038 ips_linetime
= DIV_ROUND_CLOSEST(adjusted_mode
->crtc_htotal
* 1000 * 8,
2039 dev_priv
->cdclk_freq
);
2041 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime
) |
2042 PIPE_WM_LINETIME_TIME(linetime
);
2045 static void intel_read_wm_latency(struct drm_device
*dev
, uint16_t wm
[8])
2047 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2052 int level
, max_level
= ilk_wm_max_level(dev
);
2054 /* read the first set of memory latencies[0:3] */
2055 val
= 0; /* data0 to be programmed to 0 for first set */
2056 mutex_lock(&dev_priv
->rps
.hw_lock
);
2057 ret
= sandybridge_pcode_read(dev_priv
,
2058 GEN9_PCODE_READ_MEM_LATENCY
,
2060 mutex_unlock(&dev_priv
->rps
.hw_lock
);
2063 DRM_ERROR("SKL Mailbox read error = %d\n", ret
);
2067 wm
[0] = val
& GEN9_MEM_LATENCY_LEVEL_MASK
;
2068 wm
[1] = (val
>> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT
) &
2069 GEN9_MEM_LATENCY_LEVEL_MASK
;
2070 wm
[2] = (val
>> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT
) &
2071 GEN9_MEM_LATENCY_LEVEL_MASK
;
2072 wm
[3] = (val
>> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT
) &
2073 GEN9_MEM_LATENCY_LEVEL_MASK
;
2075 /* read the second set of memory latencies[4:7] */
2076 val
= 1; /* data0 to be programmed to 1 for second set */
2077 mutex_lock(&dev_priv
->rps
.hw_lock
);
2078 ret
= sandybridge_pcode_read(dev_priv
,
2079 GEN9_PCODE_READ_MEM_LATENCY
,
2081 mutex_unlock(&dev_priv
->rps
.hw_lock
);
2083 DRM_ERROR("SKL Mailbox read error = %d\n", ret
);
2087 wm
[4] = val
& GEN9_MEM_LATENCY_LEVEL_MASK
;
2088 wm
[5] = (val
>> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT
) &
2089 GEN9_MEM_LATENCY_LEVEL_MASK
;
2090 wm
[6] = (val
>> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT
) &
2091 GEN9_MEM_LATENCY_LEVEL_MASK
;
2092 wm
[7] = (val
>> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT
) &
2093 GEN9_MEM_LATENCY_LEVEL_MASK
;
2096 * WaWmMemoryReadLatency:skl
2098 * punit doesn't take into account the read latency so we need
2099 * to add 2us to the various latency levels we retrieve from
2101 * - W0 is a bit special in that it's the only level that
2102 * can't be disabled if we want to have display working, so
2103 * we always add 2us there.
2104 * - For levels >=1, punit returns 0us latency when they are
2105 * disabled, so we respect that and don't add 2us then
2107 * Additionally, if a level n (n > 1) has a 0us latency, all
2108 * levels m (m >= n) need to be disabled. We make sure to
2109 * sanitize the values out of the punit to satisfy this
2113 for (level
= 1; level
<= max_level
; level
++)
2117 for (i
= level
+ 1; i
<= max_level
; i
++)
2122 } else if (IS_HASWELL(dev
) || IS_BROADWELL(dev
)) {
2123 uint64_t sskpd
= I915_READ64(MCH_SSKPD
);
2125 wm
[0] = (sskpd
>> 56) & 0xFF;
2127 wm
[0] = sskpd
& 0xF;
2128 wm
[1] = (sskpd
>> 4) & 0xFF;
2129 wm
[2] = (sskpd
>> 12) & 0xFF;
2130 wm
[3] = (sskpd
>> 20) & 0x1FF;
2131 wm
[4] = (sskpd
>> 32) & 0x1FF;
2132 } else if (INTEL_INFO(dev
)->gen
>= 6) {
2133 uint32_t sskpd
= I915_READ(MCH_SSKPD
);
2135 wm
[0] = (sskpd
>> SSKPD_WM0_SHIFT
) & SSKPD_WM_MASK
;
2136 wm
[1] = (sskpd
>> SSKPD_WM1_SHIFT
) & SSKPD_WM_MASK
;
2137 wm
[2] = (sskpd
>> SSKPD_WM2_SHIFT
) & SSKPD_WM_MASK
;
2138 wm
[3] = (sskpd
>> SSKPD_WM3_SHIFT
) & SSKPD_WM_MASK
;
2139 } else if (INTEL_INFO(dev
)->gen
>= 5) {
2140 uint32_t mltr
= I915_READ(MLTR_ILK
);
2142 /* ILK primary LP0 latency is 700 ns */
2144 wm
[1] = (mltr
>> MLTR_WM1_SHIFT
) & ILK_SRLT_MASK
;
2145 wm
[2] = (mltr
>> MLTR_WM2_SHIFT
) & ILK_SRLT_MASK
;
2149 static void intel_fixup_spr_wm_latency(struct drm_device
*dev
, uint16_t wm
[5])
2151 /* ILK sprite LP0 latency is 1300 ns */
2152 if (INTEL_INFO(dev
)->gen
== 5)
2156 static void intel_fixup_cur_wm_latency(struct drm_device
*dev
, uint16_t wm
[5])
2158 /* ILK cursor LP0 latency is 1300 ns */
2159 if (INTEL_INFO(dev
)->gen
== 5)
2162 /* WaDoubleCursorLP3Latency:ivb */
2163 if (IS_IVYBRIDGE(dev
))
2167 int ilk_wm_max_level(const struct drm_device
*dev
)
2169 /* how many WM levels are we expecting */
2170 if (INTEL_INFO(dev
)->gen
>= 9)
2172 else if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
2174 else if (INTEL_INFO(dev
)->gen
>= 6)
2180 static void intel_print_wm_latency(struct drm_device
*dev
,
2182 const uint16_t wm
[8])
2184 int level
, max_level
= ilk_wm_max_level(dev
);
2186 for (level
= 0; level
<= max_level
; level
++) {
2187 unsigned int latency
= wm
[level
];
2190 DRM_ERROR("%s WM%d latency not provided\n",
2196 * - latencies are in us on gen9.
2197 * - before then, WM1+ latency values are in 0.5us units
2204 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2205 name
, level
, wm
[level
],
2206 latency
/ 10, latency
% 10);
2210 static bool ilk_increase_wm_latency(struct drm_i915_private
*dev_priv
,
2211 uint16_t wm
[5], uint16_t min
)
2213 int level
, max_level
= ilk_wm_max_level(dev_priv
->dev
);
2218 wm
[0] = max(wm
[0], min
);
2219 for (level
= 1; level
<= max_level
; level
++)
2220 wm
[level
] = max_t(uint16_t, wm
[level
], DIV_ROUND_UP(min
, 5));
2225 static void snb_wm_latency_quirk(struct drm_device
*dev
)
2227 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2231 * The BIOS provided WM memory latency values are often
2232 * inadequate for high resolution displays. Adjust them.
2234 changed
= ilk_increase_wm_latency(dev_priv
, dev_priv
->wm
.pri_latency
, 12) |
2235 ilk_increase_wm_latency(dev_priv
, dev_priv
->wm
.spr_latency
, 12) |
2236 ilk_increase_wm_latency(dev_priv
, dev_priv
->wm
.cur_latency
, 12);
2241 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2242 intel_print_wm_latency(dev
, "Primary", dev_priv
->wm
.pri_latency
);
2243 intel_print_wm_latency(dev
, "Sprite", dev_priv
->wm
.spr_latency
);
2244 intel_print_wm_latency(dev
, "Cursor", dev_priv
->wm
.cur_latency
);
2247 static void ilk_setup_wm_latency(struct drm_device
*dev
)
2249 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2251 intel_read_wm_latency(dev
, dev_priv
->wm
.pri_latency
);
2253 memcpy(dev_priv
->wm
.spr_latency
, dev_priv
->wm
.pri_latency
,
2254 sizeof(dev_priv
->wm
.pri_latency
));
2255 memcpy(dev_priv
->wm
.cur_latency
, dev_priv
->wm
.pri_latency
,
2256 sizeof(dev_priv
->wm
.pri_latency
));
2258 intel_fixup_spr_wm_latency(dev
, dev_priv
->wm
.spr_latency
);
2259 intel_fixup_cur_wm_latency(dev
, dev_priv
->wm
.cur_latency
);
2261 intel_print_wm_latency(dev
, "Primary", dev_priv
->wm
.pri_latency
);
2262 intel_print_wm_latency(dev
, "Sprite", dev_priv
->wm
.spr_latency
);
2263 intel_print_wm_latency(dev
, "Cursor", dev_priv
->wm
.cur_latency
);
2266 snb_wm_latency_quirk(dev
);
2269 static void skl_setup_wm_latency(struct drm_device
*dev
)
2271 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2273 intel_read_wm_latency(dev
, dev_priv
->wm
.skl_latency
);
2274 intel_print_wm_latency(dev
, "Gen9 Plane", dev_priv
->wm
.skl_latency
);
2277 static void ilk_compute_wm_config(struct drm_device
*dev
,
2278 struct intel_wm_config
*config
)
2280 struct intel_crtc
*intel_crtc
;
2282 /* Compute the currently _active_ config */
2283 for_each_intel_crtc(dev
, intel_crtc
) {
2284 const struct intel_pipe_wm
*wm
= &intel_crtc
->wm
.active
;
2286 if (!wm
->pipe_enabled
)
2289 config
->sprites_enabled
|= wm
->sprites_enabled
;
2290 config
->sprites_scaled
|= wm
->sprites_scaled
;
2291 config
->num_pipes_active
++;
2295 /* Compute new watermarks for the pipe */
2296 static bool intel_compute_pipe_wm(struct intel_crtc_state
*cstate
,
2297 struct intel_pipe_wm
*pipe_wm
)
2299 struct drm_crtc
*crtc
= cstate
->base
.crtc
;
2300 struct drm_device
*dev
= crtc
->dev
;
2301 const struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2302 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2303 struct intel_plane
*intel_plane
;
2304 struct intel_plane_state
*sprstate
= NULL
;
2305 int level
, max_level
= ilk_wm_max_level(dev
);
2306 /* LP0 watermark maximums depend on this pipe alone */
2307 struct intel_wm_config config
= {
2308 .num_pipes_active
= 1,
2310 struct ilk_wm_maximums max
;
2312 for_each_intel_plane_on_crtc(dev
, intel_crtc
, intel_plane
) {
2313 if (intel_plane
->base
.type
== DRM_PLANE_TYPE_OVERLAY
) {
2314 sprstate
= to_intel_plane_state(intel_plane
->base
.state
);
2319 config
.sprites_enabled
= sprstate
->visible
;
2320 config
.sprites_scaled
= sprstate
->visible
&&
2321 (drm_rect_width(&sprstate
->dst
) != drm_rect_width(&sprstate
->src
) >> 16 ||
2322 drm_rect_height(&sprstate
->dst
) != drm_rect_height(&sprstate
->src
) >> 16);
2324 pipe_wm
->pipe_enabled
= cstate
->base
.active
;
2325 pipe_wm
->sprites_enabled
= sprstate
->visible
;
2326 pipe_wm
->sprites_scaled
= config
.sprites_scaled
;
2328 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2329 if (INTEL_INFO(dev
)->gen
<= 6 && sprstate
->visible
)
2332 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2333 if (config
.sprites_scaled
)
2336 ilk_compute_wm_level(dev_priv
, intel_crtc
, 0, cstate
, &pipe_wm
->wm
[0]);
2338 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
2339 pipe_wm
->linetime
= hsw_compute_linetime_wm(dev
, crtc
);
2341 /* LP0 watermarks always use 1/2 DDB partitioning */
2342 ilk_compute_wm_maximums(dev
, 0, &config
, INTEL_DDB_PART_1_2
, &max
);
2344 /* At least LP0 must be valid */
2345 if (!ilk_validate_wm_level(0, &max
, &pipe_wm
->wm
[0]))
2348 ilk_compute_wm_reg_maximums(dev
, 1, &max
);
2350 for (level
= 1; level
<= max_level
; level
++) {
2351 struct intel_wm_level wm
= {};
2353 ilk_compute_wm_level(dev_priv
, intel_crtc
, level
, cstate
, &wm
);
2356 * Disable any watermark level that exceeds the
2357 * register maximums since such watermarks are
2360 if (!ilk_validate_wm_level(level
, &max
, &wm
))
2363 pipe_wm
->wm
[level
] = wm
;
2370 * Merge the watermarks from all active pipes for a specific level.
2372 static void ilk_merge_wm_level(struct drm_device
*dev
,
2374 struct intel_wm_level
*ret_wm
)
2376 const struct intel_crtc
*intel_crtc
;
2378 ret_wm
->enable
= true;
2380 for_each_intel_crtc(dev
, intel_crtc
) {
2381 const struct intel_pipe_wm
*active
= &intel_crtc
->wm
.active
;
2382 const struct intel_wm_level
*wm
= &active
->wm
[level
];
2384 if (!active
->pipe_enabled
)
2388 * The watermark values may have been used in the past,
2389 * so we must maintain them in the registers for some
2390 * time even if the level is now disabled.
2393 ret_wm
->enable
= false;
2395 ret_wm
->pri_val
= max(ret_wm
->pri_val
, wm
->pri_val
);
2396 ret_wm
->spr_val
= max(ret_wm
->spr_val
, wm
->spr_val
);
2397 ret_wm
->cur_val
= max(ret_wm
->cur_val
, wm
->cur_val
);
2398 ret_wm
->fbc_val
= max(ret_wm
->fbc_val
, wm
->fbc_val
);
2403 * Merge all low power watermarks for all active pipes.
2405 static void ilk_wm_merge(struct drm_device
*dev
,
2406 const struct intel_wm_config
*config
,
2407 const struct ilk_wm_maximums
*max
,
2408 struct intel_pipe_wm
*merged
)
2410 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2411 int level
, max_level
= ilk_wm_max_level(dev
);
2412 int last_enabled_level
= max_level
;
2414 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2415 if ((INTEL_INFO(dev
)->gen
<= 6 || IS_IVYBRIDGE(dev
)) &&
2416 config
->num_pipes_active
> 1)
2419 /* ILK: FBC WM must be disabled always */
2420 merged
->fbc_wm_enabled
= INTEL_INFO(dev
)->gen
>= 6;
2422 /* merge each WM1+ level */
2423 for (level
= 1; level
<= max_level
; level
++) {
2424 struct intel_wm_level
*wm
= &merged
->wm
[level
];
2426 ilk_merge_wm_level(dev
, level
, wm
);
2428 if (level
> last_enabled_level
)
2430 else if (!ilk_validate_wm_level(level
, max
, wm
))
2431 /* make sure all following levels get disabled */
2432 last_enabled_level
= level
- 1;
2435 * The spec says it is preferred to disable
2436 * FBC WMs instead of disabling a WM level.
2438 if (wm
->fbc_val
> max
->fbc
) {
2440 merged
->fbc_wm_enabled
= false;
2445 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2447 * FIXME this is racy. FBC might get enabled later.
2448 * What we should check here is whether FBC can be
2449 * enabled sometime later.
2451 if (IS_GEN5(dev
) && !merged
->fbc_wm_enabled
&&
2452 intel_fbc_enabled(dev_priv
)) {
2453 for (level
= 2; level
<= max_level
; level
++) {
2454 struct intel_wm_level
*wm
= &merged
->wm
[level
];
2461 static int ilk_wm_lp_to_level(int wm_lp
, const struct intel_pipe_wm
*pipe_wm
)
2463 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2464 return wm_lp
+ (wm_lp
>= 2 && pipe_wm
->wm
[4].enable
);
2467 /* The value we need to program into the WM_LPx latency field */
2468 static unsigned int ilk_wm_lp_latency(struct drm_device
*dev
, int level
)
2470 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2472 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
2475 return dev_priv
->wm
.pri_latency
[level
];
2478 static void ilk_compute_wm_results(struct drm_device
*dev
,
2479 const struct intel_pipe_wm
*merged
,
2480 enum intel_ddb_partitioning partitioning
,
2481 struct ilk_wm_values
*results
)
2483 struct intel_crtc
*intel_crtc
;
2486 results
->enable_fbc_wm
= merged
->fbc_wm_enabled
;
2487 results
->partitioning
= partitioning
;
2489 /* LP1+ register values */
2490 for (wm_lp
= 1; wm_lp
<= 3; wm_lp
++) {
2491 const struct intel_wm_level
*r
;
2493 level
= ilk_wm_lp_to_level(wm_lp
, merged
);
2495 r
= &merged
->wm
[level
];
2498 * Maintain the watermark values even if the level is
2499 * disabled. Doing otherwise could cause underruns.
2501 results
->wm_lp
[wm_lp
- 1] =
2502 (ilk_wm_lp_latency(dev
, level
) << WM1_LP_LATENCY_SHIFT
) |
2503 (r
->pri_val
<< WM1_LP_SR_SHIFT
) |
2507 results
->wm_lp
[wm_lp
- 1] |= WM1_LP_SR_EN
;
2509 if (INTEL_INFO(dev
)->gen
>= 8)
2510 results
->wm_lp
[wm_lp
- 1] |=
2511 r
->fbc_val
<< WM1_LP_FBC_SHIFT_BDW
;
2513 results
->wm_lp
[wm_lp
- 1] |=
2514 r
->fbc_val
<< WM1_LP_FBC_SHIFT
;
2517 * Always set WM1S_LP_EN when spr_val != 0, even if the
2518 * level is disabled. Doing otherwise could cause underruns.
2520 if (INTEL_INFO(dev
)->gen
<= 6 && r
->spr_val
) {
2521 WARN_ON(wm_lp
!= 1);
2522 results
->wm_lp_spr
[wm_lp
- 1] = WM1S_LP_EN
| r
->spr_val
;
2524 results
->wm_lp_spr
[wm_lp
- 1] = r
->spr_val
;
2527 /* LP0 register values */
2528 for_each_intel_crtc(dev
, intel_crtc
) {
2529 enum pipe pipe
= intel_crtc
->pipe
;
2530 const struct intel_wm_level
*r
=
2531 &intel_crtc
->wm
.active
.wm
[0];
2533 if (WARN_ON(!r
->enable
))
2536 results
->wm_linetime
[pipe
] = intel_crtc
->wm
.active
.linetime
;
2538 results
->wm_pipe
[pipe
] =
2539 (r
->pri_val
<< WM0_PIPE_PLANE_SHIFT
) |
2540 (r
->spr_val
<< WM0_PIPE_SPRITE_SHIFT
) |
2545 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2546 * case both are at the same level. Prefer r1 in case they're the same. */
2547 static struct intel_pipe_wm
*ilk_find_best_result(struct drm_device
*dev
,
2548 struct intel_pipe_wm
*r1
,
2549 struct intel_pipe_wm
*r2
)
2551 int level
, max_level
= ilk_wm_max_level(dev
);
2552 int level1
= 0, level2
= 0;
2554 for (level
= 1; level
<= max_level
; level
++) {
2555 if (r1
->wm
[level
].enable
)
2557 if (r2
->wm
[level
].enable
)
2561 if (level1
== level2
) {
2562 if (r2
->fbc_wm_enabled
&& !r1
->fbc_wm_enabled
)
2566 } else if (level1
> level2
) {
2573 /* dirty bits used to track which watermarks need changes */
2574 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2575 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2576 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2577 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2578 #define WM_DIRTY_FBC (1 << 24)
2579 #define WM_DIRTY_DDB (1 << 25)
2581 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private
*dev_priv
,
2582 const struct ilk_wm_values
*old
,
2583 const struct ilk_wm_values
*new)
2585 unsigned int dirty
= 0;
2589 for_each_pipe(dev_priv
, pipe
) {
2590 if (old
->wm_linetime
[pipe
] != new->wm_linetime
[pipe
]) {
2591 dirty
|= WM_DIRTY_LINETIME(pipe
);
2592 /* Must disable LP1+ watermarks too */
2593 dirty
|= WM_DIRTY_LP_ALL
;
2596 if (old
->wm_pipe
[pipe
] != new->wm_pipe
[pipe
]) {
2597 dirty
|= WM_DIRTY_PIPE(pipe
);
2598 /* Must disable LP1+ watermarks too */
2599 dirty
|= WM_DIRTY_LP_ALL
;
2603 if (old
->enable_fbc_wm
!= new->enable_fbc_wm
) {
2604 dirty
|= WM_DIRTY_FBC
;
2605 /* Must disable LP1+ watermarks too */
2606 dirty
|= WM_DIRTY_LP_ALL
;
2609 if (old
->partitioning
!= new->partitioning
) {
2610 dirty
|= WM_DIRTY_DDB
;
2611 /* Must disable LP1+ watermarks too */
2612 dirty
|= WM_DIRTY_LP_ALL
;
2615 /* LP1+ watermarks already deemed dirty, no need to continue */
2616 if (dirty
& WM_DIRTY_LP_ALL
)
2619 /* Find the lowest numbered LP1+ watermark in need of an update... */
2620 for (wm_lp
= 1; wm_lp
<= 3; wm_lp
++) {
2621 if (old
->wm_lp
[wm_lp
- 1] != new->wm_lp
[wm_lp
- 1] ||
2622 old
->wm_lp_spr
[wm_lp
- 1] != new->wm_lp_spr
[wm_lp
- 1])
2626 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2627 for (; wm_lp
<= 3; wm_lp
++)
2628 dirty
|= WM_DIRTY_LP(wm_lp
);
2633 static bool _ilk_disable_lp_wm(struct drm_i915_private
*dev_priv
,
2636 struct ilk_wm_values
*previous
= &dev_priv
->wm
.hw
;
2637 bool changed
= false;
2639 if (dirty
& WM_DIRTY_LP(3) && previous
->wm_lp
[2] & WM1_LP_SR_EN
) {
2640 previous
->wm_lp
[2] &= ~WM1_LP_SR_EN
;
2641 I915_WRITE(WM3_LP_ILK
, previous
->wm_lp
[2]);
2644 if (dirty
& WM_DIRTY_LP(2) && previous
->wm_lp
[1] & WM1_LP_SR_EN
) {
2645 previous
->wm_lp
[1] &= ~WM1_LP_SR_EN
;
2646 I915_WRITE(WM2_LP_ILK
, previous
->wm_lp
[1]);
2649 if (dirty
& WM_DIRTY_LP(1) && previous
->wm_lp
[0] & WM1_LP_SR_EN
) {
2650 previous
->wm_lp
[0] &= ~WM1_LP_SR_EN
;
2651 I915_WRITE(WM1_LP_ILK
, previous
->wm_lp
[0]);
2656 * Don't touch WM1S_LP_EN here.
2657 * Doing so could cause underruns.
2664 * The spec says we shouldn't write when we don't need, because every write
2665 * causes WMs to be re-evaluated, expending some power.
2667 static void ilk_write_wm_values(struct drm_i915_private
*dev_priv
,
2668 struct ilk_wm_values
*results
)
2670 struct drm_device
*dev
= dev_priv
->dev
;
2671 struct ilk_wm_values
*previous
= &dev_priv
->wm
.hw
;
2675 dirty
= ilk_compute_wm_dirty(dev_priv
, previous
, results
);
2679 _ilk_disable_lp_wm(dev_priv
, dirty
);
2681 if (dirty
& WM_DIRTY_PIPE(PIPE_A
))
2682 I915_WRITE(WM0_PIPEA_ILK
, results
->wm_pipe
[0]);
2683 if (dirty
& WM_DIRTY_PIPE(PIPE_B
))
2684 I915_WRITE(WM0_PIPEB_ILK
, results
->wm_pipe
[1]);
2685 if (dirty
& WM_DIRTY_PIPE(PIPE_C
))
2686 I915_WRITE(WM0_PIPEC_IVB
, results
->wm_pipe
[2]);
2688 if (dirty
& WM_DIRTY_LINETIME(PIPE_A
))
2689 I915_WRITE(PIPE_WM_LINETIME(PIPE_A
), results
->wm_linetime
[0]);
2690 if (dirty
& WM_DIRTY_LINETIME(PIPE_B
))
2691 I915_WRITE(PIPE_WM_LINETIME(PIPE_B
), results
->wm_linetime
[1]);
2692 if (dirty
& WM_DIRTY_LINETIME(PIPE_C
))
2693 I915_WRITE(PIPE_WM_LINETIME(PIPE_C
), results
->wm_linetime
[2]);
2695 if (dirty
& WM_DIRTY_DDB
) {
2696 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
)) {
2697 val
= I915_READ(WM_MISC
);
2698 if (results
->partitioning
== INTEL_DDB_PART_1_2
)
2699 val
&= ~WM_MISC_DATA_PARTITION_5_6
;
2701 val
|= WM_MISC_DATA_PARTITION_5_6
;
2702 I915_WRITE(WM_MISC
, val
);
2704 val
= I915_READ(DISP_ARB_CTL2
);
2705 if (results
->partitioning
== INTEL_DDB_PART_1_2
)
2706 val
&= ~DISP_DATA_PARTITION_5_6
;
2708 val
|= DISP_DATA_PARTITION_5_6
;
2709 I915_WRITE(DISP_ARB_CTL2
, val
);
2713 if (dirty
& WM_DIRTY_FBC
) {
2714 val
= I915_READ(DISP_ARB_CTL
);
2715 if (results
->enable_fbc_wm
)
2716 val
&= ~DISP_FBC_WM_DIS
;
2718 val
|= DISP_FBC_WM_DIS
;
2719 I915_WRITE(DISP_ARB_CTL
, val
);
2722 if (dirty
& WM_DIRTY_LP(1) &&
2723 previous
->wm_lp_spr
[0] != results
->wm_lp_spr
[0])
2724 I915_WRITE(WM1S_LP_ILK
, results
->wm_lp_spr
[0]);
2726 if (INTEL_INFO(dev
)->gen
>= 7) {
2727 if (dirty
& WM_DIRTY_LP(2) && previous
->wm_lp_spr
[1] != results
->wm_lp_spr
[1])
2728 I915_WRITE(WM2S_LP_IVB
, results
->wm_lp_spr
[1]);
2729 if (dirty
& WM_DIRTY_LP(3) && previous
->wm_lp_spr
[2] != results
->wm_lp_spr
[2])
2730 I915_WRITE(WM3S_LP_IVB
, results
->wm_lp_spr
[2]);
2733 if (dirty
& WM_DIRTY_LP(1) && previous
->wm_lp
[0] != results
->wm_lp
[0])
2734 I915_WRITE(WM1_LP_ILK
, results
->wm_lp
[0]);
2735 if (dirty
& WM_DIRTY_LP(2) && previous
->wm_lp
[1] != results
->wm_lp
[1])
2736 I915_WRITE(WM2_LP_ILK
, results
->wm_lp
[1]);
2737 if (dirty
& WM_DIRTY_LP(3) && previous
->wm_lp
[2] != results
->wm_lp
[2])
2738 I915_WRITE(WM3_LP_ILK
, results
->wm_lp
[2]);
2740 dev_priv
->wm
.hw
= *results
;
2743 static bool ilk_disable_lp_wm(struct drm_device
*dev
)
2745 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2747 return _ilk_disable_lp_wm(dev_priv
, WM_DIRTY_LP_ALL
);
2751 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2752 * different active planes.
2755 #define SKL_DDB_SIZE 896 /* in blocks */
2756 #define BXT_DDB_SIZE 512
2759 skl_ddb_get_pipe_allocation_limits(struct drm_device
*dev
,
2760 struct drm_crtc
*for_crtc
,
2761 const struct intel_wm_config
*config
,
2762 const struct skl_pipe_wm_parameters
*params
,
2763 struct skl_ddb_entry
*alloc
/* out */)
2765 struct drm_crtc
*crtc
;
2766 unsigned int pipe_size
, ddb_size
;
2767 int nth_active_pipe
;
2769 if (!params
->active
) {
2775 if (IS_BROXTON(dev
))
2776 ddb_size
= BXT_DDB_SIZE
;
2778 ddb_size
= SKL_DDB_SIZE
;
2780 ddb_size
-= 4; /* 4 blocks for bypass path allocation */
2782 nth_active_pipe
= 0;
2783 for_each_crtc(dev
, crtc
) {
2784 if (!to_intel_crtc(crtc
)->active
)
2787 if (crtc
== for_crtc
)
2793 pipe_size
= ddb_size
/ config
->num_pipes_active
;
2794 alloc
->start
= nth_active_pipe
* ddb_size
/ config
->num_pipes_active
;
2795 alloc
->end
= alloc
->start
+ pipe_size
;
2798 static unsigned int skl_cursor_allocation(const struct intel_wm_config
*config
)
2800 if (config
->num_pipes_active
== 1)
2806 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry
*entry
, u32 reg
)
2808 entry
->start
= reg
& 0x3ff;
2809 entry
->end
= (reg
>> 16) & 0x3ff;
2814 void skl_ddb_get_hw_state(struct drm_i915_private
*dev_priv
,
2815 struct skl_ddb_allocation
*ddb
/* out */)
2821 memset(ddb
, 0, sizeof(*ddb
));
2823 for_each_pipe(dev_priv
, pipe
) {
2824 if (!intel_display_power_is_enabled(dev_priv
, POWER_DOMAIN_PIPE(pipe
)))
2827 for_each_plane(dev_priv
, pipe
, plane
) {
2828 val
= I915_READ(PLANE_BUF_CFG(pipe
, plane
));
2829 skl_ddb_entry_init_from_hw(&ddb
->plane
[pipe
][plane
],
2833 val
= I915_READ(CUR_BUF_CFG(pipe
));
2834 skl_ddb_entry_init_from_hw(&ddb
->plane
[pipe
][PLANE_CURSOR
],
2840 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters
*p
, int y
)
2843 /* for planar format */
2844 if (p
->y_bytes_per_pixel
) {
2845 if (y
) /* y-plane data rate */
2846 return p
->horiz_pixels
* p
->vert_pixels
* p
->y_bytes_per_pixel
;
2847 else /* uv-plane data rate */
2848 return (p
->horiz_pixels
/2) * (p
->vert_pixels
/2) * p
->bytes_per_pixel
;
2851 /* for packed formats */
2852 return p
->horiz_pixels
* p
->vert_pixels
* p
->bytes_per_pixel
;
2856 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2857 * a 8192x4096@32bpp framebuffer:
2858 * 3 * 4096 * 8192 * 4 < 2^32
2861 skl_get_total_relative_data_rate(struct intel_crtc
*intel_crtc
,
2862 const struct skl_pipe_wm_parameters
*params
)
2864 unsigned int total_data_rate
= 0;
2867 for (plane
= 0; plane
< intel_num_planes(intel_crtc
); plane
++) {
2868 const struct intel_plane_wm_parameters
*p
;
2870 p
= ¶ms
->plane
[plane
];
2874 total_data_rate
+= skl_plane_relative_data_rate(p
, 0); /* packed/uv */
2875 if (p
->y_bytes_per_pixel
) {
2876 total_data_rate
+= skl_plane_relative_data_rate(p
, 1); /* y-plane */
2880 return total_data_rate
;
2884 skl_allocate_pipe_ddb(struct drm_crtc
*crtc
,
2885 const struct intel_wm_config
*config
,
2886 const struct skl_pipe_wm_parameters
*params
,
2887 struct skl_ddb_allocation
*ddb
/* out */)
2889 struct drm_device
*dev
= crtc
->dev
;
2890 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2891 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2892 enum pipe pipe
= intel_crtc
->pipe
;
2893 struct skl_ddb_entry
*alloc
= &ddb
->pipe
[pipe
];
2894 uint16_t alloc_size
, start
, cursor_blocks
;
2895 uint16_t minimum
[I915_MAX_PLANES
];
2896 uint16_t y_minimum
[I915_MAX_PLANES
];
2897 unsigned int total_data_rate
;
2900 skl_ddb_get_pipe_allocation_limits(dev
, crtc
, config
, params
, alloc
);
2901 alloc_size
= skl_ddb_entry_size(alloc
);
2902 if (alloc_size
== 0) {
2903 memset(ddb
->plane
[pipe
], 0, sizeof(ddb
->plane
[pipe
]));
2904 memset(&ddb
->plane
[pipe
][PLANE_CURSOR
], 0,
2905 sizeof(ddb
->plane
[pipe
][PLANE_CURSOR
]));
2909 cursor_blocks
= skl_cursor_allocation(config
);
2910 ddb
->plane
[pipe
][PLANE_CURSOR
].start
= alloc
->end
- cursor_blocks
;
2911 ddb
->plane
[pipe
][PLANE_CURSOR
].end
= alloc
->end
;
2913 alloc_size
-= cursor_blocks
;
2914 alloc
->end
-= cursor_blocks
;
2916 /* 1. Allocate the mininum required blocks for each active plane */
2917 for_each_plane(dev_priv
, pipe
, plane
) {
2918 const struct intel_plane_wm_parameters
*p
;
2920 p
= ¶ms
->plane
[plane
];
2925 alloc_size
-= minimum
[plane
];
2926 y_minimum
[plane
] = p
->y_bytes_per_pixel
? 8 : 0;
2927 alloc_size
-= y_minimum
[plane
];
2931 * 2. Distribute the remaining space in proportion to the amount of
2932 * data each plane needs to fetch from memory.
2934 * FIXME: we may not allocate every single block here.
2936 total_data_rate
= skl_get_total_relative_data_rate(intel_crtc
, params
);
2938 start
= alloc
->start
;
2939 for (plane
= 0; plane
< intel_num_planes(intel_crtc
); plane
++) {
2940 const struct intel_plane_wm_parameters
*p
;
2941 unsigned int data_rate
, y_data_rate
;
2942 uint16_t plane_blocks
, y_plane_blocks
= 0;
2944 p
= ¶ms
->plane
[plane
];
2948 data_rate
= skl_plane_relative_data_rate(p
, 0);
2951 * allocation for (packed formats) or (uv-plane part of planar format):
2952 * promote the expression to 64 bits to avoid overflowing, the
2953 * result is < available as data_rate / total_data_rate < 1
2955 plane_blocks
= minimum
[plane
];
2956 plane_blocks
+= div_u64((uint64_t)alloc_size
* data_rate
,
2959 ddb
->plane
[pipe
][plane
].start
= start
;
2960 ddb
->plane
[pipe
][plane
].end
= start
+ plane_blocks
;
2962 start
+= plane_blocks
;
2965 * allocation for y_plane part of planar format:
2967 if (p
->y_bytes_per_pixel
) {
2968 y_data_rate
= skl_plane_relative_data_rate(p
, 1);
2969 y_plane_blocks
= y_minimum
[plane
];
2970 y_plane_blocks
+= div_u64((uint64_t)alloc_size
* y_data_rate
,
2973 ddb
->y_plane
[pipe
][plane
].start
= start
;
2974 ddb
->y_plane
[pipe
][plane
].end
= start
+ y_plane_blocks
;
2976 start
+= y_plane_blocks
;
2983 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state
*config
)
2985 /* TODO: Take into account the scalers once we support them */
2986 return config
->base
.adjusted_mode
.crtc_clock
;
2990 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2991 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2992 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2993 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2995 static uint32_t skl_wm_method1(uint32_t pixel_rate
, uint8_t bytes_per_pixel
,
2998 uint32_t wm_intermediate_val
, ret
;
3003 wm_intermediate_val
= latency
* pixel_rate
* bytes_per_pixel
/ 512;
3004 ret
= DIV_ROUND_UP(wm_intermediate_val
, 1000);
3009 static uint32_t skl_wm_method2(uint32_t pixel_rate
, uint32_t pipe_htotal
,
3010 uint32_t horiz_pixels
, uint8_t bytes_per_pixel
,
3011 uint64_t tiling
, uint32_t latency
)
3014 uint32_t plane_bytes_per_line
, plane_blocks_per_line
;
3015 uint32_t wm_intermediate_val
;
3020 plane_bytes_per_line
= horiz_pixels
* bytes_per_pixel
;
3022 if (tiling
== I915_FORMAT_MOD_Y_TILED
||
3023 tiling
== I915_FORMAT_MOD_Yf_TILED
) {
3024 plane_bytes_per_line
*= 4;
3025 plane_blocks_per_line
= DIV_ROUND_UP(plane_bytes_per_line
, 512);
3026 plane_blocks_per_line
/= 4;
3028 plane_blocks_per_line
= DIV_ROUND_UP(plane_bytes_per_line
, 512);
3031 wm_intermediate_val
= latency
* pixel_rate
;
3032 ret
= DIV_ROUND_UP(wm_intermediate_val
, pipe_htotal
* 1000) *
3033 plane_blocks_per_line
;
3038 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation
*new_ddb
,
3039 const struct intel_crtc
*intel_crtc
)
3041 struct drm_device
*dev
= intel_crtc
->base
.dev
;
3042 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3043 const struct skl_ddb_allocation
*cur_ddb
= &dev_priv
->wm
.skl_hw
.ddb
;
3044 enum pipe pipe
= intel_crtc
->pipe
;
3046 if (memcmp(new_ddb
->plane
[pipe
], cur_ddb
->plane
[pipe
],
3047 sizeof(new_ddb
->plane
[pipe
])))
3050 if (memcmp(&new_ddb
->plane
[pipe
][PLANE_CURSOR
], &cur_ddb
->plane
[pipe
][PLANE_CURSOR
],
3051 sizeof(new_ddb
->plane
[pipe
][PLANE_CURSOR
])))
3057 static void skl_compute_wm_global_parameters(struct drm_device
*dev
,
3058 struct intel_wm_config
*config
)
3060 struct drm_crtc
*crtc
;
3061 struct drm_plane
*plane
;
3063 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
)
3064 config
->num_pipes_active
+= to_intel_crtc(crtc
)->active
;
3066 /* FIXME: I don't think we need those two global parameters on SKL */
3067 list_for_each_entry(plane
, &dev
->mode_config
.plane_list
, head
) {
3068 struct intel_plane
*intel_plane
= to_intel_plane(plane
);
3070 config
->sprites_enabled
|= intel_plane
->wm
.enabled
;
3071 config
->sprites_scaled
|= intel_plane
->wm
.scaled
;
3075 static void skl_compute_wm_pipe_parameters(struct drm_crtc
*crtc
,
3076 struct skl_pipe_wm_parameters
*p
)
3078 struct drm_device
*dev
= crtc
->dev
;
3079 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3080 enum pipe pipe
= intel_crtc
->pipe
;
3081 struct drm_plane
*plane
;
3082 struct drm_framebuffer
*fb
;
3083 int i
= 1; /* Index for sprite planes start */
3085 p
->active
= intel_crtc
->active
;
3087 p
->pipe_htotal
= intel_crtc
->config
->base
.adjusted_mode
.crtc_htotal
;
3088 p
->pixel_rate
= skl_pipe_pixel_rate(intel_crtc
->config
);
3090 fb
= crtc
->primary
->state
->fb
;
3091 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3093 p
->plane
[0].enabled
= true;
3094 p
->plane
[0].bytes_per_pixel
= fb
->pixel_format
== DRM_FORMAT_NV12
?
3095 drm_format_plane_cpp(fb
->pixel_format
, 1) :
3096 drm_format_plane_cpp(fb
->pixel_format
, 0);
3097 p
->plane
[0].y_bytes_per_pixel
= fb
->pixel_format
== DRM_FORMAT_NV12
?
3098 drm_format_plane_cpp(fb
->pixel_format
, 0) : 0;
3099 p
->plane
[0].tiling
= fb
->modifier
[0];
3101 p
->plane
[0].enabled
= false;
3102 p
->plane
[0].bytes_per_pixel
= 0;
3103 p
->plane
[0].y_bytes_per_pixel
= 0;
3104 p
->plane
[0].tiling
= DRM_FORMAT_MOD_NONE
;
3106 p
->plane
[0].horiz_pixels
= intel_crtc
->config
->pipe_src_w
;
3107 p
->plane
[0].vert_pixels
= intel_crtc
->config
->pipe_src_h
;
3108 p
->plane
[0].rotation
= crtc
->primary
->state
->rotation
;
3110 fb
= crtc
->cursor
->state
->fb
;
3111 p
->plane
[PLANE_CURSOR
].y_bytes_per_pixel
= 0;
3113 p
->plane
[PLANE_CURSOR
].enabled
= true;
3114 p
->plane
[PLANE_CURSOR
].bytes_per_pixel
= fb
->bits_per_pixel
/ 8;
3115 p
->plane
[PLANE_CURSOR
].horiz_pixels
= crtc
->cursor
->state
->crtc_w
;
3116 p
->plane
[PLANE_CURSOR
].vert_pixels
= crtc
->cursor
->state
->crtc_h
;
3118 p
->plane
[PLANE_CURSOR
].enabled
= false;
3119 p
->plane
[PLANE_CURSOR
].bytes_per_pixel
= 0;
3120 p
->plane
[PLANE_CURSOR
].horiz_pixels
= 64;
3121 p
->plane
[PLANE_CURSOR
].vert_pixels
= 64;
3125 list_for_each_entry(plane
, &dev
->mode_config
.plane_list
, head
) {
3126 struct intel_plane
*intel_plane
= to_intel_plane(plane
);
3128 if (intel_plane
->pipe
== pipe
&&
3129 plane
->type
== DRM_PLANE_TYPE_OVERLAY
)
3130 p
->plane
[i
++] = intel_plane
->wm
;
3134 static bool skl_compute_plane_wm(const struct drm_i915_private
*dev_priv
,
3135 struct skl_pipe_wm_parameters
*p
,
3136 struct intel_plane_wm_parameters
*p_params
,
3137 uint16_t ddb_allocation
,
3139 uint16_t *out_blocks
, /* out */
3140 uint8_t *out_lines
/* out */)
3142 uint32_t latency
= dev_priv
->wm
.skl_latency
[level
];
3143 uint32_t method1
, method2
;
3144 uint32_t plane_bytes_per_line
, plane_blocks_per_line
;
3145 uint32_t res_blocks
, res_lines
;
3146 uint32_t selected_result
;
3147 uint8_t bytes_per_pixel
;
3149 if (latency
== 0 || !p
->active
|| !p_params
->enabled
)
3152 bytes_per_pixel
= p_params
->y_bytes_per_pixel
?
3153 p_params
->y_bytes_per_pixel
:
3154 p_params
->bytes_per_pixel
;
3155 method1
= skl_wm_method1(p
->pixel_rate
,
3158 method2
= skl_wm_method2(p
->pixel_rate
,
3160 p_params
->horiz_pixels
,
3165 plane_bytes_per_line
= p_params
->horiz_pixels
* bytes_per_pixel
;
3166 plane_blocks_per_line
= DIV_ROUND_UP(plane_bytes_per_line
, 512);
3168 if (p_params
->tiling
== I915_FORMAT_MOD_Y_TILED
||
3169 p_params
->tiling
== I915_FORMAT_MOD_Yf_TILED
) {
3170 uint32_t min_scanlines
= 4;
3171 uint32_t y_tile_minimum
;
3172 if (intel_rotation_90_or_270(p_params
->rotation
)) {
3173 switch (p_params
->bytes_per_pixel
) {
3181 WARN(1, "Unsupported pixel depth for rotation");
3184 y_tile_minimum
= plane_blocks_per_line
* min_scanlines
;
3185 selected_result
= max(method2
, y_tile_minimum
);
3187 if ((ddb_allocation
/ plane_blocks_per_line
) >= 1)
3188 selected_result
= min(method1
, method2
);
3190 selected_result
= method1
;
3193 res_blocks
= selected_result
+ 1;
3194 res_lines
= DIV_ROUND_UP(selected_result
, plane_blocks_per_line
);
3196 if (level
>= 1 && level
<= 7) {
3197 if (p_params
->tiling
== I915_FORMAT_MOD_Y_TILED
||
3198 p_params
->tiling
== I915_FORMAT_MOD_Yf_TILED
)
3204 if (res_blocks
>= ddb_allocation
|| res_lines
> 31)
3207 *out_blocks
= res_blocks
;
3208 *out_lines
= res_lines
;
3213 static void skl_compute_wm_level(const struct drm_i915_private
*dev_priv
,
3214 struct skl_ddb_allocation
*ddb
,
3215 struct skl_pipe_wm_parameters
*p
,
3219 struct skl_wm_level
*result
)
3221 uint16_t ddb_blocks
;
3224 for (i
= 0; i
< num_planes
; i
++) {
3225 ddb_blocks
= skl_ddb_entry_size(&ddb
->plane
[pipe
][i
]);
3227 result
->plane_en
[i
] = skl_compute_plane_wm(dev_priv
,
3231 &result
->plane_res_b
[i
],
3232 &result
->plane_res_l
[i
]);
3235 ddb_blocks
= skl_ddb_entry_size(&ddb
->plane
[pipe
][PLANE_CURSOR
]);
3236 result
->plane_en
[PLANE_CURSOR
] = skl_compute_plane_wm(dev_priv
, p
,
3237 &p
->plane
[PLANE_CURSOR
],
3239 &result
->plane_res_b
[PLANE_CURSOR
],
3240 &result
->plane_res_l
[PLANE_CURSOR
]);
3244 skl_compute_linetime_wm(struct drm_crtc
*crtc
, struct skl_pipe_wm_parameters
*p
)
3246 if (!to_intel_crtc(crtc
)->active
)
3249 if (WARN_ON(p
->pixel_rate
== 0))
3252 return DIV_ROUND_UP(8 * p
->pipe_htotal
* 1000, p
->pixel_rate
);
3255 static void skl_compute_transition_wm(struct drm_crtc
*crtc
,
3256 struct skl_pipe_wm_parameters
*params
,
3257 struct skl_wm_level
*trans_wm
/* out */)
3259 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3262 if (!params
->active
)
3265 /* Until we know more, just disable transition WMs */
3266 for (i
= 0; i
< intel_num_planes(intel_crtc
); i
++)
3267 trans_wm
->plane_en
[i
] = false;
3268 trans_wm
->plane_en
[PLANE_CURSOR
] = false;
3271 static void skl_compute_pipe_wm(struct drm_crtc
*crtc
,
3272 struct skl_ddb_allocation
*ddb
,
3273 struct skl_pipe_wm_parameters
*params
,
3274 struct skl_pipe_wm
*pipe_wm
)
3276 struct drm_device
*dev
= crtc
->dev
;
3277 const struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3278 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3279 int level
, max_level
= ilk_wm_max_level(dev
);
3281 for (level
= 0; level
<= max_level
; level
++) {
3282 skl_compute_wm_level(dev_priv
, ddb
, params
, intel_crtc
->pipe
,
3283 level
, intel_num_planes(intel_crtc
),
3284 &pipe_wm
->wm
[level
]);
3286 pipe_wm
->linetime
= skl_compute_linetime_wm(crtc
, params
);
3288 skl_compute_transition_wm(crtc
, params
, &pipe_wm
->trans_wm
);
3291 static void skl_compute_wm_results(struct drm_device
*dev
,
3292 struct skl_pipe_wm_parameters
*p
,
3293 struct skl_pipe_wm
*p_wm
,
3294 struct skl_wm_values
*r
,
3295 struct intel_crtc
*intel_crtc
)
3297 int level
, max_level
= ilk_wm_max_level(dev
);
3298 enum pipe pipe
= intel_crtc
->pipe
;
3302 for (level
= 0; level
<= max_level
; level
++) {
3303 for (i
= 0; i
< intel_num_planes(intel_crtc
); i
++) {
3306 temp
|= p_wm
->wm
[level
].plane_res_l
[i
] <<
3307 PLANE_WM_LINES_SHIFT
;
3308 temp
|= p_wm
->wm
[level
].plane_res_b
[i
];
3309 if (p_wm
->wm
[level
].plane_en
[i
])
3310 temp
|= PLANE_WM_EN
;
3312 r
->plane
[pipe
][i
][level
] = temp
;
3317 temp
|= p_wm
->wm
[level
].plane_res_l
[PLANE_CURSOR
] << PLANE_WM_LINES_SHIFT
;
3318 temp
|= p_wm
->wm
[level
].plane_res_b
[PLANE_CURSOR
];
3320 if (p_wm
->wm
[level
].plane_en
[PLANE_CURSOR
])
3321 temp
|= PLANE_WM_EN
;
3323 r
->plane
[pipe
][PLANE_CURSOR
][level
] = temp
;
3327 /* transition WMs */
3328 for (i
= 0; i
< intel_num_planes(intel_crtc
); i
++) {
3330 temp
|= p_wm
->trans_wm
.plane_res_l
[i
] << PLANE_WM_LINES_SHIFT
;
3331 temp
|= p_wm
->trans_wm
.plane_res_b
[i
];
3332 if (p_wm
->trans_wm
.plane_en
[i
])
3333 temp
|= PLANE_WM_EN
;
3335 r
->plane_trans
[pipe
][i
] = temp
;
3339 temp
|= p_wm
->trans_wm
.plane_res_l
[PLANE_CURSOR
] << PLANE_WM_LINES_SHIFT
;
3340 temp
|= p_wm
->trans_wm
.plane_res_b
[PLANE_CURSOR
];
3341 if (p_wm
->trans_wm
.plane_en
[PLANE_CURSOR
])
3342 temp
|= PLANE_WM_EN
;
3344 r
->plane_trans
[pipe
][PLANE_CURSOR
] = temp
;
3346 r
->wm_linetime
[pipe
] = p_wm
->linetime
;
3349 static void skl_ddb_entry_write(struct drm_i915_private
*dev_priv
, uint32_t reg
,
3350 const struct skl_ddb_entry
*entry
)
3353 I915_WRITE(reg
, (entry
->end
- 1) << 16 | entry
->start
);
3358 static void skl_write_wm_values(struct drm_i915_private
*dev_priv
,
3359 const struct skl_wm_values
*new)
3361 struct drm_device
*dev
= dev_priv
->dev
;
3362 struct intel_crtc
*crtc
;
3364 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, base
.head
) {
3365 int i
, level
, max_level
= ilk_wm_max_level(dev
);
3366 enum pipe pipe
= crtc
->pipe
;
3368 if (!new->dirty
[pipe
])
3371 I915_WRITE(PIPE_WM_LINETIME(pipe
), new->wm_linetime
[pipe
]);
3373 for (level
= 0; level
<= max_level
; level
++) {
3374 for (i
= 0; i
< intel_num_planes(crtc
); i
++)
3375 I915_WRITE(PLANE_WM(pipe
, i
, level
),
3376 new->plane
[pipe
][i
][level
]);
3377 I915_WRITE(CUR_WM(pipe
, level
),
3378 new->plane
[pipe
][PLANE_CURSOR
][level
]);
3380 for (i
= 0; i
< intel_num_planes(crtc
); i
++)
3381 I915_WRITE(PLANE_WM_TRANS(pipe
, i
),
3382 new->plane_trans
[pipe
][i
]);
3383 I915_WRITE(CUR_WM_TRANS(pipe
),
3384 new->plane_trans
[pipe
][PLANE_CURSOR
]);
3386 for (i
= 0; i
< intel_num_planes(crtc
); i
++) {
3387 skl_ddb_entry_write(dev_priv
,
3388 PLANE_BUF_CFG(pipe
, i
),
3389 &new->ddb
.plane
[pipe
][i
]);
3390 skl_ddb_entry_write(dev_priv
,
3391 PLANE_NV12_BUF_CFG(pipe
, i
),
3392 &new->ddb
.y_plane
[pipe
][i
]);
3395 skl_ddb_entry_write(dev_priv
, CUR_BUF_CFG(pipe
),
3396 &new->ddb
.plane
[pipe
][PLANE_CURSOR
]);
3401 * When setting up a new DDB allocation arrangement, we need to correctly
3402 * sequence the times at which the new allocations for the pipes are taken into
3403 * account or we'll have pipes fetching from space previously allocated to
3406 * Roughly the sequence looks like:
3407 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3408 * overlapping with a previous light-up pipe (another way to put it is:
3409 * pipes with their new allocation strickly included into their old ones).
3410 * 2. re-allocate the other pipes that get their allocation reduced
3411 * 3. allocate the pipes having their allocation increased
3413 * Steps 1. and 2. are here to take care of the following case:
3414 * - Initially DDB looks like this:
3417 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3421 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3425 skl_wm_flush_pipe(struct drm_i915_private
*dev_priv
, enum pipe pipe
, int pass
)
3429 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe
), pass
);
3431 for_each_plane(dev_priv
, pipe
, plane
) {
3432 I915_WRITE(PLANE_SURF(pipe
, plane
),
3433 I915_READ(PLANE_SURF(pipe
, plane
)));
3435 I915_WRITE(CURBASE(pipe
), I915_READ(CURBASE(pipe
)));
3439 skl_ddb_allocation_included(const struct skl_ddb_allocation
*old
,
3440 const struct skl_ddb_allocation
*new,
3443 uint16_t old_size
, new_size
;
3445 old_size
= skl_ddb_entry_size(&old
->pipe
[pipe
]);
3446 new_size
= skl_ddb_entry_size(&new->pipe
[pipe
]);
3448 return old_size
!= new_size
&&
3449 new->pipe
[pipe
].start
>= old
->pipe
[pipe
].start
&&
3450 new->pipe
[pipe
].end
<= old
->pipe
[pipe
].end
;
3453 static void skl_flush_wm_values(struct drm_i915_private
*dev_priv
,
3454 struct skl_wm_values
*new_values
)
3456 struct drm_device
*dev
= dev_priv
->dev
;
3457 struct skl_ddb_allocation
*cur_ddb
, *new_ddb
;
3458 bool reallocated
[I915_MAX_PIPES
] = {};
3459 struct intel_crtc
*crtc
;
3462 new_ddb
= &new_values
->ddb
;
3463 cur_ddb
= &dev_priv
->wm
.skl_hw
.ddb
;
3466 * First pass: flush the pipes with the new allocation contained into
3469 * We'll wait for the vblank on those pipes to ensure we can safely
3470 * re-allocate the freed space without this pipe fetching from it.
3472 for_each_intel_crtc(dev
, crtc
) {
3478 if (!skl_ddb_allocation_included(cur_ddb
, new_ddb
, pipe
))
3481 skl_wm_flush_pipe(dev_priv
, pipe
, 1);
3482 intel_wait_for_vblank(dev
, pipe
);
3484 reallocated
[pipe
] = true;
3489 * Second pass: flush the pipes that are having their allocation
3490 * reduced, but overlapping with a previous allocation.
3492 * Here as well we need to wait for the vblank to make sure the freed
3493 * space is not used anymore.
3495 for_each_intel_crtc(dev
, crtc
) {
3501 if (reallocated
[pipe
])
3504 if (skl_ddb_entry_size(&new_ddb
->pipe
[pipe
]) <
3505 skl_ddb_entry_size(&cur_ddb
->pipe
[pipe
])) {
3506 skl_wm_flush_pipe(dev_priv
, pipe
, 2);
3507 intel_wait_for_vblank(dev
, pipe
);
3508 reallocated
[pipe
] = true;
3513 * Third pass: flush the pipes that got more space allocated.
3515 * We don't need to actively wait for the update here, next vblank
3516 * will just get more DDB space with the correct WM values.
3518 for_each_intel_crtc(dev
, crtc
) {
3525 * At this point, only the pipes more space than before are
3526 * left to re-allocate.
3528 if (reallocated
[pipe
])
3531 skl_wm_flush_pipe(dev_priv
, pipe
, 3);
3535 static bool skl_update_pipe_wm(struct drm_crtc
*crtc
,
3536 struct skl_pipe_wm_parameters
*params
,
3537 struct intel_wm_config
*config
,
3538 struct skl_ddb_allocation
*ddb
, /* out */
3539 struct skl_pipe_wm
*pipe_wm
/* out */)
3541 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3543 skl_compute_wm_pipe_parameters(crtc
, params
);
3544 skl_allocate_pipe_ddb(crtc
, config
, params
, ddb
);
3545 skl_compute_pipe_wm(crtc
, ddb
, params
, pipe_wm
);
3547 if (!memcmp(&intel_crtc
->wm
.skl_active
, pipe_wm
, sizeof(*pipe_wm
)))
3550 intel_crtc
->wm
.skl_active
= *pipe_wm
;
3555 static void skl_update_other_pipe_wm(struct drm_device
*dev
,
3556 struct drm_crtc
*crtc
,
3557 struct intel_wm_config
*config
,
3558 struct skl_wm_values
*r
)
3560 struct intel_crtc
*intel_crtc
;
3561 struct intel_crtc
*this_crtc
= to_intel_crtc(crtc
);
3564 * If the WM update hasn't changed the allocation for this_crtc (the
3565 * crtc we are currently computing the new WM values for), other
3566 * enabled crtcs will keep the same allocation and we don't need to
3567 * recompute anything for them.
3569 if (!skl_ddb_allocation_changed(&r
->ddb
, this_crtc
))
3573 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3574 * other active pipes need new DDB allocation and WM values.
3576 list_for_each_entry(intel_crtc
, &dev
->mode_config
.crtc_list
,
3578 struct skl_pipe_wm_parameters params
= {};
3579 struct skl_pipe_wm pipe_wm
= {};
3582 if (this_crtc
->pipe
== intel_crtc
->pipe
)
3585 if (!intel_crtc
->active
)
3588 wm_changed
= skl_update_pipe_wm(&intel_crtc
->base
,
3593 * If we end up re-computing the other pipe WM values, it's
3594 * because it was really needed, so we expect the WM values to
3597 WARN_ON(!wm_changed
);
3599 skl_compute_wm_results(dev
, ¶ms
, &pipe_wm
, r
, intel_crtc
);
3600 r
->dirty
[intel_crtc
->pipe
] = true;
3604 static void skl_clear_wm(struct skl_wm_values
*watermarks
, enum pipe pipe
)
3606 watermarks
->wm_linetime
[pipe
] = 0;
3607 memset(watermarks
->plane
[pipe
], 0,
3608 sizeof(uint32_t) * 8 * I915_MAX_PLANES
);
3609 memset(watermarks
->plane_trans
[pipe
],
3610 0, sizeof(uint32_t) * I915_MAX_PLANES
);
3611 watermarks
->plane_trans
[pipe
][PLANE_CURSOR
] = 0;
3613 /* Clear ddb entries for pipe */
3614 memset(&watermarks
->ddb
.pipe
[pipe
], 0, sizeof(struct skl_ddb_entry
));
3615 memset(&watermarks
->ddb
.plane
[pipe
], 0,
3616 sizeof(struct skl_ddb_entry
) * I915_MAX_PLANES
);
3617 memset(&watermarks
->ddb
.y_plane
[pipe
], 0,
3618 sizeof(struct skl_ddb_entry
) * I915_MAX_PLANES
);
3619 memset(&watermarks
->ddb
.plane
[pipe
][PLANE_CURSOR
], 0,
3620 sizeof(struct skl_ddb_entry
));
3624 static void skl_update_wm(struct drm_crtc
*crtc
)
3626 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3627 struct drm_device
*dev
= crtc
->dev
;
3628 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3629 struct skl_pipe_wm_parameters params
= {};
3630 struct skl_wm_values
*results
= &dev_priv
->wm
.skl_results
;
3631 struct skl_pipe_wm pipe_wm
= {};
3632 struct intel_wm_config config
= {};
3635 /* Clear all dirty flags */
3636 memset(results
->dirty
, 0, sizeof(bool) * I915_MAX_PIPES
);
3638 skl_clear_wm(results
, intel_crtc
->pipe
);
3640 skl_compute_wm_global_parameters(dev
, &config
);
3642 if (!skl_update_pipe_wm(crtc
, ¶ms
, &config
,
3643 &results
->ddb
, &pipe_wm
))
3646 skl_compute_wm_results(dev
, ¶ms
, &pipe_wm
, results
, intel_crtc
);
3647 results
->dirty
[intel_crtc
->pipe
] = true;
3649 skl_update_other_pipe_wm(dev
, crtc
, &config
, results
);
3650 skl_write_wm_values(dev_priv
, results
);
3651 skl_flush_wm_values(dev_priv
, results
);
3653 /* store the new configuration */
3654 dev_priv
->wm
.skl_hw
= *results
;
3658 skl_update_sprite_wm(struct drm_plane
*plane
, struct drm_crtc
*crtc
,
3659 uint32_t sprite_width
, uint32_t sprite_height
,
3660 int pixel_size
, bool enabled
, bool scaled
)
3662 struct intel_plane
*intel_plane
= to_intel_plane(plane
);
3663 struct drm_framebuffer
*fb
= plane
->state
->fb
;
3665 intel_plane
->wm
.enabled
= enabled
;
3666 intel_plane
->wm
.scaled
= scaled
;
3667 intel_plane
->wm
.horiz_pixels
= sprite_width
;
3668 intel_plane
->wm
.vert_pixels
= sprite_height
;
3669 intel_plane
->wm
.tiling
= DRM_FORMAT_MOD_NONE
;
3671 /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3672 intel_plane
->wm
.bytes_per_pixel
=
3673 (fb
&& fb
->pixel_format
== DRM_FORMAT_NV12
) ?
3674 drm_format_plane_cpp(plane
->state
->fb
->pixel_format
, 1) : pixel_size
;
3675 intel_plane
->wm
.y_bytes_per_pixel
=
3676 (fb
&& fb
->pixel_format
== DRM_FORMAT_NV12
) ?
3677 drm_format_plane_cpp(plane
->state
->fb
->pixel_format
, 0) : 0;
3680 * Framebuffer can be NULL on plane disable, but it does not
3681 * matter for watermarks if we assume no tiling in that case.
3684 intel_plane
->wm
.tiling
= fb
->modifier
[0];
3685 intel_plane
->wm
.rotation
= plane
->state
->rotation
;
3687 skl_update_wm(crtc
);
3690 static void ilk_update_wm(struct drm_crtc
*crtc
)
3692 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3693 struct intel_crtc_state
*cstate
= to_intel_crtc_state(crtc
->state
);
3694 struct drm_device
*dev
= crtc
->dev
;
3695 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3696 struct ilk_wm_maximums max
;
3697 struct ilk_wm_values results
= {};
3698 enum intel_ddb_partitioning partitioning
;
3699 struct intel_pipe_wm pipe_wm
= {};
3700 struct intel_pipe_wm lp_wm_1_2
= {}, lp_wm_5_6
= {}, *best_lp_wm
;
3701 struct intel_wm_config config
= {};
3703 WARN_ON(cstate
->base
.active
!= intel_crtc
->active
);
3705 intel_compute_pipe_wm(cstate
, &pipe_wm
);
3707 if (!memcmp(&intel_crtc
->wm
.active
, &pipe_wm
, sizeof(pipe_wm
)))
3710 intel_crtc
->wm
.active
= pipe_wm
;
3712 ilk_compute_wm_config(dev
, &config
);
3714 ilk_compute_wm_maximums(dev
, 1, &config
, INTEL_DDB_PART_1_2
, &max
);
3715 ilk_wm_merge(dev
, &config
, &max
, &lp_wm_1_2
);
3717 /* 5/6 split only in single pipe config on IVB+ */
3718 if (INTEL_INFO(dev
)->gen
>= 7 &&
3719 config
.num_pipes_active
== 1 && config
.sprites_enabled
) {
3720 ilk_compute_wm_maximums(dev
, 1, &config
, INTEL_DDB_PART_5_6
, &max
);
3721 ilk_wm_merge(dev
, &config
, &max
, &lp_wm_5_6
);
3723 best_lp_wm
= ilk_find_best_result(dev
, &lp_wm_1_2
, &lp_wm_5_6
);
3725 best_lp_wm
= &lp_wm_1_2
;
3728 partitioning
= (best_lp_wm
== &lp_wm_1_2
) ?
3729 INTEL_DDB_PART_1_2
: INTEL_DDB_PART_5_6
;
3731 ilk_compute_wm_results(dev
, best_lp_wm
, partitioning
, &results
);
3733 ilk_write_wm_values(dev_priv
, &results
);
3737 ilk_update_sprite_wm(struct drm_plane
*plane
,
3738 struct drm_crtc
*crtc
,
3739 uint32_t sprite_width
, uint32_t sprite_height
,
3740 int pixel_size
, bool enabled
, bool scaled
)
3742 struct drm_device
*dev
= plane
->dev
;
3743 struct intel_plane
*intel_plane
= to_intel_plane(plane
);
3746 * IVB workaround: must disable low power watermarks for at least
3747 * one frame before enabling scaling. LP watermarks can be re-enabled
3748 * when scaling is disabled.
3750 * WaCxSRDisabledForSpriteScaling:ivb
3752 if (IS_IVYBRIDGE(dev
) && scaled
&& ilk_disable_lp_wm(dev
))
3753 intel_wait_for_vblank(dev
, intel_plane
->pipe
);
3755 ilk_update_wm(crtc
);
3758 static void skl_pipe_wm_active_state(uint32_t val
,
3759 struct skl_pipe_wm
*active
,
3765 bool is_enabled
= (val
& PLANE_WM_EN
) != 0;
3769 active
->wm
[level
].plane_en
[i
] = is_enabled
;
3770 active
->wm
[level
].plane_res_b
[i
] =
3771 val
& PLANE_WM_BLOCKS_MASK
;
3772 active
->wm
[level
].plane_res_l
[i
] =
3773 (val
>> PLANE_WM_LINES_SHIFT
) &
3774 PLANE_WM_LINES_MASK
;
3776 active
->wm
[level
].plane_en
[PLANE_CURSOR
] = is_enabled
;
3777 active
->wm
[level
].plane_res_b
[PLANE_CURSOR
] =
3778 val
& PLANE_WM_BLOCKS_MASK
;
3779 active
->wm
[level
].plane_res_l
[PLANE_CURSOR
] =
3780 (val
>> PLANE_WM_LINES_SHIFT
) &
3781 PLANE_WM_LINES_MASK
;
3785 active
->trans_wm
.plane_en
[i
] = is_enabled
;
3786 active
->trans_wm
.plane_res_b
[i
] =
3787 val
& PLANE_WM_BLOCKS_MASK
;
3788 active
->trans_wm
.plane_res_l
[i
] =
3789 (val
>> PLANE_WM_LINES_SHIFT
) &
3790 PLANE_WM_LINES_MASK
;
3792 active
->trans_wm
.plane_en
[PLANE_CURSOR
] = is_enabled
;
3793 active
->trans_wm
.plane_res_b
[PLANE_CURSOR
] =
3794 val
& PLANE_WM_BLOCKS_MASK
;
3795 active
->trans_wm
.plane_res_l
[PLANE_CURSOR
] =
3796 (val
>> PLANE_WM_LINES_SHIFT
) &
3797 PLANE_WM_LINES_MASK
;
3802 static void skl_pipe_wm_get_hw_state(struct drm_crtc
*crtc
)
3804 struct drm_device
*dev
= crtc
->dev
;
3805 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3806 struct skl_wm_values
*hw
= &dev_priv
->wm
.skl_hw
;
3807 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3808 struct skl_pipe_wm
*active
= &intel_crtc
->wm
.skl_active
;
3809 enum pipe pipe
= intel_crtc
->pipe
;
3810 int level
, i
, max_level
;
3813 max_level
= ilk_wm_max_level(dev
);
3815 hw
->wm_linetime
[pipe
] = I915_READ(PIPE_WM_LINETIME(pipe
));
3817 for (level
= 0; level
<= max_level
; level
++) {
3818 for (i
= 0; i
< intel_num_planes(intel_crtc
); i
++)
3819 hw
->plane
[pipe
][i
][level
] =
3820 I915_READ(PLANE_WM(pipe
, i
, level
));
3821 hw
->plane
[pipe
][PLANE_CURSOR
][level
] = I915_READ(CUR_WM(pipe
, level
));
3824 for (i
= 0; i
< intel_num_planes(intel_crtc
); i
++)
3825 hw
->plane_trans
[pipe
][i
] = I915_READ(PLANE_WM_TRANS(pipe
, i
));
3826 hw
->plane_trans
[pipe
][PLANE_CURSOR
] = I915_READ(CUR_WM_TRANS(pipe
));
3828 if (!intel_crtc
->active
)
3831 hw
->dirty
[pipe
] = true;
3833 active
->linetime
= hw
->wm_linetime
[pipe
];
3835 for (level
= 0; level
<= max_level
; level
++) {
3836 for (i
= 0; i
< intel_num_planes(intel_crtc
); i
++) {
3837 temp
= hw
->plane
[pipe
][i
][level
];
3838 skl_pipe_wm_active_state(temp
, active
, false,
3841 temp
= hw
->plane
[pipe
][PLANE_CURSOR
][level
];
3842 skl_pipe_wm_active_state(temp
, active
, false, true, i
, level
);
3845 for (i
= 0; i
< intel_num_planes(intel_crtc
); i
++) {
3846 temp
= hw
->plane_trans
[pipe
][i
];
3847 skl_pipe_wm_active_state(temp
, active
, true, false, i
, 0);
3850 temp
= hw
->plane_trans
[pipe
][PLANE_CURSOR
];
3851 skl_pipe_wm_active_state(temp
, active
, true, true, i
, 0);
3854 void skl_wm_get_hw_state(struct drm_device
*dev
)
3856 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3857 struct skl_ddb_allocation
*ddb
= &dev_priv
->wm
.skl_hw
.ddb
;
3858 struct drm_crtc
*crtc
;
3860 skl_ddb_get_hw_state(dev_priv
, ddb
);
3861 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
)
3862 skl_pipe_wm_get_hw_state(crtc
);
3865 static void ilk_pipe_wm_get_hw_state(struct drm_crtc
*crtc
)
3867 struct drm_device
*dev
= crtc
->dev
;
3868 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3869 struct ilk_wm_values
*hw
= &dev_priv
->wm
.hw
;
3870 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3871 struct intel_pipe_wm
*active
= &intel_crtc
->wm
.active
;
3872 enum pipe pipe
= intel_crtc
->pipe
;
3873 static const unsigned int wm0_pipe_reg
[] = {
3874 [PIPE_A
] = WM0_PIPEA_ILK
,
3875 [PIPE_B
] = WM0_PIPEB_ILK
,
3876 [PIPE_C
] = WM0_PIPEC_IVB
,
3879 hw
->wm_pipe
[pipe
] = I915_READ(wm0_pipe_reg
[pipe
]);
3880 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
3881 hw
->wm_linetime
[pipe
] = I915_READ(PIPE_WM_LINETIME(pipe
));
3883 active
->pipe_enabled
= intel_crtc
->active
;
3885 if (active
->pipe_enabled
) {
3886 u32 tmp
= hw
->wm_pipe
[pipe
];
3889 * For active pipes LP0 watermark is marked as
3890 * enabled, and LP1+ watermaks as disabled since
3891 * we can't really reverse compute them in case
3892 * multiple pipes are active.
3894 active
->wm
[0].enable
= true;
3895 active
->wm
[0].pri_val
= (tmp
& WM0_PIPE_PLANE_MASK
) >> WM0_PIPE_PLANE_SHIFT
;
3896 active
->wm
[0].spr_val
= (tmp
& WM0_PIPE_SPRITE_MASK
) >> WM0_PIPE_SPRITE_SHIFT
;
3897 active
->wm
[0].cur_val
= tmp
& WM0_PIPE_CURSOR_MASK
;
3898 active
->linetime
= hw
->wm_linetime
[pipe
];
3900 int level
, max_level
= ilk_wm_max_level(dev
);
3903 * For inactive pipes, all watermark levels
3904 * should be marked as enabled but zeroed,
3905 * which is what we'd compute them to.
3907 for (level
= 0; level
<= max_level
; level
++)
3908 active
->wm
[level
].enable
= true;
3912 #define _FW_WM(value, plane) \
3913 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3914 #define _FW_WM_VLV(value, plane) \
3915 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3917 static void vlv_read_wm_values(struct drm_i915_private
*dev_priv
,
3918 struct vlv_wm_values
*wm
)
3923 for_each_pipe(dev_priv
, pipe
) {
3924 tmp
= I915_READ(VLV_DDL(pipe
));
3926 wm
->ddl
[pipe
].primary
=
3927 (tmp
>> DDL_PLANE_SHIFT
) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
3928 wm
->ddl
[pipe
].cursor
=
3929 (tmp
>> DDL_CURSOR_SHIFT
) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
3930 wm
->ddl
[pipe
].sprite
[0] =
3931 (tmp
>> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
3932 wm
->ddl
[pipe
].sprite
[1] =
3933 (tmp
>> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH
| DRAIN_LATENCY_MASK
);
3936 tmp
= I915_READ(DSPFW1
);
3937 wm
->sr
.plane
= _FW_WM(tmp
, SR
);
3938 wm
->pipe
[PIPE_B
].cursor
= _FW_WM(tmp
, CURSORB
);
3939 wm
->pipe
[PIPE_B
].primary
= _FW_WM_VLV(tmp
, PLANEB
);
3940 wm
->pipe
[PIPE_A
].primary
= _FW_WM_VLV(tmp
, PLANEA
);
3942 tmp
= I915_READ(DSPFW2
);
3943 wm
->pipe
[PIPE_A
].sprite
[1] = _FW_WM_VLV(tmp
, SPRITEB
);
3944 wm
->pipe
[PIPE_A
].cursor
= _FW_WM(tmp
, CURSORA
);
3945 wm
->pipe
[PIPE_A
].sprite
[0] = _FW_WM_VLV(tmp
, SPRITEA
);
3947 tmp
= I915_READ(DSPFW3
);
3948 wm
->sr
.cursor
= _FW_WM(tmp
, CURSOR_SR
);
3950 if (IS_CHERRYVIEW(dev_priv
)) {
3951 tmp
= I915_READ(DSPFW7_CHV
);
3952 wm
->pipe
[PIPE_B
].sprite
[1] = _FW_WM_VLV(tmp
, SPRITED
);
3953 wm
->pipe
[PIPE_B
].sprite
[0] = _FW_WM_VLV(tmp
, SPRITEC
);
3955 tmp
= I915_READ(DSPFW8_CHV
);
3956 wm
->pipe
[PIPE_C
].sprite
[1] = _FW_WM_VLV(tmp
, SPRITEF
);
3957 wm
->pipe
[PIPE_C
].sprite
[0] = _FW_WM_VLV(tmp
, SPRITEE
);
3959 tmp
= I915_READ(DSPFW9_CHV
);
3960 wm
->pipe
[PIPE_C
].primary
= _FW_WM_VLV(tmp
, PLANEC
);
3961 wm
->pipe
[PIPE_C
].cursor
= _FW_WM(tmp
, CURSORC
);
3963 tmp
= I915_READ(DSPHOWM
);
3964 wm
->sr
.plane
|= _FW_WM(tmp
, SR_HI
) << 9;
3965 wm
->pipe
[PIPE_C
].sprite
[1] |= _FW_WM(tmp
, SPRITEF_HI
) << 8;
3966 wm
->pipe
[PIPE_C
].sprite
[0] |= _FW_WM(tmp
, SPRITEE_HI
) << 8;
3967 wm
->pipe
[PIPE_C
].primary
|= _FW_WM(tmp
, PLANEC_HI
) << 8;
3968 wm
->pipe
[PIPE_B
].sprite
[1] |= _FW_WM(tmp
, SPRITED_HI
) << 8;
3969 wm
->pipe
[PIPE_B
].sprite
[0] |= _FW_WM(tmp
, SPRITEC_HI
) << 8;
3970 wm
->pipe
[PIPE_B
].primary
|= _FW_WM(tmp
, PLANEB_HI
) << 8;
3971 wm
->pipe
[PIPE_A
].sprite
[1] |= _FW_WM(tmp
, SPRITEB_HI
) << 8;
3972 wm
->pipe
[PIPE_A
].sprite
[0] |= _FW_WM(tmp
, SPRITEA_HI
) << 8;
3973 wm
->pipe
[PIPE_A
].primary
|= _FW_WM(tmp
, PLANEA_HI
) << 8;
3975 tmp
= I915_READ(DSPFW7
);
3976 wm
->pipe
[PIPE_B
].sprite
[1] = _FW_WM_VLV(tmp
, SPRITED
);
3977 wm
->pipe
[PIPE_B
].sprite
[0] = _FW_WM_VLV(tmp
, SPRITEC
);
3979 tmp
= I915_READ(DSPHOWM
);
3980 wm
->sr
.plane
|= _FW_WM(tmp
, SR_HI
) << 9;
3981 wm
->pipe
[PIPE_B
].sprite
[1] |= _FW_WM(tmp
, SPRITED_HI
) << 8;
3982 wm
->pipe
[PIPE_B
].sprite
[0] |= _FW_WM(tmp
, SPRITEC_HI
) << 8;
3983 wm
->pipe
[PIPE_B
].primary
|= _FW_WM(tmp
, PLANEB_HI
) << 8;
3984 wm
->pipe
[PIPE_A
].sprite
[1] |= _FW_WM(tmp
, SPRITEB_HI
) << 8;
3985 wm
->pipe
[PIPE_A
].sprite
[0] |= _FW_WM(tmp
, SPRITEA_HI
) << 8;
3986 wm
->pipe
[PIPE_A
].primary
|= _FW_WM(tmp
, PLANEA_HI
) << 8;
3993 void vlv_wm_get_hw_state(struct drm_device
*dev
)
3995 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3996 struct vlv_wm_values
*wm
= &dev_priv
->wm
.vlv
;
3997 struct intel_plane
*plane
;
4001 vlv_read_wm_values(dev_priv
, wm
);
4003 for_each_intel_plane(dev
, plane
) {
4004 switch (plane
->base
.type
) {
4006 case DRM_PLANE_TYPE_CURSOR
:
4007 plane
->wm
.fifo_size
= 63;
4009 case DRM_PLANE_TYPE_PRIMARY
:
4010 plane
->wm
.fifo_size
= vlv_get_fifo_size(dev
, plane
->pipe
, 0);
4012 case DRM_PLANE_TYPE_OVERLAY
:
4013 sprite
= plane
->plane
;
4014 plane
->wm
.fifo_size
= vlv_get_fifo_size(dev
, plane
->pipe
, sprite
+ 1);
4019 wm
->cxsr
= I915_READ(FW_BLC_SELF_VLV
) & FW_CSPWRDWNEN
;
4020 wm
->level
= VLV_WM_LEVEL_PM2
;
4022 if (IS_CHERRYVIEW(dev_priv
)) {
4023 mutex_lock(&dev_priv
->rps
.hw_lock
);
4025 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
);
4026 if (val
& DSP_MAXFIFO_PM5_ENABLE
)
4027 wm
->level
= VLV_WM_LEVEL_PM5
;
4030 * If DDR DVFS is disabled in the BIOS, Punit
4031 * will never ack the request. So if that happens
4032 * assume we don't have to enable/disable DDR DVFS
4033 * dynamically. To test that just set the REQ_ACK
4034 * bit to poke the Punit, but don't change the
4035 * HIGH/LOW bits so that we don't actually change
4036 * the current state.
4038 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
);
4039 val
|= FORCE_DDR_FREQ_REQ_ACK
;
4040 vlv_punit_write(dev_priv
, PUNIT_REG_DDR_SETUP2
, val
);
4042 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
) &
4043 FORCE_DDR_FREQ_REQ_ACK
) == 0, 3)) {
4044 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4045 "assuming DDR DVFS is disabled\n");
4046 dev_priv
->wm
.max_level
= VLV_WM_LEVEL_PM5
;
4048 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DDR_SETUP2
);
4049 if ((val
& FORCE_DDR_HIGH_FREQ
) == 0)
4050 wm
->level
= VLV_WM_LEVEL_DDR_DVFS
;
4053 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4056 for_each_pipe(dev_priv
, pipe
)
4057 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4058 pipe_name(pipe
), wm
->pipe
[pipe
].primary
, wm
->pipe
[pipe
].cursor
,
4059 wm
->pipe
[pipe
].sprite
[0], wm
->pipe
[pipe
].sprite
[1]);
4061 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4062 wm
->sr
.plane
, wm
->sr
.cursor
, wm
->level
, wm
->cxsr
);
4065 void ilk_wm_get_hw_state(struct drm_device
*dev
)
4067 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4068 struct ilk_wm_values
*hw
= &dev_priv
->wm
.hw
;
4069 struct drm_crtc
*crtc
;
4071 for_each_crtc(dev
, crtc
)
4072 ilk_pipe_wm_get_hw_state(crtc
);
4074 hw
->wm_lp
[0] = I915_READ(WM1_LP_ILK
);
4075 hw
->wm_lp
[1] = I915_READ(WM2_LP_ILK
);
4076 hw
->wm_lp
[2] = I915_READ(WM3_LP_ILK
);
4078 hw
->wm_lp_spr
[0] = I915_READ(WM1S_LP_ILK
);
4079 if (INTEL_INFO(dev
)->gen
>= 7) {
4080 hw
->wm_lp_spr
[1] = I915_READ(WM2S_LP_IVB
);
4081 hw
->wm_lp_spr
[2] = I915_READ(WM3S_LP_IVB
);
4084 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
4085 hw
->partitioning
= (I915_READ(WM_MISC
) & WM_MISC_DATA_PARTITION_5_6
) ?
4086 INTEL_DDB_PART_5_6
: INTEL_DDB_PART_1_2
;
4087 else if (IS_IVYBRIDGE(dev
))
4088 hw
->partitioning
= (I915_READ(DISP_ARB_CTL2
) & DISP_DATA_PARTITION_5_6
) ?
4089 INTEL_DDB_PART_5_6
: INTEL_DDB_PART_1_2
;
4092 !(I915_READ(DISP_ARB_CTL
) & DISP_FBC_WM_DIS
);
4096 * intel_update_watermarks - update FIFO watermark values based on current modes
4098 * Calculate watermark values for the various WM regs based on current mode
4099 * and plane configuration.
4101 * There are several cases to deal with here:
4102 * - normal (i.e. non-self-refresh)
4103 * - self-refresh (SR) mode
4104 * - lines are large relative to FIFO size (buffer can hold up to 2)
4105 * - lines are small relative to FIFO size (buffer can hold more than 2
4106 * lines), so need to account for TLB latency
4108 * The normal calculation is:
4109 * watermark = dotclock * bytes per pixel * latency
4110 * where latency is platform & configuration dependent (we assume pessimal
4113 * The SR calculation is:
4114 * watermark = (trunc(latency/line time)+1) * surface width *
4117 * line time = htotal / dotclock
4118 * surface width = hdisplay for normal plane and 64 for cursor
4119 * and latency is assumed to be high, as above.
4121 * The final value programmed to the register should always be rounded up,
4122 * and include an extra 2 entries to account for clock crossings.
4124 * We don't use the sprite, so we can ignore that. And on Crestline we have
4125 * to set the non-SR watermarks to 8.
4127 void intel_update_watermarks(struct drm_crtc
*crtc
)
4129 struct drm_i915_private
*dev_priv
= crtc
->dev
->dev_private
;
4131 if (dev_priv
->display
.update_wm
)
4132 dev_priv
->display
.update_wm(crtc
);
4135 void intel_update_sprite_watermarks(struct drm_plane
*plane
,
4136 struct drm_crtc
*crtc
,
4137 uint32_t sprite_width
,
4138 uint32_t sprite_height
,
4140 bool enabled
, bool scaled
)
4142 struct drm_i915_private
*dev_priv
= plane
->dev
->dev_private
;
4144 if (dev_priv
->display
.update_sprite_wm
)
4145 dev_priv
->display
.update_sprite_wm(plane
, crtc
,
4146 sprite_width
, sprite_height
,
4147 pixel_size
, enabled
, scaled
);
4151 * Lock protecting IPS related data structures
4153 DEFINE_SPINLOCK(mchdev_lock
);
4155 /* Global for IPS driver to get at the current i915 device. Protected by
4157 static struct drm_i915_private
*i915_mch_dev
;
4159 bool ironlake_set_drps(struct drm_device
*dev
, u8 val
)
4161 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4164 assert_spin_locked(&mchdev_lock
);
4166 rgvswctl
= I915_READ16(MEMSWCTL
);
4167 if (rgvswctl
& MEMCTL_CMD_STS
) {
4168 DRM_DEBUG("gpu busy, RCS change rejected\n");
4169 return false; /* still busy with another command */
4172 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
4173 (val
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
4174 I915_WRITE16(MEMSWCTL
, rgvswctl
);
4175 POSTING_READ16(MEMSWCTL
);
4177 rgvswctl
|= MEMCTL_CMD_STS
;
4178 I915_WRITE16(MEMSWCTL
, rgvswctl
);
4183 static void ironlake_enable_drps(struct drm_device
*dev
)
4185 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4186 u32 rgvmodectl
= I915_READ(MEMMODECTL
);
4187 u8 fmax
, fmin
, fstart
, vstart
;
4189 spin_lock_irq(&mchdev_lock
);
4191 /* Enable temp reporting */
4192 I915_WRITE16(PMMISC
, I915_READ(PMMISC
) | MCPPCE_EN
);
4193 I915_WRITE16(TSC1
, I915_READ(TSC1
) | TSE
);
4195 /* 100ms RC evaluation intervals */
4196 I915_WRITE(RCUPEI
, 100000);
4197 I915_WRITE(RCDNEI
, 100000);
4199 /* Set max/min thresholds to 90ms and 80ms respectively */
4200 I915_WRITE(RCBMAXAVG
, 90000);
4201 I915_WRITE(RCBMINAVG
, 80000);
4203 I915_WRITE(MEMIHYST
, 1);
4205 /* Set up min, max, and cur for interrupt handling */
4206 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
4207 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
4208 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
4209 MEMMODE_FSTART_SHIFT
;
4211 vstart
= (I915_READ(PXVFREQ(fstart
)) & PXVFREQ_PX_MASK
) >>
4214 dev_priv
->ips
.fmax
= fmax
; /* IPS callback will increase this */
4215 dev_priv
->ips
.fstart
= fstart
;
4217 dev_priv
->ips
.max_delay
= fstart
;
4218 dev_priv
->ips
.min_delay
= fmin
;
4219 dev_priv
->ips
.cur_delay
= fstart
;
4221 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4222 fmax
, fmin
, fstart
);
4224 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
4227 * Interrupts will be enabled in ironlake_irq_postinstall
4230 I915_WRITE(VIDSTART
, vstart
);
4231 POSTING_READ(VIDSTART
);
4233 rgvmodectl
|= MEMMODE_SWMODE_EN
;
4234 I915_WRITE(MEMMODECTL
, rgvmodectl
);
4236 if (wait_for_atomic((I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) == 0, 10))
4237 DRM_ERROR("stuck trying to change perf mode\n");
4240 ironlake_set_drps(dev
, fstart
);
4242 dev_priv
->ips
.last_count1
= I915_READ(DMIEC
) +
4243 I915_READ(DDREC
) + I915_READ(CSIEC
);
4244 dev_priv
->ips
.last_time1
= jiffies_to_msecs(jiffies
);
4245 dev_priv
->ips
.last_count2
= I915_READ(GFXEC
);
4246 dev_priv
->ips
.last_time2
= ktime_get_raw_ns();
4248 spin_unlock_irq(&mchdev_lock
);
4251 static void ironlake_disable_drps(struct drm_device
*dev
)
4253 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4256 spin_lock_irq(&mchdev_lock
);
4258 rgvswctl
= I915_READ16(MEMSWCTL
);
4260 /* Ack interrupts, disable EFC interrupt */
4261 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
4262 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
4263 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
4264 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
4265 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
4267 /* Go back to the starting frequency */
4268 ironlake_set_drps(dev
, dev_priv
->ips
.fstart
);
4270 rgvswctl
|= MEMCTL_CMD_STS
;
4271 I915_WRITE(MEMSWCTL
, rgvswctl
);
4274 spin_unlock_irq(&mchdev_lock
);
4277 /* There's a funny hw issue where the hw returns all 0 when reading from
4278 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4279 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4280 * all limits and the gpu stuck at whatever frequency it is at atm).
4282 static u32
intel_rps_limits(struct drm_i915_private
*dev_priv
, u8 val
)
4286 /* Only set the down limit when we've reached the lowest level to avoid
4287 * getting more interrupts, otherwise leave this clear. This prevents a
4288 * race in the hw when coming out of rc6: There's a tiny window where
4289 * the hw runs at the minimal clock before selecting the desired
4290 * frequency, if the down threshold expires in that window we will not
4291 * receive a down interrupt. */
4292 if (IS_GEN9(dev_priv
->dev
)) {
4293 limits
= (dev_priv
->rps
.max_freq_softlimit
) << 23;
4294 if (val
<= dev_priv
->rps
.min_freq_softlimit
)
4295 limits
|= (dev_priv
->rps
.min_freq_softlimit
) << 14;
4297 limits
= dev_priv
->rps
.max_freq_softlimit
<< 24;
4298 if (val
<= dev_priv
->rps
.min_freq_softlimit
)
4299 limits
|= dev_priv
->rps
.min_freq_softlimit
<< 16;
4305 static void gen6_set_rps_thresholds(struct drm_i915_private
*dev_priv
, u8 val
)
4308 u32 threshold_up
= 0, threshold_down
= 0; /* in % */
4309 u32 ei_up
= 0, ei_down
= 0;
4311 new_power
= dev_priv
->rps
.power
;
4312 switch (dev_priv
->rps
.power
) {
4314 if (val
> dev_priv
->rps
.efficient_freq
+ 1 && val
> dev_priv
->rps
.cur_freq
)
4315 new_power
= BETWEEN
;
4319 if (val
<= dev_priv
->rps
.efficient_freq
&& val
< dev_priv
->rps
.cur_freq
)
4320 new_power
= LOW_POWER
;
4321 else if (val
>= dev_priv
->rps
.rp0_freq
&& val
> dev_priv
->rps
.cur_freq
)
4322 new_power
= HIGH_POWER
;
4326 if (val
< (dev_priv
->rps
.rp1_freq
+ dev_priv
->rps
.rp0_freq
) >> 1 && val
< dev_priv
->rps
.cur_freq
)
4327 new_power
= BETWEEN
;
4330 /* Max/min bins are special */
4331 if (val
<= dev_priv
->rps
.min_freq_softlimit
)
4332 new_power
= LOW_POWER
;
4333 if (val
>= dev_priv
->rps
.max_freq_softlimit
)
4334 new_power
= HIGH_POWER
;
4335 if (new_power
== dev_priv
->rps
.power
)
4338 /* Note the units here are not exactly 1us, but 1280ns. */
4339 switch (new_power
) {
4341 /* Upclock if more than 95% busy over 16ms */
4345 /* Downclock if less than 85% busy over 32ms */
4347 threshold_down
= 85;
4351 /* Upclock if more than 90% busy over 13ms */
4355 /* Downclock if less than 75% busy over 32ms */
4357 threshold_down
= 75;
4361 /* Upclock if more than 85% busy over 10ms */
4365 /* Downclock if less than 60% busy over 32ms */
4367 threshold_down
= 60;
4371 I915_WRITE(GEN6_RP_UP_EI
,
4372 GT_INTERVAL_FROM_US(dev_priv
, ei_up
));
4373 I915_WRITE(GEN6_RP_UP_THRESHOLD
,
4374 GT_INTERVAL_FROM_US(dev_priv
, (ei_up
* threshold_up
/ 100)));
4376 I915_WRITE(GEN6_RP_DOWN_EI
,
4377 GT_INTERVAL_FROM_US(dev_priv
, ei_down
));
4378 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
,
4379 GT_INTERVAL_FROM_US(dev_priv
, (ei_down
* threshold_down
/ 100)));
4381 I915_WRITE(GEN6_RP_CONTROL
,
4382 GEN6_RP_MEDIA_TURBO
|
4383 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
4384 GEN6_RP_MEDIA_IS_GFX
|
4386 GEN6_RP_UP_BUSY_AVG
|
4387 GEN6_RP_DOWN_IDLE_AVG
);
4389 dev_priv
->rps
.power
= new_power
;
4390 dev_priv
->rps
.up_threshold
= threshold_up
;
4391 dev_priv
->rps
.down_threshold
= threshold_down
;
4392 dev_priv
->rps
.last_adj
= 0;
4395 static u32
gen6_rps_pm_mask(struct drm_i915_private
*dev_priv
, u8 val
)
4399 if (val
> dev_priv
->rps
.min_freq_softlimit
)
4400 mask
|= GEN6_PM_RP_DOWN_EI_EXPIRED
| GEN6_PM_RP_DOWN_THRESHOLD
| GEN6_PM_RP_DOWN_TIMEOUT
;
4401 if (val
< dev_priv
->rps
.max_freq_softlimit
)
4402 mask
|= GEN6_PM_RP_UP_EI_EXPIRED
| GEN6_PM_RP_UP_THRESHOLD
;
4404 mask
&= dev_priv
->pm_rps_events
;
4406 return gen6_sanitize_rps_pm_mask(dev_priv
, ~mask
);
4409 /* gen6_set_rps is called to update the frequency request, but should also be
4410 * called when the range (min_delay and max_delay) is modified so that we can
4411 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4412 static void gen6_set_rps(struct drm_device
*dev
, u8 val
)
4414 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4416 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4417 if (IS_BROXTON(dev
) && (INTEL_REVID(dev
) < BXT_REVID_B0
))
4420 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
4421 WARN_ON(val
> dev_priv
->rps
.max_freq
);
4422 WARN_ON(val
< dev_priv
->rps
.min_freq
);
4424 /* min/max delay may still have been modified so be sure to
4425 * write the limits value.
4427 if (val
!= dev_priv
->rps
.cur_freq
) {
4428 gen6_set_rps_thresholds(dev_priv
, val
);
4431 I915_WRITE(GEN6_RPNSWREQ
,
4432 GEN9_FREQUENCY(val
));
4433 else if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
4434 I915_WRITE(GEN6_RPNSWREQ
,
4435 HSW_FREQUENCY(val
));
4437 I915_WRITE(GEN6_RPNSWREQ
,
4438 GEN6_FREQUENCY(val
) |
4440 GEN6_AGGRESSIVE_TURBO
);
4443 /* Make sure we continue to get interrupts
4444 * until we hit the minimum or maximum frequencies.
4446 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
, intel_rps_limits(dev_priv
, val
));
4447 I915_WRITE(GEN6_PMINTRMSK
, gen6_rps_pm_mask(dev_priv
, val
));
4449 POSTING_READ(GEN6_RPNSWREQ
);
4451 dev_priv
->rps
.cur_freq
= val
;
4452 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv
, val
));
4455 static void valleyview_set_rps(struct drm_device
*dev
, u8 val
)
4457 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4459 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
4460 WARN_ON(val
> dev_priv
->rps
.max_freq
);
4461 WARN_ON(val
< dev_priv
->rps
.min_freq
);
4463 if (WARN_ONCE(IS_CHERRYVIEW(dev
) && (val
& 1),
4464 "Odd GPU freq value\n"))
4467 I915_WRITE(GEN6_PMINTRMSK
, gen6_rps_pm_mask(dev_priv
, val
));
4469 if (val
!= dev_priv
->rps
.cur_freq
) {
4470 vlv_punit_write(dev_priv
, PUNIT_REG_GPU_FREQ_REQ
, val
);
4471 if (!IS_CHERRYVIEW(dev_priv
))
4472 gen6_set_rps_thresholds(dev_priv
, val
);
4475 dev_priv
->rps
.cur_freq
= val
;
4476 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv
, val
));
4479 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4481 * * If Gfx is Idle, then
4482 * 1. Forcewake Media well.
4483 * 2. Request idle freq.
4484 * 3. Release Forcewake of Media well.
4486 static void vlv_set_rps_idle(struct drm_i915_private
*dev_priv
)
4488 u32 val
= dev_priv
->rps
.idle_freq
;
4490 if (dev_priv
->rps
.cur_freq
<= val
)
4493 /* Wake up the media well, as that takes a lot less
4494 * power than the Render well. */
4495 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_MEDIA
);
4496 valleyview_set_rps(dev_priv
->dev
, val
);
4497 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_MEDIA
);
4500 void gen6_rps_busy(struct drm_i915_private
*dev_priv
)
4502 mutex_lock(&dev_priv
->rps
.hw_lock
);
4503 if (dev_priv
->rps
.enabled
) {
4504 if (dev_priv
->pm_rps_events
& (GEN6_PM_RP_DOWN_EI_EXPIRED
| GEN6_PM_RP_UP_EI_EXPIRED
))
4505 gen6_rps_reset_ei(dev_priv
);
4506 I915_WRITE(GEN6_PMINTRMSK
,
4507 gen6_rps_pm_mask(dev_priv
, dev_priv
->rps
.cur_freq
));
4509 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4512 void gen6_rps_idle(struct drm_i915_private
*dev_priv
)
4514 struct drm_device
*dev
= dev_priv
->dev
;
4516 mutex_lock(&dev_priv
->rps
.hw_lock
);
4517 if (dev_priv
->rps
.enabled
) {
4518 if (IS_VALLEYVIEW(dev
))
4519 vlv_set_rps_idle(dev_priv
);
4521 gen6_set_rps(dev_priv
->dev
, dev_priv
->rps
.idle_freq
);
4522 dev_priv
->rps
.last_adj
= 0;
4523 I915_WRITE(GEN6_PMINTRMSK
, 0xffffffff);
4525 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4527 spin_lock(&dev_priv
->rps
.client_lock
);
4528 while (!list_empty(&dev_priv
->rps
.clients
))
4529 list_del_init(dev_priv
->rps
.clients
.next
);
4530 spin_unlock(&dev_priv
->rps
.client_lock
);
4533 void gen6_rps_boost(struct drm_i915_private
*dev_priv
,
4534 struct intel_rps_client
*rps
,
4535 unsigned long submitted
)
4537 /* This is intentionally racy! We peek at the state here, then
4538 * validate inside the RPS worker.
4540 if (!(dev_priv
->mm
.busy
&&
4541 dev_priv
->rps
.enabled
&&
4542 dev_priv
->rps
.cur_freq
< dev_priv
->rps
.max_freq_softlimit
))
4545 /* Force a RPS boost (and don't count it against the client) if
4546 * the GPU is severely congested.
4548 if (rps
&& time_after(jiffies
, submitted
+ DRM_I915_THROTTLE_JIFFIES
))
4551 spin_lock(&dev_priv
->rps
.client_lock
);
4552 if (rps
== NULL
|| list_empty(&rps
->link
)) {
4553 spin_lock_irq(&dev_priv
->irq_lock
);
4554 if (dev_priv
->rps
.interrupts_enabled
) {
4555 dev_priv
->rps
.client_boost
= true;
4556 queue_work(dev_priv
->wq
, &dev_priv
->rps
.work
);
4558 spin_unlock_irq(&dev_priv
->irq_lock
);
4561 list_add(&rps
->link
, &dev_priv
->rps
.clients
);
4564 dev_priv
->rps
.boosts
++;
4566 spin_unlock(&dev_priv
->rps
.client_lock
);
4569 void intel_set_rps(struct drm_device
*dev
, u8 val
)
4571 if (IS_VALLEYVIEW(dev
))
4572 valleyview_set_rps(dev
, val
);
4574 gen6_set_rps(dev
, val
);
4577 static void gen9_disable_rps(struct drm_device
*dev
)
4579 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4581 I915_WRITE(GEN6_RC_CONTROL
, 0);
4582 I915_WRITE(GEN9_PG_ENABLE
, 0);
4585 static void gen6_disable_rps(struct drm_device
*dev
)
4587 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4589 I915_WRITE(GEN6_RC_CONTROL
, 0);
4590 I915_WRITE(GEN6_RPNSWREQ
, 1 << 31);
4593 static void cherryview_disable_rps(struct drm_device
*dev
)
4595 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4597 I915_WRITE(GEN6_RC_CONTROL
, 0);
4600 static void valleyview_disable_rps(struct drm_device
*dev
)
4602 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4604 /* we're doing forcewake before Disabling RC6,
4605 * This what the BIOS expects when going into suspend */
4606 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
4608 I915_WRITE(GEN6_RC_CONTROL
, 0);
4610 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
4613 static void intel_print_rc6_info(struct drm_device
*dev
, u32 mode
)
4615 if (IS_VALLEYVIEW(dev
)) {
4616 if (mode
& (GEN7_RC_CTL_TO_MODE
| GEN6_RC_CTL_EI_MODE(1)))
4617 mode
= GEN6_RC_CTL_RC6_ENABLE
;
4622 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4623 (mode
& GEN6_RC_CTL_RC6_ENABLE
) ? "on" : "off",
4624 (mode
& GEN6_RC_CTL_RC6p_ENABLE
) ? "on" : "off",
4625 (mode
& GEN6_RC_CTL_RC6pp_ENABLE
) ? "on" : "off");
4628 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4629 (mode
& GEN6_RC_CTL_RC6_ENABLE
) ? "on" : "off");
4632 static int sanitize_rc6_option(const struct drm_device
*dev
, int enable_rc6
)
4634 /* No RC6 before Ironlake and code is gone for ilk. */
4635 if (INTEL_INFO(dev
)->gen
< 6)
4638 /* Respect the kernel parameter if it is set */
4639 if (enable_rc6
>= 0) {
4643 mask
= INTEL_RC6_ENABLE
| INTEL_RC6p_ENABLE
|
4646 mask
= INTEL_RC6_ENABLE
;
4648 if ((enable_rc6
& mask
) != enable_rc6
)
4649 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4650 enable_rc6
& mask
, enable_rc6
, mask
);
4652 return enable_rc6
& mask
;
4655 if (IS_IVYBRIDGE(dev
))
4656 return (INTEL_RC6_ENABLE
| INTEL_RC6p_ENABLE
);
4658 return INTEL_RC6_ENABLE
;
4661 int intel_enable_rc6(const struct drm_device
*dev
)
4663 return i915
.enable_rc6
;
4666 static void gen6_init_rps_frequencies(struct drm_device
*dev
)
4668 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4669 uint32_t rp_state_cap
;
4670 u32 ddcc_status
= 0;
4673 /* All of these values are in units of 50MHz */
4674 dev_priv
->rps
.cur_freq
= 0;
4675 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4676 if (IS_BROXTON(dev
)) {
4677 rp_state_cap
= I915_READ(BXT_RP_STATE_CAP
);
4678 dev_priv
->rps
.rp0_freq
= (rp_state_cap
>> 16) & 0xff;
4679 dev_priv
->rps
.rp1_freq
= (rp_state_cap
>> 8) & 0xff;
4680 dev_priv
->rps
.min_freq
= (rp_state_cap
>> 0) & 0xff;
4682 rp_state_cap
= I915_READ(GEN6_RP_STATE_CAP
);
4683 dev_priv
->rps
.rp0_freq
= (rp_state_cap
>> 0) & 0xff;
4684 dev_priv
->rps
.rp1_freq
= (rp_state_cap
>> 8) & 0xff;
4685 dev_priv
->rps
.min_freq
= (rp_state_cap
>> 16) & 0xff;
4688 /* hw_max = RP0 until we check for overclocking */
4689 dev_priv
->rps
.max_freq
= dev_priv
->rps
.rp0_freq
;
4691 dev_priv
->rps
.efficient_freq
= dev_priv
->rps
.rp1_freq
;
4692 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
) || IS_SKYLAKE(dev
)) {
4693 ret
= sandybridge_pcode_read(dev_priv
,
4694 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL
,
4697 dev_priv
->rps
.efficient_freq
=
4699 ((ddcc_status
>> 8) & 0xff),
4700 dev_priv
->rps
.min_freq
,
4701 dev_priv
->rps
.max_freq
);
4704 if (IS_SKYLAKE(dev
)) {
4705 /* Store the frequency values in 16.66 MHZ units, which is
4706 the natural hardware unit for SKL */
4707 dev_priv
->rps
.rp0_freq
*= GEN9_FREQ_SCALER
;
4708 dev_priv
->rps
.rp1_freq
*= GEN9_FREQ_SCALER
;
4709 dev_priv
->rps
.min_freq
*= GEN9_FREQ_SCALER
;
4710 dev_priv
->rps
.max_freq
*= GEN9_FREQ_SCALER
;
4711 dev_priv
->rps
.efficient_freq
*= GEN9_FREQ_SCALER
;
4714 dev_priv
->rps
.idle_freq
= dev_priv
->rps
.min_freq
;
4716 /* Preserve min/max settings in case of re-init */
4717 if (dev_priv
->rps
.max_freq_softlimit
== 0)
4718 dev_priv
->rps
.max_freq_softlimit
= dev_priv
->rps
.max_freq
;
4720 if (dev_priv
->rps
.min_freq_softlimit
== 0) {
4721 if (IS_HASWELL(dev
) || IS_BROADWELL(dev
))
4722 dev_priv
->rps
.min_freq_softlimit
=
4723 max_t(int, dev_priv
->rps
.efficient_freq
,
4724 intel_freq_opcode(dev_priv
, 450));
4726 dev_priv
->rps
.min_freq_softlimit
=
4727 dev_priv
->rps
.min_freq
;
4731 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4732 static void gen9_enable_rps(struct drm_device
*dev
)
4734 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4736 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
4738 gen6_init_rps_frequencies(dev
);
4740 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4741 if (IS_BROXTON(dev
) && (INTEL_REVID(dev
) < BXT_REVID_B0
)) {
4742 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
4746 /* Program defaults and thresholds for RPS*/
4747 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
4748 GEN9_FREQUENCY(dev_priv
->rps
.rp1_freq
));
4750 /* 1 second timeout*/
4751 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
,
4752 GT_INTERVAL_FROM_US(dev_priv
, 1000000));
4754 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 0xa);
4756 /* Leaning on the below call to gen6_set_rps to program/setup the
4757 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4758 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4759 dev_priv
->rps
.power
= HIGH_POWER
; /* force a reset */
4760 gen6_set_rps(dev_priv
->dev
, dev_priv
->rps
.min_freq_softlimit
);
4762 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
4765 static void gen9_enable_rc6(struct drm_device
*dev
)
4767 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4768 struct intel_engine_cs
*ring
;
4769 uint32_t rc6_mask
= 0;
4772 /* 1a: Software RC state - RC0 */
4773 I915_WRITE(GEN6_RC_STATE
, 0);
4775 /* 1b: Get forcewake during program sequence. Although the driver
4776 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4777 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
4779 /* 2a: Disable RC states. */
4780 I915_WRITE(GEN6_RC_CONTROL
, 0);
4782 /* 2b: Program RC6 thresholds.*/
4784 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4785 if (IS_SKYLAKE(dev
))
4786 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 108 << 16);
4788 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 54 << 16);
4789 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000); /* 12500 * 1280ns */
4790 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25); /* 25 * 1280ns */
4791 for_each_ring(ring
, dev_priv
, unused
)
4792 I915_WRITE(RING_MAX_IDLE(ring
->mmio_base
), 10);
4794 if (HAS_GUC_UCODE(dev
))
4795 I915_WRITE(GUC_MAX_IDLE_COUNT
, 0xA);
4797 I915_WRITE(GEN6_RC_SLEEP
, 0);
4799 /* 2c: Program Coarse Power Gating Policies. */
4800 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS
, 25);
4801 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS
, 25);
4803 /* 3a: Enable RC6 */
4804 if (intel_enable_rc6(dev
) & INTEL_RC6_ENABLE
)
4805 rc6_mask
= GEN6_RC_CTL_RC6_ENABLE
;
4806 DRM_INFO("RC6 %s\n", (rc6_mask
& GEN6_RC_CTL_RC6_ENABLE
) ?
4808 /* WaRsUseTimeoutMode */
4809 if ((IS_SKYLAKE(dev
) && INTEL_REVID(dev
) <= SKL_REVID_D0
) ||
4810 (IS_BROXTON(dev
) && INTEL_REVID(dev
) <= BXT_REVID_A0
)) {
4811 I915_WRITE(GEN6_RC6_THRESHOLD
, 625); /* 800us */
4812 I915_WRITE(GEN6_RC_CONTROL
, GEN6_RC_CTL_HW_ENABLE
|
4813 GEN7_RC_CTL_TO_MODE
|
4816 I915_WRITE(GEN6_RC6_THRESHOLD
, 37500); /* 37.5/125ms per EI */
4817 I915_WRITE(GEN6_RC_CONTROL
, GEN6_RC_CTL_HW_ENABLE
|
4818 GEN6_RC_CTL_EI_MODE(1) |
4823 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4824 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4826 if ((IS_BROXTON(dev
) && (INTEL_REVID(dev
) < BXT_REVID_B0
)) ||
4827 ((IS_SKL_GT3(dev
) || IS_SKL_GT4(dev
)) && (INTEL_REVID(dev
) <= SKL_REVID_F0
)))
4828 I915_WRITE(GEN9_PG_ENABLE
, 0);
4830 I915_WRITE(GEN9_PG_ENABLE
, (rc6_mask
& GEN6_RC_CTL_RC6_ENABLE
) ?
4831 (GEN9_RENDER_PG_ENABLE
| GEN9_MEDIA_PG_ENABLE
) : 0);
4833 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
4837 static void gen8_enable_rps(struct drm_device
*dev
)
4839 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4840 struct intel_engine_cs
*ring
;
4841 uint32_t rc6_mask
= 0;
4844 /* 1a: Software RC state - RC0 */
4845 I915_WRITE(GEN6_RC_STATE
, 0);
4847 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4848 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4849 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
4851 /* 2a: Disable RC states. */
4852 I915_WRITE(GEN6_RC_CONTROL
, 0);
4854 /* Initialize rps frequencies */
4855 gen6_init_rps_frequencies(dev
);
4857 /* 2b: Program RC6 thresholds.*/
4858 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16);
4859 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000); /* 12500 * 1280ns */
4860 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25); /* 25 * 1280ns */
4861 for_each_ring(ring
, dev_priv
, unused
)
4862 I915_WRITE(RING_MAX_IDLE(ring
->mmio_base
), 10);
4863 I915_WRITE(GEN6_RC_SLEEP
, 0);
4864 if (IS_BROADWELL(dev
))
4865 I915_WRITE(GEN6_RC6_THRESHOLD
, 625); /* 800us/1.28 for TO */
4867 I915_WRITE(GEN6_RC6_THRESHOLD
, 50000); /* 50/125ms per EI */
4870 if (intel_enable_rc6(dev
) & INTEL_RC6_ENABLE
)
4871 rc6_mask
= GEN6_RC_CTL_RC6_ENABLE
;
4872 intel_print_rc6_info(dev
, rc6_mask
);
4873 if (IS_BROADWELL(dev
))
4874 I915_WRITE(GEN6_RC_CONTROL
, GEN6_RC_CTL_HW_ENABLE
|
4875 GEN7_RC_CTL_TO_MODE
|
4878 I915_WRITE(GEN6_RC_CONTROL
, GEN6_RC_CTL_HW_ENABLE
|
4879 GEN6_RC_CTL_EI_MODE(1) |
4882 /* 4 Program defaults and thresholds for RPS*/
4883 I915_WRITE(GEN6_RPNSWREQ
,
4884 HSW_FREQUENCY(dev_priv
->rps
.rp1_freq
));
4885 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
4886 HSW_FREQUENCY(dev_priv
->rps
.rp1_freq
));
4887 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4888 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 100000000 / 128); /* 1 second timeout */
4890 /* Docs recommend 900MHz, and 300 MHz respectively */
4891 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
,
4892 dev_priv
->rps
.max_freq_softlimit
<< 24 |
4893 dev_priv
->rps
.min_freq_softlimit
<< 16);
4895 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 7600000 / 128); /* 76ms busyness per EI, 90% */
4896 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4897 I915_WRITE(GEN6_RP_UP_EI
, 66000); /* 84.48ms, XXX: random? */
4898 I915_WRITE(GEN6_RP_DOWN_EI
, 350000); /* 448ms, XXX: random? */
4900 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
4903 I915_WRITE(GEN6_RP_CONTROL
,
4904 GEN6_RP_MEDIA_TURBO
|
4905 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
4906 GEN6_RP_MEDIA_IS_GFX
|
4908 GEN6_RP_UP_BUSY_AVG
|
4909 GEN6_RP_DOWN_IDLE_AVG
);
4911 /* 6: Ring frequency + overclocking (our driver does this later */
4913 dev_priv
->rps
.power
= HIGH_POWER
; /* force a reset */
4914 gen6_set_rps(dev_priv
->dev
, dev_priv
->rps
.idle_freq
);
4916 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
4919 static void gen6_enable_rps(struct drm_device
*dev
)
4921 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4922 struct intel_engine_cs
*ring
;
4923 u32 rc6vids
, pcu_mbox
= 0, rc6_mask
= 0;
4928 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
4930 /* Here begins a magic sequence of register writes to enable
4931 * auto-downclocking.
4933 * Perhaps there might be some value in exposing these to
4936 I915_WRITE(GEN6_RC_STATE
, 0);
4938 /* Clear the DBG now so we don't confuse earlier errors */
4939 if ((gtfifodbg
= I915_READ(GTFIFODBG
))) {
4940 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg
);
4941 I915_WRITE(GTFIFODBG
, gtfifodbg
);
4944 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
4946 /* Initialize rps frequencies */
4947 gen6_init_rps_frequencies(dev
);
4949 /* disable the counters and set deterministic thresholds */
4950 I915_WRITE(GEN6_RC_CONTROL
, 0);
4952 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT
, 1000 << 16);
4953 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16 | 30);
4954 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT
, 30);
4955 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
4956 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
4958 for_each_ring(ring
, dev_priv
, i
)
4959 I915_WRITE(RING_MAX_IDLE(ring
->mmio_base
), 10);
4961 I915_WRITE(GEN6_RC_SLEEP
, 0);
4962 I915_WRITE(GEN6_RC1e_THRESHOLD
, 1000);
4963 if (IS_IVYBRIDGE(dev
))
4964 I915_WRITE(GEN6_RC6_THRESHOLD
, 125000);
4966 I915_WRITE(GEN6_RC6_THRESHOLD
, 50000);
4967 I915_WRITE(GEN6_RC6p_THRESHOLD
, 150000);
4968 I915_WRITE(GEN6_RC6pp_THRESHOLD
, 64000); /* unused */
4970 /* Check if we are enabling RC6 */
4971 rc6_mode
= intel_enable_rc6(dev_priv
->dev
);
4972 if (rc6_mode
& INTEL_RC6_ENABLE
)
4973 rc6_mask
|= GEN6_RC_CTL_RC6_ENABLE
;
4975 /* We don't use those on Haswell */
4976 if (!IS_HASWELL(dev
)) {
4977 if (rc6_mode
& INTEL_RC6p_ENABLE
)
4978 rc6_mask
|= GEN6_RC_CTL_RC6p_ENABLE
;
4980 if (rc6_mode
& INTEL_RC6pp_ENABLE
)
4981 rc6_mask
|= GEN6_RC_CTL_RC6pp_ENABLE
;
4984 intel_print_rc6_info(dev
, rc6_mask
);
4986 I915_WRITE(GEN6_RC_CONTROL
,
4988 GEN6_RC_CTL_EI_MODE(1) |
4989 GEN6_RC_CTL_HW_ENABLE
);
4991 /* Power down if completely idle for over 50ms */
4992 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 50000);
4993 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
4995 ret
= sandybridge_pcode_write(dev_priv
, GEN6_PCODE_WRITE_MIN_FREQ_TABLE
, 0);
4997 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4999 ret
= sandybridge_pcode_read(dev_priv
, GEN6_READ_OC_PARAMS
, &pcu_mbox
);
5000 if (!ret
&& (pcu_mbox
& (1<<31))) { /* OC supported */
5001 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5002 (dev_priv
->rps
.max_freq_softlimit
& 0xff) * 50,
5003 (pcu_mbox
& 0xff) * 50);
5004 dev_priv
->rps
.max_freq
= pcu_mbox
& 0xff;
5007 dev_priv
->rps
.power
= HIGH_POWER
; /* force a reset */
5008 gen6_set_rps(dev_priv
->dev
, dev_priv
->rps
.idle_freq
);
5011 ret
= sandybridge_pcode_read(dev_priv
, GEN6_PCODE_READ_RC6VIDS
, &rc6vids
);
5012 if (IS_GEN6(dev
) && ret
) {
5013 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5014 } else if (IS_GEN6(dev
) && (GEN6_DECODE_RC6_VID(rc6vids
& 0xff) < 450)) {
5015 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5016 GEN6_DECODE_RC6_VID(rc6vids
& 0xff), 450);
5017 rc6vids
&= 0xffff00;
5018 rc6vids
|= GEN6_ENCODE_RC6_VID(450);
5019 ret
= sandybridge_pcode_write(dev_priv
, GEN6_PCODE_WRITE_RC6VIDS
, rc6vids
);
5021 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5024 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5027 static void __gen6_update_ring_freq(struct drm_device
*dev
)
5029 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5031 unsigned int gpu_freq
;
5032 unsigned int max_ia_freq
, min_ring_freq
;
5033 unsigned int max_gpu_freq
, min_gpu_freq
;
5034 int scaling_factor
= 180;
5035 struct cpufreq_policy
*policy
;
5037 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
5039 policy
= cpufreq_cpu_get(0);
5041 max_ia_freq
= policy
->cpuinfo
.max_freq
;
5042 cpufreq_cpu_put(policy
);
5045 * Default to measured freq if none found, PCU will ensure we
5048 max_ia_freq
= tsc_khz
;
5051 /* Convert from kHz to MHz */
5052 max_ia_freq
/= 1000;
5054 min_ring_freq
= I915_READ(DCLK
) & 0xf;
5055 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5056 min_ring_freq
= mult_frac(min_ring_freq
, 8, 3);
5058 if (IS_SKYLAKE(dev
)) {
5059 /* Convert GT frequency to 50 HZ units */
5060 min_gpu_freq
= dev_priv
->rps
.min_freq
/ GEN9_FREQ_SCALER
;
5061 max_gpu_freq
= dev_priv
->rps
.max_freq
/ GEN9_FREQ_SCALER
;
5063 min_gpu_freq
= dev_priv
->rps
.min_freq
;
5064 max_gpu_freq
= dev_priv
->rps
.max_freq
;
5068 * For each potential GPU frequency, load a ring frequency we'd like
5069 * to use for memory access. We do this by specifying the IA frequency
5070 * the PCU should use as a reference to determine the ring frequency.
5072 for (gpu_freq
= max_gpu_freq
; gpu_freq
>= min_gpu_freq
; gpu_freq
--) {
5073 int diff
= max_gpu_freq
- gpu_freq
;
5074 unsigned int ia_freq
= 0, ring_freq
= 0;
5076 if (IS_SKYLAKE(dev
)) {
5078 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5079 * No floor required for ring frequency on SKL.
5081 ring_freq
= gpu_freq
;
5082 } else if (INTEL_INFO(dev
)->gen
>= 8) {
5083 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5084 ring_freq
= max(min_ring_freq
, gpu_freq
);
5085 } else if (IS_HASWELL(dev
)) {
5086 ring_freq
= mult_frac(gpu_freq
, 5, 4);
5087 ring_freq
= max(min_ring_freq
, ring_freq
);
5088 /* leave ia_freq as the default, chosen by cpufreq */
5090 /* On older processors, there is no separate ring
5091 * clock domain, so in order to boost the bandwidth
5092 * of the ring, we need to upclock the CPU (ia_freq).
5094 * For GPU frequencies less than 750MHz,
5095 * just use the lowest ring freq.
5097 if (gpu_freq
< min_freq
)
5100 ia_freq
= max_ia_freq
- ((diff
* scaling_factor
) / 2);
5101 ia_freq
= DIV_ROUND_CLOSEST(ia_freq
, 100);
5104 sandybridge_pcode_write(dev_priv
,
5105 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
,
5106 ia_freq
<< GEN6_PCODE_FREQ_IA_RATIO_SHIFT
|
5107 ring_freq
<< GEN6_PCODE_FREQ_RING_RATIO_SHIFT
|
5112 void gen6_update_ring_freq(struct drm_device
*dev
)
5114 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5116 if (!HAS_CORE_RING_FREQ(dev
))
5119 mutex_lock(&dev_priv
->rps
.hw_lock
);
5120 __gen6_update_ring_freq(dev
);
5121 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5124 static int cherryview_rps_max_freq(struct drm_i915_private
*dev_priv
)
5126 struct drm_device
*dev
= dev_priv
->dev
;
5129 val
= vlv_punit_read(dev_priv
, FB_GFX_FMAX_AT_VMAX_FUSE
);
5131 switch (INTEL_INFO(dev
)->eu_total
) {
5133 /* (2 * 4) config */
5134 rp0
= (val
>> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT
);
5137 /* (2 * 6) config */
5138 rp0
= (val
>> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT
);
5141 /* (2 * 8) config */
5143 /* Setting (2 * 8) Min RP0 for any other combination */
5144 rp0
= (val
>> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT
);
5148 rp0
= (rp0
& FB_GFX_FREQ_FUSE_MASK
);
5153 static int cherryview_rps_rpe_freq(struct drm_i915_private
*dev_priv
)
5157 val
= vlv_punit_read(dev_priv
, PUNIT_GPU_DUTYCYCLE_REG
);
5158 rpe
= (val
>> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT
) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK
;
5163 static int cherryview_rps_guar_freq(struct drm_i915_private
*dev_priv
)
5167 val
= vlv_punit_read(dev_priv
, FB_GFX_FMAX_AT_VMAX_FUSE
);
5168 rp1
= (val
& FB_GFX_FREQ_FUSE_MASK
);
5173 static int valleyview_rps_guar_freq(struct drm_i915_private
*dev_priv
)
5177 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FREQ_FUSE
);
5179 rp1
= (val
& FB_GFX_FGUARANTEED_FREQ_FUSE_MASK
) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT
;
5184 static int valleyview_rps_max_freq(struct drm_i915_private
*dev_priv
)
5188 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FREQ_FUSE
);
5190 rp0
= (val
& FB_GFX_MAX_FREQ_FUSE_MASK
) >> FB_GFX_MAX_FREQ_FUSE_SHIFT
;
5192 rp0
= min_t(u32
, rp0
, 0xea);
5197 static int valleyview_rps_rpe_freq(struct drm_i915_private
*dev_priv
)
5201 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FMAX_FUSE_LO
);
5202 rpe
= (val
& FB_FMAX_VMIN_FREQ_LO_MASK
) >> FB_FMAX_VMIN_FREQ_LO_SHIFT
;
5203 val
= vlv_nc_read(dev_priv
, IOSF_NC_FB_GFX_FMAX_FUSE_HI
);
5204 rpe
|= (val
& FB_FMAX_VMIN_FREQ_HI_MASK
) << 5;
5209 static int valleyview_rps_min_freq(struct drm_i915_private
*dev_priv
)
5211 return vlv_punit_read(dev_priv
, PUNIT_REG_GPU_LFM
) & 0xff;
5214 /* Check that the pctx buffer wasn't move under us. */
5215 static void valleyview_check_pctx(struct drm_i915_private
*dev_priv
)
5217 unsigned long pctx_addr
= I915_READ(VLV_PCBR
) & ~4095;
5219 WARN_ON(pctx_addr
!= dev_priv
->mm
.stolen_base
+
5220 dev_priv
->vlv_pctx
->stolen
->start
);
5224 /* Check that the pcbr address is not empty. */
5225 static void cherryview_check_pctx(struct drm_i915_private
*dev_priv
)
5227 unsigned long pctx_addr
= I915_READ(VLV_PCBR
) & ~4095;
5229 WARN_ON((pctx_addr
>> VLV_PCBR_ADDR_SHIFT
) == 0);
5232 static void cherryview_setup_pctx(struct drm_device
*dev
)
5234 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5235 unsigned long pctx_paddr
, paddr
;
5236 struct i915_gtt
*gtt
= &dev_priv
->gtt
;
5238 int pctx_size
= 32*1024;
5240 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
5242 pcbr
= I915_READ(VLV_PCBR
);
5243 if ((pcbr
>> VLV_PCBR_ADDR_SHIFT
) == 0) {
5244 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5245 paddr
= (dev_priv
->mm
.stolen_base
+
5246 (gtt
->stolen_size
- pctx_size
));
5248 pctx_paddr
= (paddr
& (~4095));
5249 I915_WRITE(VLV_PCBR
, pctx_paddr
);
5252 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR
));
5255 static void valleyview_setup_pctx(struct drm_device
*dev
)
5257 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5258 struct drm_i915_gem_object
*pctx
;
5259 unsigned long pctx_paddr
;
5261 int pctx_size
= 24*1024;
5263 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
5265 pcbr
= I915_READ(VLV_PCBR
);
5267 /* BIOS set it up already, grab the pre-alloc'd space */
5270 pcbr_offset
= (pcbr
& (~4095)) - dev_priv
->mm
.stolen_base
;
5271 pctx
= i915_gem_object_create_stolen_for_preallocated(dev_priv
->dev
,
5273 I915_GTT_OFFSET_NONE
,
5278 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5281 * From the Gunit register HAS:
5282 * The Gfx driver is expected to program this register and ensure
5283 * proper allocation within Gfx stolen memory. For example, this
5284 * register should be programmed such than the PCBR range does not
5285 * overlap with other ranges, such as the frame buffer, protected
5286 * memory, or any other relevant ranges.
5288 pctx
= i915_gem_object_create_stolen(dev
, pctx_size
);
5290 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5294 pctx_paddr
= dev_priv
->mm
.stolen_base
+ pctx
->stolen
->start
;
5295 I915_WRITE(VLV_PCBR
, pctx_paddr
);
5298 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR
));
5299 dev_priv
->vlv_pctx
= pctx
;
5302 static void valleyview_cleanup_pctx(struct drm_device
*dev
)
5304 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5306 if (WARN_ON(!dev_priv
->vlv_pctx
))
5309 drm_gem_object_unreference(&dev_priv
->vlv_pctx
->base
);
5310 dev_priv
->vlv_pctx
= NULL
;
5313 static void valleyview_init_gt_powersave(struct drm_device
*dev
)
5315 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5318 valleyview_setup_pctx(dev
);
5320 mutex_lock(&dev_priv
->rps
.hw_lock
);
5322 val
= vlv_punit_read(dev_priv
, PUNIT_REG_GPU_FREQ_STS
);
5323 switch ((val
>> 6) & 3) {
5326 dev_priv
->mem_freq
= 800;
5329 dev_priv
->mem_freq
= 1066;
5332 dev_priv
->mem_freq
= 1333;
5335 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv
->mem_freq
);
5337 dev_priv
->rps
.max_freq
= valleyview_rps_max_freq(dev_priv
);
5338 dev_priv
->rps
.rp0_freq
= dev_priv
->rps
.max_freq
;
5339 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5340 intel_gpu_freq(dev_priv
, dev_priv
->rps
.max_freq
),
5341 dev_priv
->rps
.max_freq
);
5343 dev_priv
->rps
.efficient_freq
= valleyview_rps_rpe_freq(dev_priv
);
5344 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5345 intel_gpu_freq(dev_priv
, dev_priv
->rps
.efficient_freq
),
5346 dev_priv
->rps
.efficient_freq
);
5348 dev_priv
->rps
.rp1_freq
= valleyview_rps_guar_freq(dev_priv
);
5349 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5350 intel_gpu_freq(dev_priv
, dev_priv
->rps
.rp1_freq
),
5351 dev_priv
->rps
.rp1_freq
);
5353 dev_priv
->rps
.min_freq
= valleyview_rps_min_freq(dev_priv
);
5354 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5355 intel_gpu_freq(dev_priv
, dev_priv
->rps
.min_freq
),
5356 dev_priv
->rps
.min_freq
);
5358 dev_priv
->rps
.idle_freq
= dev_priv
->rps
.min_freq
;
5360 /* Preserve min/max settings in case of re-init */
5361 if (dev_priv
->rps
.max_freq_softlimit
== 0)
5362 dev_priv
->rps
.max_freq_softlimit
= dev_priv
->rps
.max_freq
;
5364 if (dev_priv
->rps
.min_freq_softlimit
== 0)
5365 dev_priv
->rps
.min_freq_softlimit
= dev_priv
->rps
.min_freq
;
5367 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5370 static void cherryview_init_gt_powersave(struct drm_device
*dev
)
5372 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5375 cherryview_setup_pctx(dev
);
5377 mutex_lock(&dev_priv
->rps
.hw_lock
);
5379 mutex_lock(&dev_priv
->sb_lock
);
5380 val
= vlv_cck_read(dev_priv
, CCK_FUSE_REG
);
5381 mutex_unlock(&dev_priv
->sb_lock
);
5383 switch ((val
>> 2) & 0x7) {
5385 dev_priv
->mem_freq
= 2000;
5388 dev_priv
->mem_freq
= 1600;
5391 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv
->mem_freq
);
5393 dev_priv
->rps
.max_freq
= cherryview_rps_max_freq(dev_priv
);
5394 dev_priv
->rps
.rp0_freq
= dev_priv
->rps
.max_freq
;
5395 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5396 intel_gpu_freq(dev_priv
, dev_priv
->rps
.max_freq
),
5397 dev_priv
->rps
.max_freq
);
5399 dev_priv
->rps
.efficient_freq
= cherryview_rps_rpe_freq(dev_priv
);
5400 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5401 intel_gpu_freq(dev_priv
, dev_priv
->rps
.efficient_freq
),
5402 dev_priv
->rps
.efficient_freq
);
5404 dev_priv
->rps
.rp1_freq
= cherryview_rps_guar_freq(dev_priv
);
5405 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5406 intel_gpu_freq(dev_priv
, dev_priv
->rps
.rp1_freq
),
5407 dev_priv
->rps
.rp1_freq
);
5409 /* PUnit validated range is only [RPe, RP0] */
5410 dev_priv
->rps
.min_freq
= dev_priv
->rps
.efficient_freq
;
5411 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5412 intel_gpu_freq(dev_priv
, dev_priv
->rps
.min_freq
),
5413 dev_priv
->rps
.min_freq
);
5415 WARN_ONCE((dev_priv
->rps
.max_freq
|
5416 dev_priv
->rps
.efficient_freq
|
5417 dev_priv
->rps
.rp1_freq
|
5418 dev_priv
->rps
.min_freq
) & 1,
5419 "Odd GPU freq values\n");
5421 dev_priv
->rps
.idle_freq
= dev_priv
->rps
.min_freq
;
5423 /* Preserve min/max settings in case of re-init */
5424 if (dev_priv
->rps
.max_freq_softlimit
== 0)
5425 dev_priv
->rps
.max_freq_softlimit
= dev_priv
->rps
.max_freq
;
5427 if (dev_priv
->rps
.min_freq_softlimit
== 0)
5428 dev_priv
->rps
.min_freq_softlimit
= dev_priv
->rps
.min_freq
;
5430 mutex_unlock(&dev_priv
->rps
.hw_lock
);
5433 static void valleyview_cleanup_gt_powersave(struct drm_device
*dev
)
5435 valleyview_cleanup_pctx(dev
);
5438 static void cherryview_enable_rps(struct drm_device
*dev
)
5440 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5441 struct intel_engine_cs
*ring
;
5442 u32 gtfifodbg
, val
, rc6_mode
= 0, pcbr
;
5445 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
5447 gtfifodbg
= I915_READ(GTFIFODBG
);
5449 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5451 I915_WRITE(GTFIFODBG
, gtfifodbg
);
5454 cherryview_check_pctx(dev_priv
);
5456 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5457 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5458 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5460 /* Disable RC states. */
5461 I915_WRITE(GEN6_RC_CONTROL
, 0);
5463 /* 2a: Program RC6 thresholds.*/
5464 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16);
5465 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000); /* 12500 * 1280ns */
5466 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25); /* 25 * 1280ns */
5468 for_each_ring(ring
, dev_priv
, i
)
5469 I915_WRITE(RING_MAX_IDLE(ring
->mmio_base
), 10);
5470 I915_WRITE(GEN6_RC_SLEEP
, 0);
5472 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5473 I915_WRITE(GEN6_RC6_THRESHOLD
, 0x186);
5475 /* allows RC6 residency counter to work */
5476 I915_WRITE(VLV_COUNTER_CONTROL
,
5477 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH
|
5478 VLV_MEDIA_RC6_COUNT_EN
|
5479 VLV_RENDER_RC6_COUNT_EN
));
5481 /* For now we assume BIOS is allocating and populating the PCBR */
5482 pcbr
= I915_READ(VLV_PCBR
);
5485 if ((intel_enable_rc6(dev
) & INTEL_RC6_ENABLE
) &&
5486 (pcbr
>> VLV_PCBR_ADDR_SHIFT
))
5487 rc6_mode
= GEN7_RC_CTL_TO_MODE
;
5489 I915_WRITE(GEN6_RC_CONTROL
, rc6_mode
);
5491 /* 4 Program defaults and thresholds for RPS*/
5492 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 1000000);
5493 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 59400);
5494 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 245000);
5495 I915_WRITE(GEN6_RP_UP_EI
, 66000);
5496 I915_WRITE(GEN6_RP_DOWN_EI
, 350000);
5498 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
5501 I915_WRITE(GEN6_RP_CONTROL
,
5502 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
5503 GEN6_RP_MEDIA_IS_GFX
|
5505 GEN6_RP_UP_BUSY_AVG
|
5506 GEN6_RP_DOWN_IDLE_AVG
);
5508 /* Setting Fixed Bias */
5509 val
= VLV_OVERRIDE_EN
|
5511 CHV_BIAS_CPU_50_SOC_50
;
5512 vlv_punit_write(dev_priv
, VLV_TURBO_SOC_OVERRIDE
, val
);
5514 val
= vlv_punit_read(dev_priv
, PUNIT_REG_GPU_FREQ_STS
);
5516 /* RPS code assumes GPLL is used */
5517 WARN_ONCE((val
& GPLLENABLE
) == 0, "GPLL not enabled\n");
5519 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val
& GPLLENABLE
));
5520 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val
);
5522 dev_priv
->rps
.cur_freq
= (val
>> 8) & 0xff;
5523 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5524 intel_gpu_freq(dev_priv
, dev_priv
->rps
.cur_freq
),
5525 dev_priv
->rps
.cur_freq
);
5527 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5528 intel_gpu_freq(dev_priv
, dev_priv
->rps
.efficient_freq
),
5529 dev_priv
->rps
.efficient_freq
);
5531 valleyview_set_rps(dev_priv
->dev
, dev_priv
->rps
.efficient_freq
);
5533 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5536 static void valleyview_enable_rps(struct drm_device
*dev
)
5538 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5539 struct intel_engine_cs
*ring
;
5540 u32 gtfifodbg
, val
, rc6_mode
= 0;
5543 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
5545 valleyview_check_pctx(dev_priv
);
5547 if ((gtfifodbg
= I915_READ(GTFIFODBG
))) {
5548 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5550 I915_WRITE(GTFIFODBG
, gtfifodbg
);
5553 /* If VLV, Forcewake all wells, else re-direct to regular path */
5554 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5556 /* Disable RC states. */
5557 I915_WRITE(GEN6_RC_CONTROL
, 0);
5559 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 1000000);
5560 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 59400);
5561 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 245000);
5562 I915_WRITE(GEN6_RP_UP_EI
, 66000);
5563 I915_WRITE(GEN6_RP_DOWN_EI
, 350000);
5565 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
5567 I915_WRITE(GEN6_RP_CONTROL
,
5568 GEN6_RP_MEDIA_TURBO
|
5569 GEN6_RP_MEDIA_HW_NORMAL_MODE
|
5570 GEN6_RP_MEDIA_IS_GFX
|
5572 GEN6_RP_UP_BUSY_AVG
|
5573 GEN6_RP_DOWN_IDLE_CONT
);
5575 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 0x00280000);
5576 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
5577 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
5579 for_each_ring(ring
, dev_priv
, i
)
5580 I915_WRITE(RING_MAX_IDLE(ring
->mmio_base
), 10);
5582 I915_WRITE(GEN6_RC6_THRESHOLD
, 0x557);
5584 /* allows RC6 residency counter to work */
5585 I915_WRITE(VLV_COUNTER_CONTROL
,
5586 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN
|
5587 VLV_RENDER_RC0_COUNT_EN
|
5588 VLV_MEDIA_RC6_COUNT_EN
|
5589 VLV_RENDER_RC6_COUNT_EN
));
5591 if (intel_enable_rc6(dev
) & INTEL_RC6_ENABLE
)
5592 rc6_mode
= GEN7_RC_CTL_TO_MODE
| VLV_RC_CTL_CTX_RST_PARALLEL
;
5594 intel_print_rc6_info(dev
, rc6_mode
);
5596 I915_WRITE(GEN6_RC_CONTROL
, rc6_mode
);
5598 /* Setting Fixed Bias */
5599 val
= VLV_OVERRIDE_EN
|
5601 VLV_BIAS_CPU_125_SOC_875
;
5602 vlv_punit_write(dev_priv
, VLV_TURBO_SOC_OVERRIDE
, val
);
5604 val
= vlv_punit_read(dev_priv
, PUNIT_REG_GPU_FREQ_STS
);
5606 /* RPS code assumes GPLL is used */
5607 WARN_ONCE((val
& GPLLENABLE
) == 0, "GPLL not enabled\n");
5609 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val
& GPLLENABLE
));
5610 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val
);
5612 dev_priv
->rps
.cur_freq
= (val
>> 8) & 0xff;
5613 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5614 intel_gpu_freq(dev_priv
, dev_priv
->rps
.cur_freq
),
5615 dev_priv
->rps
.cur_freq
);
5617 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5618 intel_gpu_freq(dev_priv
, dev_priv
->rps
.efficient_freq
),
5619 dev_priv
->rps
.efficient_freq
);
5621 valleyview_set_rps(dev_priv
->dev
, dev_priv
->rps
.efficient_freq
);
5623 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5626 static unsigned long intel_pxfreq(u32 vidfreq
)
5629 int div
= (vidfreq
& 0x3f0000) >> 16;
5630 int post
= (vidfreq
& 0x3000) >> 12;
5631 int pre
= (vidfreq
& 0x7);
5636 freq
= ((div
* 133333) / ((1<<post
) * pre
));
5641 static const struct cparams
{
5647 { 1, 1333, 301, 28664 },
5648 { 1, 1066, 294, 24460 },
5649 { 1, 800, 294, 25192 },
5650 { 0, 1333, 276, 27605 },
5651 { 0, 1066, 276, 27605 },
5652 { 0, 800, 231, 23784 },
5655 static unsigned long __i915_chipset_val(struct drm_i915_private
*dev_priv
)
5657 u64 total_count
, diff
, ret
;
5658 u32 count1
, count2
, count3
, m
= 0, c
= 0;
5659 unsigned long now
= jiffies_to_msecs(jiffies
), diff1
;
5662 assert_spin_locked(&mchdev_lock
);
5664 diff1
= now
- dev_priv
->ips
.last_time1
;
5666 /* Prevent division-by-zero if we are asking too fast.
5667 * Also, we don't get interesting results if we are polling
5668 * faster than once in 10ms, so just return the saved value
5672 return dev_priv
->ips
.chipset_power
;
5674 count1
= I915_READ(DMIEC
);
5675 count2
= I915_READ(DDREC
);
5676 count3
= I915_READ(CSIEC
);
5678 total_count
= count1
+ count2
+ count3
;
5680 /* FIXME: handle per-counter overflow */
5681 if (total_count
< dev_priv
->ips
.last_count1
) {
5682 diff
= ~0UL - dev_priv
->ips
.last_count1
;
5683 diff
+= total_count
;
5685 diff
= total_count
- dev_priv
->ips
.last_count1
;
5688 for (i
= 0; i
< ARRAY_SIZE(cparams
); i
++) {
5689 if (cparams
[i
].i
== dev_priv
->ips
.c_m
&&
5690 cparams
[i
].t
== dev_priv
->ips
.r_t
) {
5697 diff
= div_u64(diff
, diff1
);
5698 ret
= ((m
* diff
) + c
);
5699 ret
= div_u64(ret
, 10);
5701 dev_priv
->ips
.last_count1
= total_count
;
5702 dev_priv
->ips
.last_time1
= now
;
5704 dev_priv
->ips
.chipset_power
= ret
;
5709 unsigned long i915_chipset_val(struct drm_i915_private
*dev_priv
)
5711 struct drm_device
*dev
= dev_priv
->dev
;
5714 if (INTEL_INFO(dev
)->gen
!= 5)
5717 spin_lock_irq(&mchdev_lock
);
5719 val
= __i915_chipset_val(dev_priv
);
5721 spin_unlock_irq(&mchdev_lock
);
5726 unsigned long i915_mch_val(struct drm_i915_private
*dev_priv
)
5728 unsigned long m
, x
, b
;
5731 tsfs
= I915_READ(TSFS
);
5733 m
= ((tsfs
& TSFS_SLOPE_MASK
) >> TSFS_SLOPE_SHIFT
);
5734 x
= I915_READ8(TR1
);
5736 b
= tsfs
& TSFS_INTR_MASK
;
5738 return ((m
* x
) / 127) - b
;
5741 static int _pxvid_to_vd(u8 pxvid
)
5746 if (pxvid
>= 8 && pxvid
< 31)
5749 return (pxvid
+ 2) * 125;
5752 static u32
pvid_to_extvid(struct drm_i915_private
*dev_priv
, u8 pxvid
)
5754 struct drm_device
*dev
= dev_priv
->dev
;
5755 const int vd
= _pxvid_to_vd(pxvid
);
5756 const int vm
= vd
- 1125;
5758 if (INTEL_INFO(dev
)->is_mobile
)
5759 return vm
> 0 ? vm
: 0;
5764 static void __i915_update_gfx_val(struct drm_i915_private
*dev_priv
)
5766 u64 now
, diff
, diffms
;
5769 assert_spin_locked(&mchdev_lock
);
5771 now
= ktime_get_raw_ns();
5772 diffms
= now
- dev_priv
->ips
.last_time2
;
5773 do_div(diffms
, NSEC_PER_MSEC
);
5775 /* Don't divide by 0 */
5779 count
= I915_READ(GFXEC
);
5781 if (count
< dev_priv
->ips
.last_count2
) {
5782 diff
= ~0UL - dev_priv
->ips
.last_count2
;
5785 diff
= count
- dev_priv
->ips
.last_count2
;
5788 dev_priv
->ips
.last_count2
= count
;
5789 dev_priv
->ips
.last_time2
= now
;
5791 /* More magic constants... */
5793 diff
= div_u64(diff
, diffms
* 10);
5794 dev_priv
->ips
.gfx_power
= diff
;
5797 void i915_update_gfx_val(struct drm_i915_private
*dev_priv
)
5799 struct drm_device
*dev
= dev_priv
->dev
;
5801 if (INTEL_INFO(dev
)->gen
!= 5)
5804 spin_lock_irq(&mchdev_lock
);
5806 __i915_update_gfx_val(dev_priv
);
5808 spin_unlock_irq(&mchdev_lock
);
5811 static unsigned long __i915_gfx_val(struct drm_i915_private
*dev_priv
)
5813 unsigned long t
, corr
, state1
, corr2
, state2
;
5816 assert_spin_locked(&mchdev_lock
);
5818 pxvid
= I915_READ(PXVFREQ(dev_priv
->rps
.cur_freq
));
5819 pxvid
= (pxvid
>> 24) & 0x7f;
5820 ext_v
= pvid_to_extvid(dev_priv
, pxvid
);
5824 t
= i915_mch_val(dev_priv
);
5826 /* Revel in the empirically derived constants */
5828 /* Correction factor in 1/100000 units */
5830 corr
= ((t
* 2349) + 135940);
5832 corr
= ((t
* 964) + 29317);
5834 corr
= ((t
* 301) + 1004);
5836 corr
= corr
* ((150142 * state1
) / 10000 - 78642);
5838 corr2
= (corr
* dev_priv
->ips
.corr
);
5840 state2
= (corr2
* state1
) / 10000;
5841 state2
/= 100; /* convert to mW */
5843 __i915_update_gfx_val(dev_priv
);
5845 return dev_priv
->ips
.gfx_power
+ state2
;
5848 unsigned long i915_gfx_val(struct drm_i915_private
*dev_priv
)
5850 struct drm_device
*dev
= dev_priv
->dev
;
5853 if (INTEL_INFO(dev
)->gen
!= 5)
5856 spin_lock_irq(&mchdev_lock
);
5858 val
= __i915_gfx_val(dev_priv
);
5860 spin_unlock_irq(&mchdev_lock
);
5866 * i915_read_mch_val - return value for IPS use
5868 * Calculate and return a value for the IPS driver to use when deciding whether
5869 * we have thermal and power headroom to increase CPU or GPU power budget.
5871 unsigned long i915_read_mch_val(void)
5873 struct drm_i915_private
*dev_priv
;
5874 unsigned long chipset_val
, graphics_val
, ret
= 0;
5876 spin_lock_irq(&mchdev_lock
);
5879 dev_priv
= i915_mch_dev
;
5881 chipset_val
= __i915_chipset_val(dev_priv
);
5882 graphics_val
= __i915_gfx_val(dev_priv
);
5884 ret
= chipset_val
+ graphics_val
;
5887 spin_unlock_irq(&mchdev_lock
);
5891 EXPORT_SYMBOL_GPL(i915_read_mch_val
);
5894 * i915_gpu_raise - raise GPU frequency limit
5896 * Raise the limit; IPS indicates we have thermal headroom.
5898 bool i915_gpu_raise(void)
5900 struct drm_i915_private
*dev_priv
;
5903 spin_lock_irq(&mchdev_lock
);
5904 if (!i915_mch_dev
) {
5908 dev_priv
= i915_mch_dev
;
5910 if (dev_priv
->ips
.max_delay
> dev_priv
->ips
.fmax
)
5911 dev_priv
->ips
.max_delay
--;
5914 spin_unlock_irq(&mchdev_lock
);
5918 EXPORT_SYMBOL_GPL(i915_gpu_raise
);
5921 * i915_gpu_lower - lower GPU frequency limit
5923 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5924 * frequency maximum.
5926 bool i915_gpu_lower(void)
5928 struct drm_i915_private
*dev_priv
;
5931 spin_lock_irq(&mchdev_lock
);
5932 if (!i915_mch_dev
) {
5936 dev_priv
= i915_mch_dev
;
5938 if (dev_priv
->ips
.max_delay
< dev_priv
->ips
.min_delay
)
5939 dev_priv
->ips
.max_delay
++;
5942 spin_unlock_irq(&mchdev_lock
);
5946 EXPORT_SYMBOL_GPL(i915_gpu_lower
);
5949 * i915_gpu_busy - indicate GPU business to IPS
5951 * Tell the IPS driver whether or not the GPU is busy.
5953 bool i915_gpu_busy(void)
5955 struct drm_i915_private
*dev_priv
;
5956 struct intel_engine_cs
*ring
;
5960 spin_lock_irq(&mchdev_lock
);
5963 dev_priv
= i915_mch_dev
;
5965 for_each_ring(ring
, dev_priv
, i
)
5966 ret
|= !list_empty(&ring
->request_list
);
5969 spin_unlock_irq(&mchdev_lock
);
5973 EXPORT_SYMBOL_GPL(i915_gpu_busy
);
5976 * i915_gpu_turbo_disable - disable graphics turbo
5978 * Disable graphics turbo by resetting the max frequency and setting the
5979 * current frequency to the default.
5981 bool i915_gpu_turbo_disable(void)
5983 struct drm_i915_private
*dev_priv
;
5986 spin_lock_irq(&mchdev_lock
);
5987 if (!i915_mch_dev
) {
5991 dev_priv
= i915_mch_dev
;
5993 dev_priv
->ips
.max_delay
= dev_priv
->ips
.fstart
;
5995 if (!ironlake_set_drps(dev_priv
->dev
, dev_priv
->ips
.fstart
))
5999 spin_unlock_irq(&mchdev_lock
);
6003 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable
);
6006 * Tells the intel_ips driver that the i915 driver is now loaded, if
6007 * IPS got loaded first.
6009 * This awkward dance is so that neither module has to depend on the
6010 * other in order for IPS to do the appropriate communication of
6011 * GPU turbo limits to i915.
6014 ips_ping_for_i915_load(void)
6018 link
= symbol_get(ips_link_to_i915_driver
);
6021 symbol_put(ips_link_to_i915_driver
);
6025 void intel_gpu_ips_init(struct drm_i915_private
*dev_priv
)
6027 /* We only register the i915 ips part with intel-ips once everything is
6028 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6029 spin_lock_irq(&mchdev_lock
);
6030 i915_mch_dev
= dev_priv
;
6031 spin_unlock_irq(&mchdev_lock
);
6033 ips_ping_for_i915_load();
6036 void intel_gpu_ips_teardown(void)
6038 spin_lock_irq(&mchdev_lock
);
6039 i915_mch_dev
= NULL
;
6040 spin_unlock_irq(&mchdev_lock
);
6043 static void intel_init_emon(struct drm_device
*dev
)
6045 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6050 /* Disable to program */
6054 /* Program energy weights for various events */
6055 I915_WRITE(SDEW
, 0x15040d00);
6056 I915_WRITE(CSIEW0
, 0x007f0000);
6057 I915_WRITE(CSIEW1
, 0x1e220004);
6058 I915_WRITE(CSIEW2
, 0x04000004);
6060 for (i
= 0; i
< 5; i
++)
6061 I915_WRITE(PEW(i
), 0);
6062 for (i
= 0; i
< 3; i
++)
6063 I915_WRITE(DEW(i
), 0);
6065 /* Program P-state weights to account for frequency power adjustment */
6066 for (i
= 0; i
< 16; i
++) {
6067 u32 pxvidfreq
= I915_READ(PXVFREQ(i
));
6068 unsigned long freq
= intel_pxfreq(pxvidfreq
);
6069 unsigned long vid
= (pxvidfreq
& PXVFREQ_PX_MASK
) >>
6074 val
*= (freq
/ 1000);
6076 val
/= (127*127*900);
6078 DRM_ERROR("bad pxval: %ld\n", val
);
6081 /* Render standby states get 0 weight */
6085 for (i
= 0; i
< 4; i
++) {
6086 u32 val
= (pxw
[i
*4] << 24) | (pxw
[(i
*4)+1] << 16) |
6087 (pxw
[(i
*4)+2] << 8) | (pxw
[(i
*4)+3]);
6088 I915_WRITE(PXW(i
), val
);
6091 /* Adjust magic regs to magic values (more experimental results) */
6092 I915_WRITE(OGW0
, 0);
6093 I915_WRITE(OGW1
, 0);
6094 I915_WRITE(EG0
, 0x00007f00);
6095 I915_WRITE(EG1
, 0x0000000e);
6096 I915_WRITE(EG2
, 0x000e0000);
6097 I915_WRITE(EG3
, 0x68000300);
6098 I915_WRITE(EG4
, 0x42000000);
6099 I915_WRITE(EG5
, 0x00140031);
6103 for (i
= 0; i
< 8; i
++)
6104 I915_WRITE(PXWL(i
), 0);
6106 /* Enable PMON + select events */
6107 I915_WRITE(ECR
, 0x80000019);
6109 lcfuse
= I915_READ(LCFUSE02
);
6111 dev_priv
->ips
.corr
= (lcfuse
& LCFUSE_HIV_MASK
);
6114 void intel_init_gt_powersave(struct drm_device
*dev
)
6116 i915
.enable_rc6
= sanitize_rc6_option(dev
, i915
.enable_rc6
);
6118 if (IS_CHERRYVIEW(dev
))
6119 cherryview_init_gt_powersave(dev
);
6120 else if (IS_VALLEYVIEW(dev
))
6121 valleyview_init_gt_powersave(dev
);
6124 void intel_cleanup_gt_powersave(struct drm_device
*dev
)
6126 if (IS_CHERRYVIEW(dev
))
6128 else if (IS_VALLEYVIEW(dev
))
6129 valleyview_cleanup_gt_powersave(dev
);
6132 static void gen6_suspend_rps(struct drm_device
*dev
)
6134 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6136 flush_delayed_work(&dev_priv
->rps
.delayed_resume_work
);
6138 gen6_disable_rps_interrupts(dev
);
6142 * intel_suspend_gt_powersave - suspend PM work and helper threads
6145 * We don't want to disable RC6 or other features here, we just want
6146 * to make sure any work we've queued has finished and won't bother
6147 * us while we're suspended.
6149 void intel_suspend_gt_powersave(struct drm_device
*dev
)
6151 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6153 if (INTEL_INFO(dev
)->gen
< 6)
6156 gen6_suspend_rps(dev
);
6158 /* Force GPU to min freq during suspend */
6159 gen6_rps_idle(dev_priv
);
6162 void intel_disable_gt_powersave(struct drm_device
*dev
)
6164 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6166 if (IS_IRONLAKE_M(dev
)) {
6167 ironlake_disable_drps(dev
);
6168 } else if (INTEL_INFO(dev
)->gen
>= 6) {
6169 intel_suspend_gt_powersave(dev
);
6171 mutex_lock(&dev_priv
->rps
.hw_lock
);
6172 if (INTEL_INFO(dev
)->gen
>= 9)
6173 gen9_disable_rps(dev
);
6174 else if (IS_CHERRYVIEW(dev
))
6175 cherryview_disable_rps(dev
);
6176 else if (IS_VALLEYVIEW(dev
))
6177 valleyview_disable_rps(dev
);
6179 gen6_disable_rps(dev
);
6181 dev_priv
->rps
.enabled
= false;
6182 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6186 static void intel_gen6_powersave_work(struct work_struct
*work
)
6188 struct drm_i915_private
*dev_priv
=
6189 container_of(work
, struct drm_i915_private
,
6190 rps
.delayed_resume_work
.work
);
6191 struct drm_device
*dev
= dev_priv
->dev
;
6193 mutex_lock(&dev_priv
->rps
.hw_lock
);
6195 gen6_reset_rps_interrupts(dev
);
6197 if (IS_CHERRYVIEW(dev
)) {
6198 cherryview_enable_rps(dev
);
6199 } else if (IS_VALLEYVIEW(dev
)) {
6200 valleyview_enable_rps(dev
);
6201 } else if (INTEL_INFO(dev
)->gen
>= 9) {
6202 gen9_enable_rc6(dev
);
6203 gen9_enable_rps(dev
);
6204 if (IS_SKYLAKE(dev
))
6205 __gen6_update_ring_freq(dev
);
6206 } else if (IS_BROADWELL(dev
)) {
6207 gen8_enable_rps(dev
);
6208 __gen6_update_ring_freq(dev
);
6210 gen6_enable_rps(dev
);
6211 __gen6_update_ring_freq(dev
);
6214 WARN_ON(dev_priv
->rps
.max_freq
< dev_priv
->rps
.min_freq
);
6215 WARN_ON(dev_priv
->rps
.idle_freq
> dev_priv
->rps
.max_freq
);
6217 WARN_ON(dev_priv
->rps
.efficient_freq
< dev_priv
->rps
.min_freq
);
6218 WARN_ON(dev_priv
->rps
.efficient_freq
> dev_priv
->rps
.max_freq
);
6220 dev_priv
->rps
.enabled
= true;
6222 gen6_enable_rps_interrupts(dev
);
6224 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6226 intel_runtime_pm_put(dev_priv
);
6229 void intel_enable_gt_powersave(struct drm_device
*dev
)
6231 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6233 /* Powersaving is controlled by the host when inside a VM */
6234 if (intel_vgpu_active(dev
))
6237 if (IS_IRONLAKE_M(dev
)) {
6238 mutex_lock(&dev
->struct_mutex
);
6239 ironlake_enable_drps(dev
);
6240 intel_init_emon(dev
);
6241 mutex_unlock(&dev
->struct_mutex
);
6242 } else if (INTEL_INFO(dev
)->gen
>= 6) {
6244 * PCU communication is slow and this doesn't need to be
6245 * done at any specific time, so do this out of our fast path
6246 * to make resume and init faster.
6248 * We depend on the HW RC6 power context save/restore
6249 * mechanism when entering D3 through runtime PM suspend. So
6250 * disable RPM until RPS/RC6 is properly setup. We can only
6251 * get here via the driver load/system resume/runtime resume
6252 * paths, so the _noresume version is enough (and in case of
6253 * runtime resume it's necessary).
6255 if (schedule_delayed_work(&dev_priv
->rps
.delayed_resume_work
,
6256 round_jiffies_up_relative(HZ
)))
6257 intel_runtime_pm_get_noresume(dev_priv
);
6261 void intel_reset_gt_powersave(struct drm_device
*dev
)
6263 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6265 if (INTEL_INFO(dev
)->gen
< 6)
6268 gen6_suspend_rps(dev
);
6269 dev_priv
->rps
.enabled
= false;
6272 static void ibx_init_clock_gating(struct drm_device
*dev
)
6274 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6277 * On Ibex Peak and Cougar Point, we need to disable clock
6278 * gating for the panel power sequencer or it will fail to
6279 * start up when no ports are active.
6281 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
6284 static void g4x_disable_trickle_feed(struct drm_device
*dev
)
6286 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6289 for_each_pipe(dev_priv
, pipe
) {
6290 I915_WRITE(DSPCNTR(pipe
),
6291 I915_READ(DSPCNTR(pipe
)) |
6292 DISPPLANE_TRICKLE_FEED_DISABLE
);
6294 I915_WRITE(DSPSURF(pipe
), I915_READ(DSPSURF(pipe
)));
6295 POSTING_READ(DSPSURF(pipe
));
6299 static void ilk_init_lp_watermarks(struct drm_device
*dev
)
6301 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6303 I915_WRITE(WM3_LP_ILK
, I915_READ(WM3_LP_ILK
) & ~WM1_LP_SR_EN
);
6304 I915_WRITE(WM2_LP_ILK
, I915_READ(WM2_LP_ILK
) & ~WM1_LP_SR_EN
);
6305 I915_WRITE(WM1_LP_ILK
, I915_READ(WM1_LP_ILK
) & ~WM1_LP_SR_EN
);
6308 * Don't touch WM1S_LP_EN here.
6309 * Doing so could cause underruns.
6313 static void ironlake_init_clock_gating(struct drm_device
*dev
)
6315 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6316 uint32_t dspclk_gate
= ILK_VRHUNIT_CLOCK_GATE_DISABLE
;
6320 * WaFbcDisableDpfcClockGating:ilk
6322 dspclk_gate
|= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE
|
6323 ILK_DPFCUNIT_CLOCK_GATE_DISABLE
|
6324 ILK_DPFDUNIT_CLOCK_GATE_ENABLE
;
6326 I915_WRITE(PCH_3DCGDIS0
,
6327 MARIUNIT_CLOCK_GATE_DISABLE
|
6328 SVSMUNIT_CLOCK_GATE_DISABLE
);
6329 I915_WRITE(PCH_3DCGDIS1
,
6330 VFMUNIT_CLOCK_GATE_DISABLE
);
6333 * According to the spec the following bits should be set in
6334 * order to enable memory self-refresh
6335 * The bit 22/21 of 0x42004
6336 * The bit 5 of 0x42020
6337 * The bit 15 of 0x45000
6339 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6340 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
6341 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
6342 dspclk_gate
|= ILK_DPARBUNIT_CLOCK_GATE_ENABLE
;
6343 I915_WRITE(DISP_ARB_CTL
,
6344 (I915_READ(DISP_ARB_CTL
) |
6347 ilk_init_lp_watermarks(dev
);
6350 * Based on the document from hardware guys the following bits
6351 * should be set unconditionally in order to enable FBC.
6352 * The bit 22 of 0x42000
6353 * The bit 22 of 0x42004
6354 * The bit 7,8,9 of 0x42020.
6356 if (IS_IRONLAKE_M(dev
)) {
6357 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6358 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
6359 I915_READ(ILK_DISPLAY_CHICKEN1
) |
6361 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6362 I915_READ(ILK_DISPLAY_CHICKEN2
) |
6366 I915_WRITE(ILK_DSPCLK_GATE_D
, dspclk_gate
);
6368 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6369 I915_READ(ILK_DISPLAY_CHICKEN2
) |
6370 ILK_ELPIN_409_SELECT
);
6371 I915_WRITE(_3D_CHICKEN2
,
6372 _3D_CHICKEN2_WM_READ_PIPELINED
<< 16 |
6373 _3D_CHICKEN2_WM_READ_PIPELINED
);
6375 /* WaDisableRenderCachePipelinedFlush:ilk */
6376 I915_WRITE(CACHE_MODE_0
,
6377 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE
));
6379 /* WaDisable_RenderCache_OperationalFlush:ilk */
6380 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
6382 g4x_disable_trickle_feed(dev
);
6384 ibx_init_clock_gating(dev
);
6387 static void cpt_init_clock_gating(struct drm_device
*dev
)
6389 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6394 * On Ibex Peak and Cougar Point, we need to disable clock
6395 * gating for the panel power sequencer or it will fail to
6396 * start up when no ports are active.
6398 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
|
6399 PCH_DPLUNIT_CLOCK_GATE_DISABLE
|
6400 PCH_CPUNIT_CLOCK_GATE_DISABLE
);
6401 I915_WRITE(SOUTH_CHICKEN2
, I915_READ(SOUTH_CHICKEN2
) |
6402 DPLS_EDP_PPS_FIX_DIS
);
6403 /* The below fixes the weird display corruption, a few pixels shifted
6404 * downward, on (only) LVDS of some HP laptops with IVY.
6406 for_each_pipe(dev_priv
, pipe
) {
6407 val
= I915_READ(TRANS_CHICKEN2(pipe
));
6408 val
|= TRANS_CHICKEN2_TIMING_OVERRIDE
;
6409 val
&= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED
;
6410 if (dev_priv
->vbt
.fdi_rx_polarity_inverted
)
6411 val
|= TRANS_CHICKEN2_FDI_POLARITY_REVERSED
;
6412 val
&= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK
;
6413 val
&= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER
;
6414 val
&= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH
;
6415 I915_WRITE(TRANS_CHICKEN2(pipe
), val
);
6417 /* WADP0ClockGatingDisable */
6418 for_each_pipe(dev_priv
, pipe
) {
6419 I915_WRITE(TRANS_CHICKEN1(pipe
),
6420 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE
);
6424 static void gen6_check_mch_setup(struct drm_device
*dev
)
6426 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6429 tmp
= I915_READ(MCH_SSKPD
);
6430 if ((tmp
& MCH_SSKPD_WM0_MASK
) != MCH_SSKPD_WM0_VAL
)
6431 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6435 static void gen6_init_clock_gating(struct drm_device
*dev
)
6437 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6438 uint32_t dspclk_gate
= ILK_VRHUNIT_CLOCK_GATE_DISABLE
;
6440 I915_WRITE(ILK_DSPCLK_GATE_D
, dspclk_gate
);
6442 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6443 I915_READ(ILK_DISPLAY_CHICKEN2
) |
6444 ILK_ELPIN_409_SELECT
);
6446 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6447 I915_WRITE(_3D_CHICKEN
,
6448 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB
));
6450 /* WaDisable_RenderCache_OperationalFlush:snb */
6451 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
6454 * BSpec recoomends 8x4 when MSAA is used,
6455 * however in practice 16x4 seems fastest.
6457 * Note that PS/WM thread counts depend on the WIZ hashing
6458 * disable bit, which we don't touch here, but it's good
6459 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6461 I915_WRITE(GEN6_GT_MODE
,
6462 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK
, GEN6_WIZ_HASHING_16x4
));
6464 ilk_init_lp_watermarks(dev
);
6466 I915_WRITE(CACHE_MODE_0
,
6467 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB
));
6469 I915_WRITE(GEN6_UCGCTL1
,
6470 I915_READ(GEN6_UCGCTL1
) |
6471 GEN6_BLBUNIT_CLOCK_GATE_DISABLE
|
6472 GEN6_CSUNIT_CLOCK_GATE_DISABLE
);
6474 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6475 * gating disable must be set. Failure to set it results in
6476 * flickering pixels due to Z write ordering failures after
6477 * some amount of runtime in the Mesa "fire" demo, and Unigine
6478 * Sanctuary and Tropics, and apparently anything else with
6479 * alpha test or pixel discard.
6481 * According to the spec, bit 11 (RCCUNIT) must also be set,
6482 * but we didn't debug actual testcases to find it out.
6484 * WaDisableRCCUnitClockGating:snb
6485 * WaDisableRCPBUnitClockGating:snb
6487 I915_WRITE(GEN6_UCGCTL2
,
6488 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE
|
6489 GEN6_RCCUNIT_CLOCK_GATE_DISABLE
);
6491 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6492 I915_WRITE(_3D_CHICKEN3
,
6493 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL
));
6497 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6498 * 3DSTATE_SF number of SF output attributes is more than 16."
6500 I915_WRITE(_3D_CHICKEN3
,
6501 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH
));
6504 * According to the spec the following bits should be
6505 * set in order to enable memory self-refresh and fbc:
6506 * The bit21 and bit22 of 0x42000
6507 * The bit21 and bit22 of 0x42004
6508 * The bit5 and bit7 of 0x42020
6509 * The bit14 of 0x70180
6510 * The bit14 of 0x71180
6512 * WaFbcAsynchFlipDisableFbcQueue:snb
6514 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
6515 I915_READ(ILK_DISPLAY_CHICKEN1
) |
6516 ILK_FBCQ_DIS
| ILK_PABSTRETCH_DIS
);
6517 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
6518 I915_READ(ILK_DISPLAY_CHICKEN2
) |
6519 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
);
6520 I915_WRITE(ILK_DSPCLK_GATE_D
,
6521 I915_READ(ILK_DSPCLK_GATE_D
) |
6522 ILK_DPARBUNIT_CLOCK_GATE_ENABLE
|
6523 ILK_DPFDUNIT_CLOCK_GATE_ENABLE
);
6525 g4x_disable_trickle_feed(dev
);
6527 cpt_init_clock_gating(dev
);
6529 gen6_check_mch_setup(dev
);
6532 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private
*dev_priv
)
6534 uint32_t reg
= I915_READ(GEN7_FF_THREAD_MODE
);
6537 * WaVSThreadDispatchOverride:ivb,vlv
6539 * This actually overrides the dispatch
6540 * mode for all thread types.
6542 reg
&= ~GEN7_FF_SCHED_MASK
;
6543 reg
|= GEN7_FF_TS_SCHED_HW
;
6544 reg
|= GEN7_FF_VS_SCHED_HW
;
6545 reg
|= GEN7_FF_DS_SCHED_HW
;
6547 I915_WRITE(GEN7_FF_THREAD_MODE
, reg
);
6550 static void lpt_init_clock_gating(struct drm_device
*dev
)
6552 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6555 * TODO: this bit should only be enabled when really needed, then
6556 * disabled when not needed anymore in order to save power.
6558 if (HAS_PCH_LPT_LP(dev
))
6559 I915_WRITE(SOUTH_DSPCLK_GATE_D
,
6560 I915_READ(SOUTH_DSPCLK_GATE_D
) |
6561 PCH_LP_PARTITION_LEVEL_DISABLE
);
6563 /* WADPOClockGatingDisable:hsw */
6564 I915_WRITE(TRANS_CHICKEN1(PIPE_A
),
6565 I915_READ(TRANS_CHICKEN1(PIPE_A
)) |
6566 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE
);
6569 static void lpt_suspend_hw(struct drm_device
*dev
)
6571 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6573 if (HAS_PCH_LPT_LP(dev
)) {
6574 uint32_t val
= I915_READ(SOUTH_DSPCLK_GATE_D
);
6576 val
&= ~PCH_LP_PARTITION_LEVEL_DISABLE
;
6577 I915_WRITE(SOUTH_DSPCLK_GATE_D
, val
);
6581 static void broadwell_init_clock_gating(struct drm_device
*dev
)
6583 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6587 ilk_init_lp_watermarks(dev
);
6589 /* WaSwitchSolVfFArbitrationPriority:bdw */
6590 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) | HSW_ECOCHK_ARB_PRIO_SOL
);
6592 /* WaPsrDPAMaskVBlankInSRD:bdw */
6593 I915_WRITE(CHICKEN_PAR1_1
,
6594 I915_READ(CHICKEN_PAR1_1
) | DPA_MASK_VBLANK_SRD
);
6596 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6597 for_each_pipe(dev_priv
, pipe
) {
6598 I915_WRITE(CHICKEN_PIPESL_1(pipe
),
6599 I915_READ(CHICKEN_PIPESL_1(pipe
)) |
6600 BDW_DPRS_MASK_VBLANK_SRD
);
6603 /* WaVSRefCountFullforceMissDisable:bdw */
6604 /* WaDSRefCountFullforceMissDisable:bdw */
6605 I915_WRITE(GEN7_FF_THREAD_MODE
,
6606 I915_READ(GEN7_FF_THREAD_MODE
) &
6607 ~(GEN8_FF_DS_REF_CNT_FFME
| GEN7_FF_VS_REF_CNT_FFME
));
6609 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL
,
6610 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE
));
6612 /* WaDisableSDEUnitClockGating:bdw */
6613 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
6614 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
6617 * WaProgramL3SqcReg1Default:bdw
6618 * WaTempDisableDOPClkGating:bdw
6620 misccpctl
= I915_READ(GEN7_MISCCPCTL
);
6621 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
& ~GEN7_DOP_CLOCK_GATE_ENABLE
);
6622 I915_WRITE(GEN8_L3SQCREG1
, BDW_WA_L3SQCREG1_DEFAULT
);
6623 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
);
6626 * WaGttCachingOffByDefault:bdw
6627 * GTT cache may not work with big pages, so if those
6628 * are ever enabled GTT cache may need to be disabled.
6630 I915_WRITE(HSW_GTT_CACHE_EN
, GTT_CACHE_EN_ALL
);
6632 lpt_init_clock_gating(dev
);
6635 static void haswell_init_clock_gating(struct drm_device
*dev
)
6637 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6639 ilk_init_lp_watermarks(dev
);
6641 /* L3 caching of data atomics doesn't work -- disable it. */
6642 I915_WRITE(HSW_SCRATCH1
, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE
);
6643 I915_WRITE(HSW_ROW_CHICKEN3
,
6644 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE
));
6646 /* This is required by WaCatErrorRejectionIssue:hsw */
6647 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
6648 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
6649 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
6651 /* WaVSRefCountFullforceMissDisable:hsw */
6652 I915_WRITE(GEN7_FF_THREAD_MODE
,
6653 I915_READ(GEN7_FF_THREAD_MODE
) & ~GEN7_FF_VS_REF_CNT_FFME
);
6655 /* WaDisable_RenderCache_OperationalFlush:hsw */
6656 I915_WRITE(CACHE_MODE_0_GEN7
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
6658 /* enable HiZ Raw Stall Optimization */
6659 I915_WRITE(CACHE_MODE_0_GEN7
,
6660 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE
));
6662 /* WaDisable4x2SubspanOptimization:hsw */
6663 I915_WRITE(CACHE_MODE_1
,
6664 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE
));
6667 * BSpec recommends 8x4 when MSAA is used,
6668 * however in practice 16x4 seems fastest.
6670 * Note that PS/WM thread counts depend on the WIZ hashing
6671 * disable bit, which we don't touch here, but it's good
6672 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6674 I915_WRITE(GEN7_GT_MODE
,
6675 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK
, GEN6_WIZ_HASHING_16x4
));
6677 /* WaSampleCChickenBitEnable:hsw */
6678 I915_WRITE(HALF_SLICE_CHICKEN3
,
6679 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE
));
6681 /* WaSwitchSolVfFArbitrationPriority:hsw */
6682 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) | HSW_ECOCHK_ARB_PRIO_SOL
);
6684 /* WaRsPkgCStateDisplayPMReq:hsw */
6685 I915_WRITE(CHICKEN_PAR1_1
,
6686 I915_READ(CHICKEN_PAR1_1
) | FORCE_ARB_IDLE_PLANES
);
6688 lpt_init_clock_gating(dev
);
6691 static void ivybridge_init_clock_gating(struct drm_device
*dev
)
6693 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6696 ilk_init_lp_watermarks(dev
);
6698 I915_WRITE(ILK_DSPCLK_GATE_D
, ILK_VRHUNIT_CLOCK_GATE_DISABLE
);
6700 /* WaDisableEarlyCull:ivb */
6701 I915_WRITE(_3D_CHICKEN3
,
6702 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL
));
6704 /* WaDisableBackToBackFlipFix:ivb */
6705 I915_WRITE(IVB_CHICKEN3
,
6706 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE
|
6707 CHICKEN3_DGMG_DONE_FIX_DISABLE
);
6709 /* WaDisablePSDDualDispatchEnable:ivb */
6710 if (IS_IVB_GT1(dev
))
6711 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1
,
6712 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE
));
6714 /* WaDisable_RenderCache_OperationalFlush:ivb */
6715 I915_WRITE(CACHE_MODE_0_GEN7
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
6717 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6718 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1
,
6719 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC
);
6721 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6722 I915_WRITE(GEN7_L3CNTLREG1
,
6723 GEN7_WA_FOR_GEN7_L3_CONTROL
);
6724 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER
,
6725 GEN7_WA_L3_CHICKEN_MODE
);
6726 if (IS_IVB_GT1(dev
))
6727 I915_WRITE(GEN7_ROW_CHICKEN2
,
6728 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
6730 /* must write both registers */
6731 I915_WRITE(GEN7_ROW_CHICKEN2
,
6732 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
6733 I915_WRITE(GEN7_ROW_CHICKEN2_GT2
,
6734 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
6737 /* WaForceL3Serialization:ivb */
6738 I915_WRITE(GEN7_L3SQCREG4
, I915_READ(GEN7_L3SQCREG4
) &
6739 ~L3SQ_URB_READ_CAM_MATCH_DISABLE
);
6742 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6743 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6745 I915_WRITE(GEN6_UCGCTL2
,
6746 GEN6_RCZUNIT_CLOCK_GATE_DISABLE
);
6748 /* This is required by WaCatErrorRejectionIssue:ivb */
6749 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
6750 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
6751 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
6753 g4x_disable_trickle_feed(dev
);
6755 gen7_setup_fixed_func_scheduler(dev_priv
);
6757 if (0) { /* causes HiZ corruption on ivb:gt1 */
6758 /* enable HiZ Raw Stall Optimization */
6759 I915_WRITE(CACHE_MODE_0_GEN7
,
6760 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE
));
6763 /* WaDisable4x2SubspanOptimization:ivb */
6764 I915_WRITE(CACHE_MODE_1
,
6765 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE
));
6768 * BSpec recommends 8x4 when MSAA is used,
6769 * however in practice 16x4 seems fastest.
6771 * Note that PS/WM thread counts depend on the WIZ hashing
6772 * disable bit, which we don't touch here, but it's good
6773 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6775 I915_WRITE(GEN7_GT_MODE
,
6776 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK
, GEN6_WIZ_HASHING_16x4
));
6778 snpcr
= I915_READ(GEN6_MBCUNIT_SNPCR
);
6779 snpcr
&= ~GEN6_MBC_SNPCR_MASK
;
6780 snpcr
|= GEN6_MBC_SNPCR_MED
;
6781 I915_WRITE(GEN6_MBCUNIT_SNPCR
, snpcr
);
6783 if (!HAS_PCH_NOP(dev
))
6784 cpt_init_clock_gating(dev
);
6786 gen6_check_mch_setup(dev
);
6789 static void vlv_init_display_clock_gating(struct drm_i915_private
*dev_priv
)
6791 I915_WRITE(DSPCLK_GATE_D
, VRHUNIT_CLOCK_GATE_DISABLE
);
6794 * Disable trickle feed and enable pnd deadline calculation
6796 I915_WRITE(MI_ARB_VLV
, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
);
6797 I915_WRITE(CBR1_VLV
, 0);
6800 static void valleyview_init_clock_gating(struct drm_device
*dev
)
6802 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6804 vlv_init_display_clock_gating(dev_priv
);
6806 /* WaDisableEarlyCull:vlv */
6807 I915_WRITE(_3D_CHICKEN3
,
6808 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL
));
6810 /* WaDisableBackToBackFlipFix:vlv */
6811 I915_WRITE(IVB_CHICKEN3
,
6812 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE
|
6813 CHICKEN3_DGMG_DONE_FIX_DISABLE
);
6815 /* WaPsdDispatchEnable:vlv */
6816 /* WaDisablePSDDualDispatchEnable:vlv */
6817 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1
,
6818 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP
|
6819 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE
));
6821 /* WaDisable_RenderCache_OperationalFlush:vlv */
6822 I915_WRITE(CACHE_MODE_0_GEN7
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
6824 /* WaForceL3Serialization:vlv */
6825 I915_WRITE(GEN7_L3SQCREG4
, I915_READ(GEN7_L3SQCREG4
) &
6826 ~L3SQ_URB_READ_CAM_MATCH_DISABLE
);
6828 /* WaDisableDopClockGating:vlv */
6829 I915_WRITE(GEN7_ROW_CHICKEN2
,
6830 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE
));
6832 /* This is required by WaCatErrorRejectionIssue:vlv */
6833 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
,
6834 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG
) |
6835 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB
);
6837 gen7_setup_fixed_func_scheduler(dev_priv
);
6840 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6841 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6843 I915_WRITE(GEN6_UCGCTL2
,
6844 GEN6_RCZUNIT_CLOCK_GATE_DISABLE
);
6846 /* WaDisableL3Bank2xClockGate:vlv
6847 * Disabling L3 clock gating- MMIO 940c[25] = 1
6848 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6849 I915_WRITE(GEN7_UCGCTL4
,
6850 I915_READ(GEN7_UCGCTL4
) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE
);
6853 * BSpec says this must be set, even though
6854 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6856 I915_WRITE(CACHE_MODE_1
,
6857 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE
));
6860 * BSpec recommends 8x4 when MSAA is used,
6861 * however in practice 16x4 seems fastest.
6863 * Note that PS/WM thread counts depend on the WIZ hashing
6864 * disable bit, which we don't touch here, but it's good
6865 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6867 I915_WRITE(GEN7_GT_MODE
,
6868 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK
, GEN6_WIZ_HASHING_16x4
));
6871 * WaIncreaseL3CreditsForVLVB0:vlv
6872 * This is the hardware default actually.
6874 I915_WRITE(GEN7_L3SQCREG1
, VLV_B0_WA_L3SQCREG1_VALUE
);
6877 * WaDisableVLVClockGating_VBIIssue:vlv
6878 * Disable clock gating on th GCFG unit to prevent a delay
6879 * in the reporting of vblank events.
6881 I915_WRITE(VLV_GUNIT_CLOCK_GATE
, GCFG_DIS
);
6884 static void cherryview_init_clock_gating(struct drm_device
*dev
)
6886 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6888 vlv_init_display_clock_gating(dev_priv
);
6890 /* WaVSRefCountFullforceMissDisable:chv */
6891 /* WaDSRefCountFullforceMissDisable:chv */
6892 I915_WRITE(GEN7_FF_THREAD_MODE
,
6893 I915_READ(GEN7_FF_THREAD_MODE
) &
6894 ~(GEN8_FF_DS_REF_CNT_FFME
| GEN7_FF_VS_REF_CNT_FFME
));
6896 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6897 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL
,
6898 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE
));
6900 /* WaDisableCSUnitClockGating:chv */
6901 I915_WRITE(GEN6_UCGCTL1
, I915_READ(GEN6_UCGCTL1
) |
6902 GEN6_CSUNIT_CLOCK_GATE_DISABLE
);
6904 /* WaDisableSDEUnitClockGating:chv */
6905 I915_WRITE(GEN8_UCGCTL6
, I915_READ(GEN8_UCGCTL6
) |
6906 GEN8_SDEUNIT_CLOCK_GATE_DISABLE
);
6909 * GTT cache may not work with big pages, so if those
6910 * are ever enabled GTT cache may need to be disabled.
6912 I915_WRITE(HSW_GTT_CACHE_EN
, GTT_CACHE_EN_ALL
);
6915 static void g4x_init_clock_gating(struct drm_device
*dev
)
6917 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6918 uint32_t dspclk_gate
;
6920 I915_WRITE(RENCLK_GATE_D1
, 0);
6921 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
6922 GS_UNIT_CLOCK_GATE_DISABLE
|
6923 CL_UNIT_CLOCK_GATE_DISABLE
);
6924 I915_WRITE(RAMCLK_GATE_D
, 0);
6925 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
6926 OVRUNIT_CLOCK_GATE_DISABLE
|
6927 OVCUNIT_CLOCK_GATE_DISABLE
;
6929 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
6930 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
6932 /* WaDisableRenderCachePipelinedFlush */
6933 I915_WRITE(CACHE_MODE_0
,
6934 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE
));
6936 /* WaDisable_RenderCache_OperationalFlush:g4x */
6937 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
6939 g4x_disable_trickle_feed(dev
);
6942 static void crestline_init_clock_gating(struct drm_device
*dev
)
6944 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6946 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
6947 I915_WRITE(RENCLK_GATE_D2
, 0);
6948 I915_WRITE(DSPCLK_GATE_D
, 0);
6949 I915_WRITE(RAMCLK_GATE_D
, 0);
6950 I915_WRITE16(DEUC
, 0);
6951 I915_WRITE(MI_ARB_STATE
,
6952 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
6954 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6955 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
6958 static void broadwater_init_clock_gating(struct drm_device
*dev
)
6960 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6962 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
6963 I965_RCC_CLOCK_GATE_DISABLE
|
6964 I965_RCPB_CLOCK_GATE_DISABLE
|
6965 I965_ISC_CLOCK_GATE_DISABLE
|
6966 I965_FBC_CLOCK_GATE_DISABLE
);
6967 I915_WRITE(RENCLK_GATE_D2
, 0);
6968 I915_WRITE(MI_ARB_STATE
,
6969 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
6971 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6972 I915_WRITE(CACHE_MODE_0
, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE
));
6975 static void gen3_init_clock_gating(struct drm_device
*dev
)
6977 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6978 u32 dstate
= I915_READ(D_STATE
);
6980 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
6981 DSTATE_DOT_CLOCK_GATING
;
6982 I915_WRITE(D_STATE
, dstate
);
6984 if (IS_PINEVIEW(dev
))
6985 I915_WRITE(ECOSKPD
, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY
));
6987 /* IIR "flip pending" means done if this bit is set */
6988 I915_WRITE(ECOSKPD
, _MASKED_BIT_DISABLE(ECO_FLIP_DONE
));
6990 /* interrupts should cause a wake up from C3 */
6991 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN
));
6993 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6994 I915_WRITE(MI_ARB_STATE
, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE
));
6996 I915_WRITE(MI_ARB_STATE
,
6997 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE
));
7000 static void i85x_init_clock_gating(struct drm_device
*dev
)
7002 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7004 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
7006 /* interrupts should cause a wake up from C3 */
7007 I915_WRITE(MI_STATE
, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN
) |
7008 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE
));
7010 I915_WRITE(MEM_MODE
,
7011 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE
));
7014 static void i830_init_clock_gating(struct drm_device
*dev
)
7016 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7018 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
7020 I915_WRITE(MEM_MODE
,
7021 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE
) |
7022 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE
));
7025 void intel_init_clock_gating(struct drm_device
*dev
)
7027 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7029 if (dev_priv
->display
.init_clock_gating
)
7030 dev_priv
->display
.init_clock_gating(dev
);
7033 void intel_suspend_hw(struct drm_device
*dev
)
7035 if (HAS_PCH_LPT(dev
))
7036 lpt_suspend_hw(dev
);
7039 /* Set up chip specific power management-related functions */
7040 void intel_init_pm(struct drm_device
*dev
)
7042 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7044 intel_fbc_init(dev_priv
);
7047 if (IS_PINEVIEW(dev
))
7048 i915_pineview_get_mem_freq(dev
);
7049 else if (IS_GEN5(dev
))
7050 i915_ironlake_get_mem_freq(dev
);
7052 /* For FIFO watermark updates */
7053 if (INTEL_INFO(dev
)->gen
>= 9) {
7054 skl_setup_wm_latency(dev
);
7056 if (IS_BROXTON(dev
))
7057 dev_priv
->display
.init_clock_gating
=
7058 bxt_init_clock_gating
;
7059 dev_priv
->display
.update_wm
= skl_update_wm
;
7060 dev_priv
->display
.update_sprite_wm
= skl_update_sprite_wm
;
7061 } else if (HAS_PCH_SPLIT(dev
)) {
7062 ilk_setup_wm_latency(dev
);
7064 if ((IS_GEN5(dev
) && dev_priv
->wm
.pri_latency
[1] &&
7065 dev_priv
->wm
.spr_latency
[1] && dev_priv
->wm
.cur_latency
[1]) ||
7066 (!IS_GEN5(dev
) && dev_priv
->wm
.pri_latency
[0] &&
7067 dev_priv
->wm
.spr_latency
[0] && dev_priv
->wm
.cur_latency
[0])) {
7068 dev_priv
->display
.update_wm
= ilk_update_wm
;
7069 dev_priv
->display
.update_sprite_wm
= ilk_update_sprite_wm
;
7071 DRM_DEBUG_KMS("Failed to read display plane latency. "
7076 dev_priv
->display
.init_clock_gating
= ironlake_init_clock_gating
;
7077 else if (IS_GEN6(dev
))
7078 dev_priv
->display
.init_clock_gating
= gen6_init_clock_gating
;
7079 else if (IS_IVYBRIDGE(dev
))
7080 dev_priv
->display
.init_clock_gating
= ivybridge_init_clock_gating
;
7081 else if (IS_HASWELL(dev
))
7082 dev_priv
->display
.init_clock_gating
= haswell_init_clock_gating
;
7083 else if (INTEL_INFO(dev
)->gen
== 8)
7084 dev_priv
->display
.init_clock_gating
= broadwell_init_clock_gating
;
7085 } else if (IS_CHERRYVIEW(dev
)) {
7086 vlv_setup_wm_latency(dev
);
7088 dev_priv
->display
.update_wm
= vlv_update_wm
;
7089 dev_priv
->display
.init_clock_gating
=
7090 cherryview_init_clock_gating
;
7091 } else if (IS_VALLEYVIEW(dev
)) {
7092 vlv_setup_wm_latency(dev
);
7094 dev_priv
->display
.update_wm
= vlv_update_wm
;
7095 dev_priv
->display
.init_clock_gating
=
7096 valleyview_init_clock_gating
;
7097 } else if (IS_PINEVIEW(dev
)) {
7098 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
7101 dev_priv
->mem_freq
)) {
7102 DRM_INFO("failed to find known CxSR latency "
7103 "(found ddr%s fsb freq %d, mem freq %d), "
7105 (dev_priv
->is_ddr3
== 1) ? "3" : "2",
7106 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
7107 /* Disable CxSR and never update its watermark again */
7108 intel_set_memory_cxsr(dev_priv
, false);
7109 dev_priv
->display
.update_wm
= NULL
;
7111 dev_priv
->display
.update_wm
= pineview_update_wm
;
7112 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
7113 } else if (IS_G4X(dev
)) {
7114 dev_priv
->display
.update_wm
= g4x_update_wm
;
7115 dev_priv
->display
.init_clock_gating
= g4x_init_clock_gating
;
7116 } else if (IS_GEN4(dev
)) {
7117 dev_priv
->display
.update_wm
= i965_update_wm
;
7118 if (IS_CRESTLINE(dev
))
7119 dev_priv
->display
.init_clock_gating
= crestline_init_clock_gating
;
7120 else if (IS_BROADWATER(dev
))
7121 dev_priv
->display
.init_clock_gating
= broadwater_init_clock_gating
;
7122 } else if (IS_GEN3(dev
)) {
7123 dev_priv
->display
.update_wm
= i9xx_update_wm
;
7124 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
7125 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
7126 } else if (IS_GEN2(dev
)) {
7127 if (INTEL_INFO(dev
)->num_pipes
== 1) {
7128 dev_priv
->display
.update_wm
= i845_update_wm
;
7129 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
7131 dev_priv
->display
.update_wm
= i9xx_update_wm
;
7132 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
7135 if (IS_I85X(dev
) || IS_I865G(dev
))
7136 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
7138 dev_priv
->display
.init_clock_gating
= i830_init_clock_gating
;
7140 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7144 int sandybridge_pcode_read(struct drm_i915_private
*dev_priv
, u32 mbox
, u32
*val
)
7146 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
7148 if (I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) {
7149 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7153 I915_WRITE(GEN6_PCODE_DATA
, *val
);
7154 I915_WRITE(GEN6_PCODE_DATA1
, 0);
7155 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
| mbox
);
7157 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7159 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox
);
7163 *val
= I915_READ(GEN6_PCODE_DATA
);
7164 I915_WRITE(GEN6_PCODE_DATA
, 0);
7169 int sandybridge_pcode_write(struct drm_i915_private
*dev_priv
, u32 mbox
, u32 val
)
7171 WARN_ON(!mutex_is_locked(&dev_priv
->rps
.hw_lock
));
7173 if (I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) {
7174 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7178 I915_WRITE(GEN6_PCODE_DATA
, val
);
7179 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
| mbox
);
7181 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7183 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox
);
7187 I915_WRITE(GEN6_PCODE_DATA
, 0);
7192 static int vlv_gpu_freq_div(unsigned int czclk_freq
)
7194 switch (czclk_freq
) {
7209 static int byt_gpu_freq(struct drm_i915_private
*dev_priv
, int val
)
7211 int div
, czclk_freq
= DIV_ROUND_CLOSEST(dev_priv
->czclk_freq
, 1000);
7213 div
= vlv_gpu_freq_div(czclk_freq
);
7217 return DIV_ROUND_CLOSEST(czclk_freq
* (val
+ 6 - 0xbd), div
);
7220 static int byt_freq_opcode(struct drm_i915_private
*dev_priv
, int val
)
7222 int mul
, czclk_freq
= DIV_ROUND_CLOSEST(dev_priv
->czclk_freq
, 1000);
7224 mul
= vlv_gpu_freq_div(czclk_freq
);
7228 return DIV_ROUND_CLOSEST(mul
* val
, czclk_freq
) + 0xbd - 6;
7231 static int chv_gpu_freq(struct drm_i915_private
*dev_priv
, int val
)
7233 int div
, czclk_freq
= DIV_ROUND_CLOSEST(dev_priv
->czclk_freq
, 1000);
7235 div
= vlv_gpu_freq_div(czclk_freq
) / 2;
7239 return DIV_ROUND_CLOSEST(czclk_freq
* val
, 2 * div
) / 2;
7242 static int chv_freq_opcode(struct drm_i915_private
*dev_priv
, int val
)
7244 int mul
, czclk_freq
= DIV_ROUND_CLOSEST(dev_priv
->czclk_freq
, 1000);
7246 mul
= vlv_gpu_freq_div(czclk_freq
) / 2;
7250 /* CHV needs even values */
7251 return DIV_ROUND_CLOSEST(val
* 2 * mul
, czclk_freq
) * 2;
7254 int intel_gpu_freq(struct drm_i915_private
*dev_priv
, int val
)
7256 if (IS_GEN9(dev_priv
->dev
))
7257 return DIV_ROUND_CLOSEST(val
* GT_FREQUENCY_MULTIPLIER
,
7259 else if (IS_CHERRYVIEW(dev_priv
->dev
))
7260 return chv_gpu_freq(dev_priv
, val
);
7261 else if (IS_VALLEYVIEW(dev_priv
->dev
))
7262 return byt_gpu_freq(dev_priv
, val
);
7264 return val
* GT_FREQUENCY_MULTIPLIER
;
7267 int intel_freq_opcode(struct drm_i915_private
*dev_priv
, int val
)
7269 if (IS_GEN9(dev_priv
->dev
))
7270 return DIV_ROUND_CLOSEST(val
* GEN9_FREQ_SCALER
,
7271 GT_FREQUENCY_MULTIPLIER
);
7272 else if (IS_CHERRYVIEW(dev_priv
->dev
))
7273 return chv_freq_opcode(dev_priv
, val
);
7274 else if (IS_VALLEYVIEW(dev_priv
->dev
))
7275 return byt_freq_opcode(dev_priv
, val
);
7277 return DIV_ROUND_CLOSEST(val
, GT_FREQUENCY_MULTIPLIER
);
7280 struct request_boost
{
7281 struct work_struct work
;
7282 struct drm_i915_gem_request
*req
;
7285 static void __intel_rps_boost_work(struct work_struct
*work
)
7287 struct request_boost
*boost
= container_of(work
, struct request_boost
, work
);
7288 struct drm_i915_gem_request
*req
= boost
->req
;
7290 if (!i915_gem_request_completed(req
, true))
7291 gen6_rps_boost(to_i915(req
->ring
->dev
), NULL
,
7292 req
->emitted_jiffies
);
7294 i915_gem_request_unreference__unlocked(req
);
7298 void intel_queue_rps_boost_for_request(struct drm_device
*dev
,
7299 struct drm_i915_gem_request
*req
)
7301 struct request_boost
*boost
;
7303 if (req
== NULL
|| INTEL_INFO(dev
)->gen
< 6)
7306 if (i915_gem_request_completed(req
, true))
7309 boost
= kmalloc(sizeof(*boost
), GFP_ATOMIC
);
7313 i915_gem_request_reference(req
);
7316 INIT_WORK(&boost
->work
, __intel_rps_boost_work
);
7317 queue_work(to_i915(dev
)->wq
, &boost
->work
);
7320 void intel_pm_setup(struct drm_device
*dev
)
7322 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7324 mutex_init(&dev_priv
->rps
.hw_lock
);
7325 spin_lock_init(&dev_priv
->rps
.client_lock
);
7327 INIT_DELAYED_WORK(&dev_priv
->rps
.delayed_resume_work
,
7328 intel_gen6_powersave_work
);
7329 INIT_LIST_HEAD(&dev_priv
->rps
.clients
);
7330 INIT_LIST_HEAD(&dev_priv
->rps
.semaphores
.link
);
7331 INIT_LIST_HEAD(&dev_priv
->rps
.mmioflips
.link
);
7333 dev_priv
->pm
.suspended
= false;