posix-clock: Fix return code on the poll method's error path
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nvkm / subdev / fb / ramgf100.c
blob772425ca5a9eae5a50715a03c8cf0265cd9753de
1 /*
2 * Copyright 2013 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: Ben Skeggs
24 #define gf100_ram(p) container_of((p), struct gf100_ram, base)
25 #include "ram.h"
26 #include "ramfuc.h"
28 #include <core/option.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
31 #include <subdev/bios/rammap.h>
32 #include <subdev/bios/timing.h>
33 #include <subdev/clk.h>
34 #include <subdev/clk/pll.h>
35 #include <subdev/ltc.h>
37 struct gf100_ramfuc {
38 struct ramfuc base;
40 struct ramfuc_reg r_0x10fe20;
41 struct ramfuc_reg r_0x10fe24;
42 struct ramfuc_reg r_0x137320;
43 struct ramfuc_reg r_0x137330;
45 struct ramfuc_reg r_0x132000;
46 struct ramfuc_reg r_0x132004;
47 struct ramfuc_reg r_0x132100;
49 struct ramfuc_reg r_0x137390;
51 struct ramfuc_reg r_0x10f290;
52 struct ramfuc_reg r_0x10f294;
53 struct ramfuc_reg r_0x10f298;
54 struct ramfuc_reg r_0x10f29c;
55 struct ramfuc_reg r_0x10f2a0;
57 struct ramfuc_reg r_0x10f300;
58 struct ramfuc_reg r_0x10f338;
59 struct ramfuc_reg r_0x10f340;
60 struct ramfuc_reg r_0x10f344;
61 struct ramfuc_reg r_0x10f348;
63 struct ramfuc_reg r_0x10f910;
64 struct ramfuc_reg r_0x10f914;
66 struct ramfuc_reg r_0x100b0c;
67 struct ramfuc_reg r_0x10f050;
68 struct ramfuc_reg r_0x10f090;
69 struct ramfuc_reg r_0x10f200;
70 struct ramfuc_reg r_0x10f210;
71 struct ramfuc_reg r_0x10f310;
72 struct ramfuc_reg r_0x10f314;
73 struct ramfuc_reg r_0x10f610;
74 struct ramfuc_reg r_0x10f614;
75 struct ramfuc_reg r_0x10f800;
76 struct ramfuc_reg r_0x10f808;
77 struct ramfuc_reg r_0x10f824;
78 struct ramfuc_reg r_0x10f830;
79 struct ramfuc_reg r_0x10f988;
80 struct ramfuc_reg r_0x10f98c;
81 struct ramfuc_reg r_0x10f990;
82 struct ramfuc_reg r_0x10f998;
83 struct ramfuc_reg r_0x10f9b0;
84 struct ramfuc_reg r_0x10f9b4;
85 struct ramfuc_reg r_0x10fb04;
86 struct ramfuc_reg r_0x10fb08;
87 struct ramfuc_reg r_0x137300;
88 struct ramfuc_reg r_0x137310;
89 struct ramfuc_reg r_0x137360;
90 struct ramfuc_reg r_0x1373ec;
91 struct ramfuc_reg r_0x1373f0;
92 struct ramfuc_reg r_0x1373f8;
94 struct ramfuc_reg r_0x61c140;
95 struct ramfuc_reg r_0x611200;
97 struct ramfuc_reg r_0x13d8f4;
100 struct gf100_ram {
101 struct nvkm_ram base;
102 struct gf100_ramfuc fuc;
103 struct nvbios_pll refpll;
104 struct nvbios_pll mempll;
107 static void
108 gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
110 struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
111 struct nvkm_fb *fb = ram->base.fb;
112 struct nvkm_device *device = fb->subdev.device;
113 u32 part = nvkm_rd32(device, 0x022438), i;
114 u32 mask = nvkm_rd32(device, 0x022554);
115 u32 addr = 0x110974;
117 ram_wr32(fuc, 0x10f910, magic);
118 ram_wr32(fuc, 0x10f914, magic);
120 for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
121 if (mask & (1 << i))
122 continue;
123 ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
127 static int
128 gf100_ram_calc(struct nvkm_ram *base, u32 freq)
130 struct gf100_ram *ram = gf100_ram(base);
131 struct gf100_ramfuc *fuc = &ram->fuc;
132 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
133 struct nvkm_device *device = subdev->device;
134 struct nvkm_clk *clk = device->clk;
135 struct nvkm_bios *bios = device->bios;
136 struct nvbios_ramcfg cfg;
137 u8 ver, cnt, len, strap;
138 struct {
139 u32 data;
140 u8 size;
141 } rammap, ramcfg, timing;
142 int ref, div, out;
143 int from, mode;
144 int N1, M1, P;
145 int ret;
147 /* lookup memory config data relevant to the target frequency */
148 rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
149 &cnt, &ramcfg.size, &cfg);
150 if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
151 nvkm_error(subdev, "invalid/missing rammap entry\n");
152 return -EINVAL;
155 /* locate specific data set for the attached memory */
156 strap = nvbios_ramcfg_index(subdev);
157 if (strap >= cnt) {
158 nvkm_error(subdev, "invalid ramcfg strap\n");
159 return -EINVAL;
162 ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
163 if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
164 nvkm_error(subdev, "invalid/missing ramcfg entry\n");
165 return -EINVAL;
168 /* lookup memory timings, if bios says they're present */
169 strap = nvbios_rd08(bios, ramcfg.data + 0x01);
170 if (strap != 0xff) {
171 timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
172 &cnt, &len);
173 if (!timing.data || ver != 0x10 || timing.size < 0x19) {
174 nvkm_error(subdev, "invalid/missing timing entry\n");
175 return -EINVAL;
177 } else {
178 timing.data = 0;
181 ret = ram_init(fuc, ram->base.fb);
182 if (ret)
183 return ret;
185 /* determine current mclk configuration */
186 from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
188 /* determine target mclk configuration */
189 if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
190 ref = nvkm_clk_read(clk, nv_clk_src_sppll0);
191 else
192 ref = nvkm_clk_read(clk, nv_clk_src_sppll1);
193 div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
194 out = (ref * 2) / (div + 2);
195 mode = freq != out;
197 ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
199 if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
200 ram_nuke(fuc, 0x132000);
201 ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
202 ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
205 if (mode == 1) {
206 ram_nuke(fuc, 0x10fe20);
207 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
208 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
211 // 0x00020034 // 0x0000000a
212 ram_wr32(fuc, 0x132100, 0x00000001);
214 if (mode == 1 && from == 0) {
215 /* calculate refpll */
216 ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk,
217 &N1, NULL, &M1, &P);
218 if (ret <= 0) {
219 nvkm_error(subdev, "unable to calc refpll\n");
220 return ret ? ret : -ERANGE;
223 ram_wr32(fuc, 0x10fe20, 0x20010000);
224 ram_wr32(fuc, 0x137320, 0x00000003);
225 ram_wr32(fuc, 0x137330, 0x81200006);
226 ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
227 ram_wr32(fuc, 0x10fe20, 0x20010001);
228 ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
230 /* calculate mempll */
231 ret = gt215_pll_calc(subdev, &ram->mempll, freq,
232 &N1, NULL, &M1, &P);
233 if (ret <= 0) {
234 nvkm_error(subdev, "unable to calc refpll\n");
235 return ret ? ret : -ERANGE;
238 ram_wr32(fuc, 0x10fe20, 0x20010005);
239 ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
240 ram_wr32(fuc, 0x132000, 0x18010101);
241 ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
242 } else
243 if (mode == 0) {
244 ram_wr32(fuc, 0x137300, 0x00000003);
247 if (from == 0) {
248 ram_nuke(fuc, 0x10fb04);
249 ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
250 ram_nuke(fuc, 0x10fb08);
251 ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
252 ram_wr32(fuc, 0x10f988, 0x2004ff00);
253 ram_wr32(fuc, 0x10f98c, 0x003fc040);
254 ram_wr32(fuc, 0x10f990, 0x20012001);
255 ram_wr32(fuc, 0x10f998, 0x00011a00);
256 ram_wr32(fuc, 0x13d8f4, 0x00000000);
257 } else {
258 ram_wr32(fuc, 0x10f988, 0x20010000);
259 ram_wr32(fuc, 0x10f98c, 0x00000000);
260 ram_wr32(fuc, 0x10f990, 0x20012001);
261 ram_wr32(fuc, 0x10f998, 0x00010a00);
264 if (from == 0) {
265 // 0x00020039 // 0x000000ba
268 // 0x0002003a // 0x00000002
269 ram_wr32(fuc, 0x100b0c, 0x00080012);
270 // 0x00030014 // 0x00000000 // 0x02b5f070
271 // 0x00030014 // 0x00010000 // 0x02b5f070
272 ram_wr32(fuc, 0x611200, 0x00003300);
273 // 0x00020034 // 0x0000000a
274 // 0x00030020 // 0x00000001 // 0x00000000
276 ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
277 ram_wr32(fuc, 0x10f210, 0x00000000);
278 ram_nsec(fuc, 1000);
279 if (mode == 0)
280 gf100_ram_train(fuc, 0x000c1001);
281 ram_wr32(fuc, 0x10f310, 0x00000001);
282 ram_nsec(fuc, 1000);
283 ram_wr32(fuc, 0x10f090, 0x00000061);
284 ram_wr32(fuc, 0x10f090, 0xc000007f);
285 ram_nsec(fuc, 1000);
287 if (from == 0) {
288 ram_wr32(fuc, 0x10f824, 0x00007fd4);
289 } else {
290 ram_wr32(fuc, 0x1373ec, 0x00020404);
293 if (mode == 0) {
294 ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
295 ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
296 ram_wr32(fuc, 0x10f830, 0x41500010);
297 ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
298 ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
299 ram_wr32(fuc, 0x10f050, 0xff000090);
300 ram_wr32(fuc, 0x1373ec, 0x00020f0f);
301 ram_wr32(fuc, 0x1373f0, 0x00000003);
302 ram_wr32(fuc, 0x137310, 0x81201616);
303 ram_wr32(fuc, 0x132100, 0x00000001);
304 // 0x00020039 // 0x000000ba
305 ram_wr32(fuc, 0x10f830, 0x00300017);
306 ram_wr32(fuc, 0x1373f0, 0x00000001);
307 ram_wr32(fuc, 0x10f824, 0x00007e77);
308 ram_wr32(fuc, 0x132000, 0x18030001);
309 ram_wr32(fuc, 0x10f090, 0x4000007e);
310 ram_nsec(fuc, 2000);
311 ram_wr32(fuc, 0x10f314, 0x00000001);
312 ram_wr32(fuc, 0x10f210, 0x80000000);
313 ram_wr32(fuc, 0x10f338, 0x00300220);
314 ram_wr32(fuc, 0x10f300, 0x0000011d);
315 ram_nsec(fuc, 1000);
316 ram_wr32(fuc, 0x10f290, 0x02060505);
317 ram_wr32(fuc, 0x10f294, 0x34208288);
318 ram_wr32(fuc, 0x10f298, 0x44050411);
319 ram_wr32(fuc, 0x10f29c, 0x0000114c);
320 ram_wr32(fuc, 0x10f2a0, 0x42e10069);
321 ram_wr32(fuc, 0x10f614, 0x40044f77);
322 ram_wr32(fuc, 0x10f610, 0x40044f77);
323 ram_wr32(fuc, 0x10f344, 0x00600009);
324 ram_nsec(fuc, 1000);
325 ram_wr32(fuc, 0x10f348, 0x00700008);
326 ram_wr32(fuc, 0x61c140, 0x19240000);
327 ram_wr32(fuc, 0x10f830, 0x00300017);
328 gf100_ram_train(fuc, 0x80021001);
329 gf100_ram_train(fuc, 0x80081001);
330 ram_wr32(fuc, 0x10f340, 0x00500004);
331 ram_nsec(fuc, 1000);
332 ram_wr32(fuc, 0x10f830, 0x01300017);
333 ram_wr32(fuc, 0x10f830, 0x00300017);
334 // 0x00030020 // 0x00000000 // 0x00000000
335 // 0x00020034 // 0x0000000b
336 ram_wr32(fuc, 0x100b0c, 0x00080028);
337 ram_wr32(fuc, 0x611200, 0x00003330);
338 } else {
339 ram_wr32(fuc, 0x10f800, 0x00001800);
340 ram_wr32(fuc, 0x13d8f4, 0x00000000);
341 ram_wr32(fuc, 0x1373ec, 0x00020404);
342 ram_wr32(fuc, 0x1373f0, 0x00000003);
343 ram_wr32(fuc, 0x10f830, 0x40700010);
344 ram_wr32(fuc, 0x10f830, 0x40500010);
345 ram_wr32(fuc, 0x13d8f4, 0x00000000);
346 ram_wr32(fuc, 0x1373f8, 0x00000000);
347 ram_wr32(fuc, 0x132100, 0x00000101);
348 ram_wr32(fuc, 0x137310, 0x89201616);
349 ram_wr32(fuc, 0x10f050, 0xff000090);
350 ram_wr32(fuc, 0x1373ec, 0x00030404);
351 ram_wr32(fuc, 0x1373f0, 0x00000002);
352 // 0x00020039 // 0x00000011
353 ram_wr32(fuc, 0x132100, 0x00000001);
354 ram_wr32(fuc, 0x1373f8, 0x00002000);
355 ram_nsec(fuc, 2000);
356 ram_wr32(fuc, 0x10f808, 0x7aaa0050);
357 ram_wr32(fuc, 0x10f830, 0x00500010);
358 ram_wr32(fuc, 0x10f200, 0x00ce1000);
359 ram_wr32(fuc, 0x10f090, 0x4000007e);
360 ram_nsec(fuc, 2000);
361 ram_wr32(fuc, 0x10f314, 0x00000001);
362 ram_wr32(fuc, 0x10f210, 0x80000000);
363 ram_wr32(fuc, 0x10f338, 0x00300200);
364 ram_wr32(fuc, 0x10f300, 0x0000084d);
365 ram_nsec(fuc, 1000);
366 ram_wr32(fuc, 0x10f290, 0x0b343825);
367 ram_wr32(fuc, 0x10f294, 0x3483028e);
368 ram_wr32(fuc, 0x10f298, 0x440c0600);
369 ram_wr32(fuc, 0x10f29c, 0x0000214c);
370 ram_wr32(fuc, 0x10f2a0, 0x42e20069);
371 ram_wr32(fuc, 0x10f200, 0x00ce0000);
372 ram_wr32(fuc, 0x10f614, 0x60044e77);
373 ram_wr32(fuc, 0x10f610, 0x60044e77);
374 ram_wr32(fuc, 0x10f340, 0x00500000);
375 ram_nsec(fuc, 1000);
376 ram_wr32(fuc, 0x10f344, 0x00600228);
377 ram_nsec(fuc, 1000);
378 ram_wr32(fuc, 0x10f348, 0x00700000);
379 ram_wr32(fuc, 0x13d8f4, 0x00000000);
380 ram_wr32(fuc, 0x61c140, 0x09a40000);
382 gf100_ram_train(fuc, 0x800e1008);
384 ram_nsec(fuc, 1000);
385 ram_wr32(fuc, 0x10f800, 0x00001804);
386 // 0x00030020 // 0x00000000 // 0x00000000
387 // 0x00020034 // 0x0000000b
388 ram_wr32(fuc, 0x13d8f4, 0x00000000);
389 ram_wr32(fuc, 0x100b0c, 0x00080028);
390 ram_wr32(fuc, 0x611200, 0x00003330);
391 ram_nsec(fuc, 100000);
392 ram_wr32(fuc, 0x10f9b0, 0x05313f41);
393 ram_wr32(fuc, 0x10f9b4, 0x00002f50);
395 gf100_ram_train(fuc, 0x010c1001);
398 ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
399 // 0x00020016 // 0x00000000
401 if (mode == 0)
402 ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
404 return 0;
407 static int
408 gf100_ram_prog(struct nvkm_ram *base)
410 struct gf100_ram *ram = gf100_ram(base);
411 struct nvkm_device *device = ram->base.fb->subdev.device;
412 ram_exec(&ram->fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
413 return 0;
416 static void
417 gf100_ram_tidy(struct nvkm_ram *base)
419 struct gf100_ram *ram = gf100_ram(base);
420 ram_exec(&ram->fuc, false);
423 extern const u8 gf100_pte_storage_type_map[256];
425 void
426 gf100_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
428 struct nvkm_ltc *ltc = ram->fb->subdev.device->ltc;
429 struct nvkm_mem *mem = *pmem;
431 *pmem = NULL;
432 if (unlikely(mem == NULL))
433 return;
435 mutex_lock(&ram->fb->subdev.mutex);
436 if (mem->tag)
437 nvkm_ltc_tags_free(ltc, &mem->tag);
438 __nv50_ram_put(ram, mem);
439 mutex_unlock(&ram->fb->subdev.mutex);
441 kfree(mem);
445 gf100_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
446 u32 memtype, struct nvkm_mem **pmem)
448 struct nvkm_ltc *ltc = ram->fb->subdev.device->ltc;
449 struct nvkm_mm *mm = &ram->vram;
450 struct nvkm_mm_node *r;
451 struct nvkm_mem *mem;
452 int type = (memtype & 0x0ff);
453 int back = (memtype & 0x800);
454 const bool comp = gf100_pte_storage_type_map[type] != type;
455 int ret;
457 size >>= NVKM_RAM_MM_SHIFT;
458 align >>= NVKM_RAM_MM_SHIFT;
459 ncmin >>= NVKM_RAM_MM_SHIFT;
460 if (!ncmin)
461 ncmin = size;
463 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
464 if (!mem)
465 return -ENOMEM;
467 INIT_LIST_HEAD(&mem->regions);
468 mem->size = size;
470 mutex_lock(&ram->fb->subdev.mutex);
471 if (comp) {
472 /* compression only works with lpages */
473 if (align == (1 << (17 - NVKM_RAM_MM_SHIFT))) {
474 int n = size >> 5;
475 nvkm_ltc_tags_alloc(ltc, n, &mem->tag);
478 if (unlikely(!mem->tag))
479 type = gf100_pte_storage_type_map[type];
481 mem->memtype = type;
483 do {
484 if (back)
485 ret = nvkm_mm_tail(mm, 0, 1, size, ncmin, align, &r);
486 else
487 ret = nvkm_mm_head(mm, 0, 1, size, ncmin, align, &r);
488 if (ret) {
489 mutex_unlock(&ram->fb->subdev.mutex);
490 ram->func->put(ram, &mem);
491 return ret;
494 list_add_tail(&r->rl_entry, &mem->regions);
495 size -= r->length;
496 } while (size);
497 mutex_unlock(&ram->fb->subdev.mutex);
499 r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry);
500 mem->offset = (u64)r->offset << NVKM_RAM_MM_SHIFT;
501 *pmem = mem;
502 return 0;
505 static int
506 gf100_ram_init(struct nvkm_ram *base)
508 static const u8 train0[] = {
509 0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
510 0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
512 static const u32 train1[] = {
513 0x00000000, 0xffffffff,
514 0x55555555, 0xaaaaaaaa,
515 0x33333333, 0xcccccccc,
516 0xf0f0f0f0, 0x0f0f0f0f,
517 0x00ff00ff, 0xff00ff00,
518 0x0000ffff, 0xffff0000,
520 struct gf100_ram *ram = gf100_ram(base);
521 struct nvkm_device *device = ram->base.fb->subdev.device;
522 int i;
524 switch (ram->base.type) {
525 case NVKM_RAM_TYPE_GDDR5:
526 break;
527 default:
528 return 0;
531 /* prepare for ddr link training, and load training patterns */
532 for (i = 0; i < 0x30; i++) {
533 nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
534 nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
535 nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
536 nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
537 nvkm_wr32(device, 0x10f918, train1[i % 12]);
538 nvkm_wr32(device, 0x10f91c, train1[i % 12]);
539 nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
540 nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
541 nvkm_wr32(device, 0x10f918, train1[i % 12]);
542 nvkm_wr32(device, 0x10f91c, train1[i % 12]);
545 return 0;
548 static const struct nvkm_ram_func
549 gf100_ram_func = {
550 .init = gf100_ram_init,
551 .get = gf100_ram_get,
552 .put = gf100_ram_put,
553 .calc = gf100_ram_calc,
554 .prog = gf100_ram_prog,
555 .tidy = gf100_ram_tidy,
559 gf100_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb,
560 u32 maskaddr, struct nvkm_ram *ram)
562 struct nvkm_subdev *subdev = &fb->subdev;
563 struct nvkm_device *device = subdev->device;
564 struct nvkm_bios *bios = device->bios;
565 const u32 rsvd_head = ( 256 * 1024); /* vga memory */
566 const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
567 u32 parts = nvkm_rd32(device, 0x022438);
568 u32 pmask = nvkm_rd32(device, maskaddr);
569 u64 bsize = (u64)nvkm_rd32(device, 0x10f20c) << 20;
570 u64 psize, size = 0;
571 enum nvkm_ram_type type = nvkm_fb_bios_memtype(bios);
572 bool uniform = true;
573 int ret, i;
575 nvkm_debug(subdev, "100800: %08x\n", nvkm_rd32(device, 0x100800));
576 nvkm_debug(subdev, "parts %08x mask %08x\n", parts, pmask);
578 /* read amount of vram attached to each memory controller */
579 for (i = 0; i < parts; i++) {
580 if (pmask & (1 << i))
581 continue;
583 psize = (u64)nvkm_rd32(device, 0x11020c + (i * 0x1000)) << 20;
584 if (psize != bsize) {
585 if (psize < bsize)
586 bsize = psize;
587 uniform = false;
590 nvkm_debug(subdev, "%d: %d MiB\n", i, (u32)(psize >> 20));
591 size += psize;
594 ret = nvkm_ram_ctor(func, fb, type, size, 0, ram);
595 if (ret)
596 return ret;
598 nvkm_mm_fini(&ram->vram);
600 /* if all controllers have the same amount attached, there's no holes */
601 if (uniform) {
602 ret = nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
603 (size - rsvd_head - rsvd_tail) >>
604 NVKM_RAM_MM_SHIFT, 1);
605 if (ret)
606 return ret;
607 } else {
608 /* otherwise, address lowest common amount from 0GiB */
609 ret = nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
610 ((bsize * parts) - rsvd_head) >>
611 NVKM_RAM_MM_SHIFT, 1);
612 if (ret)
613 return ret;
615 /* and the rest starting from (8GiB + common_size) */
616 ret = nvkm_mm_init(&ram->vram, (0x0200000000ULL + bsize) >>
617 NVKM_RAM_MM_SHIFT,
618 (size - (bsize * parts) - rsvd_tail) >>
619 NVKM_RAM_MM_SHIFT, 1);
620 if (ret)
621 return ret;
624 ram->ranks = (nvkm_rd32(device, 0x10f200) & 0x00000004) ? 2 : 1;
625 return 0;
629 gf100_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
631 struct nvkm_subdev *subdev = &fb->subdev;
632 struct nvkm_bios *bios = subdev->device->bios;
633 struct gf100_ram *ram;
634 int ret;
636 if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
637 return -ENOMEM;
638 *pram = &ram->base;
640 ret = gf100_ram_ctor(&gf100_ram_func, fb, 0x022554, &ram->base);
641 if (ret)
642 return ret;
644 ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
645 if (ret) {
646 nvkm_error(subdev, "mclk refpll data not found\n");
647 return ret;
650 ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
651 if (ret) {
652 nvkm_error(subdev, "mclk pll data not found\n");
653 return ret;
656 ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
657 ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
658 ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
659 ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
661 ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
662 ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
663 ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
665 ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
667 ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
668 ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
669 ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
670 ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
671 ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
673 ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
674 ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
675 ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
676 ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
677 ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
679 ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
680 ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
682 ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
683 ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
684 ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
685 ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
686 ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
687 ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
688 ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
689 ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
690 ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
691 ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
692 ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
693 ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
694 ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
695 ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
696 ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
697 ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
698 ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
699 ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
700 ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
701 ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
702 ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
703 ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
704 ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
705 ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
706 ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
707 ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
708 ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
710 ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
711 ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
713 ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
714 return 0;