posix-clock: Fix return code on the poll method's error path
[linux/fpc-iii.git] / drivers / md / raid1.c
blobe2169ff6e0f00ca7b23d533ffa2ccee9c60ad822
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
84 kfree(r1_bio);
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
99 struct pool_info *pi = data;
100 struct r1bio *r1_bio;
101 struct bio *bio;
102 int need_pages;
103 int i, j;
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 if (!r1_bio)
107 return NULL;
110 * Allocate bios : 1 for reading, n-1 for writing
112 for (j = pi->raid_disks ; j-- ; ) {
113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
119 * Allocate RESYNC_PAGES data pages and attach them to
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 need_pages = pi->raid_disks;
126 else
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
129 bio = r1_bio->bios[j];
130 bio->bi_vcnt = RESYNC_PAGES;
132 if (bio_alloc_pages(bio, gfp_flags))
133 goto out_free_pages;
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
143 r1_bio->master_bio = NULL;
145 return r1_bio;
147 out_free_pages:
148 while (--j >= 0) {
149 struct bio_vec *bv;
151 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 __free_page(bv->bv_page);
155 out_free_bio:
156 while (++j < pi->raid_disks)
157 bio_put(r1_bio->bios[j]);
158 r1bio_pool_free(r1_bio, data);
159 return NULL;
162 static void r1buf_pool_free(void *__r1_bio, void *data)
164 struct pool_info *pi = data;
165 int i,j;
166 struct r1bio *r1bio = __r1_bio;
168 for (i = 0; i < RESYNC_PAGES; i++)
169 for (j = pi->raid_disks; j-- ;) {
170 if (j == 0 ||
171 r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 r1bio->bios[0]->bi_io_vec[i].bv_page)
173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
175 for (i=0 ; i < pi->raid_disks; i++)
176 bio_put(r1bio->bios[i]);
178 r1bio_pool_free(r1bio, data);
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
183 int i;
185 for (i = 0; i < conf->raid_disks * 2; i++) {
186 struct bio **bio = r1_bio->bios + i;
187 if (!BIO_SPECIAL(*bio))
188 bio_put(*bio);
189 *bio = NULL;
193 static void free_r1bio(struct r1bio *r1_bio)
195 struct r1conf *conf = r1_bio->mddev->private;
197 put_all_bios(conf, r1_bio);
198 mempool_free(r1_bio, conf->r1bio_pool);
201 static void put_buf(struct r1bio *r1_bio)
203 struct r1conf *conf = r1_bio->mddev->private;
204 int i;
206 for (i = 0; i < conf->raid_disks * 2; i++) {
207 struct bio *bio = r1_bio->bios[i];
208 if (bio->bi_end_io)
209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
212 mempool_free(r1_bio, conf->r1buf_pool);
214 lower_barrier(conf);
217 static void reschedule_retry(struct r1bio *r1_bio)
219 unsigned long flags;
220 struct mddev *mddev = r1_bio->mddev;
221 struct r1conf *conf = mddev->private;
223 spin_lock_irqsave(&conf->device_lock, flags);
224 list_add(&r1_bio->retry_list, &conf->retry_list);
225 conf->nr_queued ++;
226 spin_unlock_irqrestore(&conf->device_lock, flags);
228 wake_up(&conf->wait_barrier);
229 md_wakeup_thread(mddev->thread);
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
237 static void call_bio_endio(struct r1bio *r1_bio)
239 struct bio *bio = r1_bio->master_bio;
240 int done;
241 struct r1conf *conf = r1_bio->mddev->private;
242 sector_t start_next_window = r1_bio->start_next_window;
243 sector_t bi_sector = bio->bi_iter.bi_sector;
245 if (bio->bi_phys_segments) {
246 unsigned long flags;
247 spin_lock_irqsave(&conf->device_lock, flags);
248 bio->bi_phys_segments--;
249 done = (bio->bi_phys_segments == 0);
250 spin_unlock_irqrestore(&conf->device_lock, flags);
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
255 wake_up(&conf->wait_barrier);
256 } else
257 done = 1;
259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260 bio->bi_error = -EIO;
262 if (done) {
263 bio_endio(bio);
265 * Wake up any possible resync thread that waits for the device
266 * to go idle.
268 allow_barrier(conf, start_next_window, bi_sector);
272 static void raid_end_bio_io(struct r1bio *r1_bio)
274 struct bio *bio = r1_bio->master_bio;
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280 (unsigned long long) bio->bi_iter.bi_sector,
281 (unsigned long long) bio_end_sector(bio) - 1);
283 call_bio_endio(r1_bio);
285 free_r1bio(r1_bio);
289 * Update disk head position estimator based on IRQ completion info.
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
293 struct r1conf *conf = r1_bio->mddev->private;
295 conf->mirrors[disk].head_position =
296 r1_bio->sector + (r1_bio->sectors);
300 * Find the disk number which triggered given bio
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
304 int mirror;
305 struct r1conf *conf = r1_bio->mddev->private;
306 int raid_disks = conf->raid_disks;
308 for (mirror = 0; mirror < raid_disks * 2; mirror++)
309 if (r1_bio->bios[mirror] == bio)
310 break;
312 BUG_ON(mirror == raid_disks * 2);
313 update_head_pos(mirror, r1_bio);
315 return mirror;
318 static void raid1_end_read_request(struct bio *bio)
320 int uptodate = !bio->bi_error;
321 struct r1bio *r1_bio = bio->bi_private;
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
325 mirror = r1_bio->read_disk;
327 * this branch is our 'one mirror IO has finished' event handler:
329 update_head_pos(mirror, r1_bio);
331 if (uptodate)
332 set_bit(R1BIO_Uptodate, &r1_bio->state);
333 else {
334 /* If all other devices have failed, we want to return
335 * the error upwards rather than fail the last device.
336 * Here we redefine "uptodate" to mean "Don't want to retry"
338 unsigned long flags;
339 spin_lock_irqsave(&conf->device_lock, flags);
340 if (r1_bio->mddev->degraded == conf->raid_disks ||
341 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
342 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
343 uptodate = 1;
344 spin_unlock_irqrestore(&conf->device_lock, flags);
347 if (uptodate) {
348 raid_end_bio_io(r1_bio);
349 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350 } else {
352 * oops, read error:
354 char b[BDEVNAME_SIZE];
355 printk_ratelimited(
356 KERN_ERR "md/raid1:%s: %s: "
357 "rescheduling sector %llu\n",
358 mdname(conf->mddev),
359 bdevname(conf->mirrors[mirror].rdev->bdev,
361 (unsigned long long)r1_bio->sector);
362 set_bit(R1BIO_ReadError, &r1_bio->state);
363 reschedule_retry(r1_bio);
364 /* don't drop the reference on read_disk yet */
368 static void close_write(struct r1bio *r1_bio)
370 /* it really is the end of this request */
371 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372 /* free extra copy of the data pages */
373 int i = r1_bio->behind_page_count;
374 while (i--)
375 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376 kfree(r1_bio->behind_bvecs);
377 r1_bio->behind_bvecs = NULL;
379 /* clear the bitmap if all writes complete successfully */
380 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381 r1_bio->sectors,
382 !test_bit(R1BIO_Degraded, &r1_bio->state),
383 test_bit(R1BIO_BehindIO, &r1_bio->state));
384 md_write_end(r1_bio->mddev);
387 static void r1_bio_write_done(struct r1bio *r1_bio)
389 if (!atomic_dec_and_test(&r1_bio->remaining))
390 return;
392 if (test_bit(R1BIO_WriteError, &r1_bio->state))
393 reschedule_retry(r1_bio);
394 else {
395 close_write(r1_bio);
396 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397 reschedule_retry(r1_bio);
398 else
399 raid_end_bio_io(r1_bio);
403 static void raid1_end_write_request(struct bio *bio)
405 struct r1bio *r1_bio = bio->bi_private;
406 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407 struct r1conf *conf = r1_bio->mddev->private;
408 struct bio *to_put = NULL;
410 mirror = find_bio_disk(r1_bio, bio);
413 * 'one mirror IO has finished' event handler:
415 if (bio->bi_error) {
416 set_bit(WriteErrorSeen,
417 &conf->mirrors[mirror].rdev->flags);
418 if (!test_and_set_bit(WantReplacement,
419 &conf->mirrors[mirror].rdev->flags))
420 set_bit(MD_RECOVERY_NEEDED, &
421 conf->mddev->recovery);
423 set_bit(R1BIO_WriteError, &r1_bio->state);
424 } else {
426 * Set R1BIO_Uptodate in our master bio, so that we
427 * will return a good error code for to the higher
428 * levels even if IO on some other mirrored buffer
429 * fails.
431 * The 'master' represents the composite IO operation
432 * to user-side. So if something waits for IO, then it
433 * will wait for the 'master' bio.
435 sector_t first_bad;
436 int bad_sectors;
438 r1_bio->bios[mirror] = NULL;
439 to_put = bio;
441 * Do not set R1BIO_Uptodate if the current device is
442 * rebuilding or Faulty. This is because we cannot use
443 * such device for properly reading the data back (we could
444 * potentially use it, if the current write would have felt
445 * before rdev->recovery_offset, but for simplicity we don't
446 * check this here.
448 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450 set_bit(R1BIO_Uptodate, &r1_bio->state);
452 /* Maybe we can clear some bad blocks. */
453 if (is_badblock(conf->mirrors[mirror].rdev,
454 r1_bio->sector, r1_bio->sectors,
455 &first_bad, &bad_sectors)) {
456 r1_bio->bios[mirror] = IO_MADE_GOOD;
457 set_bit(R1BIO_MadeGood, &r1_bio->state);
461 if (behind) {
462 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463 atomic_dec(&r1_bio->behind_remaining);
466 * In behind mode, we ACK the master bio once the I/O
467 * has safely reached all non-writemostly
468 * disks. Setting the Returned bit ensures that this
469 * gets done only once -- we don't ever want to return
470 * -EIO here, instead we'll wait
472 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474 /* Maybe we can return now */
475 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476 struct bio *mbio = r1_bio->master_bio;
477 pr_debug("raid1: behind end write sectors"
478 " %llu-%llu\n",
479 (unsigned long long) mbio->bi_iter.bi_sector,
480 (unsigned long long) bio_end_sector(mbio) - 1);
481 call_bio_endio(r1_bio);
485 if (r1_bio->bios[mirror] == NULL)
486 rdev_dec_pending(conf->mirrors[mirror].rdev,
487 conf->mddev);
490 * Let's see if all mirrored write operations have finished
491 * already.
493 r1_bio_write_done(r1_bio);
495 if (to_put)
496 bio_put(to_put);
500 * This routine returns the disk from which the requested read should
501 * be done. There is a per-array 'next expected sequential IO' sector
502 * number - if this matches on the next IO then we use the last disk.
503 * There is also a per-disk 'last know head position' sector that is
504 * maintained from IRQ contexts, both the normal and the resync IO
505 * completion handlers update this position correctly. If there is no
506 * perfect sequential match then we pick the disk whose head is closest.
508 * If there are 2 mirrors in the same 2 devices, performance degrades
509 * because position is mirror, not device based.
511 * The rdev for the device selected will have nr_pending incremented.
513 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
515 const sector_t this_sector = r1_bio->sector;
516 int sectors;
517 int best_good_sectors;
518 int best_disk, best_dist_disk, best_pending_disk;
519 int has_nonrot_disk;
520 int disk;
521 sector_t best_dist;
522 unsigned int min_pending;
523 struct md_rdev *rdev;
524 int choose_first;
525 int choose_next_idle;
527 rcu_read_lock();
529 * Check if we can balance. We can balance on the whole
530 * device if no resync is going on, or below the resync window.
531 * We take the first readable disk when above the resync window.
533 retry:
534 sectors = r1_bio->sectors;
535 best_disk = -1;
536 best_dist_disk = -1;
537 best_dist = MaxSector;
538 best_pending_disk = -1;
539 min_pending = UINT_MAX;
540 best_good_sectors = 0;
541 has_nonrot_disk = 0;
542 choose_next_idle = 0;
544 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545 (mddev_is_clustered(conf->mddev) &&
546 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
547 this_sector + sectors)))
548 choose_first = 1;
549 else
550 choose_first = 0;
552 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
553 sector_t dist;
554 sector_t first_bad;
555 int bad_sectors;
556 unsigned int pending;
557 bool nonrot;
559 rdev = rcu_dereference(conf->mirrors[disk].rdev);
560 if (r1_bio->bios[disk] == IO_BLOCKED
561 || rdev == NULL
562 || test_bit(Faulty, &rdev->flags))
563 continue;
564 if (!test_bit(In_sync, &rdev->flags) &&
565 rdev->recovery_offset < this_sector + sectors)
566 continue;
567 if (test_bit(WriteMostly, &rdev->flags)) {
568 /* Don't balance among write-mostly, just
569 * use the first as a last resort */
570 if (best_dist_disk < 0) {
571 if (is_badblock(rdev, this_sector, sectors,
572 &first_bad, &bad_sectors)) {
573 if (first_bad < this_sector)
574 /* Cannot use this */
575 continue;
576 best_good_sectors = first_bad - this_sector;
577 } else
578 best_good_sectors = sectors;
579 best_dist_disk = disk;
580 best_pending_disk = disk;
582 continue;
584 /* This is a reasonable device to use. It might
585 * even be best.
587 if (is_badblock(rdev, this_sector, sectors,
588 &first_bad, &bad_sectors)) {
589 if (best_dist < MaxSector)
590 /* already have a better device */
591 continue;
592 if (first_bad <= this_sector) {
593 /* cannot read here. If this is the 'primary'
594 * device, then we must not read beyond
595 * bad_sectors from another device..
597 bad_sectors -= (this_sector - first_bad);
598 if (choose_first && sectors > bad_sectors)
599 sectors = bad_sectors;
600 if (best_good_sectors > sectors)
601 best_good_sectors = sectors;
603 } else {
604 sector_t good_sectors = first_bad - this_sector;
605 if (good_sectors > best_good_sectors) {
606 best_good_sectors = good_sectors;
607 best_disk = disk;
609 if (choose_first)
610 break;
612 continue;
613 } else
614 best_good_sectors = sectors;
616 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617 has_nonrot_disk |= nonrot;
618 pending = atomic_read(&rdev->nr_pending);
619 dist = abs(this_sector - conf->mirrors[disk].head_position);
620 if (choose_first) {
621 best_disk = disk;
622 break;
624 /* Don't change to another disk for sequential reads */
625 if (conf->mirrors[disk].next_seq_sect == this_sector
626 || dist == 0) {
627 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628 struct raid1_info *mirror = &conf->mirrors[disk];
630 best_disk = disk;
632 * If buffered sequential IO size exceeds optimal
633 * iosize, check if there is idle disk. If yes, choose
634 * the idle disk. read_balance could already choose an
635 * idle disk before noticing it's a sequential IO in
636 * this disk. This doesn't matter because this disk
637 * will idle, next time it will be utilized after the
638 * first disk has IO size exceeds optimal iosize. In
639 * this way, iosize of the first disk will be optimal
640 * iosize at least. iosize of the second disk might be
641 * small, but not a big deal since when the second disk
642 * starts IO, the first disk is likely still busy.
644 if (nonrot && opt_iosize > 0 &&
645 mirror->seq_start != MaxSector &&
646 mirror->next_seq_sect > opt_iosize &&
647 mirror->next_seq_sect - opt_iosize >=
648 mirror->seq_start) {
649 choose_next_idle = 1;
650 continue;
652 break;
654 /* If device is idle, use it */
655 if (pending == 0) {
656 best_disk = disk;
657 break;
660 if (choose_next_idle)
661 continue;
663 if (min_pending > pending) {
664 min_pending = pending;
665 best_pending_disk = disk;
668 if (dist < best_dist) {
669 best_dist = dist;
670 best_dist_disk = disk;
675 * If all disks are rotational, choose the closest disk. If any disk is
676 * non-rotational, choose the disk with less pending request even the
677 * disk is rotational, which might/might not be optimal for raids with
678 * mixed ratation/non-rotational disks depending on workload.
680 if (best_disk == -1) {
681 if (has_nonrot_disk)
682 best_disk = best_pending_disk;
683 else
684 best_disk = best_dist_disk;
687 if (best_disk >= 0) {
688 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
689 if (!rdev)
690 goto retry;
691 atomic_inc(&rdev->nr_pending);
692 if (test_bit(Faulty, &rdev->flags)) {
693 /* cannot risk returning a device that failed
694 * before we inc'ed nr_pending
696 rdev_dec_pending(rdev, conf->mddev);
697 goto retry;
699 sectors = best_good_sectors;
701 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
702 conf->mirrors[best_disk].seq_start = this_sector;
704 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
706 rcu_read_unlock();
707 *max_sectors = sectors;
709 return best_disk;
712 static int raid1_congested(struct mddev *mddev, int bits)
714 struct r1conf *conf = mddev->private;
715 int i, ret = 0;
717 if ((bits & (1 << WB_async_congested)) &&
718 conf->pending_count >= max_queued_requests)
719 return 1;
721 rcu_read_lock();
722 for (i = 0; i < conf->raid_disks * 2; i++) {
723 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
724 if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 struct request_queue *q = bdev_get_queue(rdev->bdev);
727 BUG_ON(!q);
729 /* Note the '|| 1' - when read_balance prefers
730 * non-congested targets, it can be removed
732 if ((bits & (1 << WB_async_congested)) || 1)
733 ret |= bdi_congested(&q->backing_dev_info, bits);
734 else
735 ret &= bdi_congested(&q->backing_dev_info, bits);
738 rcu_read_unlock();
739 return ret;
742 static void flush_pending_writes(struct r1conf *conf)
744 /* Any writes that have been queued but are awaiting
745 * bitmap updates get flushed here.
747 spin_lock_irq(&conf->device_lock);
749 if (conf->pending_bio_list.head) {
750 struct bio *bio;
751 bio = bio_list_get(&conf->pending_bio_list);
752 conf->pending_count = 0;
753 spin_unlock_irq(&conf->device_lock);
754 /* flush any pending bitmap writes to
755 * disk before proceeding w/ I/O */
756 bitmap_unplug(conf->mddev->bitmap);
757 wake_up(&conf->wait_barrier);
759 while (bio) { /* submit pending writes */
760 struct bio *next = bio->bi_next;
761 bio->bi_next = NULL;
762 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
763 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
764 /* Just ignore it */
765 bio_endio(bio);
766 else
767 generic_make_request(bio);
768 bio = next;
770 } else
771 spin_unlock_irq(&conf->device_lock);
774 /* Barriers....
775 * Sometimes we need to suspend IO while we do something else,
776 * either some resync/recovery, or reconfigure the array.
777 * To do this we raise a 'barrier'.
778 * The 'barrier' is a counter that can be raised multiple times
779 * to count how many activities are happening which preclude
780 * normal IO.
781 * We can only raise the barrier if there is no pending IO.
782 * i.e. if nr_pending == 0.
783 * We choose only to raise the barrier if no-one is waiting for the
784 * barrier to go down. This means that as soon as an IO request
785 * is ready, no other operations which require a barrier will start
786 * until the IO request has had a chance.
788 * So: regular IO calls 'wait_barrier'. When that returns there
789 * is no backgroup IO happening, It must arrange to call
790 * allow_barrier when it has finished its IO.
791 * backgroup IO calls must call raise_barrier. Once that returns
792 * there is no normal IO happeing. It must arrange to call
793 * lower_barrier when the particular background IO completes.
795 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
797 spin_lock_irq(&conf->resync_lock);
799 /* Wait until no block IO is waiting */
800 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
801 conf->resync_lock);
803 /* block any new IO from starting */
804 conf->barrier++;
805 conf->next_resync = sector_nr;
807 /* For these conditions we must wait:
808 * A: while the array is in frozen state
809 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810 * the max count which allowed.
811 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812 * next resync will reach to the window which normal bios are
813 * handling.
814 * D: while there are any active requests in the current window.
816 wait_event_lock_irq(conf->wait_barrier,
817 !conf->array_frozen &&
818 conf->barrier < RESYNC_DEPTH &&
819 conf->current_window_requests == 0 &&
820 (conf->start_next_window >=
821 conf->next_resync + RESYNC_SECTORS),
822 conf->resync_lock);
824 conf->nr_pending++;
825 spin_unlock_irq(&conf->resync_lock);
828 static void lower_barrier(struct r1conf *conf)
830 unsigned long flags;
831 BUG_ON(conf->barrier <= 0);
832 spin_lock_irqsave(&conf->resync_lock, flags);
833 conf->barrier--;
834 conf->nr_pending--;
835 spin_unlock_irqrestore(&conf->resync_lock, flags);
836 wake_up(&conf->wait_barrier);
839 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
841 bool wait = false;
843 if (conf->array_frozen || !bio)
844 wait = true;
845 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
846 if ((conf->mddev->curr_resync_completed
847 >= bio_end_sector(bio)) ||
848 (conf->next_resync + NEXT_NORMALIO_DISTANCE
849 <= bio->bi_iter.bi_sector))
850 wait = false;
851 else
852 wait = true;
855 return wait;
858 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
860 sector_t sector = 0;
862 spin_lock_irq(&conf->resync_lock);
863 if (need_to_wait_for_sync(conf, bio)) {
864 conf->nr_waiting++;
865 /* Wait for the barrier to drop.
866 * However if there are already pending
867 * requests (preventing the barrier from
868 * rising completely), and the
869 * per-process bio queue isn't empty,
870 * then don't wait, as we need to empty
871 * that queue to allow conf->start_next_window
872 * to increase.
874 wait_event_lock_irq(conf->wait_barrier,
875 !conf->array_frozen &&
876 (!conf->barrier ||
877 ((conf->start_next_window <
878 conf->next_resync + RESYNC_SECTORS) &&
879 current->bio_list &&
880 !bio_list_empty(current->bio_list))),
881 conf->resync_lock);
882 conf->nr_waiting--;
885 if (bio && bio_data_dir(bio) == WRITE) {
886 if (bio->bi_iter.bi_sector >= conf->next_resync) {
887 if (conf->start_next_window == MaxSector)
888 conf->start_next_window =
889 conf->next_resync +
890 NEXT_NORMALIO_DISTANCE;
892 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
893 <= bio->bi_iter.bi_sector)
894 conf->next_window_requests++;
895 else
896 conf->current_window_requests++;
897 sector = conf->start_next_window;
901 conf->nr_pending++;
902 spin_unlock_irq(&conf->resync_lock);
903 return sector;
906 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
907 sector_t bi_sector)
909 unsigned long flags;
911 spin_lock_irqsave(&conf->resync_lock, flags);
912 conf->nr_pending--;
913 if (start_next_window) {
914 if (start_next_window == conf->start_next_window) {
915 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
916 <= bi_sector)
917 conf->next_window_requests--;
918 else
919 conf->current_window_requests--;
920 } else
921 conf->current_window_requests--;
923 if (!conf->current_window_requests) {
924 if (conf->next_window_requests) {
925 conf->current_window_requests =
926 conf->next_window_requests;
927 conf->next_window_requests = 0;
928 conf->start_next_window +=
929 NEXT_NORMALIO_DISTANCE;
930 } else
931 conf->start_next_window = MaxSector;
934 spin_unlock_irqrestore(&conf->resync_lock, flags);
935 wake_up(&conf->wait_barrier);
938 static void freeze_array(struct r1conf *conf, int extra)
940 /* stop syncio and normal IO and wait for everything to
941 * go quite.
942 * We wait until nr_pending match nr_queued+extra
943 * This is called in the context of one normal IO request
944 * that has failed. Thus any sync request that might be pending
945 * will be blocked by nr_pending, and we need to wait for
946 * pending IO requests to complete or be queued for re-try.
947 * Thus the number queued (nr_queued) plus this request (extra)
948 * must match the number of pending IOs (nr_pending) before
949 * we continue.
951 spin_lock_irq(&conf->resync_lock);
952 conf->array_frozen = 1;
953 wait_event_lock_irq_cmd(conf->wait_barrier,
954 conf->nr_pending == conf->nr_queued+extra,
955 conf->resync_lock,
956 flush_pending_writes(conf));
957 spin_unlock_irq(&conf->resync_lock);
959 static void unfreeze_array(struct r1conf *conf)
961 /* reverse the effect of the freeze */
962 spin_lock_irq(&conf->resync_lock);
963 conf->array_frozen = 0;
964 wake_up(&conf->wait_barrier);
965 spin_unlock_irq(&conf->resync_lock);
968 /* duplicate the data pages for behind I/O
970 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
972 int i;
973 struct bio_vec *bvec;
974 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
975 GFP_NOIO);
976 if (unlikely(!bvecs))
977 return;
979 bio_for_each_segment_all(bvec, bio, i) {
980 bvecs[i] = *bvec;
981 bvecs[i].bv_page = alloc_page(GFP_NOIO);
982 if (unlikely(!bvecs[i].bv_page))
983 goto do_sync_io;
984 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
985 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
986 kunmap(bvecs[i].bv_page);
987 kunmap(bvec->bv_page);
989 r1_bio->behind_bvecs = bvecs;
990 r1_bio->behind_page_count = bio->bi_vcnt;
991 set_bit(R1BIO_BehindIO, &r1_bio->state);
992 return;
994 do_sync_io:
995 for (i = 0; i < bio->bi_vcnt; i++)
996 if (bvecs[i].bv_page)
997 put_page(bvecs[i].bv_page);
998 kfree(bvecs);
999 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000 bio->bi_iter.bi_size);
1003 struct raid1_plug_cb {
1004 struct blk_plug_cb cb;
1005 struct bio_list pending;
1006 int pending_cnt;
1009 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1011 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012 cb);
1013 struct mddev *mddev = plug->cb.data;
1014 struct r1conf *conf = mddev->private;
1015 struct bio *bio;
1017 if (from_schedule || current->bio_list) {
1018 spin_lock_irq(&conf->device_lock);
1019 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020 conf->pending_count += plug->pending_cnt;
1021 spin_unlock_irq(&conf->device_lock);
1022 wake_up(&conf->wait_barrier);
1023 md_wakeup_thread(mddev->thread);
1024 kfree(plug);
1025 return;
1028 /* we aren't scheduling, so we can do the write-out directly. */
1029 bio = bio_list_get(&plug->pending);
1030 bitmap_unplug(mddev->bitmap);
1031 wake_up(&conf->wait_barrier);
1033 while (bio) { /* submit pending writes */
1034 struct bio *next = bio->bi_next;
1035 bio->bi_next = NULL;
1036 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038 /* Just ignore it */
1039 bio_endio(bio);
1040 else
1041 generic_make_request(bio);
1042 bio = next;
1044 kfree(plug);
1047 static void make_request(struct mddev *mddev, struct bio * bio)
1049 struct r1conf *conf = mddev->private;
1050 struct raid1_info *mirror;
1051 struct r1bio *r1_bio;
1052 struct bio *read_bio;
1053 int i, disks;
1054 struct bitmap *bitmap;
1055 unsigned long flags;
1056 const int rw = bio_data_dir(bio);
1057 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1058 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1059 const unsigned long do_discard = (bio->bi_rw
1060 & (REQ_DISCARD | REQ_SECURE));
1061 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1062 struct md_rdev *blocked_rdev;
1063 struct blk_plug_cb *cb;
1064 struct raid1_plug_cb *plug = NULL;
1065 int first_clone;
1066 int sectors_handled;
1067 int max_sectors;
1068 sector_t start_next_window;
1071 * Register the new request and wait if the reconstruction
1072 * thread has put up a bar for new requests.
1073 * Continue immediately if no resync is active currently.
1076 md_write_start(mddev, bio); /* wait on superblock update early */
1078 if (bio_data_dir(bio) == WRITE &&
1079 ((bio_end_sector(bio) > mddev->suspend_lo &&
1080 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1081 (mddev_is_clustered(mddev) &&
1082 md_cluster_ops->area_resyncing(mddev, WRITE,
1083 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1084 /* As the suspend_* range is controlled by
1085 * userspace, we want an interruptible
1086 * wait.
1088 DEFINE_WAIT(w);
1089 for (;;) {
1090 flush_signals(current);
1091 prepare_to_wait(&conf->wait_barrier,
1092 &w, TASK_INTERRUPTIBLE);
1093 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1094 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1095 (mddev_is_clustered(mddev) &&
1096 !md_cluster_ops->area_resyncing(mddev, WRITE,
1097 bio->bi_iter.bi_sector, bio_end_sector(bio))))
1098 break;
1099 schedule();
1101 finish_wait(&conf->wait_barrier, &w);
1104 start_next_window = wait_barrier(conf, bio);
1106 bitmap = mddev->bitmap;
1109 * make_request() can abort the operation when READA is being
1110 * used and no empty request is available.
1113 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1115 r1_bio->master_bio = bio;
1116 r1_bio->sectors = bio_sectors(bio);
1117 r1_bio->state = 0;
1118 r1_bio->mddev = mddev;
1119 r1_bio->sector = bio->bi_iter.bi_sector;
1121 /* We might need to issue multiple reads to different
1122 * devices if there are bad blocks around, so we keep
1123 * track of the number of reads in bio->bi_phys_segments.
1124 * If this is 0, there is only one r1_bio and no locking
1125 * will be needed when requests complete. If it is
1126 * non-zero, then it is the number of not-completed requests.
1128 bio->bi_phys_segments = 0;
1129 bio_clear_flag(bio, BIO_SEG_VALID);
1131 if (rw == READ) {
1133 * read balancing logic:
1135 int rdisk;
1137 read_again:
1138 rdisk = read_balance(conf, r1_bio, &max_sectors);
1140 if (rdisk < 0) {
1141 /* couldn't find anywhere to read from */
1142 raid_end_bio_io(r1_bio);
1143 return;
1145 mirror = conf->mirrors + rdisk;
1147 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1148 bitmap) {
1149 /* Reading from a write-mostly device must
1150 * take care not to over-take any writes
1151 * that are 'behind'
1153 wait_event(bitmap->behind_wait,
1154 atomic_read(&bitmap->behind_writes) == 0);
1156 r1_bio->read_disk = rdisk;
1157 r1_bio->start_next_window = 0;
1159 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1160 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1161 max_sectors);
1163 r1_bio->bios[rdisk] = read_bio;
1165 read_bio->bi_iter.bi_sector = r1_bio->sector +
1166 mirror->rdev->data_offset;
1167 read_bio->bi_bdev = mirror->rdev->bdev;
1168 read_bio->bi_end_io = raid1_end_read_request;
1169 read_bio->bi_rw = READ | do_sync;
1170 read_bio->bi_private = r1_bio;
1172 if (max_sectors < r1_bio->sectors) {
1173 /* could not read all from this device, so we will
1174 * need another r1_bio.
1177 sectors_handled = (r1_bio->sector + max_sectors
1178 - bio->bi_iter.bi_sector);
1179 r1_bio->sectors = max_sectors;
1180 spin_lock_irq(&conf->device_lock);
1181 if (bio->bi_phys_segments == 0)
1182 bio->bi_phys_segments = 2;
1183 else
1184 bio->bi_phys_segments++;
1185 spin_unlock_irq(&conf->device_lock);
1186 /* Cannot call generic_make_request directly
1187 * as that will be queued in __make_request
1188 * and subsequent mempool_alloc might block waiting
1189 * for it. So hand bio over to raid1d.
1191 reschedule_retry(r1_bio);
1193 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1195 r1_bio->master_bio = bio;
1196 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1197 r1_bio->state = 0;
1198 r1_bio->mddev = mddev;
1199 r1_bio->sector = bio->bi_iter.bi_sector +
1200 sectors_handled;
1201 goto read_again;
1202 } else
1203 generic_make_request(read_bio);
1204 return;
1208 * WRITE:
1210 if (conf->pending_count >= max_queued_requests) {
1211 md_wakeup_thread(mddev->thread);
1212 wait_event(conf->wait_barrier,
1213 conf->pending_count < max_queued_requests);
1215 /* first select target devices under rcu_lock and
1216 * inc refcount on their rdev. Record them by setting
1217 * bios[x] to bio
1218 * If there are known/acknowledged bad blocks on any device on
1219 * which we have seen a write error, we want to avoid writing those
1220 * blocks.
1221 * This potentially requires several writes to write around
1222 * the bad blocks. Each set of writes gets it's own r1bio
1223 * with a set of bios attached.
1226 disks = conf->raid_disks * 2;
1227 retry_write:
1228 r1_bio->start_next_window = start_next_window;
1229 blocked_rdev = NULL;
1230 rcu_read_lock();
1231 max_sectors = r1_bio->sectors;
1232 for (i = 0; i < disks; i++) {
1233 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1234 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1235 atomic_inc(&rdev->nr_pending);
1236 blocked_rdev = rdev;
1237 break;
1239 r1_bio->bios[i] = NULL;
1240 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1241 if (i < conf->raid_disks)
1242 set_bit(R1BIO_Degraded, &r1_bio->state);
1243 continue;
1246 atomic_inc(&rdev->nr_pending);
1247 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1248 sector_t first_bad;
1249 int bad_sectors;
1250 int is_bad;
1252 is_bad = is_badblock(rdev, r1_bio->sector,
1253 max_sectors,
1254 &first_bad, &bad_sectors);
1255 if (is_bad < 0) {
1256 /* mustn't write here until the bad block is
1257 * acknowledged*/
1258 set_bit(BlockedBadBlocks, &rdev->flags);
1259 blocked_rdev = rdev;
1260 break;
1262 if (is_bad && first_bad <= r1_bio->sector) {
1263 /* Cannot write here at all */
1264 bad_sectors -= (r1_bio->sector - first_bad);
1265 if (bad_sectors < max_sectors)
1266 /* mustn't write more than bad_sectors
1267 * to other devices yet
1269 max_sectors = bad_sectors;
1270 rdev_dec_pending(rdev, mddev);
1271 /* We don't set R1BIO_Degraded as that
1272 * only applies if the disk is
1273 * missing, so it might be re-added,
1274 * and we want to know to recover this
1275 * chunk.
1276 * In this case the device is here,
1277 * and the fact that this chunk is not
1278 * in-sync is recorded in the bad
1279 * block log
1281 continue;
1283 if (is_bad) {
1284 int good_sectors = first_bad - r1_bio->sector;
1285 if (good_sectors < max_sectors)
1286 max_sectors = good_sectors;
1289 r1_bio->bios[i] = bio;
1291 rcu_read_unlock();
1293 if (unlikely(blocked_rdev)) {
1294 /* Wait for this device to become unblocked */
1295 int j;
1296 sector_t old = start_next_window;
1298 for (j = 0; j < i; j++)
1299 if (r1_bio->bios[j])
1300 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1301 r1_bio->state = 0;
1302 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1303 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1304 start_next_window = wait_barrier(conf, bio);
1306 * We must make sure the multi r1bios of bio have
1307 * the same value of bi_phys_segments
1309 if (bio->bi_phys_segments && old &&
1310 old != start_next_window)
1311 /* Wait for the former r1bio(s) to complete */
1312 wait_event(conf->wait_barrier,
1313 bio->bi_phys_segments == 1);
1314 goto retry_write;
1317 if (max_sectors < r1_bio->sectors) {
1318 /* We are splitting this write into multiple parts, so
1319 * we need to prepare for allocating another r1_bio.
1321 r1_bio->sectors = max_sectors;
1322 spin_lock_irq(&conf->device_lock);
1323 if (bio->bi_phys_segments == 0)
1324 bio->bi_phys_segments = 2;
1325 else
1326 bio->bi_phys_segments++;
1327 spin_unlock_irq(&conf->device_lock);
1329 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1331 atomic_set(&r1_bio->remaining, 1);
1332 atomic_set(&r1_bio->behind_remaining, 0);
1334 first_clone = 1;
1335 for (i = 0; i < disks; i++) {
1336 struct bio *mbio;
1337 if (!r1_bio->bios[i])
1338 continue;
1340 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1341 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1343 if (first_clone) {
1344 /* do behind I/O ?
1345 * Not if there are too many, or cannot
1346 * allocate memory, or a reader on WriteMostly
1347 * is waiting for behind writes to flush */
1348 if (bitmap &&
1349 (atomic_read(&bitmap->behind_writes)
1350 < mddev->bitmap_info.max_write_behind) &&
1351 !waitqueue_active(&bitmap->behind_wait))
1352 alloc_behind_pages(mbio, r1_bio);
1354 bitmap_startwrite(bitmap, r1_bio->sector,
1355 r1_bio->sectors,
1356 test_bit(R1BIO_BehindIO,
1357 &r1_bio->state));
1358 first_clone = 0;
1360 if (r1_bio->behind_bvecs) {
1361 struct bio_vec *bvec;
1362 int j;
1365 * We trimmed the bio, so _all is legit
1367 bio_for_each_segment_all(bvec, mbio, j)
1368 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1369 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1370 atomic_inc(&r1_bio->behind_remaining);
1373 r1_bio->bios[i] = mbio;
1375 mbio->bi_iter.bi_sector = (r1_bio->sector +
1376 conf->mirrors[i].rdev->data_offset);
1377 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1378 mbio->bi_end_io = raid1_end_write_request;
1379 mbio->bi_rw =
1380 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1381 mbio->bi_private = r1_bio;
1383 atomic_inc(&r1_bio->remaining);
1385 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1386 if (cb)
1387 plug = container_of(cb, struct raid1_plug_cb, cb);
1388 else
1389 plug = NULL;
1390 spin_lock_irqsave(&conf->device_lock, flags);
1391 if (plug) {
1392 bio_list_add(&plug->pending, mbio);
1393 plug->pending_cnt++;
1394 } else {
1395 bio_list_add(&conf->pending_bio_list, mbio);
1396 conf->pending_count++;
1398 spin_unlock_irqrestore(&conf->device_lock, flags);
1399 if (!plug)
1400 md_wakeup_thread(mddev->thread);
1402 /* Mustn't call r1_bio_write_done before this next test,
1403 * as it could result in the bio being freed.
1405 if (sectors_handled < bio_sectors(bio)) {
1406 r1_bio_write_done(r1_bio);
1407 /* We need another r1_bio. It has already been counted
1408 * in bio->bi_phys_segments
1410 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1411 r1_bio->master_bio = bio;
1412 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1413 r1_bio->state = 0;
1414 r1_bio->mddev = mddev;
1415 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1416 goto retry_write;
1419 r1_bio_write_done(r1_bio);
1421 /* In case raid1d snuck in to freeze_array */
1422 wake_up(&conf->wait_barrier);
1425 static void status(struct seq_file *seq, struct mddev *mddev)
1427 struct r1conf *conf = mddev->private;
1428 int i;
1430 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1431 conf->raid_disks - mddev->degraded);
1432 rcu_read_lock();
1433 for (i = 0; i < conf->raid_disks; i++) {
1434 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1435 seq_printf(seq, "%s",
1436 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1438 rcu_read_unlock();
1439 seq_printf(seq, "]");
1442 static void error(struct mddev *mddev, struct md_rdev *rdev)
1444 char b[BDEVNAME_SIZE];
1445 struct r1conf *conf = mddev->private;
1446 unsigned long flags;
1449 * If it is not operational, then we have already marked it as dead
1450 * else if it is the last working disks, ignore the error, let the
1451 * next level up know.
1452 * else mark the drive as failed
1454 if (test_bit(In_sync, &rdev->flags)
1455 && (conf->raid_disks - mddev->degraded) == 1) {
1457 * Don't fail the drive, act as though we were just a
1458 * normal single drive.
1459 * However don't try a recovery from this drive as
1460 * it is very likely to fail.
1462 conf->recovery_disabled = mddev->recovery_disabled;
1463 return;
1465 set_bit(Blocked, &rdev->flags);
1466 spin_lock_irqsave(&conf->device_lock, flags);
1467 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1468 mddev->degraded++;
1469 set_bit(Faulty, &rdev->flags);
1470 } else
1471 set_bit(Faulty, &rdev->flags);
1472 spin_unlock_irqrestore(&conf->device_lock, flags);
1474 * if recovery is running, make sure it aborts.
1476 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1477 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1478 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1479 printk(KERN_ALERT
1480 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481 "md/raid1:%s: Operation continuing on %d devices.\n",
1482 mdname(mddev), bdevname(rdev->bdev, b),
1483 mdname(mddev), conf->raid_disks - mddev->degraded);
1486 static void print_conf(struct r1conf *conf)
1488 int i;
1490 printk(KERN_DEBUG "RAID1 conf printout:\n");
1491 if (!conf) {
1492 printk(KERN_DEBUG "(!conf)\n");
1493 return;
1495 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1496 conf->raid_disks);
1498 rcu_read_lock();
1499 for (i = 0; i < conf->raid_disks; i++) {
1500 char b[BDEVNAME_SIZE];
1501 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502 if (rdev)
1503 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1504 i, !test_bit(In_sync, &rdev->flags),
1505 !test_bit(Faulty, &rdev->flags),
1506 bdevname(rdev->bdev,b));
1508 rcu_read_unlock();
1511 static void close_sync(struct r1conf *conf)
1513 wait_barrier(conf, NULL);
1514 allow_barrier(conf, 0, 0);
1516 mempool_destroy(conf->r1buf_pool);
1517 conf->r1buf_pool = NULL;
1519 spin_lock_irq(&conf->resync_lock);
1520 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1521 conf->start_next_window = MaxSector;
1522 conf->current_window_requests +=
1523 conf->next_window_requests;
1524 conf->next_window_requests = 0;
1525 spin_unlock_irq(&conf->resync_lock);
1528 static int raid1_spare_active(struct mddev *mddev)
1530 int i;
1531 struct r1conf *conf = mddev->private;
1532 int count = 0;
1533 unsigned long flags;
1536 * Find all failed disks within the RAID1 configuration
1537 * and mark them readable.
1538 * Called under mddev lock, so rcu protection not needed.
1539 * device_lock used to avoid races with raid1_end_read_request
1540 * which expects 'In_sync' flags and ->degraded to be consistent.
1542 spin_lock_irqsave(&conf->device_lock, flags);
1543 for (i = 0; i < conf->raid_disks; i++) {
1544 struct md_rdev *rdev = conf->mirrors[i].rdev;
1545 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1546 if (repl
1547 && !test_bit(Candidate, &repl->flags)
1548 && repl->recovery_offset == MaxSector
1549 && !test_bit(Faulty, &repl->flags)
1550 && !test_and_set_bit(In_sync, &repl->flags)) {
1551 /* replacement has just become active */
1552 if (!rdev ||
1553 !test_and_clear_bit(In_sync, &rdev->flags))
1554 count++;
1555 if (rdev) {
1556 /* Replaced device not technically
1557 * faulty, but we need to be sure
1558 * it gets removed and never re-added
1560 set_bit(Faulty, &rdev->flags);
1561 sysfs_notify_dirent_safe(
1562 rdev->sysfs_state);
1565 if (rdev
1566 && rdev->recovery_offset == MaxSector
1567 && !test_bit(Faulty, &rdev->flags)
1568 && !test_and_set_bit(In_sync, &rdev->flags)) {
1569 count++;
1570 sysfs_notify_dirent_safe(rdev->sysfs_state);
1573 mddev->degraded -= count;
1574 spin_unlock_irqrestore(&conf->device_lock, flags);
1576 print_conf(conf);
1577 return count;
1580 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1582 struct r1conf *conf = mddev->private;
1583 int err = -EEXIST;
1584 int mirror = 0;
1585 struct raid1_info *p;
1586 int first = 0;
1587 int last = conf->raid_disks - 1;
1589 if (mddev->recovery_disabled == conf->recovery_disabled)
1590 return -EBUSY;
1592 if (rdev->raid_disk >= 0)
1593 first = last = rdev->raid_disk;
1596 * find the disk ... but prefer rdev->saved_raid_disk
1597 * if possible.
1599 if (rdev->saved_raid_disk >= 0 &&
1600 rdev->saved_raid_disk >= first &&
1601 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1602 first = last = rdev->saved_raid_disk;
1604 for (mirror = first; mirror <= last; mirror++) {
1605 p = conf->mirrors+mirror;
1606 if (!p->rdev) {
1608 if (mddev->gendisk)
1609 disk_stack_limits(mddev->gendisk, rdev->bdev,
1610 rdev->data_offset << 9);
1612 p->head_position = 0;
1613 rdev->raid_disk = mirror;
1614 err = 0;
1615 /* As all devices are equivalent, we don't need a full recovery
1616 * if this was recently any drive of the array
1618 if (rdev->saved_raid_disk < 0)
1619 conf->fullsync = 1;
1620 rcu_assign_pointer(p->rdev, rdev);
1621 break;
1623 if (test_bit(WantReplacement, &p->rdev->flags) &&
1624 p[conf->raid_disks].rdev == NULL) {
1625 /* Add this device as a replacement */
1626 clear_bit(In_sync, &rdev->flags);
1627 set_bit(Replacement, &rdev->flags);
1628 rdev->raid_disk = mirror;
1629 err = 0;
1630 conf->fullsync = 1;
1631 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1632 break;
1635 mddev_suspend(mddev);
1636 md_integrity_add_rdev(rdev, mddev);
1637 mddev_resume(mddev);
1638 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1639 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1640 print_conf(conf);
1641 return err;
1644 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1646 struct r1conf *conf = mddev->private;
1647 int err = 0;
1648 int number = rdev->raid_disk;
1649 struct raid1_info *p = conf->mirrors + number;
1651 if (rdev != p->rdev)
1652 p = conf->mirrors + conf->raid_disks + number;
1654 print_conf(conf);
1655 if (rdev == p->rdev) {
1656 if (test_bit(In_sync, &rdev->flags) ||
1657 atomic_read(&rdev->nr_pending)) {
1658 err = -EBUSY;
1659 goto abort;
1661 /* Only remove non-faulty devices if recovery
1662 * is not possible.
1664 if (!test_bit(Faulty, &rdev->flags) &&
1665 mddev->recovery_disabled != conf->recovery_disabled &&
1666 mddev->degraded < conf->raid_disks) {
1667 err = -EBUSY;
1668 goto abort;
1670 p->rdev = NULL;
1671 synchronize_rcu();
1672 if (atomic_read(&rdev->nr_pending)) {
1673 /* lost the race, try later */
1674 err = -EBUSY;
1675 p->rdev = rdev;
1676 goto abort;
1677 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1678 /* We just removed a device that is being replaced.
1679 * Move down the replacement. We drain all IO before
1680 * doing this to avoid confusion.
1682 struct md_rdev *repl =
1683 conf->mirrors[conf->raid_disks + number].rdev;
1684 freeze_array(conf, 0);
1685 clear_bit(Replacement, &repl->flags);
1686 p->rdev = repl;
1687 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1688 unfreeze_array(conf);
1689 clear_bit(WantReplacement, &rdev->flags);
1690 } else
1691 clear_bit(WantReplacement, &rdev->flags);
1692 err = md_integrity_register(mddev);
1694 abort:
1696 print_conf(conf);
1697 return err;
1700 static void end_sync_read(struct bio *bio)
1702 struct r1bio *r1_bio = bio->bi_private;
1704 update_head_pos(r1_bio->read_disk, r1_bio);
1707 * we have read a block, now it needs to be re-written,
1708 * or re-read if the read failed.
1709 * We don't do much here, just schedule handling by raid1d
1711 if (!bio->bi_error)
1712 set_bit(R1BIO_Uptodate, &r1_bio->state);
1714 if (atomic_dec_and_test(&r1_bio->remaining))
1715 reschedule_retry(r1_bio);
1718 static void end_sync_write(struct bio *bio)
1720 int uptodate = !bio->bi_error;
1721 struct r1bio *r1_bio = bio->bi_private;
1722 struct mddev *mddev = r1_bio->mddev;
1723 struct r1conf *conf = mddev->private;
1724 int mirror=0;
1725 sector_t first_bad;
1726 int bad_sectors;
1728 mirror = find_bio_disk(r1_bio, bio);
1730 if (!uptodate) {
1731 sector_t sync_blocks = 0;
1732 sector_t s = r1_bio->sector;
1733 long sectors_to_go = r1_bio->sectors;
1734 /* make sure these bits doesn't get cleared. */
1735 do {
1736 bitmap_end_sync(mddev->bitmap, s,
1737 &sync_blocks, 1);
1738 s += sync_blocks;
1739 sectors_to_go -= sync_blocks;
1740 } while (sectors_to_go > 0);
1741 set_bit(WriteErrorSeen,
1742 &conf->mirrors[mirror].rdev->flags);
1743 if (!test_and_set_bit(WantReplacement,
1744 &conf->mirrors[mirror].rdev->flags))
1745 set_bit(MD_RECOVERY_NEEDED, &
1746 mddev->recovery);
1747 set_bit(R1BIO_WriteError, &r1_bio->state);
1748 } else if (is_badblock(conf->mirrors[mirror].rdev,
1749 r1_bio->sector,
1750 r1_bio->sectors,
1751 &first_bad, &bad_sectors) &&
1752 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1753 r1_bio->sector,
1754 r1_bio->sectors,
1755 &first_bad, &bad_sectors)
1757 set_bit(R1BIO_MadeGood, &r1_bio->state);
1759 if (atomic_dec_and_test(&r1_bio->remaining)) {
1760 int s = r1_bio->sectors;
1761 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1762 test_bit(R1BIO_WriteError, &r1_bio->state))
1763 reschedule_retry(r1_bio);
1764 else {
1765 put_buf(r1_bio);
1766 md_done_sync(mddev, s, uptodate);
1771 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1772 int sectors, struct page *page, int rw)
1774 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1775 /* success */
1776 return 1;
1777 if (rw == WRITE) {
1778 set_bit(WriteErrorSeen, &rdev->flags);
1779 if (!test_and_set_bit(WantReplacement,
1780 &rdev->flags))
1781 set_bit(MD_RECOVERY_NEEDED, &
1782 rdev->mddev->recovery);
1784 /* need to record an error - either for the block or the device */
1785 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786 md_error(rdev->mddev, rdev);
1787 return 0;
1790 static int fix_sync_read_error(struct r1bio *r1_bio)
1792 /* Try some synchronous reads of other devices to get
1793 * good data, much like with normal read errors. Only
1794 * read into the pages we already have so we don't
1795 * need to re-issue the read request.
1796 * We don't need to freeze the array, because being in an
1797 * active sync request, there is no normal IO, and
1798 * no overlapping syncs.
1799 * We don't need to check is_badblock() again as we
1800 * made sure that anything with a bad block in range
1801 * will have bi_end_io clear.
1803 struct mddev *mddev = r1_bio->mddev;
1804 struct r1conf *conf = mddev->private;
1805 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1806 sector_t sect = r1_bio->sector;
1807 int sectors = r1_bio->sectors;
1808 int idx = 0;
1810 while(sectors) {
1811 int s = sectors;
1812 int d = r1_bio->read_disk;
1813 int success = 0;
1814 struct md_rdev *rdev;
1815 int start;
1817 if (s > (PAGE_SIZE>>9))
1818 s = PAGE_SIZE >> 9;
1819 do {
1820 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1821 /* No rcu protection needed here devices
1822 * can only be removed when no resync is
1823 * active, and resync is currently active
1825 rdev = conf->mirrors[d].rdev;
1826 if (sync_page_io(rdev, sect, s<<9,
1827 bio->bi_io_vec[idx].bv_page,
1828 READ, false)) {
1829 success = 1;
1830 break;
1833 d++;
1834 if (d == conf->raid_disks * 2)
1835 d = 0;
1836 } while (!success && d != r1_bio->read_disk);
1838 if (!success) {
1839 char b[BDEVNAME_SIZE];
1840 int abort = 0;
1841 /* Cannot read from anywhere, this block is lost.
1842 * Record a bad block on each device. If that doesn't
1843 * work just disable and interrupt the recovery.
1844 * Don't fail devices as that won't really help.
1846 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1847 " for block %llu\n",
1848 mdname(mddev),
1849 bdevname(bio->bi_bdev, b),
1850 (unsigned long long)r1_bio->sector);
1851 for (d = 0; d < conf->raid_disks * 2; d++) {
1852 rdev = conf->mirrors[d].rdev;
1853 if (!rdev || test_bit(Faulty, &rdev->flags))
1854 continue;
1855 if (!rdev_set_badblocks(rdev, sect, s, 0))
1856 abort = 1;
1858 if (abort) {
1859 conf->recovery_disabled =
1860 mddev->recovery_disabled;
1861 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1862 md_done_sync(mddev, r1_bio->sectors, 0);
1863 put_buf(r1_bio);
1864 return 0;
1866 /* Try next page */
1867 sectors -= s;
1868 sect += s;
1869 idx++;
1870 continue;
1873 start = d;
1874 /* write it back and re-read */
1875 while (d != r1_bio->read_disk) {
1876 if (d == 0)
1877 d = conf->raid_disks * 2;
1878 d--;
1879 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880 continue;
1881 rdev = conf->mirrors[d].rdev;
1882 if (r1_sync_page_io(rdev, sect, s,
1883 bio->bi_io_vec[idx].bv_page,
1884 WRITE) == 0) {
1885 r1_bio->bios[d]->bi_end_io = NULL;
1886 rdev_dec_pending(rdev, mddev);
1889 d = start;
1890 while (d != r1_bio->read_disk) {
1891 if (d == 0)
1892 d = conf->raid_disks * 2;
1893 d--;
1894 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1895 continue;
1896 rdev = conf->mirrors[d].rdev;
1897 if (r1_sync_page_io(rdev, sect, s,
1898 bio->bi_io_vec[idx].bv_page,
1899 READ) != 0)
1900 atomic_add(s, &rdev->corrected_errors);
1902 sectors -= s;
1903 sect += s;
1904 idx ++;
1906 set_bit(R1BIO_Uptodate, &r1_bio->state);
1907 bio->bi_error = 0;
1908 return 1;
1911 static void process_checks(struct r1bio *r1_bio)
1913 /* We have read all readable devices. If we haven't
1914 * got the block, then there is no hope left.
1915 * If we have, then we want to do a comparison
1916 * and skip the write if everything is the same.
1917 * If any blocks failed to read, then we need to
1918 * attempt an over-write
1920 struct mddev *mddev = r1_bio->mddev;
1921 struct r1conf *conf = mddev->private;
1922 int primary;
1923 int i;
1924 int vcnt;
1926 /* Fix variable parts of all bios */
1927 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1928 for (i = 0; i < conf->raid_disks * 2; i++) {
1929 int j;
1930 int size;
1931 int error;
1932 struct bio *b = r1_bio->bios[i];
1933 if (b->bi_end_io != end_sync_read)
1934 continue;
1935 /* fixup the bio for reuse, but preserve errno */
1936 error = b->bi_error;
1937 bio_reset(b);
1938 b->bi_error = error;
1939 b->bi_vcnt = vcnt;
1940 b->bi_iter.bi_size = r1_bio->sectors << 9;
1941 b->bi_iter.bi_sector = r1_bio->sector +
1942 conf->mirrors[i].rdev->data_offset;
1943 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1944 b->bi_end_io = end_sync_read;
1945 b->bi_private = r1_bio;
1947 size = b->bi_iter.bi_size;
1948 for (j = 0; j < vcnt ; j++) {
1949 struct bio_vec *bi;
1950 bi = &b->bi_io_vec[j];
1951 bi->bv_offset = 0;
1952 if (size > PAGE_SIZE)
1953 bi->bv_len = PAGE_SIZE;
1954 else
1955 bi->bv_len = size;
1956 size -= PAGE_SIZE;
1959 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1960 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1961 !r1_bio->bios[primary]->bi_error) {
1962 r1_bio->bios[primary]->bi_end_io = NULL;
1963 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1964 break;
1966 r1_bio->read_disk = primary;
1967 for (i = 0; i < conf->raid_disks * 2; i++) {
1968 int j;
1969 struct bio *pbio = r1_bio->bios[primary];
1970 struct bio *sbio = r1_bio->bios[i];
1971 int error = sbio->bi_error;
1973 if (sbio->bi_end_io != end_sync_read)
1974 continue;
1975 /* Now we can 'fixup' the error value */
1976 sbio->bi_error = 0;
1978 if (!error) {
1979 for (j = vcnt; j-- ; ) {
1980 struct page *p, *s;
1981 p = pbio->bi_io_vec[j].bv_page;
1982 s = sbio->bi_io_vec[j].bv_page;
1983 if (memcmp(page_address(p),
1984 page_address(s),
1985 sbio->bi_io_vec[j].bv_len))
1986 break;
1988 } else
1989 j = 0;
1990 if (j >= 0)
1991 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1992 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1993 && !error)) {
1994 /* No need to write to this device. */
1995 sbio->bi_end_io = NULL;
1996 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1997 continue;
2000 bio_copy_data(sbio, pbio);
2004 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2006 struct r1conf *conf = mddev->private;
2007 int i;
2008 int disks = conf->raid_disks * 2;
2009 struct bio *bio, *wbio;
2011 bio = r1_bio->bios[r1_bio->read_disk];
2013 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2014 /* ouch - failed to read all of that. */
2015 if (!fix_sync_read_error(r1_bio))
2016 return;
2018 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2019 process_checks(r1_bio);
2022 * schedule writes
2024 atomic_set(&r1_bio->remaining, 1);
2025 for (i = 0; i < disks ; i++) {
2026 wbio = r1_bio->bios[i];
2027 if (wbio->bi_end_io == NULL ||
2028 (wbio->bi_end_io == end_sync_read &&
2029 (i == r1_bio->read_disk ||
2030 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2031 continue;
2033 wbio->bi_rw = WRITE;
2034 wbio->bi_end_io = end_sync_write;
2035 atomic_inc(&r1_bio->remaining);
2036 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2038 generic_make_request(wbio);
2041 if (atomic_dec_and_test(&r1_bio->remaining)) {
2042 /* if we're here, all write(s) have completed, so clean up */
2043 int s = r1_bio->sectors;
2044 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045 test_bit(R1BIO_WriteError, &r1_bio->state))
2046 reschedule_retry(r1_bio);
2047 else {
2048 put_buf(r1_bio);
2049 md_done_sync(mddev, s, 1);
2055 * This is a kernel thread which:
2057 * 1. Retries failed read operations on working mirrors.
2058 * 2. Updates the raid superblock when problems encounter.
2059 * 3. Performs writes following reads for array synchronising.
2062 static void fix_read_error(struct r1conf *conf, int read_disk,
2063 sector_t sect, int sectors)
2065 struct mddev *mddev = conf->mddev;
2066 while(sectors) {
2067 int s = sectors;
2068 int d = read_disk;
2069 int success = 0;
2070 int start;
2071 struct md_rdev *rdev;
2073 if (s > (PAGE_SIZE>>9))
2074 s = PAGE_SIZE >> 9;
2076 do {
2077 /* Note: no rcu protection needed here
2078 * as this is synchronous in the raid1d thread
2079 * which is the thread that might remove
2080 * a device. If raid1d ever becomes multi-threaded....
2082 sector_t first_bad;
2083 int bad_sectors;
2085 rdev = conf->mirrors[d].rdev;
2086 if (rdev &&
2087 (test_bit(In_sync, &rdev->flags) ||
2088 (!test_bit(Faulty, &rdev->flags) &&
2089 rdev->recovery_offset >= sect + s)) &&
2090 is_badblock(rdev, sect, s,
2091 &first_bad, &bad_sectors) == 0 &&
2092 sync_page_io(rdev, sect, s<<9,
2093 conf->tmppage, READ, false))
2094 success = 1;
2095 else {
2096 d++;
2097 if (d == conf->raid_disks * 2)
2098 d = 0;
2100 } while (!success && d != read_disk);
2102 if (!success) {
2103 /* Cannot read from anywhere - mark it bad */
2104 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2105 if (!rdev_set_badblocks(rdev, sect, s, 0))
2106 md_error(mddev, rdev);
2107 break;
2109 /* write it back and re-read */
2110 start = d;
2111 while (d != read_disk) {
2112 if (d==0)
2113 d = conf->raid_disks * 2;
2114 d--;
2115 rdev = conf->mirrors[d].rdev;
2116 if (rdev &&
2117 !test_bit(Faulty, &rdev->flags))
2118 r1_sync_page_io(rdev, sect, s,
2119 conf->tmppage, WRITE);
2121 d = start;
2122 while (d != read_disk) {
2123 char b[BDEVNAME_SIZE];
2124 if (d==0)
2125 d = conf->raid_disks * 2;
2126 d--;
2127 rdev = conf->mirrors[d].rdev;
2128 if (rdev &&
2129 !test_bit(Faulty, &rdev->flags)) {
2130 if (r1_sync_page_io(rdev, sect, s,
2131 conf->tmppage, READ)) {
2132 atomic_add(s, &rdev->corrected_errors);
2133 printk(KERN_INFO
2134 "md/raid1:%s: read error corrected "
2135 "(%d sectors at %llu on %s)\n",
2136 mdname(mddev), s,
2137 (unsigned long long)(sect +
2138 rdev->data_offset),
2139 bdevname(rdev->bdev, b));
2143 sectors -= s;
2144 sect += s;
2148 static int narrow_write_error(struct r1bio *r1_bio, int i)
2150 struct mddev *mddev = r1_bio->mddev;
2151 struct r1conf *conf = mddev->private;
2152 struct md_rdev *rdev = conf->mirrors[i].rdev;
2154 /* bio has the data to be written to device 'i' where
2155 * we just recently had a write error.
2156 * We repeatedly clone the bio and trim down to one block,
2157 * then try the write. Where the write fails we record
2158 * a bad block.
2159 * It is conceivable that the bio doesn't exactly align with
2160 * blocks. We must handle this somehow.
2162 * We currently own a reference on the rdev.
2165 int block_sectors;
2166 sector_t sector;
2167 int sectors;
2168 int sect_to_write = r1_bio->sectors;
2169 int ok = 1;
2171 if (rdev->badblocks.shift < 0)
2172 return 0;
2174 block_sectors = roundup(1 << rdev->badblocks.shift,
2175 bdev_logical_block_size(rdev->bdev) >> 9);
2176 sector = r1_bio->sector;
2177 sectors = ((sector + block_sectors)
2178 & ~(sector_t)(block_sectors - 1))
2179 - sector;
2181 while (sect_to_write) {
2182 struct bio *wbio;
2183 if (sectors > sect_to_write)
2184 sectors = sect_to_write;
2185 /* Write at 'sector' for 'sectors'*/
2187 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2188 unsigned vcnt = r1_bio->behind_page_count;
2189 struct bio_vec *vec = r1_bio->behind_bvecs;
2191 while (!vec->bv_page) {
2192 vec++;
2193 vcnt--;
2196 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2197 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2199 wbio->bi_vcnt = vcnt;
2200 } else {
2201 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2204 wbio->bi_rw = WRITE;
2205 wbio->bi_iter.bi_sector = r1_bio->sector;
2206 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2208 bio_trim(wbio, sector - r1_bio->sector, sectors);
2209 wbio->bi_iter.bi_sector += rdev->data_offset;
2210 wbio->bi_bdev = rdev->bdev;
2211 if (submit_bio_wait(WRITE, wbio) < 0)
2212 /* failure! */
2213 ok = rdev_set_badblocks(rdev, sector,
2214 sectors, 0)
2215 && ok;
2217 bio_put(wbio);
2218 sect_to_write -= sectors;
2219 sector += sectors;
2220 sectors = block_sectors;
2222 return ok;
2225 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2227 int m;
2228 int s = r1_bio->sectors;
2229 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2230 struct md_rdev *rdev = conf->mirrors[m].rdev;
2231 struct bio *bio = r1_bio->bios[m];
2232 if (bio->bi_end_io == NULL)
2233 continue;
2234 if (!bio->bi_error &&
2235 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2236 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2238 if (bio->bi_error &&
2239 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2240 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2241 md_error(conf->mddev, rdev);
2244 put_buf(r1_bio);
2245 md_done_sync(conf->mddev, s, 1);
2248 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2250 int m;
2251 bool fail = false;
2252 for (m = 0; m < conf->raid_disks * 2 ; m++)
2253 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2254 struct md_rdev *rdev = conf->mirrors[m].rdev;
2255 rdev_clear_badblocks(rdev,
2256 r1_bio->sector,
2257 r1_bio->sectors, 0);
2258 rdev_dec_pending(rdev, conf->mddev);
2259 } else if (r1_bio->bios[m] != NULL) {
2260 /* This drive got a write error. We need to
2261 * narrow down and record precise write
2262 * errors.
2264 fail = true;
2265 if (!narrow_write_error(r1_bio, m)) {
2266 md_error(conf->mddev,
2267 conf->mirrors[m].rdev);
2268 /* an I/O failed, we can't clear the bitmap */
2269 set_bit(R1BIO_Degraded, &r1_bio->state);
2271 rdev_dec_pending(conf->mirrors[m].rdev,
2272 conf->mddev);
2274 if (fail) {
2275 spin_lock_irq(&conf->device_lock);
2276 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2277 spin_unlock_irq(&conf->device_lock);
2278 md_wakeup_thread(conf->mddev->thread);
2279 } else {
2280 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2281 close_write(r1_bio);
2282 raid_end_bio_io(r1_bio);
2286 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2288 int disk;
2289 int max_sectors;
2290 struct mddev *mddev = conf->mddev;
2291 struct bio *bio;
2292 char b[BDEVNAME_SIZE];
2293 struct md_rdev *rdev;
2295 clear_bit(R1BIO_ReadError, &r1_bio->state);
2296 /* we got a read error. Maybe the drive is bad. Maybe just
2297 * the block and we can fix it.
2298 * We freeze all other IO, and try reading the block from
2299 * other devices. When we find one, we re-write
2300 * and check it that fixes the read error.
2301 * This is all done synchronously while the array is
2302 * frozen
2304 if (mddev->ro == 0) {
2305 freeze_array(conf, 1);
2306 fix_read_error(conf, r1_bio->read_disk,
2307 r1_bio->sector, r1_bio->sectors);
2308 unfreeze_array(conf);
2309 } else
2310 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2311 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2313 bio = r1_bio->bios[r1_bio->read_disk];
2314 bdevname(bio->bi_bdev, b);
2315 read_more:
2316 disk = read_balance(conf, r1_bio, &max_sectors);
2317 if (disk == -1) {
2318 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2319 " read error for block %llu\n",
2320 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2321 raid_end_bio_io(r1_bio);
2322 } else {
2323 const unsigned long do_sync
2324 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2325 if (bio) {
2326 r1_bio->bios[r1_bio->read_disk] =
2327 mddev->ro ? IO_BLOCKED : NULL;
2328 bio_put(bio);
2330 r1_bio->read_disk = disk;
2331 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2332 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2333 max_sectors);
2334 r1_bio->bios[r1_bio->read_disk] = bio;
2335 rdev = conf->mirrors[disk].rdev;
2336 printk_ratelimited(KERN_ERR
2337 "md/raid1:%s: redirecting sector %llu"
2338 " to other mirror: %s\n",
2339 mdname(mddev),
2340 (unsigned long long)r1_bio->sector,
2341 bdevname(rdev->bdev, b));
2342 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2343 bio->bi_bdev = rdev->bdev;
2344 bio->bi_end_io = raid1_end_read_request;
2345 bio->bi_rw = READ | do_sync;
2346 bio->bi_private = r1_bio;
2347 if (max_sectors < r1_bio->sectors) {
2348 /* Drat - have to split this up more */
2349 struct bio *mbio = r1_bio->master_bio;
2350 int sectors_handled = (r1_bio->sector + max_sectors
2351 - mbio->bi_iter.bi_sector);
2352 r1_bio->sectors = max_sectors;
2353 spin_lock_irq(&conf->device_lock);
2354 if (mbio->bi_phys_segments == 0)
2355 mbio->bi_phys_segments = 2;
2356 else
2357 mbio->bi_phys_segments++;
2358 spin_unlock_irq(&conf->device_lock);
2359 generic_make_request(bio);
2360 bio = NULL;
2362 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2364 r1_bio->master_bio = mbio;
2365 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2366 r1_bio->state = 0;
2367 set_bit(R1BIO_ReadError, &r1_bio->state);
2368 r1_bio->mddev = mddev;
2369 r1_bio->sector = mbio->bi_iter.bi_sector +
2370 sectors_handled;
2372 goto read_more;
2373 } else
2374 generic_make_request(bio);
2378 static void raid1d(struct md_thread *thread)
2380 struct mddev *mddev = thread->mddev;
2381 struct r1bio *r1_bio;
2382 unsigned long flags;
2383 struct r1conf *conf = mddev->private;
2384 struct list_head *head = &conf->retry_list;
2385 struct blk_plug plug;
2387 md_check_recovery(mddev);
2389 if (!list_empty_careful(&conf->bio_end_io_list) &&
2390 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391 LIST_HEAD(tmp);
2392 spin_lock_irqsave(&conf->device_lock, flags);
2393 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2394 list_add(&tmp, &conf->bio_end_io_list);
2395 list_del_init(&conf->bio_end_io_list);
2397 spin_unlock_irqrestore(&conf->device_lock, flags);
2398 while (!list_empty(&tmp)) {
2399 r1_bio = list_first_entry(&tmp, struct r1bio,
2400 retry_list);
2401 list_del(&r1_bio->retry_list);
2402 if (mddev->degraded)
2403 set_bit(R1BIO_Degraded, &r1_bio->state);
2404 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2405 close_write(r1_bio);
2406 raid_end_bio_io(r1_bio);
2410 blk_start_plug(&plug);
2411 for (;;) {
2413 flush_pending_writes(conf);
2415 spin_lock_irqsave(&conf->device_lock, flags);
2416 if (list_empty(head)) {
2417 spin_unlock_irqrestore(&conf->device_lock, flags);
2418 break;
2420 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2421 list_del(head->prev);
2422 conf->nr_queued--;
2423 spin_unlock_irqrestore(&conf->device_lock, flags);
2425 mddev = r1_bio->mddev;
2426 conf = mddev->private;
2427 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2428 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2429 test_bit(R1BIO_WriteError, &r1_bio->state))
2430 handle_sync_write_finished(conf, r1_bio);
2431 else
2432 sync_request_write(mddev, r1_bio);
2433 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434 test_bit(R1BIO_WriteError, &r1_bio->state))
2435 handle_write_finished(conf, r1_bio);
2436 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2437 handle_read_error(conf, r1_bio);
2438 else
2439 /* just a partial read to be scheduled from separate
2440 * context
2442 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2444 cond_resched();
2445 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2446 md_check_recovery(mddev);
2448 blk_finish_plug(&plug);
2451 static int init_resync(struct r1conf *conf)
2453 int buffs;
2455 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2456 BUG_ON(conf->r1buf_pool);
2457 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2458 conf->poolinfo);
2459 if (!conf->r1buf_pool)
2460 return -ENOMEM;
2461 conf->next_resync = 0;
2462 return 0;
2466 * perform a "sync" on one "block"
2468 * We need to make sure that no normal I/O request - particularly write
2469 * requests - conflict with active sync requests.
2471 * This is achieved by tracking pending requests and a 'barrier' concept
2472 * that can be installed to exclude normal IO requests.
2475 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2477 struct r1conf *conf = mddev->private;
2478 struct r1bio *r1_bio;
2479 struct bio *bio;
2480 sector_t max_sector, nr_sectors;
2481 int disk = -1;
2482 int i;
2483 int wonly = -1;
2484 int write_targets = 0, read_targets = 0;
2485 sector_t sync_blocks;
2486 int still_degraded = 0;
2487 int good_sectors = RESYNC_SECTORS;
2488 int min_bad = 0; /* number of sectors that are bad in all devices */
2490 if (!conf->r1buf_pool)
2491 if (init_resync(conf))
2492 return 0;
2494 max_sector = mddev->dev_sectors;
2495 if (sector_nr >= max_sector) {
2496 /* If we aborted, we need to abort the
2497 * sync on the 'current' bitmap chunk (there will
2498 * only be one in raid1 resync.
2499 * We can find the current addess in mddev->curr_resync
2501 if (mddev->curr_resync < max_sector) /* aborted */
2502 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2503 &sync_blocks, 1);
2504 else /* completed sync */
2505 conf->fullsync = 0;
2507 bitmap_close_sync(mddev->bitmap);
2508 close_sync(conf);
2510 if (mddev_is_clustered(mddev)) {
2511 conf->cluster_sync_low = 0;
2512 conf->cluster_sync_high = 0;
2514 return 0;
2517 if (mddev->bitmap == NULL &&
2518 mddev->recovery_cp == MaxSector &&
2519 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2520 conf->fullsync == 0) {
2521 *skipped = 1;
2522 return max_sector - sector_nr;
2524 /* before building a request, check if we can skip these blocks..
2525 * This call the bitmap_start_sync doesn't actually record anything
2527 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2528 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2529 /* We can skip this block, and probably several more */
2530 *skipped = 1;
2531 return sync_blocks;
2534 /* we are incrementing sector_nr below. To be safe, we check against
2535 * sector_nr + two times RESYNC_SECTORS
2538 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2539 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2540 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2542 raise_barrier(conf, sector_nr);
2544 rcu_read_lock();
2546 * If we get a correctably read error during resync or recovery,
2547 * we might want to read from a different device. So we
2548 * flag all drives that could conceivably be read from for READ,
2549 * and any others (which will be non-In_sync devices) for WRITE.
2550 * If a read fails, we try reading from something else for which READ
2551 * is OK.
2554 r1_bio->mddev = mddev;
2555 r1_bio->sector = sector_nr;
2556 r1_bio->state = 0;
2557 set_bit(R1BIO_IsSync, &r1_bio->state);
2559 for (i = 0; i < conf->raid_disks * 2; i++) {
2560 struct md_rdev *rdev;
2561 bio = r1_bio->bios[i];
2562 bio_reset(bio);
2564 rdev = rcu_dereference(conf->mirrors[i].rdev);
2565 if (rdev == NULL ||
2566 test_bit(Faulty, &rdev->flags)) {
2567 if (i < conf->raid_disks)
2568 still_degraded = 1;
2569 } else if (!test_bit(In_sync, &rdev->flags)) {
2570 bio->bi_rw = WRITE;
2571 bio->bi_end_io = end_sync_write;
2572 write_targets ++;
2573 } else {
2574 /* may need to read from here */
2575 sector_t first_bad = MaxSector;
2576 int bad_sectors;
2578 if (is_badblock(rdev, sector_nr, good_sectors,
2579 &first_bad, &bad_sectors)) {
2580 if (first_bad > sector_nr)
2581 good_sectors = first_bad - sector_nr;
2582 else {
2583 bad_sectors -= (sector_nr - first_bad);
2584 if (min_bad == 0 ||
2585 min_bad > bad_sectors)
2586 min_bad = bad_sectors;
2589 if (sector_nr < first_bad) {
2590 if (test_bit(WriteMostly, &rdev->flags)) {
2591 if (wonly < 0)
2592 wonly = i;
2593 } else {
2594 if (disk < 0)
2595 disk = i;
2597 bio->bi_rw = READ;
2598 bio->bi_end_io = end_sync_read;
2599 read_targets++;
2600 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2601 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2602 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604 * The device is suitable for reading (InSync),
2605 * but has bad block(s) here. Let's try to correct them,
2606 * if we are doing resync or repair. Otherwise, leave
2607 * this device alone for this sync request.
2609 bio->bi_rw = WRITE;
2610 bio->bi_end_io = end_sync_write;
2611 write_targets++;
2614 if (bio->bi_end_io) {
2615 atomic_inc(&rdev->nr_pending);
2616 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2617 bio->bi_bdev = rdev->bdev;
2618 bio->bi_private = r1_bio;
2621 rcu_read_unlock();
2622 if (disk < 0)
2623 disk = wonly;
2624 r1_bio->read_disk = disk;
2626 if (read_targets == 0 && min_bad > 0) {
2627 /* These sectors are bad on all InSync devices, so we
2628 * need to mark them bad on all write targets
2630 int ok = 1;
2631 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2632 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2633 struct md_rdev *rdev = conf->mirrors[i].rdev;
2634 ok = rdev_set_badblocks(rdev, sector_nr,
2635 min_bad, 0
2636 ) && ok;
2638 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2639 *skipped = 1;
2640 put_buf(r1_bio);
2642 if (!ok) {
2643 /* Cannot record the badblocks, so need to
2644 * abort the resync.
2645 * If there are multiple read targets, could just
2646 * fail the really bad ones ???
2648 conf->recovery_disabled = mddev->recovery_disabled;
2649 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2650 return 0;
2651 } else
2652 return min_bad;
2655 if (min_bad > 0 && min_bad < good_sectors) {
2656 /* only resync enough to reach the next bad->good
2657 * transition */
2658 good_sectors = min_bad;
2661 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2662 /* extra read targets are also write targets */
2663 write_targets += read_targets-1;
2665 if (write_targets == 0 || read_targets == 0) {
2666 /* There is nowhere to write, so all non-sync
2667 * drives must be failed - so we are finished
2669 sector_t rv;
2670 if (min_bad > 0)
2671 max_sector = sector_nr + min_bad;
2672 rv = max_sector - sector_nr;
2673 *skipped = 1;
2674 put_buf(r1_bio);
2675 return rv;
2678 if (max_sector > mddev->resync_max)
2679 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2680 if (max_sector > sector_nr + good_sectors)
2681 max_sector = sector_nr + good_sectors;
2682 nr_sectors = 0;
2683 sync_blocks = 0;
2684 do {
2685 struct page *page;
2686 int len = PAGE_SIZE;
2687 if (sector_nr + (len>>9) > max_sector)
2688 len = (max_sector - sector_nr) << 9;
2689 if (len == 0)
2690 break;
2691 if (sync_blocks == 0) {
2692 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2693 &sync_blocks, still_degraded) &&
2694 !conf->fullsync &&
2695 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2696 break;
2697 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2698 if ((len >> 9) > sync_blocks)
2699 len = sync_blocks<<9;
2702 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2703 bio = r1_bio->bios[i];
2704 if (bio->bi_end_io) {
2705 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2706 if (bio_add_page(bio, page, len, 0) == 0) {
2707 /* stop here */
2708 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2709 while (i > 0) {
2710 i--;
2711 bio = r1_bio->bios[i];
2712 if (bio->bi_end_io==NULL)
2713 continue;
2714 /* remove last page from this bio */
2715 bio->bi_vcnt--;
2716 bio->bi_iter.bi_size -= len;
2717 bio_clear_flag(bio, BIO_SEG_VALID);
2719 goto bio_full;
2723 nr_sectors += len>>9;
2724 sector_nr += len>>9;
2725 sync_blocks -= (len>>9);
2726 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2727 bio_full:
2728 r1_bio->sectors = nr_sectors;
2730 if (mddev_is_clustered(mddev) &&
2731 conf->cluster_sync_high < sector_nr + nr_sectors) {
2732 conf->cluster_sync_low = mddev->curr_resync_completed;
2733 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2734 /* Send resync message */
2735 md_cluster_ops->resync_info_update(mddev,
2736 conf->cluster_sync_low,
2737 conf->cluster_sync_high);
2740 /* For a user-requested sync, we read all readable devices and do a
2741 * compare
2743 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2744 atomic_set(&r1_bio->remaining, read_targets);
2745 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2746 bio = r1_bio->bios[i];
2747 if (bio->bi_end_io == end_sync_read) {
2748 read_targets--;
2749 md_sync_acct(bio->bi_bdev, nr_sectors);
2750 generic_make_request(bio);
2753 } else {
2754 atomic_set(&r1_bio->remaining, 1);
2755 bio = r1_bio->bios[r1_bio->read_disk];
2756 md_sync_acct(bio->bi_bdev, nr_sectors);
2757 generic_make_request(bio);
2760 return nr_sectors;
2763 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2765 if (sectors)
2766 return sectors;
2768 return mddev->dev_sectors;
2771 static struct r1conf *setup_conf(struct mddev *mddev)
2773 struct r1conf *conf;
2774 int i;
2775 struct raid1_info *disk;
2776 struct md_rdev *rdev;
2777 int err = -ENOMEM;
2779 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2780 if (!conf)
2781 goto abort;
2783 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2784 * mddev->raid_disks * 2,
2785 GFP_KERNEL);
2786 if (!conf->mirrors)
2787 goto abort;
2789 conf->tmppage = alloc_page(GFP_KERNEL);
2790 if (!conf->tmppage)
2791 goto abort;
2793 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2794 if (!conf->poolinfo)
2795 goto abort;
2796 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2797 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2798 r1bio_pool_free,
2799 conf->poolinfo);
2800 if (!conf->r1bio_pool)
2801 goto abort;
2803 conf->poolinfo->mddev = mddev;
2805 err = -EINVAL;
2806 spin_lock_init(&conf->device_lock);
2807 rdev_for_each(rdev, mddev) {
2808 struct request_queue *q;
2809 int disk_idx = rdev->raid_disk;
2810 if (disk_idx >= mddev->raid_disks
2811 || disk_idx < 0)
2812 continue;
2813 if (test_bit(Replacement, &rdev->flags))
2814 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2815 else
2816 disk = conf->mirrors + disk_idx;
2818 if (disk->rdev)
2819 goto abort;
2820 disk->rdev = rdev;
2821 q = bdev_get_queue(rdev->bdev);
2823 disk->head_position = 0;
2824 disk->seq_start = MaxSector;
2826 conf->raid_disks = mddev->raid_disks;
2827 conf->mddev = mddev;
2828 INIT_LIST_HEAD(&conf->retry_list);
2829 INIT_LIST_HEAD(&conf->bio_end_io_list);
2831 spin_lock_init(&conf->resync_lock);
2832 init_waitqueue_head(&conf->wait_barrier);
2834 bio_list_init(&conf->pending_bio_list);
2835 conf->pending_count = 0;
2836 conf->recovery_disabled = mddev->recovery_disabled - 1;
2838 conf->start_next_window = MaxSector;
2839 conf->current_window_requests = conf->next_window_requests = 0;
2841 err = -EIO;
2842 for (i = 0; i < conf->raid_disks * 2; i++) {
2844 disk = conf->mirrors + i;
2846 if (i < conf->raid_disks &&
2847 disk[conf->raid_disks].rdev) {
2848 /* This slot has a replacement. */
2849 if (!disk->rdev) {
2850 /* No original, just make the replacement
2851 * a recovering spare
2853 disk->rdev =
2854 disk[conf->raid_disks].rdev;
2855 disk[conf->raid_disks].rdev = NULL;
2856 } else if (!test_bit(In_sync, &disk->rdev->flags))
2857 /* Original is not in_sync - bad */
2858 goto abort;
2861 if (!disk->rdev ||
2862 !test_bit(In_sync, &disk->rdev->flags)) {
2863 disk->head_position = 0;
2864 if (disk->rdev &&
2865 (disk->rdev->saved_raid_disk < 0))
2866 conf->fullsync = 1;
2870 err = -ENOMEM;
2871 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2872 if (!conf->thread) {
2873 printk(KERN_ERR
2874 "md/raid1:%s: couldn't allocate thread\n",
2875 mdname(mddev));
2876 goto abort;
2879 return conf;
2881 abort:
2882 if (conf) {
2883 mempool_destroy(conf->r1bio_pool);
2884 kfree(conf->mirrors);
2885 safe_put_page(conf->tmppage);
2886 kfree(conf->poolinfo);
2887 kfree(conf);
2889 return ERR_PTR(err);
2892 static void raid1_free(struct mddev *mddev, void *priv);
2893 static int run(struct mddev *mddev)
2895 struct r1conf *conf;
2896 int i;
2897 struct md_rdev *rdev;
2898 int ret;
2899 bool discard_supported = false;
2901 if (mddev->level != 1) {
2902 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2903 mdname(mddev), mddev->level);
2904 return -EIO;
2906 if (mddev->reshape_position != MaxSector) {
2907 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2908 mdname(mddev));
2909 return -EIO;
2912 * copy the already verified devices into our private RAID1
2913 * bookkeeping area. [whatever we allocate in run(),
2914 * should be freed in raid1_free()]
2916 if (mddev->private == NULL)
2917 conf = setup_conf(mddev);
2918 else
2919 conf = mddev->private;
2921 if (IS_ERR(conf))
2922 return PTR_ERR(conf);
2924 if (mddev->queue)
2925 blk_queue_max_write_same_sectors(mddev->queue, 0);
2927 rdev_for_each(rdev, mddev) {
2928 if (!mddev->gendisk)
2929 continue;
2930 disk_stack_limits(mddev->gendisk, rdev->bdev,
2931 rdev->data_offset << 9);
2932 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2933 discard_supported = true;
2936 mddev->degraded = 0;
2937 for (i=0; i < conf->raid_disks; i++)
2938 if (conf->mirrors[i].rdev == NULL ||
2939 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2940 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2941 mddev->degraded++;
2943 if (conf->raid_disks - mddev->degraded == 1)
2944 mddev->recovery_cp = MaxSector;
2946 if (mddev->recovery_cp != MaxSector)
2947 printk(KERN_NOTICE "md/raid1:%s: not clean"
2948 " -- starting background reconstruction\n",
2949 mdname(mddev));
2950 printk(KERN_INFO
2951 "md/raid1:%s: active with %d out of %d mirrors\n",
2952 mdname(mddev), mddev->raid_disks - mddev->degraded,
2953 mddev->raid_disks);
2956 * Ok, everything is just fine now
2958 mddev->thread = conf->thread;
2959 conf->thread = NULL;
2960 mddev->private = conf;
2962 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2964 if (mddev->queue) {
2965 if (discard_supported)
2966 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967 mddev->queue);
2968 else
2969 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970 mddev->queue);
2973 ret = md_integrity_register(mddev);
2974 if (ret) {
2975 md_unregister_thread(&mddev->thread);
2976 raid1_free(mddev, conf);
2978 return ret;
2981 static void raid1_free(struct mddev *mddev, void *priv)
2983 struct r1conf *conf = priv;
2985 mempool_destroy(conf->r1bio_pool);
2986 kfree(conf->mirrors);
2987 safe_put_page(conf->tmppage);
2988 kfree(conf->poolinfo);
2989 kfree(conf);
2992 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2994 /* no resync is happening, and there is enough space
2995 * on all devices, so we can resize.
2996 * We need to make sure resync covers any new space.
2997 * If the array is shrinking we should possibly wait until
2998 * any io in the removed space completes, but it hardly seems
2999 * worth it.
3001 sector_t newsize = raid1_size(mddev, sectors, 0);
3002 if (mddev->external_size &&
3003 mddev->array_sectors > newsize)
3004 return -EINVAL;
3005 if (mddev->bitmap) {
3006 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3007 if (ret)
3008 return ret;
3010 md_set_array_sectors(mddev, newsize);
3011 set_capacity(mddev->gendisk, mddev->array_sectors);
3012 revalidate_disk(mddev->gendisk);
3013 if (sectors > mddev->dev_sectors &&
3014 mddev->recovery_cp > mddev->dev_sectors) {
3015 mddev->recovery_cp = mddev->dev_sectors;
3016 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3018 mddev->dev_sectors = sectors;
3019 mddev->resync_max_sectors = sectors;
3020 return 0;
3023 static int raid1_reshape(struct mddev *mddev)
3025 /* We need to:
3026 * 1/ resize the r1bio_pool
3027 * 2/ resize conf->mirrors
3029 * We allocate a new r1bio_pool if we can.
3030 * Then raise a device barrier and wait until all IO stops.
3031 * Then resize conf->mirrors and swap in the new r1bio pool.
3033 * At the same time, we "pack" the devices so that all the missing
3034 * devices have the higher raid_disk numbers.
3036 mempool_t *newpool, *oldpool;
3037 struct pool_info *newpoolinfo;
3038 struct raid1_info *newmirrors;
3039 struct r1conf *conf = mddev->private;
3040 int cnt, raid_disks;
3041 unsigned long flags;
3042 int d, d2, err;
3044 /* Cannot change chunk_size, layout, or level */
3045 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3046 mddev->layout != mddev->new_layout ||
3047 mddev->level != mddev->new_level) {
3048 mddev->new_chunk_sectors = mddev->chunk_sectors;
3049 mddev->new_layout = mddev->layout;
3050 mddev->new_level = mddev->level;
3051 return -EINVAL;
3054 if (!mddev_is_clustered(mddev)) {
3055 err = md_allow_write(mddev);
3056 if (err)
3057 return err;
3060 raid_disks = mddev->raid_disks + mddev->delta_disks;
3062 if (raid_disks < conf->raid_disks) {
3063 cnt=0;
3064 for (d= 0; d < conf->raid_disks; d++)
3065 if (conf->mirrors[d].rdev)
3066 cnt++;
3067 if (cnt > raid_disks)
3068 return -EBUSY;
3071 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3072 if (!newpoolinfo)
3073 return -ENOMEM;
3074 newpoolinfo->mddev = mddev;
3075 newpoolinfo->raid_disks = raid_disks * 2;
3077 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3078 r1bio_pool_free, newpoolinfo);
3079 if (!newpool) {
3080 kfree(newpoolinfo);
3081 return -ENOMEM;
3083 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3084 GFP_KERNEL);
3085 if (!newmirrors) {
3086 kfree(newpoolinfo);
3087 mempool_destroy(newpool);
3088 return -ENOMEM;
3091 freeze_array(conf, 0);
3093 /* ok, everything is stopped */
3094 oldpool = conf->r1bio_pool;
3095 conf->r1bio_pool = newpool;
3097 for (d = d2 = 0; d < conf->raid_disks; d++) {
3098 struct md_rdev *rdev = conf->mirrors[d].rdev;
3099 if (rdev && rdev->raid_disk != d2) {
3100 sysfs_unlink_rdev(mddev, rdev);
3101 rdev->raid_disk = d2;
3102 sysfs_unlink_rdev(mddev, rdev);
3103 if (sysfs_link_rdev(mddev, rdev))
3104 printk(KERN_WARNING
3105 "md/raid1:%s: cannot register rd%d\n",
3106 mdname(mddev), rdev->raid_disk);
3108 if (rdev)
3109 newmirrors[d2++].rdev = rdev;
3111 kfree(conf->mirrors);
3112 conf->mirrors = newmirrors;
3113 kfree(conf->poolinfo);
3114 conf->poolinfo = newpoolinfo;
3116 spin_lock_irqsave(&conf->device_lock, flags);
3117 mddev->degraded += (raid_disks - conf->raid_disks);
3118 spin_unlock_irqrestore(&conf->device_lock, flags);
3119 conf->raid_disks = mddev->raid_disks = raid_disks;
3120 mddev->delta_disks = 0;
3122 unfreeze_array(conf);
3124 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3125 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3126 md_wakeup_thread(mddev->thread);
3128 mempool_destroy(oldpool);
3129 return 0;
3132 static void raid1_quiesce(struct mddev *mddev, int state)
3134 struct r1conf *conf = mddev->private;
3136 switch(state) {
3137 case 2: /* wake for suspend */
3138 wake_up(&conf->wait_barrier);
3139 break;
3140 case 1:
3141 freeze_array(conf, 0);
3142 break;
3143 case 0:
3144 unfreeze_array(conf);
3145 break;
3149 static void *raid1_takeover(struct mddev *mddev)
3151 /* raid1 can take over:
3152 * raid5 with 2 devices, any layout or chunk size
3154 if (mddev->level == 5 && mddev->raid_disks == 2) {
3155 struct r1conf *conf;
3156 mddev->new_level = 1;
3157 mddev->new_layout = 0;
3158 mddev->new_chunk_sectors = 0;
3159 conf = setup_conf(mddev);
3160 if (!IS_ERR(conf))
3161 /* Array must appear to be quiesced */
3162 conf->array_frozen = 1;
3163 return conf;
3165 return ERR_PTR(-EINVAL);
3168 static struct md_personality raid1_personality =
3170 .name = "raid1",
3171 .level = 1,
3172 .owner = THIS_MODULE,
3173 .make_request = make_request,
3174 .run = run,
3175 .free = raid1_free,
3176 .status = status,
3177 .error_handler = error,
3178 .hot_add_disk = raid1_add_disk,
3179 .hot_remove_disk= raid1_remove_disk,
3180 .spare_active = raid1_spare_active,
3181 .sync_request = sync_request,
3182 .resize = raid1_resize,
3183 .size = raid1_size,
3184 .check_reshape = raid1_reshape,
3185 .quiesce = raid1_quiesce,
3186 .takeover = raid1_takeover,
3187 .congested = raid1_congested,
3190 static int __init raid_init(void)
3192 return register_md_personality(&raid1_personality);
3195 static void raid_exit(void)
3197 unregister_md_personality(&raid1_personality);
3200 module_init(raid_init);
3201 module_exit(raid_exit);
3202 MODULE_LICENSE("GPL");
3203 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3204 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3205 MODULE_ALIAS("md-raid1");
3206 MODULE_ALIAS("md-level-1");
3208 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);