2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
68 static bool devices_handle_discard_safely
= false;
69 module_param(devices_handle_discard_safely
, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely
,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct
*raid5_wq
;
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
87 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
89 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
90 return &conf
->stripe_hashtbl
[hash
];
93 static inline int stripe_hash_locks_hash(sector_t sect
)
95 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
98 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
100 spin_lock_irq(conf
->hash_locks
+ hash
);
101 spin_lock(&conf
->device_lock
);
104 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
106 spin_unlock(&conf
->device_lock
);
107 spin_unlock_irq(conf
->hash_locks
+ hash
);
110 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
114 spin_lock(conf
->hash_locks
);
115 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
116 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
117 spin_lock(&conf
->device_lock
);
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
123 spin_unlock(&conf
->device_lock
);
124 for (i
= NR_STRIPE_HASH_LOCKS
; i
; i
--)
125 spin_unlock(conf
->hash_locks
+ i
- 1);
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
138 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
140 int sectors
= bio_sectors(bio
);
141 if (bio
->bi_iter
.bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
151 static inline int raid5_bi_processed_stripes(struct bio
*bio
)
153 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
154 return (atomic_read(segments
) >> 16) & 0xffff;
157 static inline int raid5_dec_bi_active_stripes(struct bio
*bio
)
159 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
160 return atomic_sub_return(1, segments
) & 0xffff;
163 static inline void raid5_inc_bi_active_stripes(struct bio
*bio
)
165 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
166 atomic_inc(segments
);
169 static inline void raid5_set_bi_processed_stripes(struct bio
*bio
,
172 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
176 old
= atomic_read(segments
);
177 new = (old
& 0xffff) | (cnt
<< 16);
178 } while (atomic_cmpxchg(segments
, old
, new) != old
);
181 static inline void raid5_set_bi_stripes(struct bio
*bio
, unsigned int cnt
)
183 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
184 atomic_set(segments
, cnt
);
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head
*sh
)
191 /* ddf always start from first device */
193 /* md starts just after Q block */
194 if (sh
->qd_idx
== sh
->disks
- 1)
197 return sh
->qd_idx
+ 1;
199 static inline int raid6_next_disk(int disk
, int raid_disks
)
202 return (disk
< raid_disks
) ? disk
: 0;
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
210 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
211 int *count
, int syndrome_disks
)
217 if (idx
== sh
->pd_idx
)
218 return syndrome_disks
;
219 if (idx
== sh
->qd_idx
)
220 return syndrome_disks
+ 1;
226 static void return_io(struct bio_list
*return_bi
)
229 while ((bi
= bio_list_pop(return_bi
)) != NULL
) {
230 bi
->bi_iter
.bi_size
= 0;
231 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
237 static void print_raid5_conf (struct r5conf
*conf
);
239 static int stripe_operations_active(struct stripe_head
*sh
)
241 return sh
->check_state
|| sh
->reconstruct_state
||
242 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
243 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
246 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
248 struct r5conf
*conf
= sh
->raid_conf
;
249 struct r5worker_group
*group
;
251 int i
, cpu
= sh
->cpu
;
253 if (!cpu_online(cpu
)) {
254 cpu
= cpumask_any(cpu_online_mask
);
258 if (list_empty(&sh
->lru
)) {
259 struct r5worker_group
*group
;
260 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
261 list_add_tail(&sh
->lru
, &group
->handle_list
);
262 group
->stripes_cnt
++;
266 if (conf
->worker_cnt_per_group
== 0) {
267 md_wakeup_thread(conf
->mddev
->thread
);
271 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
273 group
->workers
[0].working
= true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
277 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
278 /* wakeup more workers */
279 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
280 if (group
->workers
[i
].working
== false) {
281 group
->workers
[i
].working
= true;
282 queue_work_on(sh
->cpu
, raid5_wq
,
283 &group
->workers
[i
].work
);
289 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
290 struct list_head
*temp_inactive_list
)
292 BUG_ON(!list_empty(&sh
->lru
));
293 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
294 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
295 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
296 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
297 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
298 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
299 sh
->bm_seq
- conf
->seq_write
> 0)
300 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
302 clear_bit(STRIPE_DELAYED
, &sh
->state
);
303 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
304 if (conf
->worker_cnt_per_group
== 0) {
305 list_add_tail(&sh
->lru
, &conf
->handle_list
);
307 raid5_wakeup_stripe_thread(sh
);
311 md_wakeup_thread(conf
->mddev
->thread
);
313 BUG_ON(stripe_operations_active(sh
));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
315 if (atomic_dec_return(&conf
->preread_active_stripes
)
317 md_wakeup_thread(conf
->mddev
->thread
);
318 atomic_dec(&conf
->active_stripes
);
319 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
))
320 list_add_tail(&sh
->lru
, temp_inactive_list
);
324 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
325 struct list_head
*temp_inactive_list
)
327 if (atomic_dec_and_test(&sh
->count
))
328 do_release_stripe(conf
, sh
, temp_inactive_list
);
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
338 static void release_inactive_stripe_list(struct r5conf
*conf
,
339 struct list_head
*temp_inactive_list
,
343 unsigned long do_wakeup
= 0;
347 if (hash
== NR_STRIPE_HASH_LOCKS
) {
348 size
= NR_STRIPE_HASH_LOCKS
;
349 hash
= NR_STRIPE_HASH_LOCKS
- 1;
353 struct list_head
*list
= &temp_inactive_list
[size
- 1];
356 * We don't hold any lock here yet, raid5_get_active_stripe() might
357 * remove stripes from the list
359 if (!list_empty_careful(list
)) {
360 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
361 if (list_empty(conf
->inactive_list
+ hash
) &&
363 atomic_dec(&conf
->empty_inactive_list_nr
);
364 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
365 do_wakeup
|= 1 << hash
;
366 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
372 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++) {
373 if (do_wakeup
& (1 << i
))
374 wake_up(&conf
->wait_for_stripe
[i
]);
378 if (atomic_read(&conf
->active_stripes
) == 0)
379 wake_up(&conf
->wait_for_quiescent
);
380 if (conf
->retry_read_aligned
)
381 md_wakeup_thread(conf
->mddev
->thread
);
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf
*conf
,
387 struct list_head
*temp_inactive_list
)
389 struct stripe_head
*sh
;
391 struct llist_node
*head
;
393 head
= llist_del_all(&conf
->released_stripes
);
394 head
= llist_reverse_order(head
);
398 sh
= llist_entry(head
, struct stripe_head
, release_list
);
399 head
= llist_next(head
);
400 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
402 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
404 * Don't worry the bit is set here, because if the bit is set
405 * again, the count is always > 1. This is true for
406 * STRIPE_ON_UNPLUG_LIST bit too.
408 hash
= sh
->hash_lock_index
;
409 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
416 void raid5_release_stripe(struct stripe_head
*sh
)
418 struct r5conf
*conf
= sh
->raid_conf
;
420 struct list_head list
;
424 /* Avoid release_list until the last reference.
426 if (atomic_add_unless(&sh
->count
, -1, 1))
429 if (unlikely(!conf
->mddev
->thread
) ||
430 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
432 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
434 md_wakeup_thread(conf
->mddev
->thread
);
437 local_irq_save(flags
);
438 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
440 INIT_LIST_HEAD(&list
);
441 hash
= sh
->hash_lock_index
;
442 do_release_stripe(conf
, sh
, &list
);
443 spin_unlock(&conf
->device_lock
);
444 release_inactive_stripe_list(conf
, &list
, hash
);
446 local_irq_restore(flags
);
449 static inline void remove_hash(struct stripe_head
*sh
)
451 pr_debug("remove_hash(), stripe %llu\n",
452 (unsigned long long)sh
->sector
);
454 hlist_del_init(&sh
->hash
);
457 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
459 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
461 pr_debug("insert_hash(), stripe %llu\n",
462 (unsigned long long)sh
->sector
);
464 hlist_add_head(&sh
->hash
, hp
);
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
470 struct stripe_head
*sh
= NULL
;
471 struct list_head
*first
;
473 if (list_empty(conf
->inactive_list
+ hash
))
475 first
= (conf
->inactive_list
+ hash
)->next
;
476 sh
= list_entry(first
, struct stripe_head
, lru
);
477 list_del_init(first
);
479 atomic_inc(&conf
->active_stripes
);
480 BUG_ON(hash
!= sh
->hash_lock_index
);
481 if (list_empty(conf
->inactive_list
+ hash
))
482 atomic_inc(&conf
->empty_inactive_list_nr
);
487 static void shrink_buffers(struct stripe_head
*sh
)
491 int num
= sh
->raid_conf
->pool_size
;
493 for (i
= 0; i
< num
; i
++) {
494 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
498 sh
->dev
[i
].page
= NULL
;
503 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
506 int num
= sh
->raid_conf
->pool_size
;
508 for (i
= 0; i
< num
; i
++) {
511 if (!(page
= alloc_page(gfp
))) {
514 sh
->dev
[i
].page
= page
;
515 sh
->dev
[i
].orig_page
= page
;
520 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
521 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
522 struct stripe_head
*sh
);
524 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
526 struct r5conf
*conf
= sh
->raid_conf
;
529 BUG_ON(atomic_read(&sh
->count
) != 0);
530 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
531 BUG_ON(stripe_operations_active(sh
));
532 BUG_ON(sh
->batch_head
);
534 pr_debug("init_stripe called, stripe %llu\n",
535 (unsigned long long)sector
);
537 seq
= read_seqcount_begin(&conf
->gen_lock
);
538 sh
->generation
= conf
->generation
- previous
;
539 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
541 stripe_set_idx(sector
, conf
, previous
, sh
);
544 for (i
= sh
->disks
; i
--; ) {
545 struct r5dev
*dev
= &sh
->dev
[i
];
547 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
548 test_bit(R5_LOCKED
, &dev
->flags
)) {
549 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
550 (unsigned long long)sh
->sector
, i
, dev
->toread
,
551 dev
->read
, dev
->towrite
, dev
->written
,
552 test_bit(R5_LOCKED
, &dev
->flags
));
556 raid5_build_block(sh
, i
, previous
);
558 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
560 sh
->overwrite_disks
= 0;
561 insert_hash(conf
, sh
);
562 sh
->cpu
= smp_processor_id();
563 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
566 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
569 struct stripe_head
*sh
;
571 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
572 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
573 if (sh
->sector
== sector
&& sh
->generation
== generation
)
575 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
580 * Need to check if array has failed when deciding whether to:
582 * - remove non-faulty devices
585 * This determination is simple when no reshape is happening.
586 * However if there is a reshape, we need to carefully check
587 * both the before and after sections.
588 * This is because some failed devices may only affect one
589 * of the two sections, and some non-in_sync devices may
590 * be insync in the section most affected by failed devices.
592 static int calc_degraded(struct r5conf
*conf
)
594 int degraded
, degraded2
;
599 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
600 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
601 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
602 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
603 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
605 else if (test_bit(In_sync
, &rdev
->flags
))
608 /* not in-sync or faulty.
609 * If the reshape increases the number of devices,
610 * this is being recovered by the reshape, so
611 * this 'previous' section is not in_sync.
612 * If the number of devices is being reduced however,
613 * the device can only be part of the array if
614 * we are reverting a reshape, so this section will
617 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
621 if (conf
->raid_disks
== conf
->previous_raid_disks
)
625 for (i
= 0; i
< conf
->raid_disks
; i
++) {
626 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
627 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
628 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
629 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
631 else if (test_bit(In_sync
, &rdev
->flags
))
634 /* not in-sync or faulty.
635 * If reshape increases the number of devices, this
636 * section has already been recovered, else it
637 * almost certainly hasn't.
639 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
643 if (degraded2
> degraded
)
648 static int has_failed(struct r5conf
*conf
)
652 if (conf
->mddev
->reshape_position
== MaxSector
)
653 return conf
->mddev
->degraded
> conf
->max_degraded
;
655 degraded
= calc_degraded(conf
);
656 if (degraded
> conf
->max_degraded
)
662 raid5_get_active_stripe(struct r5conf
*conf
, sector_t sector
,
663 int previous
, int noblock
, int noquiesce
)
665 struct stripe_head
*sh
;
666 int hash
= stripe_hash_locks_hash(sector
);
668 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
670 spin_lock_irq(conf
->hash_locks
+ hash
);
673 wait_event_lock_irq(conf
->wait_for_quiescent
,
674 conf
->quiesce
== 0 || noquiesce
,
675 *(conf
->hash_locks
+ hash
));
676 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
678 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
679 sh
= get_free_stripe(conf
, hash
);
680 if (!sh
&& !test_bit(R5_DID_ALLOC
,
682 set_bit(R5_ALLOC_MORE
,
685 if (noblock
&& sh
== NULL
)
688 set_bit(R5_INACTIVE_BLOCKED
,
690 wait_event_exclusive_cmd(
691 conf
->wait_for_stripe
[hash
],
692 !list_empty(conf
->inactive_list
+ hash
) &&
693 (atomic_read(&conf
->active_stripes
)
694 < (conf
->max_nr_stripes
* 3 / 4)
695 || !test_bit(R5_INACTIVE_BLOCKED
,
696 &conf
->cache_state
)),
697 spin_unlock_irq(conf
->hash_locks
+ hash
),
698 spin_lock_irq(conf
->hash_locks
+ hash
));
699 clear_bit(R5_INACTIVE_BLOCKED
,
702 init_stripe(sh
, sector
, previous
);
703 atomic_inc(&sh
->count
);
705 } else if (!atomic_inc_not_zero(&sh
->count
)) {
706 spin_lock(&conf
->device_lock
);
707 if (!atomic_read(&sh
->count
)) {
708 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
709 atomic_inc(&conf
->active_stripes
);
710 BUG_ON(list_empty(&sh
->lru
) &&
711 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
712 list_del_init(&sh
->lru
);
714 sh
->group
->stripes_cnt
--;
718 atomic_inc(&sh
->count
);
719 spin_unlock(&conf
->device_lock
);
721 } while (sh
== NULL
);
723 if (!list_empty(conf
->inactive_list
+ hash
))
724 wake_up(&conf
->wait_for_stripe
[hash
]);
726 spin_unlock_irq(conf
->hash_locks
+ hash
);
730 static bool is_full_stripe_write(struct stripe_head
*sh
)
732 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
733 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
736 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
740 spin_lock(&sh2
->stripe_lock
);
741 spin_lock_nested(&sh1
->stripe_lock
, 1);
743 spin_lock(&sh1
->stripe_lock
);
744 spin_lock_nested(&sh2
->stripe_lock
, 1);
748 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
750 spin_unlock(&sh1
->stripe_lock
);
751 spin_unlock(&sh2
->stripe_lock
);
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head
*sh
)
758 struct r5conf
*conf
= sh
->raid_conf
;
762 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
763 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
764 is_full_stripe_write(sh
);
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf
*conf
, struct stripe_head
*sh
)
770 struct stripe_head
*head
;
771 sector_t head_sector
, tmp_sec
;
775 if (!stripe_can_batch(sh
))
777 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778 tmp_sec
= sh
->sector
;
779 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
781 head_sector
= sh
->sector
- STRIPE_SECTORS
;
783 hash
= stripe_hash_locks_hash(head_sector
);
784 spin_lock_irq(conf
->hash_locks
+ hash
);
785 head
= __find_stripe(conf
, head_sector
, conf
->generation
);
786 if (head
&& !atomic_inc_not_zero(&head
->count
)) {
787 spin_lock(&conf
->device_lock
);
788 if (!atomic_read(&head
->count
)) {
789 if (!test_bit(STRIPE_HANDLE
, &head
->state
))
790 atomic_inc(&conf
->active_stripes
);
791 BUG_ON(list_empty(&head
->lru
) &&
792 !test_bit(STRIPE_EXPANDING
, &head
->state
));
793 list_del_init(&head
->lru
);
795 head
->group
->stripes_cnt
--;
799 atomic_inc(&head
->count
);
800 spin_unlock(&conf
->device_lock
);
802 spin_unlock_irq(conf
->hash_locks
+ hash
);
806 if (!stripe_can_batch(head
))
809 lock_two_stripes(head
, sh
);
810 /* clear_batch_ready clear the flag */
811 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
818 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
820 if (head
->dev
[dd_idx
].towrite
->bi_rw
!= sh
->dev
[dd_idx
].towrite
->bi_rw
)
823 if (head
->batch_head
) {
824 spin_lock(&head
->batch_head
->batch_lock
);
825 /* This batch list is already running */
826 if (!stripe_can_batch(head
)) {
827 spin_unlock(&head
->batch_head
->batch_lock
);
832 * at this point, head's BATCH_READY could be cleared, but we
833 * can still add the stripe to batch list
835 list_add(&sh
->batch_list
, &head
->batch_list
);
836 spin_unlock(&head
->batch_head
->batch_lock
);
838 sh
->batch_head
= head
->batch_head
;
840 head
->batch_head
= head
;
841 sh
->batch_head
= head
->batch_head
;
842 spin_lock(&head
->batch_lock
);
843 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
844 spin_unlock(&head
->batch_lock
);
847 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
848 if (atomic_dec_return(&conf
->preread_active_stripes
)
850 md_wakeup_thread(conf
->mddev
->thread
);
852 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
853 int seq
= sh
->bm_seq
;
854 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
855 sh
->batch_head
->bm_seq
> seq
)
856 seq
= sh
->batch_head
->bm_seq
;
857 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
858 sh
->batch_head
->bm_seq
= seq
;
861 atomic_inc(&sh
->count
);
863 unlock_two_stripes(head
, sh
);
865 raid5_release_stripe(head
);
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869 * in this stripe_head.
871 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
873 sector_t progress
= conf
->reshape_progress
;
874 /* Need a memory barrier to make sure we see the value
875 * of conf->generation, or ->data_offset that was set before
876 * reshape_progress was updated.
879 if (progress
== MaxSector
)
881 if (sh
->generation
== conf
->generation
- 1)
883 /* We are in a reshape, and this is a new-generation stripe,
884 * so use new_data_offset.
890 raid5_end_read_request(struct bio
*bi
);
892 raid5_end_write_request(struct bio
*bi
);
894 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
896 struct r5conf
*conf
= sh
->raid_conf
;
897 int i
, disks
= sh
->disks
;
898 struct stripe_head
*head_sh
= sh
;
902 if (r5l_write_stripe(conf
->log
, sh
) == 0)
904 for (i
= disks
; i
--; ) {
906 int replace_only
= 0;
907 struct bio
*bi
, *rbi
;
908 struct md_rdev
*rdev
, *rrdev
= NULL
;
911 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
912 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
916 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
918 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
920 else if (test_and_clear_bit(R5_WantReplace
,
921 &sh
->dev
[i
].flags
)) {
926 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
930 bi
= &sh
->dev
[i
].req
;
931 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
934 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
935 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
936 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
945 /* We raced and saw duplicates */
948 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
953 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
956 atomic_inc(&rdev
->nr_pending
);
957 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
960 atomic_inc(&rrdev
->nr_pending
);
963 /* We have already checked bad blocks for reads. Now
964 * need to check for writes. We never accept write errors
965 * on the replacement, so we don't to check rrdev.
967 while ((rw
& WRITE
) && rdev
&&
968 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
971 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
972 &first_bad
, &bad_sectors
);
977 set_bit(BlockedBadBlocks
, &rdev
->flags
);
978 if (!conf
->mddev
->external
&&
979 conf
->mddev
->flags
) {
980 /* It is very unlikely, but we might
981 * still need to write out the
982 * bad block log - better give it
984 md_check_recovery(conf
->mddev
);
987 * Because md_wait_for_blocked_rdev
988 * will dec nr_pending, we must
989 * increment it first.
991 atomic_inc(&rdev
->nr_pending
);
992 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
994 /* Acknowledged bad block - skip the write */
995 rdev_dec_pending(rdev
, conf
->mddev
);
1001 if (s
->syncing
|| s
->expanding
|| s
->expanded
1003 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1005 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1008 bi
->bi_bdev
= rdev
->bdev
;
1010 bi
->bi_end_io
= (rw
& WRITE
)
1011 ? raid5_end_write_request
1012 : raid5_end_read_request
;
1013 bi
->bi_private
= sh
;
1015 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1016 __func__
, (unsigned long long)sh
->sector
,
1018 atomic_inc(&sh
->count
);
1020 atomic_inc(&head_sh
->count
);
1021 if (use_new_offset(conf
, sh
))
1022 bi
->bi_iter
.bi_sector
= (sh
->sector
1023 + rdev
->new_data_offset
);
1025 bi
->bi_iter
.bi_sector
= (sh
->sector
1026 + rdev
->data_offset
);
1027 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1028 bi
->bi_rw
|= REQ_NOMERGE
;
1030 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1031 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1032 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1034 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1035 bi
->bi_io_vec
[0].bv_offset
= 0;
1036 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1038 * If this is discard request, set bi_vcnt 0. We don't
1039 * want to confuse SCSI because SCSI will replace payload
1041 if (rw
& REQ_DISCARD
)
1044 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1046 if (conf
->mddev
->gendisk
)
1047 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
1048 bi
, disk_devt(conf
->mddev
->gendisk
),
1050 generic_make_request(bi
);
1053 if (s
->syncing
|| s
->expanding
|| s
->expanded
1055 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
1057 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1060 rbi
->bi_bdev
= rrdev
->bdev
;
1062 BUG_ON(!(rw
& WRITE
));
1063 rbi
->bi_end_io
= raid5_end_write_request
;
1064 rbi
->bi_private
= sh
;
1066 pr_debug("%s: for %llu schedule op %ld on "
1067 "replacement disc %d\n",
1068 __func__
, (unsigned long long)sh
->sector
,
1070 atomic_inc(&sh
->count
);
1072 atomic_inc(&head_sh
->count
);
1073 if (use_new_offset(conf
, sh
))
1074 rbi
->bi_iter
.bi_sector
= (sh
->sector
1075 + rrdev
->new_data_offset
);
1077 rbi
->bi_iter
.bi_sector
= (sh
->sector
1078 + rrdev
->data_offset
);
1079 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1080 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1081 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1083 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1084 rbi
->bi_io_vec
[0].bv_offset
= 0;
1085 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
1087 * If this is discard request, set bi_vcnt 0. We don't
1088 * want to confuse SCSI because SCSI will replace payload
1090 if (rw
& REQ_DISCARD
)
1092 if (conf
->mddev
->gendisk
)
1093 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
1094 rbi
, disk_devt(conf
->mddev
->gendisk
),
1096 generic_make_request(rbi
);
1098 if (!rdev
&& !rrdev
) {
1100 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1101 pr_debug("skip op %ld on disc %d for sector %llu\n",
1102 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
1103 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1104 set_bit(STRIPE_HANDLE
, &sh
->state
);
1107 if (!head_sh
->batch_head
)
1109 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1116 static struct dma_async_tx_descriptor
*
1117 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1118 sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1119 struct stripe_head
*sh
)
1122 struct bvec_iter iter
;
1123 struct page
*bio_page
;
1125 struct async_submit_ctl submit
;
1126 enum async_tx_flags flags
= 0;
1128 if (bio
->bi_iter
.bi_sector
>= sector
)
1129 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1131 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1134 flags
|= ASYNC_TX_FENCE
;
1135 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1137 bio_for_each_segment(bvl
, bio
, iter
) {
1138 int len
= bvl
.bv_len
;
1142 if (page_offset
< 0) {
1143 b_offset
= -page_offset
;
1144 page_offset
+= b_offset
;
1148 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1149 clen
= STRIPE_SIZE
- page_offset
;
1154 b_offset
+= bvl
.bv_offset
;
1155 bio_page
= bvl
.bv_page
;
1157 if (sh
->raid_conf
->skip_copy
&&
1158 b_offset
== 0 && page_offset
== 0 &&
1159 clen
== STRIPE_SIZE
)
1162 tx
= async_memcpy(*page
, bio_page
, page_offset
,
1163 b_offset
, clen
, &submit
);
1165 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1166 page_offset
, clen
, &submit
);
1168 /* chain the operations */
1169 submit
.depend_tx
= tx
;
1171 if (clen
< len
) /* hit end of page */
1179 static void ops_complete_biofill(void *stripe_head_ref
)
1181 struct stripe_head
*sh
= stripe_head_ref
;
1182 struct bio_list return_bi
= BIO_EMPTY_LIST
;
1185 pr_debug("%s: stripe %llu\n", __func__
,
1186 (unsigned long long)sh
->sector
);
1188 /* clear completed biofills */
1189 for (i
= sh
->disks
; i
--; ) {
1190 struct r5dev
*dev
= &sh
->dev
[i
];
1192 /* acknowledge completion of a biofill operation */
1193 /* and check if we need to reply to a read request,
1194 * new R5_Wantfill requests are held off until
1195 * !STRIPE_BIOFILL_RUN
1197 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1198 struct bio
*rbi
, *rbi2
;
1203 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1204 dev
->sector
+ STRIPE_SECTORS
) {
1205 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1206 if (!raid5_dec_bi_active_stripes(rbi
))
1207 bio_list_add(&return_bi
, rbi
);
1212 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1214 return_io(&return_bi
);
1216 set_bit(STRIPE_HANDLE
, &sh
->state
);
1217 raid5_release_stripe(sh
);
1220 static void ops_run_biofill(struct stripe_head
*sh
)
1222 struct dma_async_tx_descriptor
*tx
= NULL
;
1223 struct async_submit_ctl submit
;
1226 BUG_ON(sh
->batch_head
);
1227 pr_debug("%s: stripe %llu\n", __func__
,
1228 (unsigned long long)sh
->sector
);
1230 for (i
= sh
->disks
; i
--; ) {
1231 struct r5dev
*dev
= &sh
->dev
[i
];
1232 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1234 spin_lock_irq(&sh
->stripe_lock
);
1235 dev
->read
= rbi
= dev
->toread
;
1237 spin_unlock_irq(&sh
->stripe_lock
);
1238 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1239 dev
->sector
+ STRIPE_SECTORS
) {
1240 tx
= async_copy_data(0, rbi
, &dev
->page
,
1241 dev
->sector
, tx
, sh
);
1242 rbi
= r5_next_bio(rbi
, dev
->sector
);
1247 atomic_inc(&sh
->count
);
1248 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1249 async_trigger_callback(&submit
);
1252 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1259 tgt
= &sh
->dev
[target
];
1260 set_bit(R5_UPTODATE
, &tgt
->flags
);
1261 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1262 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1265 static void ops_complete_compute(void *stripe_head_ref
)
1267 struct stripe_head
*sh
= stripe_head_ref
;
1269 pr_debug("%s: stripe %llu\n", __func__
,
1270 (unsigned long long)sh
->sector
);
1272 /* mark the computed target(s) as uptodate */
1273 mark_target_uptodate(sh
, sh
->ops
.target
);
1274 mark_target_uptodate(sh
, sh
->ops
.target2
);
1276 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1277 if (sh
->check_state
== check_state_compute_run
)
1278 sh
->check_state
= check_state_compute_result
;
1279 set_bit(STRIPE_HANDLE
, &sh
->state
);
1280 raid5_release_stripe(sh
);
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1285 struct raid5_percpu
*percpu
, int i
)
1289 addr
= flex_array_get(percpu
->scribble
, i
);
1290 return addr
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1298 addr
= flex_array_get(percpu
->scribble
, i
);
1302 static struct dma_async_tx_descriptor
*
1303 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1305 int disks
= sh
->disks
;
1306 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1307 int target
= sh
->ops
.target
;
1308 struct r5dev
*tgt
= &sh
->dev
[target
];
1309 struct page
*xor_dest
= tgt
->page
;
1311 struct dma_async_tx_descriptor
*tx
;
1312 struct async_submit_ctl submit
;
1315 BUG_ON(sh
->batch_head
);
1317 pr_debug("%s: stripe %llu block: %d\n",
1318 __func__
, (unsigned long long)sh
->sector
, target
);
1319 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1321 for (i
= disks
; i
--; )
1323 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1325 atomic_inc(&sh
->count
);
1327 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1328 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1329 if (unlikely(count
== 1))
1330 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1332 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338 * @srcs - (struct page *) array of size sh->disks
1339 * @sh - stripe_head to parse
1341 * Populates srcs in proper layout order for the stripe and returns the
1342 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1343 * destination buffer is recorded in srcs[count] and the Q destination
1344 * is recorded in srcs[count+1]].
1346 static int set_syndrome_sources(struct page
**srcs
,
1347 struct stripe_head
*sh
,
1350 int disks
= sh
->disks
;
1351 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1352 int d0_idx
= raid6_d0(sh
);
1356 for (i
= 0; i
< disks
; i
++)
1362 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1363 struct r5dev
*dev
= &sh
->dev
[i
];
1365 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1366 (srctype
== SYNDROME_SRC_ALL
) ||
1367 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1368 test_bit(R5_Wantdrain
, &dev
->flags
)) ||
1369 (srctype
== SYNDROME_SRC_WRITTEN
&&
1371 srcs
[slot
] = sh
->dev
[i
].page
;
1372 i
= raid6_next_disk(i
, disks
);
1373 } while (i
!= d0_idx
);
1375 return syndrome_disks
;
1378 static struct dma_async_tx_descriptor
*
1379 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1381 int disks
= sh
->disks
;
1382 struct page
**blocks
= to_addr_page(percpu
, 0);
1384 int qd_idx
= sh
->qd_idx
;
1385 struct dma_async_tx_descriptor
*tx
;
1386 struct async_submit_ctl submit
;
1392 BUG_ON(sh
->batch_head
);
1393 if (sh
->ops
.target
< 0)
1394 target
= sh
->ops
.target2
;
1395 else if (sh
->ops
.target2
< 0)
1396 target
= sh
->ops
.target
;
1398 /* we should only have one valid target */
1401 pr_debug("%s: stripe %llu block: %d\n",
1402 __func__
, (unsigned long long)sh
->sector
, target
);
1404 tgt
= &sh
->dev
[target
];
1405 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1408 atomic_inc(&sh
->count
);
1410 if (target
== qd_idx
) {
1411 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1412 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1413 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1414 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1415 ops_complete_compute
, sh
,
1416 to_addr_conv(sh
, percpu
, 0));
1417 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1419 /* Compute any data- or p-drive using XOR */
1421 for (i
= disks
; i
-- ; ) {
1422 if (i
== target
|| i
== qd_idx
)
1424 blocks
[count
++] = sh
->dev
[i
].page
;
1427 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1428 NULL
, ops_complete_compute
, sh
,
1429 to_addr_conv(sh
, percpu
, 0));
1430 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1436 static struct dma_async_tx_descriptor
*
1437 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1439 int i
, count
, disks
= sh
->disks
;
1440 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1441 int d0_idx
= raid6_d0(sh
);
1442 int faila
= -1, failb
= -1;
1443 int target
= sh
->ops
.target
;
1444 int target2
= sh
->ops
.target2
;
1445 struct r5dev
*tgt
= &sh
->dev
[target
];
1446 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1447 struct dma_async_tx_descriptor
*tx
;
1448 struct page
**blocks
= to_addr_page(percpu
, 0);
1449 struct async_submit_ctl submit
;
1451 BUG_ON(sh
->batch_head
);
1452 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1454 BUG_ON(target
< 0 || target2
< 0);
1455 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1456 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1458 /* we need to open-code set_syndrome_sources to handle the
1459 * slot number conversion for 'faila' and 'failb'
1461 for (i
= 0; i
< disks
; i
++)
1466 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1468 blocks
[slot
] = sh
->dev
[i
].page
;
1474 i
= raid6_next_disk(i
, disks
);
1475 } while (i
!= d0_idx
);
1477 BUG_ON(faila
== failb
);
1480 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1483 atomic_inc(&sh
->count
);
1485 if (failb
== syndrome_disks
+1) {
1486 /* Q disk is one of the missing disks */
1487 if (faila
== syndrome_disks
) {
1488 /* Missing P+Q, just recompute */
1489 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1490 ops_complete_compute
, sh
,
1491 to_addr_conv(sh
, percpu
, 0));
1492 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1493 STRIPE_SIZE
, &submit
);
1497 int qd_idx
= sh
->qd_idx
;
1499 /* Missing D+Q: recompute D from P, then recompute Q */
1500 if (target
== qd_idx
)
1501 data_target
= target2
;
1503 data_target
= target
;
1506 for (i
= disks
; i
-- ; ) {
1507 if (i
== data_target
|| i
== qd_idx
)
1509 blocks
[count
++] = sh
->dev
[i
].page
;
1511 dest
= sh
->dev
[data_target
].page
;
1512 init_async_submit(&submit
,
1513 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1515 to_addr_conv(sh
, percpu
, 0));
1516 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1519 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_ALL
);
1520 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1521 ops_complete_compute
, sh
,
1522 to_addr_conv(sh
, percpu
, 0));
1523 return async_gen_syndrome(blocks
, 0, count
+2,
1524 STRIPE_SIZE
, &submit
);
1527 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1528 ops_complete_compute
, sh
,
1529 to_addr_conv(sh
, percpu
, 0));
1530 if (failb
== syndrome_disks
) {
1531 /* We're missing D+P. */
1532 return async_raid6_datap_recov(syndrome_disks
+2,
1536 /* We're missing D+D. */
1537 return async_raid6_2data_recov(syndrome_disks
+2,
1538 STRIPE_SIZE
, faila
, failb
,
1544 static void ops_complete_prexor(void *stripe_head_ref
)
1546 struct stripe_head
*sh
= stripe_head_ref
;
1548 pr_debug("%s: stripe %llu\n", __func__
,
1549 (unsigned long long)sh
->sector
);
1552 static struct dma_async_tx_descriptor
*
1553 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1554 struct dma_async_tx_descriptor
*tx
)
1556 int disks
= sh
->disks
;
1557 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1558 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1559 struct async_submit_ctl submit
;
1561 /* existing parity data subtracted */
1562 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1564 BUG_ON(sh
->batch_head
);
1565 pr_debug("%s: stripe %llu\n", __func__
,
1566 (unsigned long long)sh
->sector
);
1568 for (i
= disks
; i
--; ) {
1569 struct r5dev
*dev
= &sh
->dev
[i
];
1570 /* Only process blocks that are known to be uptodate */
1571 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1572 xor_srcs
[count
++] = dev
->page
;
1575 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1576 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1577 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1582 static struct dma_async_tx_descriptor
*
1583 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1584 struct dma_async_tx_descriptor
*tx
)
1586 struct page
**blocks
= to_addr_page(percpu
, 0);
1588 struct async_submit_ctl submit
;
1590 pr_debug("%s: stripe %llu\n", __func__
,
1591 (unsigned long long)sh
->sector
);
1593 count
= set_syndrome_sources(blocks
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1595 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1596 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1597 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1602 static struct dma_async_tx_descriptor
*
1603 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1605 int disks
= sh
->disks
;
1607 struct stripe_head
*head_sh
= sh
;
1609 pr_debug("%s: stripe %llu\n", __func__
,
1610 (unsigned long long)sh
->sector
);
1612 for (i
= disks
; i
--; ) {
1617 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1622 spin_lock_irq(&sh
->stripe_lock
);
1623 chosen
= dev
->towrite
;
1624 dev
->towrite
= NULL
;
1625 sh
->overwrite_disks
= 0;
1626 BUG_ON(dev
->written
);
1627 wbi
= dev
->written
= chosen
;
1628 spin_unlock_irq(&sh
->stripe_lock
);
1629 WARN_ON(dev
->page
!= dev
->orig_page
);
1631 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1632 dev
->sector
+ STRIPE_SECTORS
) {
1633 if (wbi
->bi_rw
& REQ_FUA
)
1634 set_bit(R5_WantFUA
, &dev
->flags
);
1635 if (wbi
->bi_rw
& REQ_SYNC
)
1636 set_bit(R5_SyncIO
, &dev
->flags
);
1637 if (wbi
->bi_rw
& REQ_DISCARD
)
1638 set_bit(R5_Discard
, &dev
->flags
);
1640 tx
= async_copy_data(1, wbi
, &dev
->page
,
1641 dev
->sector
, tx
, sh
);
1642 if (dev
->page
!= dev
->orig_page
) {
1643 set_bit(R5_SkipCopy
, &dev
->flags
);
1644 clear_bit(R5_UPTODATE
, &dev
->flags
);
1645 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1648 wbi
= r5_next_bio(wbi
, dev
->sector
);
1651 if (head_sh
->batch_head
) {
1652 sh
= list_first_entry(&sh
->batch_list
,
1665 static void ops_complete_reconstruct(void *stripe_head_ref
)
1667 struct stripe_head
*sh
= stripe_head_ref
;
1668 int disks
= sh
->disks
;
1669 int pd_idx
= sh
->pd_idx
;
1670 int qd_idx
= sh
->qd_idx
;
1672 bool fua
= false, sync
= false, discard
= false;
1674 pr_debug("%s: stripe %llu\n", __func__
,
1675 (unsigned long long)sh
->sector
);
1677 for (i
= disks
; i
--; ) {
1678 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1679 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1680 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1683 for (i
= disks
; i
--; ) {
1684 struct r5dev
*dev
= &sh
->dev
[i
];
1686 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1687 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
))
1688 set_bit(R5_UPTODATE
, &dev
->flags
);
1690 set_bit(R5_WantFUA
, &dev
->flags
);
1692 set_bit(R5_SyncIO
, &dev
->flags
);
1696 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1697 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1698 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1699 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1701 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1702 sh
->reconstruct_state
= reconstruct_state_result
;
1705 set_bit(STRIPE_HANDLE
, &sh
->state
);
1706 raid5_release_stripe(sh
);
1710 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1711 struct dma_async_tx_descriptor
*tx
)
1713 int disks
= sh
->disks
;
1714 struct page
**xor_srcs
;
1715 struct async_submit_ctl submit
;
1716 int count
, pd_idx
= sh
->pd_idx
, i
;
1717 struct page
*xor_dest
;
1719 unsigned long flags
;
1721 struct stripe_head
*head_sh
= sh
;
1724 pr_debug("%s: stripe %llu\n", __func__
,
1725 (unsigned long long)sh
->sector
);
1727 for (i
= 0; i
< sh
->disks
; i
++) {
1730 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1733 if (i
>= sh
->disks
) {
1734 atomic_inc(&sh
->count
);
1735 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1736 ops_complete_reconstruct(sh
);
1741 xor_srcs
= to_addr_page(percpu
, j
);
1742 /* check if prexor is active which means only process blocks
1743 * that are part of a read-modify-write (written)
1745 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1747 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1748 for (i
= disks
; i
--; ) {
1749 struct r5dev
*dev
= &sh
->dev
[i
];
1750 if (head_sh
->dev
[i
].written
)
1751 xor_srcs
[count
++] = dev
->page
;
1754 xor_dest
= sh
->dev
[pd_idx
].page
;
1755 for (i
= disks
; i
--; ) {
1756 struct r5dev
*dev
= &sh
->dev
[i
];
1758 xor_srcs
[count
++] = dev
->page
;
1762 /* 1/ if we prexor'd then the dest is reused as a source
1763 * 2/ if we did not prexor then we are redoing the parity
1764 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765 * for the synchronous xor case
1767 last_stripe
= !head_sh
->batch_head
||
1768 list_first_entry(&sh
->batch_list
,
1769 struct stripe_head
, batch_list
) == head_sh
;
1771 flags
= ASYNC_TX_ACK
|
1772 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1774 atomic_inc(&head_sh
->count
);
1775 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
1776 to_addr_conv(sh
, percpu
, j
));
1778 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
1779 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
1780 to_addr_conv(sh
, percpu
, j
));
1783 if (unlikely(count
== 1))
1784 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1786 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1789 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1796 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1797 struct dma_async_tx_descriptor
*tx
)
1799 struct async_submit_ctl submit
;
1800 struct page
**blocks
;
1801 int count
, i
, j
= 0;
1802 struct stripe_head
*head_sh
= sh
;
1805 unsigned long txflags
;
1807 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1809 for (i
= 0; i
< sh
->disks
; i
++) {
1810 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1812 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1815 if (i
>= sh
->disks
) {
1816 atomic_inc(&sh
->count
);
1817 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1818 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1819 ops_complete_reconstruct(sh
);
1824 blocks
= to_addr_page(percpu
, j
);
1826 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1827 synflags
= SYNDROME_SRC_WRITTEN
;
1828 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
1830 synflags
= SYNDROME_SRC_ALL
;
1831 txflags
= ASYNC_TX_ACK
;
1834 count
= set_syndrome_sources(blocks
, sh
, synflags
);
1835 last_stripe
= !head_sh
->batch_head
||
1836 list_first_entry(&sh
->batch_list
,
1837 struct stripe_head
, batch_list
) == head_sh
;
1840 atomic_inc(&head_sh
->count
);
1841 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
1842 head_sh
, to_addr_conv(sh
, percpu
, j
));
1844 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
1845 to_addr_conv(sh
, percpu
, j
));
1846 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1849 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1855 static void ops_complete_check(void *stripe_head_ref
)
1857 struct stripe_head
*sh
= stripe_head_ref
;
1859 pr_debug("%s: stripe %llu\n", __func__
,
1860 (unsigned long long)sh
->sector
);
1862 sh
->check_state
= check_state_check_result
;
1863 set_bit(STRIPE_HANDLE
, &sh
->state
);
1864 raid5_release_stripe(sh
);
1867 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1869 int disks
= sh
->disks
;
1870 int pd_idx
= sh
->pd_idx
;
1871 int qd_idx
= sh
->qd_idx
;
1872 struct page
*xor_dest
;
1873 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1874 struct dma_async_tx_descriptor
*tx
;
1875 struct async_submit_ctl submit
;
1879 pr_debug("%s: stripe %llu\n", __func__
,
1880 (unsigned long long)sh
->sector
);
1882 BUG_ON(sh
->batch_head
);
1884 xor_dest
= sh
->dev
[pd_idx
].page
;
1885 xor_srcs
[count
++] = xor_dest
;
1886 for (i
= disks
; i
--; ) {
1887 if (i
== pd_idx
|| i
== qd_idx
)
1889 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1892 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1893 to_addr_conv(sh
, percpu
, 0));
1894 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1895 &sh
->ops
.zero_sum_result
, &submit
);
1897 atomic_inc(&sh
->count
);
1898 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1899 tx
= async_trigger_callback(&submit
);
1902 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1904 struct page
**srcs
= to_addr_page(percpu
, 0);
1905 struct async_submit_ctl submit
;
1908 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1909 (unsigned long long)sh
->sector
, checkp
);
1911 BUG_ON(sh
->batch_head
);
1912 count
= set_syndrome_sources(srcs
, sh
, SYNDROME_SRC_ALL
);
1916 atomic_inc(&sh
->count
);
1917 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1918 sh
, to_addr_conv(sh
, percpu
, 0));
1919 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1920 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1923 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1925 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1926 struct dma_async_tx_descriptor
*tx
= NULL
;
1927 struct r5conf
*conf
= sh
->raid_conf
;
1928 int level
= conf
->level
;
1929 struct raid5_percpu
*percpu
;
1933 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1934 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1935 ops_run_biofill(sh
);
1939 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1941 tx
= ops_run_compute5(sh
, percpu
);
1943 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1944 tx
= ops_run_compute6_1(sh
, percpu
);
1946 tx
= ops_run_compute6_2(sh
, percpu
);
1948 /* terminate the chain if reconstruct is not set to be run */
1949 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1953 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
1955 tx
= ops_run_prexor5(sh
, percpu
, tx
);
1957 tx
= ops_run_prexor6(sh
, percpu
, tx
);
1960 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1961 tx
= ops_run_biodrain(sh
, tx
);
1965 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1967 ops_run_reconstruct5(sh
, percpu
, tx
);
1969 ops_run_reconstruct6(sh
, percpu
, tx
);
1972 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1973 if (sh
->check_state
== check_state_run
)
1974 ops_run_check_p(sh
, percpu
);
1975 else if (sh
->check_state
== check_state_run_q
)
1976 ops_run_check_pq(sh
, percpu
, 0);
1977 else if (sh
->check_state
== check_state_run_pq
)
1978 ops_run_check_pq(sh
, percpu
, 1);
1983 if (overlap_clear
&& !sh
->batch_head
)
1984 for (i
= disks
; i
--; ) {
1985 struct r5dev
*dev
= &sh
->dev
[i
];
1986 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1987 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1992 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
)
1994 struct stripe_head
*sh
;
1996 sh
= kmem_cache_zalloc(sc
, gfp
);
1998 spin_lock_init(&sh
->stripe_lock
);
1999 spin_lock_init(&sh
->batch_lock
);
2000 INIT_LIST_HEAD(&sh
->batch_list
);
2001 INIT_LIST_HEAD(&sh
->lru
);
2002 atomic_set(&sh
->count
, 1);
2006 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2008 struct stripe_head
*sh
;
2010 sh
= alloc_stripe(conf
->slab_cache
, gfp
);
2014 sh
->raid_conf
= conf
;
2016 if (grow_buffers(sh
, gfp
)) {
2018 kmem_cache_free(conf
->slab_cache
, sh
);
2021 sh
->hash_lock_index
=
2022 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2023 /* we just created an active stripe so... */
2024 atomic_inc(&conf
->active_stripes
);
2026 raid5_release_stripe(sh
);
2027 conf
->max_nr_stripes
++;
2031 static int grow_stripes(struct r5conf
*conf
, int num
)
2033 struct kmem_cache
*sc
;
2034 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2036 if (conf
->mddev
->gendisk
)
2037 sprintf(conf
->cache_name
[0],
2038 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2040 sprintf(conf
->cache_name
[0],
2041 "raid%d-%p", conf
->level
, conf
->mddev
);
2042 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
2044 conf
->active_name
= 0;
2045 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2046 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
2050 conf
->slab_cache
= sc
;
2051 conf
->pool_size
= devs
;
2053 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2060 * scribble_len - return the required size of the scribble region
2061 * @num - total number of disks in the array
2063 * The size must be enough to contain:
2064 * 1/ a struct page pointer for each device in the array +2
2065 * 2/ room to convert each entry in (1) to its corresponding dma
2066 * (dma_map_page()) or page (page_address()) address.
2068 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069 * calculate over all devices (not just the data blocks), using zeros in place
2070 * of the P and Q blocks.
2072 static struct flex_array
*scribble_alloc(int num
, int cnt
, gfp_t flags
)
2074 struct flex_array
*ret
;
2077 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
2078 ret
= flex_array_alloc(len
, cnt
, flags
);
2081 /* always prealloc all elements, so no locking is required */
2082 if (flex_array_prealloc(ret
, 0, cnt
, flags
)) {
2083 flex_array_free(ret
);
2089 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2094 mddev_suspend(conf
->mddev
);
2096 for_each_present_cpu(cpu
) {
2097 struct raid5_percpu
*percpu
;
2098 struct flex_array
*scribble
;
2100 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2101 scribble
= scribble_alloc(new_disks
,
2102 new_sectors
/ STRIPE_SECTORS
,
2106 flex_array_free(percpu
->scribble
);
2107 percpu
->scribble
= scribble
;
2114 mddev_resume(conf
->mddev
);
2118 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2120 /* Make all the stripes able to hold 'newsize' devices.
2121 * New slots in each stripe get 'page' set to a new page.
2123 * This happens in stages:
2124 * 1/ create a new kmem_cache and allocate the required number of
2126 * 2/ gather all the old stripe_heads and transfer the pages across
2127 * to the new stripe_heads. This will have the side effect of
2128 * freezing the array as once all stripe_heads have been collected,
2129 * no IO will be possible. Old stripe heads are freed once their
2130 * pages have been transferred over, and the old kmem_cache is
2131 * freed when all stripes are done.
2132 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2133 * we simple return a failre status - no need to clean anything up.
2134 * 4/ allocate new pages for the new slots in the new stripe_heads.
2135 * If this fails, we don't bother trying the shrink the
2136 * stripe_heads down again, we just leave them as they are.
2137 * As each stripe_head is processed the new one is released into
2140 * Once step2 is started, we cannot afford to wait for a write,
2141 * so we use GFP_NOIO allocations.
2143 struct stripe_head
*osh
, *nsh
;
2144 LIST_HEAD(newstripes
);
2145 struct disk_info
*ndisks
;
2147 struct kmem_cache
*sc
;
2151 if (newsize
<= conf
->pool_size
)
2152 return 0; /* never bother to shrink */
2154 err
= md_allow_write(conf
->mddev
);
2159 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2160 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
2165 /* Need to ensure auto-resizing doesn't interfere */
2166 mutex_lock(&conf
->cache_size_mutex
);
2168 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2169 nsh
= alloc_stripe(sc
, GFP_KERNEL
);
2173 nsh
->raid_conf
= conf
;
2174 list_add(&nsh
->lru
, &newstripes
);
2177 /* didn't get enough, give up */
2178 while (!list_empty(&newstripes
)) {
2179 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2180 list_del(&nsh
->lru
);
2181 kmem_cache_free(sc
, nsh
);
2183 kmem_cache_destroy(sc
);
2184 mutex_unlock(&conf
->cache_size_mutex
);
2187 /* Step 2 - Must use GFP_NOIO now.
2188 * OK, we have enough stripes, start collecting inactive
2189 * stripes and copying them over
2193 list_for_each_entry(nsh
, &newstripes
, lru
) {
2194 lock_device_hash_lock(conf
, hash
);
2195 wait_event_exclusive_cmd(conf
->wait_for_stripe
[hash
],
2196 !list_empty(conf
->inactive_list
+ hash
),
2197 unlock_device_hash_lock(conf
, hash
),
2198 lock_device_hash_lock(conf
, hash
));
2199 osh
= get_free_stripe(conf
, hash
);
2200 unlock_device_hash_lock(conf
, hash
);
2202 for(i
=0; i
<conf
->pool_size
; i
++) {
2203 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2204 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2206 nsh
->hash_lock_index
= hash
;
2207 kmem_cache_free(conf
->slab_cache
, osh
);
2209 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2210 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2215 kmem_cache_destroy(conf
->slab_cache
);
2218 * At this point, we are holding all the stripes so the array
2219 * is completely stalled, so now is a good time to resize
2220 * conf->disks and the scribble region
2222 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
2224 for (i
=0; i
<conf
->raid_disks
; i
++)
2225 ndisks
[i
] = conf
->disks
[i
];
2227 conf
->disks
= ndisks
;
2231 mutex_unlock(&conf
->cache_size_mutex
);
2232 /* Step 4, return new stripes to service */
2233 while(!list_empty(&newstripes
)) {
2234 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2235 list_del_init(&nsh
->lru
);
2237 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2238 if (nsh
->dev
[i
].page
== NULL
) {
2239 struct page
*p
= alloc_page(GFP_NOIO
);
2240 nsh
->dev
[i
].page
= p
;
2241 nsh
->dev
[i
].orig_page
= p
;
2245 raid5_release_stripe(nsh
);
2247 /* critical section pass, GFP_NOIO no longer needed */
2249 conf
->slab_cache
= sc
;
2250 conf
->active_name
= 1-conf
->active_name
;
2252 conf
->pool_size
= newsize
;
2256 static int drop_one_stripe(struct r5conf
*conf
)
2258 struct stripe_head
*sh
;
2259 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2261 spin_lock_irq(conf
->hash_locks
+ hash
);
2262 sh
= get_free_stripe(conf
, hash
);
2263 spin_unlock_irq(conf
->hash_locks
+ hash
);
2266 BUG_ON(atomic_read(&sh
->count
));
2268 kmem_cache_free(conf
->slab_cache
, sh
);
2269 atomic_dec(&conf
->active_stripes
);
2270 conf
->max_nr_stripes
--;
2274 static void shrink_stripes(struct r5conf
*conf
)
2276 while (conf
->max_nr_stripes
&&
2277 drop_one_stripe(conf
))
2280 kmem_cache_destroy(conf
->slab_cache
);
2281 conf
->slab_cache
= NULL
;
2284 static void raid5_end_read_request(struct bio
* bi
)
2286 struct stripe_head
*sh
= bi
->bi_private
;
2287 struct r5conf
*conf
= sh
->raid_conf
;
2288 int disks
= sh
->disks
, i
;
2289 char b
[BDEVNAME_SIZE
];
2290 struct md_rdev
*rdev
= NULL
;
2293 for (i
=0 ; i
<disks
; i
++)
2294 if (bi
== &sh
->dev
[i
].req
)
2297 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2298 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2304 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2305 /* If replacement finished while this request was outstanding,
2306 * 'replacement' might be NULL already.
2307 * In that case it moved down to 'rdev'.
2308 * rdev is not removed until all requests are finished.
2310 rdev
= conf
->disks
[i
].replacement
;
2312 rdev
= conf
->disks
[i
].rdev
;
2314 if (use_new_offset(conf
, sh
))
2315 s
= sh
->sector
+ rdev
->new_data_offset
;
2317 s
= sh
->sector
+ rdev
->data_offset
;
2318 if (!bi
->bi_error
) {
2319 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2320 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2321 /* Note that this cannot happen on a
2322 * replacement device. We just fail those on
2327 "md/raid:%s: read error corrected"
2328 " (%lu sectors at %llu on %s)\n",
2329 mdname(conf
->mddev
), STRIPE_SECTORS
,
2330 (unsigned long long)s
,
2331 bdevname(rdev
->bdev
, b
));
2332 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
2333 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2334 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2335 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2336 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2338 if (atomic_read(&rdev
->read_errors
))
2339 atomic_set(&rdev
->read_errors
, 0);
2341 const char *bdn
= bdevname(rdev
->bdev
, b
);
2345 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2346 atomic_inc(&rdev
->read_errors
);
2347 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2350 "md/raid:%s: read error on replacement device "
2351 "(sector %llu on %s).\n",
2352 mdname(conf
->mddev
),
2353 (unsigned long long)s
,
2355 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2359 "md/raid:%s: read error not correctable "
2360 "(sector %llu on %s).\n",
2361 mdname(conf
->mddev
),
2362 (unsigned long long)s
,
2364 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2369 "md/raid:%s: read error NOT corrected!! "
2370 "(sector %llu on %s).\n",
2371 mdname(conf
->mddev
),
2372 (unsigned long long)s
,
2374 } else if (atomic_read(&rdev
->read_errors
)
2375 > conf
->max_nr_stripes
)
2377 "md/raid:%s: Too many read errors, failing device %s.\n",
2378 mdname(conf
->mddev
), bdn
);
2381 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2382 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2385 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2386 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2387 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2389 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2391 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2392 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2394 && test_bit(In_sync
, &rdev
->flags
)
2395 && rdev_set_badblocks(
2396 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2397 md_error(conf
->mddev
, rdev
);
2400 rdev_dec_pending(rdev
, conf
->mddev
);
2401 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2402 set_bit(STRIPE_HANDLE
, &sh
->state
);
2403 raid5_release_stripe(sh
);
2406 static void raid5_end_write_request(struct bio
*bi
)
2408 struct stripe_head
*sh
= bi
->bi_private
;
2409 struct r5conf
*conf
= sh
->raid_conf
;
2410 int disks
= sh
->disks
, i
;
2411 struct md_rdev
*uninitialized_var(rdev
);
2414 int replacement
= 0;
2416 for (i
= 0 ; i
< disks
; i
++) {
2417 if (bi
== &sh
->dev
[i
].req
) {
2418 rdev
= conf
->disks
[i
].rdev
;
2421 if (bi
== &sh
->dev
[i
].rreq
) {
2422 rdev
= conf
->disks
[i
].replacement
;
2426 /* rdev was removed and 'replacement'
2427 * replaced it. rdev is not removed
2428 * until all requests are finished.
2430 rdev
= conf
->disks
[i
].rdev
;
2434 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2435 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2444 md_error(conf
->mddev
, rdev
);
2445 else if (is_badblock(rdev
, sh
->sector
,
2447 &first_bad
, &bad_sectors
))
2448 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2451 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2452 set_bit(WriteErrorSeen
, &rdev
->flags
);
2453 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2454 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2455 set_bit(MD_RECOVERY_NEEDED
,
2456 &rdev
->mddev
->recovery
);
2457 } else if (is_badblock(rdev
, sh
->sector
,
2459 &first_bad
, &bad_sectors
)) {
2460 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2461 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2462 /* That was a successful write so make
2463 * sure it looks like we already did
2466 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2469 rdev_dec_pending(rdev
, conf
->mddev
);
2471 if (sh
->batch_head
&& bi
->bi_error
&& !replacement
)
2472 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2474 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2475 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2476 set_bit(STRIPE_HANDLE
, &sh
->state
);
2477 raid5_release_stripe(sh
);
2479 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2480 raid5_release_stripe(sh
->batch_head
);
2483 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
2485 struct r5dev
*dev
= &sh
->dev
[i
];
2487 bio_init(&dev
->req
);
2488 dev
->req
.bi_io_vec
= &dev
->vec
;
2489 dev
->req
.bi_max_vecs
= 1;
2490 dev
->req
.bi_private
= sh
;
2492 bio_init(&dev
->rreq
);
2493 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
2494 dev
->rreq
.bi_max_vecs
= 1;
2495 dev
->rreq
.bi_private
= sh
;
2498 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
2501 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2503 char b
[BDEVNAME_SIZE
];
2504 struct r5conf
*conf
= mddev
->private;
2505 unsigned long flags
;
2506 pr_debug("raid456: error called\n");
2508 spin_lock_irqsave(&conf
->device_lock
, flags
);
2509 clear_bit(In_sync
, &rdev
->flags
);
2510 mddev
->degraded
= calc_degraded(conf
);
2511 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2512 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2514 set_bit(Blocked
, &rdev
->flags
);
2515 set_bit(Faulty
, &rdev
->flags
);
2516 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2517 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
2519 "md/raid:%s: Disk failure on %s, disabling device.\n"
2520 "md/raid:%s: Operation continuing on %d devices.\n",
2522 bdevname(rdev
->bdev
, b
),
2524 conf
->raid_disks
- mddev
->degraded
);
2528 * Input: a 'big' sector number,
2529 * Output: index of the data and parity disk, and the sector # in them.
2531 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2532 int previous
, int *dd_idx
,
2533 struct stripe_head
*sh
)
2535 sector_t stripe
, stripe2
;
2536 sector_t chunk_number
;
2537 unsigned int chunk_offset
;
2540 sector_t new_sector
;
2541 int algorithm
= previous
? conf
->prev_algo
2543 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2544 : conf
->chunk_sectors
;
2545 int raid_disks
= previous
? conf
->previous_raid_disks
2547 int data_disks
= raid_disks
- conf
->max_degraded
;
2549 /* First compute the information on this sector */
2552 * Compute the chunk number and the sector offset inside the chunk
2554 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2555 chunk_number
= r_sector
;
2558 * Compute the stripe number
2560 stripe
= chunk_number
;
2561 *dd_idx
= sector_div(stripe
, data_disks
);
2564 * Select the parity disk based on the user selected algorithm.
2566 pd_idx
= qd_idx
= -1;
2567 switch(conf
->level
) {
2569 pd_idx
= data_disks
;
2572 switch (algorithm
) {
2573 case ALGORITHM_LEFT_ASYMMETRIC
:
2574 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2575 if (*dd_idx
>= pd_idx
)
2578 case ALGORITHM_RIGHT_ASYMMETRIC
:
2579 pd_idx
= sector_div(stripe2
, raid_disks
);
2580 if (*dd_idx
>= pd_idx
)
2583 case ALGORITHM_LEFT_SYMMETRIC
:
2584 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2585 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2587 case ALGORITHM_RIGHT_SYMMETRIC
:
2588 pd_idx
= sector_div(stripe2
, raid_disks
);
2589 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2591 case ALGORITHM_PARITY_0
:
2595 case ALGORITHM_PARITY_N
:
2596 pd_idx
= data_disks
;
2604 switch (algorithm
) {
2605 case ALGORITHM_LEFT_ASYMMETRIC
:
2606 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2607 qd_idx
= pd_idx
+ 1;
2608 if (pd_idx
== raid_disks
-1) {
2609 (*dd_idx
)++; /* Q D D D P */
2611 } else if (*dd_idx
>= pd_idx
)
2612 (*dd_idx
) += 2; /* D D P Q D */
2614 case ALGORITHM_RIGHT_ASYMMETRIC
:
2615 pd_idx
= sector_div(stripe2
, raid_disks
);
2616 qd_idx
= pd_idx
+ 1;
2617 if (pd_idx
== raid_disks
-1) {
2618 (*dd_idx
)++; /* Q D D D P */
2620 } else if (*dd_idx
>= pd_idx
)
2621 (*dd_idx
) += 2; /* D D P Q D */
2623 case ALGORITHM_LEFT_SYMMETRIC
:
2624 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2625 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2626 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2628 case ALGORITHM_RIGHT_SYMMETRIC
:
2629 pd_idx
= sector_div(stripe2
, raid_disks
);
2630 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2631 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2634 case ALGORITHM_PARITY_0
:
2639 case ALGORITHM_PARITY_N
:
2640 pd_idx
= data_disks
;
2641 qd_idx
= data_disks
+ 1;
2644 case ALGORITHM_ROTATING_ZERO_RESTART
:
2645 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2646 * of blocks for computing Q is different.
2648 pd_idx
= sector_div(stripe2
, raid_disks
);
2649 qd_idx
= pd_idx
+ 1;
2650 if (pd_idx
== raid_disks
-1) {
2651 (*dd_idx
)++; /* Q D D D P */
2653 } else if (*dd_idx
>= pd_idx
)
2654 (*dd_idx
) += 2; /* D D P Q D */
2658 case ALGORITHM_ROTATING_N_RESTART
:
2659 /* Same a left_asymmetric, by first stripe is
2660 * D D D P Q rather than
2664 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2665 qd_idx
= pd_idx
+ 1;
2666 if (pd_idx
== raid_disks
-1) {
2667 (*dd_idx
)++; /* Q D D D P */
2669 } else if (*dd_idx
>= pd_idx
)
2670 (*dd_idx
) += 2; /* D D P Q D */
2674 case ALGORITHM_ROTATING_N_CONTINUE
:
2675 /* Same as left_symmetric but Q is before P */
2676 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2677 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2678 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2682 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2683 /* RAID5 left_asymmetric, with Q on last device */
2684 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2685 if (*dd_idx
>= pd_idx
)
2687 qd_idx
= raid_disks
- 1;
2690 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2691 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2692 if (*dd_idx
>= pd_idx
)
2694 qd_idx
= raid_disks
- 1;
2697 case ALGORITHM_LEFT_SYMMETRIC_6
:
2698 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2699 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2700 qd_idx
= raid_disks
- 1;
2703 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2704 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2705 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2706 qd_idx
= raid_disks
- 1;
2709 case ALGORITHM_PARITY_0_6
:
2712 qd_idx
= raid_disks
- 1;
2722 sh
->pd_idx
= pd_idx
;
2723 sh
->qd_idx
= qd_idx
;
2724 sh
->ddf_layout
= ddf_layout
;
2727 * Finally, compute the new sector number
2729 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2733 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2735 struct r5conf
*conf
= sh
->raid_conf
;
2736 int raid_disks
= sh
->disks
;
2737 int data_disks
= raid_disks
- conf
->max_degraded
;
2738 sector_t new_sector
= sh
->sector
, check
;
2739 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2740 : conf
->chunk_sectors
;
2741 int algorithm
= previous
? conf
->prev_algo
2745 sector_t chunk_number
;
2746 int dummy1
, dd_idx
= i
;
2748 struct stripe_head sh2
;
2750 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2751 stripe
= new_sector
;
2753 if (i
== sh
->pd_idx
)
2755 switch(conf
->level
) {
2758 switch (algorithm
) {
2759 case ALGORITHM_LEFT_ASYMMETRIC
:
2760 case ALGORITHM_RIGHT_ASYMMETRIC
:
2764 case ALGORITHM_LEFT_SYMMETRIC
:
2765 case ALGORITHM_RIGHT_SYMMETRIC
:
2768 i
-= (sh
->pd_idx
+ 1);
2770 case ALGORITHM_PARITY_0
:
2773 case ALGORITHM_PARITY_N
:
2780 if (i
== sh
->qd_idx
)
2781 return 0; /* It is the Q disk */
2782 switch (algorithm
) {
2783 case ALGORITHM_LEFT_ASYMMETRIC
:
2784 case ALGORITHM_RIGHT_ASYMMETRIC
:
2785 case ALGORITHM_ROTATING_ZERO_RESTART
:
2786 case ALGORITHM_ROTATING_N_RESTART
:
2787 if (sh
->pd_idx
== raid_disks
-1)
2788 i
--; /* Q D D D P */
2789 else if (i
> sh
->pd_idx
)
2790 i
-= 2; /* D D P Q D */
2792 case ALGORITHM_LEFT_SYMMETRIC
:
2793 case ALGORITHM_RIGHT_SYMMETRIC
:
2794 if (sh
->pd_idx
== raid_disks
-1)
2795 i
--; /* Q D D D P */
2800 i
-= (sh
->pd_idx
+ 2);
2803 case ALGORITHM_PARITY_0
:
2806 case ALGORITHM_PARITY_N
:
2808 case ALGORITHM_ROTATING_N_CONTINUE
:
2809 /* Like left_symmetric, but P is before Q */
2810 if (sh
->pd_idx
== 0)
2811 i
--; /* P D D D Q */
2816 i
-= (sh
->pd_idx
+ 1);
2819 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2820 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2824 case ALGORITHM_LEFT_SYMMETRIC_6
:
2825 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2827 i
+= data_disks
+ 1;
2828 i
-= (sh
->pd_idx
+ 1);
2830 case ALGORITHM_PARITY_0_6
:
2839 chunk_number
= stripe
* data_disks
+ i
;
2840 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2842 check
= raid5_compute_sector(conf
, r_sector
,
2843 previous
, &dummy1
, &sh2
);
2844 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2845 || sh2
.qd_idx
!= sh
->qd_idx
) {
2846 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2847 mdname(conf
->mddev
));
2854 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2855 int rcw
, int expand
)
2857 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
2858 struct r5conf
*conf
= sh
->raid_conf
;
2859 int level
= conf
->level
;
2863 for (i
= disks
; i
--; ) {
2864 struct r5dev
*dev
= &sh
->dev
[i
];
2867 set_bit(R5_LOCKED
, &dev
->flags
);
2868 set_bit(R5_Wantdrain
, &dev
->flags
);
2870 clear_bit(R5_UPTODATE
, &dev
->flags
);
2874 /* if we are not expanding this is a proper write request, and
2875 * there will be bios with new data to be drained into the
2880 /* False alarm, nothing to do */
2882 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2883 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2885 sh
->reconstruct_state
= reconstruct_state_run
;
2887 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2889 if (s
->locked
+ conf
->max_degraded
== disks
)
2890 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2891 atomic_inc(&conf
->pending_full_writes
);
2893 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2894 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2895 BUG_ON(level
== 6 &&
2896 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
2897 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
2899 for (i
= disks
; i
--; ) {
2900 struct r5dev
*dev
= &sh
->dev
[i
];
2901 if (i
== pd_idx
|| i
== qd_idx
)
2905 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2906 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2907 set_bit(R5_Wantdrain
, &dev
->flags
);
2908 set_bit(R5_LOCKED
, &dev
->flags
);
2909 clear_bit(R5_UPTODATE
, &dev
->flags
);
2914 /* False alarm - nothing to do */
2916 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2917 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2918 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2919 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2922 /* keep the parity disk(s) locked while asynchronous operations
2925 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2926 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2930 int qd_idx
= sh
->qd_idx
;
2931 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2933 set_bit(R5_LOCKED
, &dev
->flags
);
2934 clear_bit(R5_UPTODATE
, &dev
->flags
);
2938 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2939 __func__
, (unsigned long long)sh
->sector
,
2940 s
->locked
, s
->ops_request
);
2944 * Each stripe/dev can have one or more bion attached.
2945 * toread/towrite point to the first in a chain.
2946 * The bi_next chain must be in order.
2948 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
,
2949 int forwrite
, int previous
)
2952 struct r5conf
*conf
= sh
->raid_conf
;
2955 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2956 (unsigned long long)bi
->bi_iter
.bi_sector
,
2957 (unsigned long long)sh
->sector
);
2960 * If several bio share a stripe. The bio bi_phys_segments acts as a
2961 * reference count to avoid race. The reference count should already be
2962 * increased before this function is called (for example, in
2963 * make_request()), so other bio sharing this stripe will not free the
2964 * stripe. If a stripe is owned by one stripe, the stripe lock will
2967 spin_lock_irq(&sh
->stripe_lock
);
2968 /* Don't allow new IO added to stripes in batch list */
2972 bip
= &sh
->dev
[dd_idx
].towrite
;
2976 bip
= &sh
->dev
[dd_idx
].toread
;
2977 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
2978 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
2980 bip
= & (*bip
)->bi_next
;
2982 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
2985 if (!forwrite
|| previous
)
2986 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
2988 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2992 raid5_inc_bi_active_stripes(bi
);
2995 /* check if page is covered */
2996 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2997 for (bi
=sh
->dev
[dd_idx
].towrite
;
2998 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2999 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3000 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
3001 if (bio_end_sector(bi
) >= sector
)
3002 sector
= bio_end_sector(bi
);
3004 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
3005 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3006 sh
->overwrite_disks
++;
3009 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3010 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
3011 (unsigned long long)sh
->sector
, dd_idx
);
3013 if (conf
->mddev
->bitmap
&& firstwrite
) {
3014 /* Cannot hold spinlock over bitmap_startwrite,
3015 * but must ensure this isn't added to a batch until
3016 * we have added to the bitmap and set bm_seq.
3017 * So set STRIPE_BITMAP_PENDING to prevent
3019 * If multiple add_stripe_bio() calls race here they
3020 * much all set STRIPE_BITMAP_PENDING. So only the first one
3021 * to complete "bitmap_startwrite" gets to set
3022 * STRIPE_BIT_DELAY. This is important as once a stripe
3023 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3026 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3027 spin_unlock_irq(&sh
->stripe_lock
);
3028 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
3030 spin_lock_irq(&sh
->stripe_lock
);
3031 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3032 if (!sh
->batch_head
) {
3033 sh
->bm_seq
= conf
->seq_flush
+1;
3034 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3037 spin_unlock_irq(&sh
->stripe_lock
);
3039 if (stripe_can_batch(sh
))
3040 stripe_add_to_batch_list(conf
, sh
);
3044 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3045 spin_unlock_irq(&sh
->stripe_lock
);
3049 static void end_reshape(struct r5conf
*conf
);
3051 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3052 struct stripe_head
*sh
)
3054 int sectors_per_chunk
=
3055 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3057 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3058 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3060 raid5_compute_sector(conf
,
3061 stripe
* (disks
- conf
->max_degraded
)
3062 *sectors_per_chunk
+ chunk_offset
,
3068 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3069 struct stripe_head_state
*s
, int disks
,
3070 struct bio_list
*return_bi
)
3073 BUG_ON(sh
->batch_head
);
3074 for (i
= disks
; i
--; ) {
3078 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3079 struct md_rdev
*rdev
;
3081 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3082 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
3083 atomic_inc(&rdev
->nr_pending
);
3088 if (!rdev_set_badblocks(
3092 md_error(conf
->mddev
, rdev
);
3093 rdev_dec_pending(rdev
, conf
->mddev
);
3096 spin_lock_irq(&sh
->stripe_lock
);
3097 /* fail all writes first */
3098 bi
= sh
->dev
[i
].towrite
;
3099 sh
->dev
[i
].towrite
= NULL
;
3100 sh
->overwrite_disks
= 0;
3101 spin_unlock_irq(&sh
->stripe_lock
);
3105 r5l_stripe_write_finished(sh
);
3107 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3108 wake_up(&conf
->wait_for_overlap
);
3110 while (bi
&& bi
->bi_iter
.bi_sector
<
3111 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3112 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3114 bi
->bi_error
= -EIO
;
3115 if (!raid5_dec_bi_active_stripes(bi
)) {
3116 md_write_end(conf
->mddev
);
3117 bio_list_add(return_bi
, bi
);
3122 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3123 STRIPE_SECTORS
, 0, 0);
3125 /* and fail all 'written' */
3126 bi
= sh
->dev
[i
].written
;
3127 sh
->dev
[i
].written
= NULL
;
3128 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3129 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3130 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3133 if (bi
) bitmap_end
= 1;
3134 while (bi
&& bi
->bi_iter
.bi_sector
<
3135 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3136 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
3138 bi
->bi_error
= -EIO
;
3139 if (!raid5_dec_bi_active_stripes(bi
)) {
3140 md_write_end(conf
->mddev
);
3141 bio_list_add(return_bi
, bi
);
3146 /* fail any reads if this device is non-operational and
3147 * the data has not reached the cache yet.
3149 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3150 s
->failed
> conf
->max_degraded
&&
3151 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3152 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3153 spin_lock_irq(&sh
->stripe_lock
);
3154 bi
= sh
->dev
[i
].toread
;
3155 sh
->dev
[i
].toread
= NULL
;
3156 spin_unlock_irq(&sh
->stripe_lock
);
3157 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3158 wake_up(&conf
->wait_for_overlap
);
3161 while (bi
&& bi
->bi_iter
.bi_sector
<
3162 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
3163 struct bio
*nextbi
=
3164 r5_next_bio(bi
, sh
->dev
[i
].sector
);
3166 bi
->bi_error
= -EIO
;
3167 if (!raid5_dec_bi_active_stripes(bi
))
3168 bio_list_add(return_bi
, bi
);
3173 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3174 STRIPE_SECTORS
, 0, 0);
3175 /* If we were in the middle of a write the parity block might
3176 * still be locked - so just clear all R5_LOCKED flags
3178 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3183 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3184 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3185 md_wakeup_thread(conf
->mddev
->thread
);
3189 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3190 struct stripe_head_state
*s
)
3195 BUG_ON(sh
->batch_head
);
3196 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3197 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3198 wake_up(&conf
->wait_for_overlap
);
3201 /* There is nothing more to do for sync/check/repair.
3202 * Don't even need to abort as that is handled elsewhere
3203 * if needed, and not always wanted e.g. if there is a known
3205 * For recover/replace we need to record a bad block on all
3206 * non-sync devices, or abort the recovery
3208 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3209 /* During recovery devices cannot be removed, so
3210 * locking and refcounting of rdevs is not needed
3212 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3213 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
3215 && !test_bit(Faulty
, &rdev
->flags
)
3216 && !test_bit(In_sync
, &rdev
->flags
)
3217 && !rdev_set_badblocks(rdev
, sh
->sector
,
3220 rdev
= conf
->disks
[i
].replacement
;
3222 && !test_bit(Faulty
, &rdev
->flags
)
3223 && !test_bit(In_sync
, &rdev
->flags
)
3224 && !rdev_set_badblocks(rdev
, sh
->sector
,
3229 conf
->recovery_disabled
=
3230 conf
->mddev
->recovery_disabled
;
3232 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
3235 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3237 struct md_rdev
*rdev
;
3239 /* Doing recovery so rcu locking not required */
3240 rdev
= sh
->raid_conf
->disks
[disk_idx
].replacement
;
3242 && !test_bit(Faulty
, &rdev
->flags
)
3243 && !test_bit(In_sync
, &rdev
->flags
)
3244 && (rdev
->recovery_offset
<= sh
->sector
3245 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3251 /* fetch_block - checks the given member device to see if its data needs
3252 * to be read or computed to satisfy a request.
3254 * Returns 1 when no more member devices need to be checked, otherwise returns
3255 * 0 to tell the loop in handle_stripe_fill to continue
3258 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3259 int disk_idx
, int disks
)
3261 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3262 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3263 &sh
->dev
[s
->failed_num
[1]] };
3267 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3268 test_bit(R5_UPTODATE
, &dev
->flags
))
3269 /* No point reading this as we already have it or have
3270 * decided to get it.
3275 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3276 /* We need this block to directly satisfy a request */
3279 if (s
->syncing
|| s
->expanding
||
3280 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3281 /* When syncing, or expanding we read everything.
3282 * When replacing, we need the replaced block.
3286 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3287 (s
->failed
>= 2 && fdev
[1]->toread
))
3288 /* If we want to read from a failed device, then
3289 * we need to actually read every other device.
3293 /* Sometimes neither read-modify-write nor reconstruct-write
3294 * cycles can work. In those cases we read every block we
3295 * can. Then the parity-update is certain to have enough to
3297 * This can only be a problem when we need to write something,
3298 * and some device has failed. If either of those tests
3299 * fail we need look no further.
3301 if (!s
->failed
|| !s
->to_write
)
3304 if (test_bit(R5_Insync
, &dev
->flags
) &&
3305 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3306 /* Pre-reads at not permitted until after short delay
3307 * to gather multiple requests. However if this
3308 * device is no Insync, the block could only be be computed
3309 * and there is no need to delay that.
3313 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3314 if (fdev
[i
]->towrite
&&
3315 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3316 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3317 /* If we have a partial write to a failed
3318 * device, then we will need to reconstruct
3319 * the content of that device, so all other
3320 * devices must be read.
3325 /* If we are forced to do a reconstruct-write, either because
3326 * the current RAID6 implementation only supports that, or
3327 * or because parity cannot be trusted and we are currently
3328 * recovering it, there is extra need to be careful.
3329 * If one of the devices that we would need to read, because
3330 * it is not being overwritten (and maybe not written at all)
3331 * is missing/faulty, then we need to read everything we can.
3333 if (sh
->raid_conf
->level
!= 6 &&
3334 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3335 /* reconstruct-write isn't being forced */
3337 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3338 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3339 s
->failed_num
[i
] != sh
->qd_idx
&&
3340 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3341 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3348 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3349 int disk_idx
, int disks
)
3351 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3353 /* is the data in this block needed, and can we get it? */
3354 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3355 /* we would like to get this block, possibly by computing it,
3356 * otherwise read it if the backing disk is insync
3358 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3359 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3360 BUG_ON(sh
->batch_head
);
3361 if ((s
->uptodate
== disks
- 1) &&
3362 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3363 disk_idx
== s
->failed_num
[1]))) {
3364 /* have disk failed, and we're requested to fetch it;
3367 pr_debug("Computing stripe %llu block %d\n",
3368 (unsigned long long)sh
->sector
, disk_idx
);
3369 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3370 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3371 set_bit(R5_Wantcompute
, &dev
->flags
);
3372 sh
->ops
.target
= disk_idx
;
3373 sh
->ops
.target2
= -1; /* no 2nd target */
3375 /* Careful: from this point on 'uptodate' is in the eye
3376 * of raid_run_ops which services 'compute' operations
3377 * before writes. R5_Wantcompute flags a block that will
3378 * be R5_UPTODATE by the time it is needed for a
3379 * subsequent operation.
3383 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3384 /* Computing 2-failure is *very* expensive; only
3385 * do it if failed >= 2
3388 for (other
= disks
; other
--; ) {
3389 if (other
== disk_idx
)
3391 if (!test_bit(R5_UPTODATE
,
3392 &sh
->dev
[other
].flags
))
3396 pr_debug("Computing stripe %llu blocks %d,%d\n",
3397 (unsigned long long)sh
->sector
,
3399 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3400 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3401 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3402 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3403 sh
->ops
.target
= disk_idx
;
3404 sh
->ops
.target2
= other
;
3408 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3409 set_bit(R5_LOCKED
, &dev
->flags
);
3410 set_bit(R5_Wantread
, &dev
->flags
);
3412 pr_debug("Reading block %d (sync=%d)\n",
3413 disk_idx
, s
->syncing
);
3421 * handle_stripe_fill - read or compute data to satisfy pending requests.
3423 static void handle_stripe_fill(struct stripe_head
*sh
,
3424 struct stripe_head_state
*s
,
3429 /* look for blocks to read/compute, skip this if a compute
3430 * is already in flight, or if the stripe contents are in the
3431 * midst of changing due to a write
3433 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3434 !sh
->reconstruct_state
)
3435 for (i
= disks
; i
--; )
3436 if (fetch_block(sh
, s
, i
, disks
))
3438 set_bit(STRIPE_HANDLE
, &sh
->state
);
3441 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
3442 unsigned long handle_flags
);
3443 /* handle_stripe_clean_event
3444 * any written block on an uptodate or failed drive can be returned.
3445 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3446 * never LOCKED, so we don't need to test 'failed' directly.
3448 static void handle_stripe_clean_event(struct r5conf
*conf
,
3449 struct stripe_head
*sh
, int disks
, struct bio_list
*return_bi
)
3453 int discard_pending
= 0;
3454 struct stripe_head
*head_sh
= sh
;
3455 bool do_endio
= false;
3457 for (i
= disks
; i
--; )
3458 if (sh
->dev
[i
].written
) {
3460 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
3461 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3462 test_bit(R5_Discard
, &dev
->flags
) ||
3463 test_bit(R5_SkipCopy
, &dev
->flags
))) {
3464 /* We can return any write requests */
3465 struct bio
*wbi
, *wbi2
;
3466 pr_debug("Return write for disc %d\n", i
);
3467 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3468 clear_bit(R5_UPTODATE
, &dev
->flags
);
3469 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
3470 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
3475 dev
->page
= dev
->orig_page
;
3477 dev
->written
= NULL
;
3478 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3479 dev
->sector
+ STRIPE_SECTORS
) {
3480 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3481 if (!raid5_dec_bi_active_stripes(wbi
)) {
3482 md_write_end(conf
->mddev
);
3483 bio_list_add(return_bi
, wbi
);
3487 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3489 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3491 if (head_sh
->batch_head
) {
3492 sh
= list_first_entry(&sh
->batch_list
,
3495 if (sh
!= head_sh
) {
3502 } else if (test_bit(R5_Discard
, &dev
->flags
))
3503 discard_pending
= 1;
3504 WARN_ON(test_bit(R5_SkipCopy
, &dev
->flags
));
3505 WARN_ON(dev
->page
!= dev
->orig_page
);
3508 r5l_stripe_write_finished(sh
);
3510 if (!discard_pending
&&
3511 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3513 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3514 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3515 if (sh
->qd_idx
>= 0) {
3516 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3517 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3519 /* now that discard is done we can proceed with any sync */
3520 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3522 * SCSI discard will change some bio fields and the stripe has
3523 * no updated data, so remove it from hash list and the stripe
3524 * will be reinitialized
3527 hash
= sh
->hash_lock_index
;
3528 spin_lock_irq(conf
->hash_locks
+ hash
);
3530 spin_unlock_irq(conf
->hash_locks
+ hash
);
3531 if (head_sh
->batch_head
) {
3532 sh
= list_first_entry(&sh
->batch_list
,
3533 struct stripe_head
, batch_list
);
3539 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3540 set_bit(STRIPE_HANDLE
, &sh
->state
);
3544 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3545 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3546 md_wakeup_thread(conf
->mddev
->thread
);
3548 if (head_sh
->batch_head
&& do_endio
)
3549 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
3552 static void handle_stripe_dirtying(struct r5conf
*conf
,
3553 struct stripe_head
*sh
,
3554 struct stripe_head_state
*s
,
3557 int rmw
= 0, rcw
= 0, i
;
3558 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3560 /* Check whether resync is now happening or should start.
3561 * If yes, then the array is dirty (after unclean shutdown or
3562 * initial creation), so parity in some stripes might be inconsistent.
3563 * In this case, we need to always do reconstruct-write, to ensure
3564 * that in case of drive failure or read-error correction, we
3565 * generate correct data from the parity.
3567 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
3568 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
3570 /* Calculate the real rcw later - for now make it
3571 * look like rcw is cheaper
3574 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3575 conf
->rmw_level
, (unsigned long long)recovery_cp
,
3576 (unsigned long long)sh
->sector
);
3577 } else for (i
= disks
; i
--; ) {
3578 /* would I have to read this buffer for read_modify_write */
3579 struct r5dev
*dev
= &sh
->dev
[i
];
3580 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3581 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3582 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3583 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3584 if (test_bit(R5_Insync
, &dev
->flags
))
3587 rmw
+= 2*disks
; /* cannot read it */
3589 /* Would I have to read this buffer for reconstruct_write */
3590 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3591 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3592 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3593 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3594 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3595 if (test_bit(R5_Insync
, &dev
->flags
))
3601 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3602 (unsigned long long)sh
->sector
, rmw
, rcw
);
3603 set_bit(STRIPE_HANDLE
, &sh
->state
);
3604 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_ENABLE_RMW
)) && rmw
> 0) {
3605 /* prefer read-modify-write, but need to get some data */
3606 if (conf
->mddev
->queue
)
3607 blk_add_trace_msg(conf
->mddev
->queue
,
3608 "raid5 rmw %llu %d",
3609 (unsigned long long)sh
->sector
, rmw
);
3610 for (i
= disks
; i
--; ) {
3611 struct r5dev
*dev
= &sh
->dev
[i
];
3612 if ((dev
->towrite
|| i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3613 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3614 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3615 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3616 test_bit(R5_Insync
, &dev
->flags
)) {
3617 if (test_bit(STRIPE_PREREAD_ACTIVE
,
3619 pr_debug("Read_old block %d for r-m-w\n",
3621 set_bit(R5_LOCKED
, &dev
->flags
);
3622 set_bit(R5_Wantread
, &dev
->flags
);
3625 set_bit(STRIPE_DELAYED
, &sh
->state
);
3626 set_bit(STRIPE_HANDLE
, &sh
->state
);
3631 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_ENABLE_RMW
)) && rcw
> 0) {
3632 /* want reconstruct write, but need to get some data */
3635 for (i
= disks
; i
--; ) {
3636 struct r5dev
*dev
= &sh
->dev
[i
];
3637 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3638 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3639 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3640 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3641 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3643 if (test_bit(R5_Insync
, &dev
->flags
) &&
3644 test_bit(STRIPE_PREREAD_ACTIVE
,
3646 pr_debug("Read_old block "
3647 "%d for Reconstruct\n", i
);
3648 set_bit(R5_LOCKED
, &dev
->flags
);
3649 set_bit(R5_Wantread
, &dev
->flags
);
3653 set_bit(STRIPE_DELAYED
, &sh
->state
);
3654 set_bit(STRIPE_HANDLE
, &sh
->state
);
3658 if (rcw
&& conf
->mddev
->queue
)
3659 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3660 (unsigned long long)sh
->sector
,
3661 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
3664 if (rcw
> disks
&& rmw
> disks
&&
3665 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3666 set_bit(STRIPE_DELAYED
, &sh
->state
);
3668 /* now if nothing is locked, and if we have enough data,
3669 * we can start a write request
3671 /* since handle_stripe can be called at any time we need to handle the
3672 * case where a compute block operation has been submitted and then a
3673 * subsequent call wants to start a write request. raid_run_ops only
3674 * handles the case where compute block and reconstruct are requested
3675 * simultaneously. If this is not the case then new writes need to be
3676 * held off until the compute completes.
3678 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
3679 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
3680 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
3681 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
3684 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
3685 struct stripe_head_state
*s
, int disks
)
3687 struct r5dev
*dev
= NULL
;
3689 BUG_ON(sh
->batch_head
);
3690 set_bit(STRIPE_HANDLE
, &sh
->state
);
3692 switch (sh
->check_state
) {
3693 case check_state_idle
:
3694 /* start a new check operation if there are no failures */
3695 if (s
->failed
== 0) {
3696 BUG_ON(s
->uptodate
!= disks
);
3697 sh
->check_state
= check_state_run
;
3698 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3699 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3703 dev
= &sh
->dev
[s
->failed_num
[0]];
3705 case check_state_compute_result
:
3706 sh
->check_state
= check_state_idle
;
3708 dev
= &sh
->dev
[sh
->pd_idx
];
3710 /* check that a write has not made the stripe insync */
3711 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3714 /* either failed parity check, or recovery is happening */
3715 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3716 BUG_ON(s
->uptodate
!= disks
);
3718 set_bit(R5_LOCKED
, &dev
->flags
);
3720 set_bit(R5_Wantwrite
, &dev
->flags
);
3722 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3723 set_bit(STRIPE_INSYNC
, &sh
->state
);
3725 case check_state_run
:
3726 break; /* we will be called again upon completion */
3727 case check_state_check_result
:
3728 sh
->check_state
= check_state_idle
;
3730 /* if a failure occurred during the check operation, leave
3731 * STRIPE_INSYNC not set and let the stripe be handled again
3736 /* handle a successful check operation, if parity is correct
3737 * we are done. Otherwise update the mismatch count and repair
3738 * parity if !MD_RECOVERY_CHECK
3740 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3741 /* parity is correct (on disc,
3742 * not in buffer any more)
3744 set_bit(STRIPE_INSYNC
, &sh
->state
);
3746 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3747 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3748 /* don't try to repair!! */
3749 set_bit(STRIPE_INSYNC
, &sh
->state
);
3751 sh
->check_state
= check_state_compute_run
;
3752 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3753 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3754 set_bit(R5_Wantcompute
,
3755 &sh
->dev
[sh
->pd_idx
].flags
);
3756 sh
->ops
.target
= sh
->pd_idx
;
3757 sh
->ops
.target2
= -1;
3762 case check_state_compute_run
:
3765 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3766 __func__
, sh
->check_state
,
3767 (unsigned long long) sh
->sector
);
3772 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3773 struct stripe_head_state
*s
,
3776 int pd_idx
= sh
->pd_idx
;
3777 int qd_idx
= sh
->qd_idx
;
3780 BUG_ON(sh
->batch_head
);
3781 set_bit(STRIPE_HANDLE
, &sh
->state
);
3783 BUG_ON(s
->failed
> 2);
3785 /* Want to check and possibly repair P and Q.
3786 * However there could be one 'failed' device, in which
3787 * case we can only check one of them, possibly using the
3788 * other to generate missing data
3791 switch (sh
->check_state
) {
3792 case check_state_idle
:
3793 /* start a new check operation if there are < 2 failures */
3794 if (s
->failed
== s
->q_failed
) {
3795 /* The only possible failed device holds Q, so it
3796 * makes sense to check P (If anything else were failed,
3797 * we would have used P to recreate it).
3799 sh
->check_state
= check_state_run
;
3801 if (!s
->q_failed
&& s
->failed
< 2) {
3802 /* Q is not failed, and we didn't use it to generate
3803 * anything, so it makes sense to check it
3805 if (sh
->check_state
== check_state_run
)
3806 sh
->check_state
= check_state_run_pq
;
3808 sh
->check_state
= check_state_run_q
;
3811 /* discard potentially stale zero_sum_result */
3812 sh
->ops
.zero_sum_result
= 0;
3814 if (sh
->check_state
== check_state_run
) {
3815 /* async_xor_zero_sum destroys the contents of P */
3816 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3819 if (sh
->check_state
>= check_state_run
&&
3820 sh
->check_state
<= check_state_run_pq
) {
3821 /* async_syndrome_zero_sum preserves P and Q, so
3822 * no need to mark them !uptodate here
3824 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3828 /* we have 2-disk failure */
3829 BUG_ON(s
->failed
!= 2);
3831 case check_state_compute_result
:
3832 sh
->check_state
= check_state_idle
;
3834 /* check that a write has not made the stripe insync */
3835 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3838 /* now write out any block on a failed drive,
3839 * or P or Q if they were recomputed
3841 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3842 if (s
->failed
== 2) {
3843 dev
= &sh
->dev
[s
->failed_num
[1]];
3845 set_bit(R5_LOCKED
, &dev
->flags
);
3846 set_bit(R5_Wantwrite
, &dev
->flags
);
3848 if (s
->failed
>= 1) {
3849 dev
= &sh
->dev
[s
->failed_num
[0]];
3851 set_bit(R5_LOCKED
, &dev
->flags
);
3852 set_bit(R5_Wantwrite
, &dev
->flags
);
3854 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3855 dev
= &sh
->dev
[pd_idx
];
3857 set_bit(R5_LOCKED
, &dev
->flags
);
3858 set_bit(R5_Wantwrite
, &dev
->flags
);
3860 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3861 dev
= &sh
->dev
[qd_idx
];
3863 set_bit(R5_LOCKED
, &dev
->flags
);
3864 set_bit(R5_Wantwrite
, &dev
->flags
);
3866 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3868 set_bit(STRIPE_INSYNC
, &sh
->state
);
3870 case check_state_run
:
3871 case check_state_run_q
:
3872 case check_state_run_pq
:
3873 break; /* we will be called again upon completion */
3874 case check_state_check_result
:
3875 sh
->check_state
= check_state_idle
;
3877 /* handle a successful check operation, if parity is correct
3878 * we are done. Otherwise update the mismatch count and repair
3879 * parity if !MD_RECOVERY_CHECK
3881 if (sh
->ops
.zero_sum_result
== 0) {
3882 /* both parities are correct */
3884 set_bit(STRIPE_INSYNC
, &sh
->state
);
3886 /* in contrast to the raid5 case we can validate
3887 * parity, but still have a failure to write
3890 sh
->check_state
= check_state_compute_result
;
3891 /* Returning at this point means that we may go
3892 * off and bring p and/or q uptodate again so
3893 * we make sure to check zero_sum_result again
3894 * to verify if p or q need writeback
3898 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3899 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3900 /* don't try to repair!! */
3901 set_bit(STRIPE_INSYNC
, &sh
->state
);
3903 int *target
= &sh
->ops
.target
;
3905 sh
->ops
.target
= -1;
3906 sh
->ops
.target2
= -1;
3907 sh
->check_state
= check_state_compute_run
;
3908 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3909 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3910 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3911 set_bit(R5_Wantcompute
,
3912 &sh
->dev
[pd_idx
].flags
);
3914 target
= &sh
->ops
.target2
;
3917 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3918 set_bit(R5_Wantcompute
,
3919 &sh
->dev
[qd_idx
].flags
);
3926 case check_state_compute_run
:
3929 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3930 __func__
, sh
->check_state
,
3931 (unsigned long long) sh
->sector
);
3936 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3940 /* We have read all the blocks in this stripe and now we need to
3941 * copy some of them into a target stripe for expand.
3943 struct dma_async_tx_descriptor
*tx
= NULL
;
3944 BUG_ON(sh
->batch_head
);
3945 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3946 for (i
= 0; i
< sh
->disks
; i
++)
3947 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
3949 struct stripe_head
*sh2
;
3950 struct async_submit_ctl submit
;
3952 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
3953 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
3955 sh2
= raid5_get_active_stripe(conf
, s
, 0, 1, 1);
3957 /* so far only the early blocks of this stripe
3958 * have been requested. When later blocks
3959 * get requested, we will try again
3962 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
3963 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
3964 /* must have already done this block */
3965 raid5_release_stripe(sh2
);
3969 /* place all the copies on one channel */
3970 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
3971 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
3972 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
3975 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
3976 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
3977 for (j
= 0; j
< conf
->raid_disks
; j
++)
3978 if (j
!= sh2
->pd_idx
&&
3980 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
3982 if (j
== conf
->raid_disks
) {
3983 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
3984 set_bit(STRIPE_HANDLE
, &sh2
->state
);
3986 raid5_release_stripe(sh2
);
3989 /* done submitting copies, wait for them to complete */
3990 async_tx_quiesce(&tx
);
3994 * handle_stripe - do things to a stripe.
3996 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3997 * state of various bits to see what needs to be done.
3999 * return some read requests which now have data
4000 * return some write requests which are safely on storage
4001 * schedule a read on some buffers
4002 * schedule a write of some buffers
4003 * return confirmation of parity correctness
4007 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4009 struct r5conf
*conf
= sh
->raid_conf
;
4010 int disks
= sh
->disks
;
4013 int do_recovery
= 0;
4015 memset(s
, 0, sizeof(*s
));
4017 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4018 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4019 s
->failed_num
[0] = -1;
4020 s
->failed_num
[1] = -1;
4021 s
->log_failed
= r5l_log_disk_error(conf
);
4023 /* Now to look around and see what can be done */
4025 for (i
=disks
; i
--; ) {
4026 struct md_rdev
*rdev
;
4033 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4035 dev
->toread
, dev
->towrite
, dev
->written
);
4036 /* maybe we can reply to a read
4038 * new wantfill requests are only permitted while
4039 * ops_complete_biofill is guaranteed to be inactive
4041 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4042 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4043 set_bit(R5_Wantfill
, &dev
->flags
);
4045 /* now count some things */
4046 if (test_bit(R5_LOCKED
, &dev
->flags
))
4048 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4050 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4052 BUG_ON(s
->compute
> 2);
4055 if (test_bit(R5_Wantfill
, &dev
->flags
))
4057 else if (dev
->toread
)
4061 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4066 /* Prefer to use the replacement for reads, but only
4067 * if it is recovered enough and has no bad blocks.
4069 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
4070 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4071 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
4072 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4073 &first_bad
, &bad_sectors
))
4074 set_bit(R5_ReadRepl
, &dev
->flags
);
4076 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4077 set_bit(R5_NeedReplace
, &dev
->flags
);
4079 clear_bit(R5_NeedReplace
, &dev
->flags
);
4080 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
4081 clear_bit(R5_ReadRepl
, &dev
->flags
);
4083 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4086 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
4087 &first_bad
, &bad_sectors
);
4088 if (s
->blocked_rdev
== NULL
4089 && (test_bit(Blocked
, &rdev
->flags
)
4092 set_bit(BlockedBadBlocks
,
4094 s
->blocked_rdev
= rdev
;
4095 atomic_inc(&rdev
->nr_pending
);
4098 clear_bit(R5_Insync
, &dev
->flags
);
4102 /* also not in-sync */
4103 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4104 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4105 /* treat as in-sync, but with a read error
4106 * which we can now try to correct
4108 set_bit(R5_Insync
, &dev
->flags
);
4109 set_bit(R5_ReadError
, &dev
->flags
);
4111 } else if (test_bit(In_sync
, &rdev
->flags
))
4112 set_bit(R5_Insync
, &dev
->flags
);
4113 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
4114 /* in sync if before recovery_offset */
4115 set_bit(R5_Insync
, &dev
->flags
);
4116 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4117 test_bit(R5_Expanded
, &dev
->flags
))
4118 /* If we've reshaped into here, we assume it is Insync.
4119 * We will shortly update recovery_offset to make
4122 set_bit(R5_Insync
, &dev
->flags
);
4124 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4125 /* This flag does not apply to '.replacement'
4126 * only to .rdev, so make sure to check that*/
4127 struct md_rdev
*rdev2
= rcu_dereference(
4128 conf
->disks
[i
].rdev
);
4130 clear_bit(R5_Insync
, &dev
->flags
);
4131 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4132 s
->handle_bad_blocks
= 1;
4133 atomic_inc(&rdev2
->nr_pending
);
4135 clear_bit(R5_WriteError
, &dev
->flags
);
4137 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4138 /* This flag does not apply to '.replacement'
4139 * only to .rdev, so make sure to check that*/
4140 struct md_rdev
*rdev2
= rcu_dereference(
4141 conf
->disks
[i
].rdev
);
4142 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4143 s
->handle_bad_blocks
= 1;
4144 atomic_inc(&rdev2
->nr_pending
);
4146 clear_bit(R5_MadeGood
, &dev
->flags
);
4148 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4149 struct md_rdev
*rdev2
= rcu_dereference(
4150 conf
->disks
[i
].replacement
);
4151 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4152 s
->handle_bad_blocks
= 1;
4153 atomic_inc(&rdev2
->nr_pending
);
4155 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4157 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4158 /* The ReadError flag will just be confusing now */
4159 clear_bit(R5_ReadError
, &dev
->flags
);
4160 clear_bit(R5_ReWrite
, &dev
->flags
);
4162 if (test_bit(R5_ReadError
, &dev
->flags
))
4163 clear_bit(R5_Insync
, &dev
->flags
);
4164 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4166 s
->failed_num
[s
->failed
] = i
;
4168 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4172 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4173 /* If there is a failed device being replaced,
4174 * we must be recovering.
4175 * else if we are after recovery_cp, we must be syncing
4176 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4177 * else we can only be replacing
4178 * sync and recovery both need to read all devices, and so
4179 * use the same flag.
4182 sh
->sector
>= conf
->mddev
->recovery_cp
||
4183 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4191 static int clear_batch_ready(struct stripe_head
*sh
)
4193 /* Return '1' if this is a member of batch, or
4194 * '0' if it is a lone stripe or a head which can now be
4197 struct stripe_head
*tmp
;
4198 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4199 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4200 spin_lock(&sh
->stripe_lock
);
4201 if (!sh
->batch_head
) {
4202 spin_unlock(&sh
->stripe_lock
);
4207 * this stripe could be added to a batch list before we check
4208 * BATCH_READY, skips it
4210 if (sh
->batch_head
!= sh
) {
4211 spin_unlock(&sh
->stripe_lock
);
4214 spin_lock(&sh
->batch_lock
);
4215 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4216 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4217 spin_unlock(&sh
->batch_lock
);
4218 spin_unlock(&sh
->stripe_lock
);
4221 * BATCH_READY is cleared, no new stripes can be added.
4222 * batch_list can be accessed without lock
4227 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4228 unsigned long handle_flags
)
4230 struct stripe_head
*sh
, *next
;
4234 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4236 list_del_init(&sh
->batch_list
);
4238 WARN_ON_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4239 (1 << STRIPE_SYNCING
) |
4240 (1 << STRIPE_REPLACED
) |
4241 (1 << STRIPE_PREREAD_ACTIVE
) |
4242 (1 << STRIPE_DELAYED
) |
4243 (1 << STRIPE_BIT_DELAY
) |
4244 (1 << STRIPE_FULL_WRITE
) |
4245 (1 << STRIPE_BIOFILL_RUN
) |
4246 (1 << STRIPE_COMPUTE_RUN
) |
4247 (1 << STRIPE_OPS_REQ_PENDING
) |
4248 (1 << STRIPE_DISCARD
) |
4249 (1 << STRIPE_BATCH_READY
) |
4250 (1 << STRIPE_BATCH_ERR
) |
4251 (1 << STRIPE_BITMAP_PENDING
)));
4252 WARN_ON_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4253 (1 << STRIPE_REPLACED
)));
4255 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4256 (1 << STRIPE_DEGRADED
)),
4257 head_sh
->state
& (1 << STRIPE_INSYNC
));
4259 sh
->check_state
= head_sh
->check_state
;
4260 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4261 for (i
= 0; i
< sh
->disks
; i
++) {
4262 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4264 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4265 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4267 spin_lock_irq(&sh
->stripe_lock
);
4268 sh
->batch_head
= NULL
;
4269 spin_unlock_irq(&sh
->stripe_lock
);
4270 if (handle_flags
== 0 ||
4271 sh
->state
& handle_flags
)
4272 set_bit(STRIPE_HANDLE
, &sh
->state
);
4273 raid5_release_stripe(sh
);
4275 spin_lock_irq(&head_sh
->stripe_lock
);
4276 head_sh
->batch_head
= NULL
;
4277 spin_unlock_irq(&head_sh
->stripe_lock
);
4278 for (i
= 0; i
< head_sh
->disks
; i
++)
4279 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4281 if (head_sh
->state
& handle_flags
)
4282 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4285 wake_up(&head_sh
->raid_conf
->wait_for_overlap
);
4288 static void handle_stripe(struct stripe_head
*sh
)
4290 struct stripe_head_state s
;
4291 struct r5conf
*conf
= sh
->raid_conf
;
4294 int disks
= sh
->disks
;
4295 struct r5dev
*pdev
, *qdev
;
4297 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4298 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4299 /* already being handled, ensure it gets handled
4300 * again when current action finishes */
4301 set_bit(STRIPE_HANDLE
, &sh
->state
);
4305 if (clear_batch_ready(sh
) ) {
4306 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4310 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4311 break_stripe_batch_list(sh
, 0);
4313 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4314 spin_lock(&sh
->stripe_lock
);
4315 /* Cannot process 'sync' concurrently with 'discard' */
4316 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4317 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4318 set_bit(STRIPE_SYNCING
, &sh
->state
);
4319 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4320 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4322 spin_unlock(&sh
->stripe_lock
);
4324 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4326 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4327 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4328 (unsigned long long)sh
->sector
, sh
->state
,
4329 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4330 sh
->check_state
, sh
->reconstruct_state
);
4332 analyse_stripe(sh
, &s
);
4334 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4337 if (s
.handle_bad_blocks
) {
4338 set_bit(STRIPE_HANDLE
, &sh
->state
);
4342 if (unlikely(s
.blocked_rdev
)) {
4343 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
4344 s
.replacing
|| s
.to_write
|| s
.written
) {
4345 set_bit(STRIPE_HANDLE
, &sh
->state
);
4348 /* There is nothing for the blocked_rdev to block */
4349 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
4350 s
.blocked_rdev
= NULL
;
4353 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
4354 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
4355 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
4358 pr_debug("locked=%d uptodate=%d to_read=%d"
4359 " to_write=%d failed=%d failed_num=%d,%d\n",
4360 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
4361 s
.failed_num
[0], s
.failed_num
[1]);
4362 /* check if the array has lost more than max_degraded devices and,
4363 * if so, some requests might need to be failed.
4365 if (s
.failed
> conf
->max_degraded
|| s
.log_failed
) {
4366 sh
->check_state
= 0;
4367 sh
->reconstruct_state
= 0;
4368 break_stripe_batch_list(sh
, 0);
4369 if (s
.to_read
+s
.to_write
+s
.written
)
4370 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
4371 if (s
.syncing
+ s
.replacing
)
4372 handle_failed_sync(conf
, sh
, &s
);
4375 /* Now we check to see if any write operations have recently
4379 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
4381 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
4382 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
4383 sh
->reconstruct_state
= reconstruct_state_idle
;
4385 /* All the 'written' buffers and the parity block are ready to
4386 * be written back to disk
4388 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
4389 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
4390 BUG_ON(sh
->qd_idx
>= 0 &&
4391 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
4392 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
4393 for (i
= disks
; i
--; ) {
4394 struct r5dev
*dev
= &sh
->dev
[i
];
4395 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
4396 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4398 pr_debug("Writing block %d\n", i
);
4399 set_bit(R5_Wantwrite
, &dev
->flags
);
4404 if (!test_bit(R5_Insync
, &dev
->flags
) ||
4405 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
4407 set_bit(STRIPE_INSYNC
, &sh
->state
);
4410 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4411 s
.dec_preread_active
= 1;
4415 * might be able to return some write requests if the parity blocks
4416 * are safe, or on a failed drive
4418 pdev
= &sh
->dev
[sh
->pd_idx
];
4419 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
4420 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
4421 qdev
= &sh
->dev
[sh
->qd_idx
];
4422 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
4423 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
4427 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
4428 && !test_bit(R5_LOCKED
, &pdev
->flags
)
4429 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
4430 test_bit(R5_Discard
, &pdev
->flags
))))) &&
4431 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
4432 && !test_bit(R5_LOCKED
, &qdev
->flags
)
4433 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
4434 test_bit(R5_Discard
, &qdev
->flags
))))))
4435 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
4437 /* Now we might consider reading some blocks, either to check/generate
4438 * parity, or to satisfy requests
4439 * or to load a block that is being partially written.
4441 if (s
.to_read
|| s
.non_overwrite
4442 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
4443 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
4446 handle_stripe_fill(sh
, &s
, disks
);
4448 /* Now to consider new write requests and what else, if anything
4449 * should be read. We do not handle new writes when:
4450 * 1/ A 'write' operation (copy+xor) is already in flight.
4451 * 2/ A 'check' operation is in flight, as it may clobber the parity
4454 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
4455 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
4457 /* maybe we need to check and possibly fix the parity for this stripe
4458 * Any reads will already have been scheduled, so we just see if enough
4459 * data is available. The parity check is held off while parity
4460 * dependent operations are in flight.
4462 if (sh
->check_state
||
4463 (s
.syncing
&& s
.locked
== 0 &&
4464 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4465 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
4466 if (conf
->level
== 6)
4467 handle_parity_checks6(conf
, sh
, &s
, disks
);
4469 handle_parity_checks5(conf
, sh
, &s
, disks
);
4472 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
4473 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
4474 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
4475 /* Write out to replacement devices where possible */
4476 for (i
= 0; i
< conf
->raid_disks
; i
++)
4477 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
4478 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
4479 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
4480 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4484 set_bit(STRIPE_INSYNC
, &sh
->state
);
4485 set_bit(STRIPE_REPLACED
, &sh
->state
);
4487 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
4488 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
4489 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
4490 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4491 clear_bit(STRIPE_SYNCING
, &sh
->state
);
4492 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
4493 wake_up(&conf
->wait_for_overlap
);
4496 /* If the failed drives are just a ReadError, then we might need
4497 * to progress the repair/check process
4499 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
4500 for (i
= 0; i
< s
.failed
; i
++) {
4501 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
4502 if (test_bit(R5_ReadError
, &dev
->flags
)
4503 && !test_bit(R5_LOCKED
, &dev
->flags
)
4504 && test_bit(R5_UPTODATE
, &dev
->flags
)
4506 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
4507 set_bit(R5_Wantwrite
, &dev
->flags
);
4508 set_bit(R5_ReWrite
, &dev
->flags
);
4509 set_bit(R5_LOCKED
, &dev
->flags
);
4512 /* let's read it back */
4513 set_bit(R5_Wantread
, &dev
->flags
);
4514 set_bit(R5_LOCKED
, &dev
->flags
);
4520 /* Finish reconstruct operations initiated by the expansion process */
4521 if (sh
->reconstruct_state
== reconstruct_state_result
) {
4522 struct stripe_head
*sh_src
4523 = raid5_get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
4524 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
4525 /* sh cannot be written until sh_src has been read.
4526 * so arrange for sh to be delayed a little
4528 set_bit(STRIPE_DELAYED
, &sh
->state
);
4529 set_bit(STRIPE_HANDLE
, &sh
->state
);
4530 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
4532 atomic_inc(&conf
->preread_active_stripes
);
4533 raid5_release_stripe(sh_src
);
4537 raid5_release_stripe(sh_src
);
4539 sh
->reconstruct_state
= reconstruct_state_idle
;
4540 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
4541 for (i
= conf
->raid_disks
; i
--; ) {
4542 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
4543 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
4548 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
4549 !sh
->reconstruct_state
) {
4550 /* Need to write out all blocks after computing parity */
4551 sh
->disks
= conf
->raid_disks
;
4552 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
4553 schedule_reconstruction(sh
, &s
, 1, 1);
4554 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
4555 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4556 atomic_dec(&conf
->reshape_stripes
);
4557 wake_up(&conf
->wait_for_overlap
);
4558 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
4561 if (s
.expanding
&& s
.locked
== 0 &&
4562 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
4563 handle_stripe_expansion(conf
, sh
);
4566 /* wait for this device to become unblocked */
4567 if (unlikely(s
.blocked_rdev
)) {
4568 if (conf
->mddev
->external
)
4569 md_wait_for_blocked_rdev(s
.blocked_rdev
,
4572 /* Internal metadata will immediately
4573 * be written by raid5d, so we don't
4574 * need to wait here.
4576 rdev_dec_pending(s
.blocked_rdev
,
4580 if (s
.handle_bad_blocks
)
4581 for (i
= disks
; i
--; ) {
4582 struct md_rdev
*rdev
;
4583 struct r5dev
*dev
= &sh
->dev
[i
];
4584 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
4585 /* We own a safe reference to the rdev */
4586 rdev
= conf
->disks
[i
].rdev
;
4587 if (!rdev_set_badblocks(rdev
, sh
->sector
,
4589 md_error(conf
->mddev
, rdev
);
4590 rdev_dec_pending(rdev
, conf
->mddev
);
4592 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
4593 rdev
= conf
->disks
[i
].rdev
;
4594 rdev_clear_badblocks(rdev
, sh
->sector
,
4596 rdev_dec_pending(rdev
, conf
->mddev
);
4598 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4599 rdev
= conf
->disks
[i
].replacement
;
4601 /* rdev have been moved down */
4602 rdev
= conf
->disks
[i
].rdev
;
4603 rdev_clear_badblocks(rdev
, sh
->sector
,
4605 rdev_dec_pending(rdev
, conf
->mddev
);
4610 raid_run_ops(sh
, s
.ops_request
);
4614 if (s
.dec_preread_active
) {
4615 /* We delay this until after ops_run_io so that if make_request
4616 * is waiting on a flush, it won't continue until the writes
4617 * have actually been submitted.
4619 atomic_dec(&conf
->preread_active_stripes
);
4620 if (atomic_read(&conf
->preread_active_stripes
) <
4622 md_wakeup_thread(conf
->mddev
->thread
);
4625 if (!bio_list_empty(&s
.return_bi
)) {
4626 if (test_bit(MD_CHANGE_PENDING
, &conf
->mddev
->flags
)) {
4627 spin_lock_irq(&conf
->device_lock
);
4628 bio_list_merge(&conf
->return_bi
, &s
.return_bi
);
4629 spin_unlock_irq(&conf
->device_lock
);
4630 md_wakeup_thread(conf
->mddev
->thread
);
4632 return_io(&s
.return_bi
);
4635 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4638 static void raid5_activate_delayed(struct r5conf
*conf
)
4640 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
4641 while (!list_empty(&conf
->delayed_list
)) {
4642 struct list_head
*l
= conf
->delayed_list
.next
;
4643 struct stripe_head
*sh
;
4644 sh
= list_entry(l
, struct stripe_head
, lru
);
4646 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4647 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4648 atomic_inc(&conf
->preread_active_stripes
);
4649 list_add_tail(&sh
->lru
, &conf
->hold_list
);
4650 raid5_wakeup_stripe_thread(sh
);
4655 static void activate_bit_delay(struct r5conf
*conf
,
4656 struct list_head
*temp_inactive_list
)
4658 /* device_lock is held */
4659 struct list_head head
;
4660 list_add(&head
, &conf
->bitmap_list
);
4661 list_del_init(&conf
->bitmap_list
);
4662 while (!list_empty(&head
)) {
4663 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
4665 list_del_init(&sh
->lru
);
4666 atomic_inc(&sh
->count
);
4667 hash
= sh
->hash_lock_index
;
4668 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
4672 static int raid5_congested(struct mddev
*mddev
, int bits
)
4674 struct r5conf
*conf
= mddev
->private;
4676 /* No difference between reads and writes. Just check
4677 * how busy the stripe_cache is
4680 if (test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
4684 if (atomic_read(&conf
->empty_inactive_list_nr
))
4690 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
4692 struct r5conf
*conf
= mddev
->private;
4693 sector_t sector
= bio
->bi_iter
.bi_sector
+ get_start_sect(bio
->bi_bdev
);
4694 unsigned int chunk_sectors
;
4695 unsigned int bio_sectors
= bio_sectors(bio
);
4697 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
4698 return chunk_sectors
>=
4699 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
4703 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4704 * later sampled by raid5d.
4706 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
4708 unsigned long flags
;
4710 spin_lock_irqsave(&conf
->device_lock
, flags
);
4712 bi
->bi_next
= conf
->retry_read_aligned_list
;
4713 conf
->retry_read_aligned_list
= bi
;
4715 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4716 md_wakeup_thread(conf
->mddev
->thread
);
4719 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
4723 bi
= conf
->retry_read_aligned
;
4725 conf
->retry_read_aligned
= NULL
;
4728 bi
= conf
->retry_read_aligned_list
;
4730 conf
->retry_read_aligned_list
= bi
->bi_next
;
4733 * this sets the active strip count to 1 and the processed
4734 * strip count to zero (upper 8 bits)
4736 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
4743 * The "raid5_align_endio" should check if the read succeeded and if it
4744 * did, call bio_endio on the original bio (having bio_put the new bio
4746 * If the read failed..
4748 static void raid5_align_endio(struct bio
*bi
)
4750 struct bio
* raid_bi
= bi
->bi_private
;
4751 struct mddev
*mddev
;
4752 struct r5conf
*conf
;
4753 struct md_rdev
*rdev
;
4754 int error
= bi
->bi_error
;
4758 rdev
= (void*)raid_bi
->bi_next
;
4759 raid_bi
->bi_next
= NULL
;
4760 mddev
= rdev
->mddev
;
4761 conf
= mddev
->private;
4763 rdev_dec_pending(rdev
, conf
->mddev
);
4766 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
4769 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4770 wake_up(&conf
->wait_for_quiescent
);
4774 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4776 add_bio_to_retry(raid_bi
, conf
);
4779 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
4781 struct r5conf
*conf
= mddev
->private;
4783 struct bio
* align_bi
;
4784 struct md_rdev
*rdev
;
4785 sector_t end_sector
;
4787 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4788 pr_debug("%s: non aligned\n", __func__
);
4792 * use bio_clone_mddev to make a copy of the bio
4794 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4798 * set bi_end_io to a new function, and set bi_private to the
4801 align_bi
->bi_end_io
= raid5_align_endio
;
4802 align_bi
->bi_private
= raid_bio
;
4806 align_bi
->bi_iter
.bi_sector
=
4807 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
4810 end_sector
= bio_end_sector(align_bi
);
4812 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4813 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4814 rdev
->recovery_offset
< end_sector
) {
4815 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4817 (test_bit(Faulty
, &rdev
->flags
) ||
4818 !(test_bit(In_sync
, &rdev
->flags
) ||
4819 rdev
->recovery_offset
>= end_sector
)))
4826 atomic_inc(&rdev
->nr_pending
);
4828 raid_bio
->bi_next
= (void*)rdev
;
4829 align_bi
->bi_bdev
= rdev
->bdev
;
4830 bio_clear_flag(align_bi
, BIO_SEG_VALID
);
4832 if (is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
4833 bio_sectors(align_bi
),
4834 &first_bad
, &bad_sectors
)) {
4836 rdev_dec_pending(rdev
, mddev
);
4840 /* No reshape active, so we can trust rdev->data_offset */
4841 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
4843 spin_lock_irq(&conf
->device_lock
);
4844 wait_event_lock_irq(conf
->wait_for_quiescent
,
4847 atomic_inc(&conf
->active_aligned_reads
);
4848 spin_unlock_irq(&conf
->device_lock
);
4851 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4852 align_bi
, disk_devt(mddev
->gendisk
),
4853 raid_bio
->bi_iter
.bi_sector
);
4854 generic_make_request(align_bi
);
4863 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
4868 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
4869 unsigned chunk_sects
= mddev
->chunk_sectors
;
4870 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
4872 if (sectors
< bio_sectors(raid_bio
)) {
4873 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, fs_bio_set
);
4874 bio_chain(split
, raid_bio
);
4878 if (!raid5_read_one_chunk(mddev
, split
)) {
4879 if (split
!= raid_bio
)
4880 generic_make_request(raid_bio
);
4883 } while (split
!= raid_bio
);
4888 /* __get_priority_stripe - get the next stripe to process
4890 * Full stripe writes are allowed to pass preread active stripes up until
4891 * the bypass_threshold is exceeded. In general the bypass_count
4892 * increments when the handle_list is handled before the hold_list; however, it
4893 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4894 * stripe with in flight i/o. The bypass_count will be reset when the
4895 * head of the hold_list has changed, i.e. the head was promoted to the
4898 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
4900 struct stripe_head
*sh
= NULL
, *tmp
;
4901 struct list_head
*handle_list
= NULL
;
4902 struct r5worker_group
*wg
= NULL
;
4904 if (conf
->worker_cnt_per_group
== 0) {
4905 handle_list
= &conf
->handle_list
;
4906 } else if (group
!= ANY_GROUP
) {
4907 handle_list
= &conf
->worker_groups
[group
].handle_list
;
4908 wg
= &conf
->worker_groups
[group
];
4911 for (i
= 0; i
< conf
->group_cnt
; i
++) {
4912 handle_list
= &conf
->worker_groups
[i
].handle_list
;
4913 wg
= &conf
->worker_groups
[i
];
4914 if (!list_empty(handle_list
))
4919 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4921 list_empty(handle_list
) ? "empty" : "busy",
4922 list_empty(&conf
->hold_list
) ? "empty" : "busy",
4923 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
4925 if (!list_empty(handle_list
)) {
4926 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
4928 if (list_empty(&conf
->hold_list
))
4929 conf
->bypass_count
= 0;
4930 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
4931 if (conf
->hold_list
.next
== conf
->last_hold
)
4932 conf
->bypass_count
++;
4934 conf
->last_hold
= conf
->hold_list
.next
;
4935 conf
->bypass_count
-= conf
->bypass_threshold
;
4936 if (conf
->bypass_count
< 0)
4937 conf
->bypass_count
= 0;
4940 } else if (!list_empty(&conf
->hold_list
) &&
4941 ((conf
->bypass_threshold
&&
4942 conf
->bypass_count
> conf
->bypass_threshold
) ||
4943 atomic_read(&conf
->pending_full_writes
) == 0)) {
4945 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
4946 if (conf
->worker_cnt_per_group
== 0 ||
4947 group
== ANY_GROUP
||
4948 !cpu_online(tmp
->cpu
) ||
4949 cpu_to_group(tmp
->cpu
) == group
) {
4956 conf
->bypass_count
-= conf
->bypass_threshold
;
4957 if (conf
->bypass_count
< 0)
4958 conf
->bypass_count
= 0;
4970 list_del_init(&sh
->lru
);
4971 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
4975 struct raid5_plug_cb
{
4976 struct blk_plug_cb cb
;
4977 struct list_head list
;
4978 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
4981 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
4983 struct raid5_plug_cb
*cb
= container_of(
4984 blk_cb
, struct raid5_plug_cb
, cb
);
4985 struct stripe_head
*sh
;
4986 struct mddev
*mddev
= cb
->cb
.data
;
4987 struct r5conf
*conf
= mddev
->private;
4991 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
4992 spin_lock_irq(&conf
->device_lock
);
4993 while (!list_empty(&cb
->list
)) {
4994 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
4995 list_del_init(&sh
->lru
);
4997 * avoid race release_stripe_plug() sees
4998 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4999 * is still in our list
5001 smp_mb__before_atomic();
5002 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5004 * STRIPE_ON_RELEASE_LIST could be set here. In that
5005 * case, the count is always > 1 here
5007 hash
= sh
->hash_lock_index
;
5008 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5011 spin_unlock_irq(&conf
->device_lock
);
5013 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5014 NR_STRIPE_HASH_LOCKS
);
5016 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
5020 static void release_stripe_plug(struct mddev
*mddev
,
5021 struct stripe_head
*sh
)
5023 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5024 raid5_unplug
, mddev
,
5025 sizeof(struct raid5_plug_cb
));
5026 struct raid5_plug_cb
*cb
;
5029 raid5_release_stripe(sh
);
5033 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5035 if (cb
->list
.next
== NULL
) {
5037 INIT_LIST_HEAD(&cb
->list
);
5038 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5039 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5042 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5043 list_add_tail(&sh
->lru
, &cb
->list
);
5045 raid5_release_stripe(sh
);
5048 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5050 struct r5conf
*conf
= mddev
->private;
5051 sector_t logical_sector
, last_sector
;
5052 struct stripe_head
*sh
;
5056 if (mddev
->reshape_position
!= MaxSector
)
5057 /* Skip discard while reshape is happening */
5060 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5061 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
5064 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5066 stripe_sectors
= conf
->chunk_sectors
*
5067 (conf
->raid_disks
- conf
->max_degraded
);
5068 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5070 sector_div(last_sector
, stripe_sectors
);
5072 logical_sector
*= conf
->chunk_sectors
;
5073 last_sector
*= conf
->chunk_sectors
;
5075 for (; logical_sector
< last_sector
;
5076 logical_sector
+= STRIPE_SECTORS
) {
5080 sh
= raid5_get_active_stripe(conf
, logical_sector
, 0, 0, 0);
5081 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5082 TASK_UNINTERRUPTIBLE
);
5083 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5084 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5085 raid5_release_stripe(sh
);
5089 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5090 spin_lock_irq(&sh
->stripe_lock
);
5091 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5092 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5094 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5095 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5096 spin_unlock_irq(&sh
->stripe_lock
);
5097 raid5_release_stripe(sh
);
5102 set_bit(STRIPE_DISCARD
, &sh
->state
);
5103 finish_wait(&conf
->wait_for_overlap
, &w
);
5104 sh
->overwrite_disks
= 0;
5105 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5106 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5108 sh
->dev
[d
].towrite
= bi
;
5109 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5110 raid5_inc_bi_active_stripes(bi
);
5111 sh
->overwrite_disks
++;
5113 spin_unlock_irq(&sh
->stripe_lock
);
5114 if (conf
->mddev
->bitmap
) {
5116 d
< conf
->raid_disks
- conf
->max_degraded
;
5118 bitmap_startwrite(mddev
->bitmap
,
5122 sh
->bm_seq
= conf
->seq_flush
+ 1;
5123 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5126 set_bit(STRIPE_HANDLE
, &sh
->state
);
5127 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5128 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5129 atomic_inc(&conf
->preread_active_stripes
);
5130 release_stripe_plug(mddev
, sh
);
5133 remaining
= raid5_dec_bi_active_stripes(bi
);
5134 if (remaining
== 0) {
5135 md_write_end(mddev
);
5140 static void make_request(struct mddev
*mddev
, struct bio
* bi
)
5142 struct r5conf
*conf
= mddev
->private;
5144 sector_t new_sector
;
5145 sector_t logical_sector
, last_sector
;
5146 struct stripe_head
*sh
;
5147 const int rw
= bio_data_dir(bi
);
5152 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
5153 int ret
= r5l_handle_flush_request(conf
->log
, bi
);
5157 if (ret
== -ENODEV
) {
5158 md_flush_request(mddev
, bi
);
5161 /* ret == -EAGAIN, fallback */
5164 md_write_start(mddev
, bi
);
5167 * If array is degraded, better not do chunk aligned read because
5168 * later we might have to read it again in order to reconstruct
5169 * data on failed drives.
5171 if (rw
== READ
&& mddev
->degraded
== 0 &&
5172 mddev
->reshape_position
== MaxSector
) {
5173 bi
= chunk_aligned_read(mddev
, bi
);
5178 if (unlikely(bi
->bi_rw
& REQ_DISCARD
)) {
5179 make_discard_request(mddev
, bi
);
5183 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
5184 last_sector
= bio_end_sector(bi
);
5186 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
5188 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
5189 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
5195 seq
= read_seqcount_begin(&conf
->gen_lock
);
5198 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
5199 TASK_UNINTERRUPTIBLE
);
5200 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5201 /* spinlock is needed as reshape_progress may be
5202 * 64bit on a 32bit platform, and so it might be
5203 * possible to see a half-updated value
5204 * Of course reshape_progress could change after
5205 * the lock is dropped, so once we get a reference
5206 * to the stripe that we think it is, we will have
5209 spin_lock_irq(&conf
->device_lock
);
5210 if (mddev
->reshape_backwards
5211 ? logical_sector
< conf
->reshape_progress
5212 : logical_sector
>= conf
->reshape_progress
) {
5215 if (mddev
->reshape_backwards
5216 ? logical_sector
< conf
->reshape_safe
5217 : logical_sector
>= conf
->reshape_safe
) {
5218 spin_unlock_irq(&conf
->device_lock
);
5224 spin_unlock_irq(&conf
->device_lock
);
5227 new_sector
= raid5_compute_sector(conf
, logical_sector
,
5230 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5231 (unsigned long long)new_sector
,
5232 (unsigned long long)logical_sector
);
5234 sh
= raid5_get_active_stripe(conf
, new_sector
, previous
,
5235 (bi
->bi_rw
&RWA_MASK
), 0);
5237 if (unlikely(previous
)) {
5238 /* expansion might have moved on while waiting for a
5239 * stripe, so we must do the range check again.
5240 * Expansion could still move past after this
5241 * test, but as we are holding a reference to
5242 * 'sh', we know that if that happens,
5243 * STRIPE_EXPANDING will get set and the expansion
5244 * won't proceed until we finish with the stripe.
5247 spin_lock_irq(&conf
->device_lock
);
5248 if (mddev
->reshape_backwards
5249 ? logical_sector
>= conf
->reshape_progress
5250 : logical_sector
< conf
->reshape_progress
)
5251 /* mismatch, need to try again */
5253 spin_unlock_irq(&conf
->device_lock
);
5255 raid5_release_stripe(sh
);
5261 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5262 /* Might have got the wrong stripe_head
5265 raid5_release_stripe(sh
);
5270 logical_sector
>= mddev
->suspend_lo
&&
5271 logical_sector
< mddev
->suspend_hi
) {
5272 raid5_release_stripe(sh
);
5273 /* As the suspend_* range is controlled by
5274 * userspace, we want an interruptible
5277 flush_signals(current
);
5278 prepare_to_wait(&conf
->wait_for_overlap
,
5279 &w
, TASK_INTERRUPTIBLE
);
5280 if (logical_sector
>= mddev
->suspend_lo
&&
5281 logical_sector
< mddev
->suspend_hi
) {
5288 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
5289 !add_stripe_bio(sh
, bi
, dd_idx
, rw
, previous
)) {
5290 /* Stripe is busy expanding or
5291 * add failed due to overlap. Flush everything
5294 md_wakeup_thread(mddev
->thread
);
5295 raid5_release_stripe(sh
);
5300 set_bit(STRIPE_HANDLE
, &sh
->state
);
5301 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5302 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
5303 (bi
->bi_rw
& REQ_SYNC
) &&
5304 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5305 atomic_inc(&conf
->preread_active_stripes
);
5306 release_stripe_plug(mddev
, sh
);
5308 /* cannot get stripe for read-ahead, just give-up */
5309 bi
->bi_error
= -EIO
;
5313 finish_wait(&conf
->wait_for_overlap
, &w
);
5315 remaining
= raid5_dec_bi_active_stripes(bi
);
5316 if (remaining
== 0) {
5319 md_write_end(mddev
);
5321 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
5327 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
5329 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5331 /* reshaping is quite different to recovery/resync so it is
5332 * handled quite separately ... here.
5334 * On each call to sync_request, we gather one chunk worth of
5335 * destination stripes and flag them as expanding.
5336 * Then we find all the source stripes and request reads.
5337 * As the reads complete, handle_stripe will copy the data
5338 * into the destination stripe and release that stripe.
5340 struct r5conf
*conf
= mddev
->private;
5341 struct stripe_head
*sh
;
5342 sector_t first_sector
, last_sector
;
5343 int raid_disks
= conf
->previous_raid_disks
;
5344 int data_disks
= raid_disks
- conf
->max_degraded
;
5345 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5348 sector_t writepos
, readpos
, safepos
;
5349 sector_t stripe_addr
;
5350 int reshape_sectors
;
5351 struct list_head stripes
;
5354 if (sector_nr
== 0) {
5355 /* If restarting in the middle, skip the initial sectors */
5356 if (mddev
->reshape_backwards
&&
5357 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
5358 sector_nr
= raid5_size(mddev
, 0, 0)
5359 - conf
->reshape_progress
;
5360 } else if (mddev
->reshape_backwards
&&
5361 conf
->reshape_progress
== MaxSector
) {
5362 /* shouldn't happen, but just in case, finish up.*/
5363 sector_nr
= MaxSector
;
5364 } else if (!mddev
->reshape_backwards
&&
5365 conf
->reshape_progress
> 0)
5366 sector_nr
= conf
->reshape_progress
;
5367 sector_div(sector_nr
, new_data_disks
);
5369 mddev
->curr_resync_completed
= sector_nr
;
5370 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5377 /* We need to process a full chunk at a time.
5378 * If old and new chunk sizes differ, we need to process the
5382 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5384 /* We update the metadata at least every 10 seconds, or when
5385 * the data about to be copied would over-write the source of
5386 * the data at the front of the range. i.e. one new_stripe
5387 * along from reshape_progress new_maps to after where
5388 * reshape_safe old_maps to
5390 writepos
= conf
->reshape_progress
;
5391 sector_div(writepos
, new_data_disks
);
5392 readpos
= conf
->reshape_progress
;
5393 sector_div(readpos
, data_disks
);
5394 safepos
= conf
->reshape_safe
;
5395 sector_div(safepos
, data_disks
);
5396 if (mddev
->reshape_backwards
) {
5397 BUG_ON(writepos
< reshape_sectors
);
5398 writepos
-= reshape_sectors
;
5399 readpos
+= reshape_sectors
;
5400 safepos
+= reshape_sectors
;
5402 writepos
+= reshape_sectors
;
5403 /* readpos and safepos are worst-case calculations.
5404 * A negative number is overly pessimistic, and causes
5405 * obvious problems for unsigned storage. So clip to 0.
5407 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
5408 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
5411 /* Having calculated the 'writepos' possibly use it
5412 * to set 'stripe_addr' which is where we will write to.
5414 if (mddev
->reshape_backwards
) {
5415 BUG_ON(conf
->reshape_progress
== 0);
5416 stripe_addr
= writepos
;
5417 BUG_ON((mddev
->dev_sectors
&
5418 ~((sector_t
)reshape_sectors
- 1))
5419 - reshape_sectors
- stripe_addr
5422 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
5423 stripe_addr
= sector_nr
;
5426 /* 'writepos' is the most advanced device address we might write.
5427 * 'readpos' is the least advanced device address we might read.
5428 * 'safepos' is the least address recorded in the metadata as having
5430 * If there is a min_offset_diff, these are adjusted either by
5431 * increasing the safepos/readpos if diff is negative, or
5432 * increasing writepos if diff is positive.
5433 * If 'readpos' is then behind 'writepos', there is no way that we can
5434 * ensure safety in the face of a crash - that must be done by userspace
5435 * making a backup of the data. So in that case there is no particular
5436 * rush to update metadata.
5437 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5438 * update the metadata to advance 'safepos' to match 'readpos' so that
5439 * we can be safe in the event of a crash.
5440 * So we insist on updating metadata if safepos is behind writepos and
5441 * readpos is beyond writepos.
5442 * In any case, update the metadata every 10 seconds.
5443 * Maybe that number should be configurable, but I'm not sure it is
5444 * worth it.... maybe it could be a multiple of safemode_delay???
5446 if (conf
->min_offset_diff
< 0) {
5447 safepos
+= -conf
->min_offset_diff
;
5448 readpos
+= -conf
->min_offset_diff
;
5450 writepos
+= conf
->min_offset_diff
;
5452 if ((mddev
->reshape_backwards
5453 ? (safepos
> writepos
&& readpos
< writepos
)
5454 : (safepos
< writepos
&& readpos
> writepos
)) ||
5455 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
5456 /* Cannot proceed until we've updated the superblock... */
5457 wait_event(conf
->wait_for_overlap
,
5458 atomic_read(&conf
->reshape_stripes
)==0
5459 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5460 if (atomic_read(&conf
->reshape_stripes
) != 0)
5462 mddev
->reshape_position
= conf
->reshape_progress
;
5463 mddev
->curr_resync_completed
= sector_nr
;
5464 conf
->reshape_checkpoint
= jiffies
;
5465 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5466 md_wakeup_thread(mddev
->thread
);
5467 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
5468 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5469 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5471 spin_lock_irq(&conf
->device_lock
);
5472 conf
->reshape_safe
= mddev
->reshape_position
;
5473 spin_unlock_irq(&conf
->device_lock
);
5474 wake_up(&conf
->wait_for_overlap
);
5475 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5478 INIT_LIST_HEAD(&stripes
);
5479 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
5481 int skipped_disk
= 0;
5482 sh
= raid5_get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
5483 set_bit(STRIPE_EXPANDING
, &sh
->state
);
5484 atomic_inc(&conf
->reshape_stripes
);
5485 /* If any of this stripe is beyond the end of the old
5486 * array, then we need to zero those blocks
5488 for (j
=sh
->disks
; j
--;) {
5490 if (j
== sh
->pd_idx
)
5492 if (conf
->level
== 6 &&
5495 s
= raid5_compute_blocknr(sh
, j
, 0);
5496 if (s
< raid5_size(mddev
, 0, 0)) {
5500 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
5501 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
5502 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
5504 if (!skipped_disk
) {
5505 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5506 set_bit(STRIPE_HANDLE
, &sh
->state
);
5508 list_add(&sh
->lru
, &stripes
);
5510 spin_lock_irq(&conf
->device_lock
);
5511 if (mddev
->reshape_backwards
)
5512 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
5514 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
5515 spin_unlock_irq(&conf
->device_lock
);
5516 /* Ok, those stripe are ready. We can start scheduling
5517 * reads on the source stripes.
5518 * The source stripes are determined by mapping the first and last
5519 * block on the destination stripes.
5522 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
5525 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
5526 * new_data_disks
- 1),
5528 if (last_sector
>= mddev
->dev_sectors
)
5529 last_sector
= mddev
->dev_sectors
- 1;
5530 while (first_sector
<= last_sector
) {
5531 sh
= raid5_get_active_stripe(conf
, first_sector
, 1, 0, 1);
5532 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
5533 set_bit(STRIPE_HANDLE
, &sh
->state
);
5534 raid5_release_stripe(sh
);
5535 first_sector
+= STRIPE_SECTORS
;
5537 /* Now that the sources are clearly marked, we can release
5538 * the destination stripes
5540 while (!list_empty(&stripes
)) {
5541 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
5542 list_del_init(&sh
->lru
);
5543 raid5_release_stripe(sh
);
5545 /* If this takes us to the resync_max point where we have to pause,
5546 * then we need to write out the superblock.
5548 sector_nr
+= reshape_sectors
;
5549 retn
= reshape_sectors
;
5551 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
5552 (sector_nr
- mddev
->curr_resync_completed
) * 2
5553 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
5554 /* Cannot proceed until we've updated the superblock... */
5555 wait_event(conf
->wait_for_overlap
,
5556 atomic_read(&conf
->reshape_stripes
) == 0
5557 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5558 if (atomic_read(&conf
->reshape_stripes
) != 0)
5560 mddev
->reshape_position
= conf
->reshape_progress
;
5561 mddev
->curr_resync_completed
= sector_nr
;
5562 conf
->reshape_checkpoint
= jiffies
;
5563 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5564 md_wakeup_thread(mddev
->thread
);
5565 wait_event(mddev
->sb_wait
,
5566 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
5567 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
5568 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
5570 spin_lock_irq(&conf
->device_lock
);
5571 conf
->reshape_safe
= mddev
->reshape_position
;
5572 spin_unlock_irq(&conf
->device_lock
);
5573 wake_up(&conf
->wait_for_overlap
);
5574 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
5580 static inline sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
5582 struct r5conf
*conf
= mddev
->private;
5583 struct stripe_head
*sh
;
5584 sector_t max_sector
= mddev
->dev_sectors
;
5585 sector_t sync_blocks
;
5586 int still_degraded
= 0;
5589 if (sector_nr
>= max_sector
) {
5590 /* just being told to finish up .. nothing much to do */
5592 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
5597 if (mddev
->curr_resync
< max_sector
) /* aborted */
5598 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
5600 else /* completed sync */
5602 bitmap_close_sync(mddev
->bitmap
);
5607 /* Allow raid5_quiesce to complete */
5608 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
5610 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
5611 return reshape_request(mddev
, sector_nr
, skipped
);
5613 /* No need to check resync_max as we never do more than one
5614 * stripe, and as resync_max will always be on a chunk boundary,
5615 * if the check in md_do_sync didn't fire, there is no chance
5616 * of overstepping resync_max here
5619 /* if there is too many failed drives and we are trying
5620 * to resync, then assert that we are finished, because there is
5621 * nothing we can do.
5623 if (mddev
->degraded
>= conf
->max_degraded
&&
5624 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
5625 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
5629 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
5631 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
5632 sync_blocks
>= STRIPE_SECTORS
) {
5633 /* we can skip this block, and probably more */
5634 sync_blocks
/= STRIPE_SECTORS
;
5636 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
5639 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, false);
5641 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 1, 0);
5643 sh
= raid5_get_active_stripe(conf
, sector_nr
, 0, 0, 0);
5644 /* make sure we don't swamp the stripe cache if someone else
5645 * is trying to get access
5647 schedule_timeout_uninterruptible(1);
5649 /* Need to check if array will still be degraded after recovery/resync
5650 * Note in case of > 1 drive failures it's possible we're rebuilding
5651 * one drive while leaving another faulty drive in array.
5654 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5655 struct md_rdev
*rdev
= ACCESS_ONCE(conf
->disks
[i
].rdev
);
5657 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
5662 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
5664 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
5665 set_bit(STRIPE_HANDLE
, &sh
->state
);
5667 raid5_release_stripe(sh
);
5669 return STRIPE_SECTORS
;
5672 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
5674 /* We may not be able to submit a whole bio at once as there
5675 * may not be enough stripe_heads available.
5676 * We cannot pre-allocate enough stripe_heads as we may need
5677 * more than exist in the cache (if we allow ever large chunks).
5678 * So we do one stripe head at a time and record in
5679 * ->bi_hw_segments how many have been done.
5681 * We *know* that this entire raid_bio is in one chunk, so
5682 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5684 struct stripe_head
*sh
;
5686 sector_t sector
, logical_sector
, last_sector
;
5691 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
5692 ~((sector_t
)STRIPE_SECTORS
-1);
5693 sector
= raid5_compute_sector(conf
, logical_sector
,
5695 last_sector
= bio_end_sector(raid_bio
);
5697 for (; logical_sector
< last_sector
;
5698 logical_sector
+= STRIPE_SECTORS
,
5699 sector
+= STRIPE_SECTORS
,
5702 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
5703 /* already done this stripe */
5706 sh
= raid5_get_active_stripe(conf
, sector
, 0, 1, 1);
5709 /* failed to get a stripe - must wait */
5710 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5711 conf
->retry_read_aligned
= raid_bio
;
5715 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
5716 raid5_release_stripe(sh
);
5717 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5718 conf
->retry_read_aligned
= raid_bio
;
5722 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
5724 raid5_release_stripe(sh
);
5727 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
5728 if (remaining
== 0) {
5729 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
5731 bio_endio(raid_bio
);
5733 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5734 wake_up(&conf
->wait_for_quiescent
);
5738 static int handle_active_stripes(struct r5conf
*conf
, int group
,
5739 struct r5worker
*worker
,
5740 struct list_head
*temp_inactive_list
)
5742 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
5743 int i
, batch_size
= 0, hash
;
5744 bool release_inactive
= false;
5746 while (batch_size
< MAX_STRIPE_BATCH
&&
5747 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
5748 batch
[batch_size
++] = sh
;
5750 if (batch_size
== 0) {
5751 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5752 if (!list_empty(temp_inactive_list
+ i
))
5754 if (i
== NR_STRIPE_HASH_LOCKS
) {
5755 spin_unlock_irq(&conf
->device_lock
);
5756 r5l_flush_stripe_to_raid(conf
->log
);
5757 spin_lock_irq(&conf
->device_lock
);
5760 release_inactive
= true;
5762 spin_unlock_irq(&conf
->device_lock
);
5764 release_inactive_stripe_list(conf
, temp_inactive_list
,
5765 NR_STRIPE_HASH_LOCKS
);
5767 r5l_flush_stripe_to_raid(conf
->log
);
5768 if (release_inactive
) {
5769 spin_lock_irq(&conf
->device_lock
);
5773 for (i
= 0; i
< batch_size
; i
++)
5774 handle_stripe(batch
[i
]);
5775 r5l_write_stripe_run(conf
->log
);
5779 spin_lock_irq(&conf
->device_lock
);
5780 for (i
= 0; i
< batch_size
; i
++) {
5781 hash
= batch
[i
]->hash_lock_index
;
5782 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
5787 static void raid5_do_work(struct work_struct
*work
)
5789 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
5790 struct r5worker_group
*group
= worker
->group
;
5791 struct r5conf
*conf
= group
->conf
;
5792 int group_id
= group
- conf
->worker_groups
;
5794 struct blk_plug plug
;
5796 pr_debug("+++ raid5worker active\n");
5798 blk_start_plug(&plug
);
5800 spin_lock_irq(&conf
->device_lock
);
5802 int batch_size
, released
;
5804 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
5806 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
5807 worker
->temp_inactive_list
);
5808 worker
->working
= false;
5809 if (!batch_size
&& !released
)
5811 handled
+= batch_size
;
5813 pr_debug("%d stripes handled\n", handled
);
5815 spin_unlock_irq(&conf
->device_lock
);
5816 blk_finish_plug(&plug
);
5818 pr_debug("--- raid5worker inactive\n");
5822 * This is our raid5 kernel thread.
5824 * We scan the hash table for stripes which can be handled now.
5825 * During the scan, completed stripes are saved for us by the interrupt
5826 * handler, so that they will not have to wait for our next wakeup.
5828 static void raid5d(struct md_thread
*thread
)
5830 struct mddev
*mddev
= thread
->mddev
;
5831 struct r5conf
*conf
= mddev
->private;
5833 struct blk_plug plug
;
5835 pr_debug("+++ raid5d active\n");
5837 md_check_recovery(mddev
);
5839 if (!bio_list_empty(&conf
->return_bi
) &&
5840 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5841 struct bio_list tmp
= BIO_EMPTY_LIST
;
5842 spin_lock_irq(&conf
->device_lock
);
5843 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
5844 bio_list_merge(&tmp
, &conf
->return_bi
);
5845 bio_list_init(&conf
->return_bi
);
5847 spin_unlock_irq(&conf
->device_lock
);
5851 blk_start_plug(&plug
);
5853 spin_lock_irq(&conf
->device_lock
);
5856 int batch_size
, released
;
5858 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
5860 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5863 !list_empty(&conf
->bitmap_list
)) {
5864 /* Now is a good time to flush some bitmap updates */
5866 spin_unlock_irq(&conf
->device_lock
);
5867 bitmap_unplug(mddev
->bitmap
);
5868 spin_lock_irq(&conf
->device_lock
);
5869 conf
->seq_write
= conf
->seq_flush
;
5870 activate_bit_delay(conf
, conf
->temp_inactive_list
);
5872 raid5_activate_delayed(conf
);
5874 while ((bio
= remove_bio_from_retry(conf
))) {
5876 spin_unlock_irq(&conf
->device_lock
);
5877 ok
= retry_aligned_read(conf
, bio
);
5878 spin_lock_irq(&conf
->device_lock
);
5884 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
5885 conf
->temp_inactive_list
);
5886 if (!batch_size
&& !released
)
5888 handled
+= batch_size
;
5890 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
)) {
5891 spin_unlock_irq(&conf
->device_lock
);
5892 md_check_recovery(mddev
);
5893 spin_lock_irq(&conf
->device_lock
);
5896 pr_debug("%d stripes handled\n", handled
);
5898 spin_unlock_irq(&conf
->device_lock
);
5899 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
5900 mutex_trylock(&conf
->cache_size_mutex
)) {
5901 grow_one_stripe(conf
, __GFP_NOWARN
);
5902 /* Set flag even if allocation failed. This helps
5903 * slow down allocation requests when mem is short
5905 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
5906 mutex_unlock(&conf
->cache_size_mutex
);
5909 r5l_flush_stripe_to_raid(conf
->log
);
5911 async_tx_issue_pending_all();
5912 blk_finish_plug(&plug
);
5914 pr_debug("--- raid5d inactive\n");
5918 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
5920 struct r5conf
*conf
;
5922 spin_lock(&mddev
->lock
);
5923 conf
= mddev
->private;
5925 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
5926 spin_unlock(&mddev
->lock
);
5931 raid5_set_cache_size(struct mddev
*mddev
, int size
)
5933 struct r5conf
*conf
= mddev
->private;
5936 if (size
<= 16 || size
> 32768)
5939 conf
->min_nr_stripes
= size
;
5940 mutex_lock(&conf
->cache_size_mutex
);
5941 while (size
< conf
->max_nr_stripes
&&
5942 drop_one_stripe(conf
))
5944 mutex_unlock(&conf
->cache_size_mutex
);
5947 err
= md_allow_write(mddev
);
5951 mutex_lock(&conf
->cache_size_mutex
);
5952 while (size
> conf
->max_nr_stripes
)
5953 if (!grow_one_stripe(conf
, GFP_KERNEL
))
5955 mutex_unlock(&conf
->cache_size_mutex
);
5959 EXPORT_SYMBOL(raid5_set_cache_size
);
5962 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
5964 struct r5conf
*conf
;
5968 if (len
>= PAGE_SIZE
)
5970 if (kstrtoul(page
, 10, &new))
5972 err
= mddev_lock(mddev
);
5975 conf
= mddev
->private;
5979 err
= raid5_set_cache_size(mddev
, new);
5980 mddev_unlock(mddev
);
5985 static struct md_sysfs_entry
5986 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
5987 raid5_show_stripe_cache_size
,
5988 raid5_store_stripe_cache_size
);
5991 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
5993 struct r5conf
*conf
= mddev
->private;
5995 return sprintf(page
, "%d\n", conf
->rmw_level
);
6001 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6003 struct r5conf
*conf
= mddev
->private;
6009 if (len
>= PAGE_SIZE
)
6012 if (kstrtoul(page
, 10, &new))
6015 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6018 if (new != PARITY_DISABLE_RMW
&&
6019 new != PARITY_ENABLE_RMW
&&
6020 new != PARITY_PREFER_RMW
)
6023 conf
->rmw_level
= new;
6027 static struct md_sysfs_entry
6028 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6029 raid5_show_rmw_level
,
6030 raid5_store_rmw_level
);
6034 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
6036 struct r5conf
*conf
;
6038 spin_lock(&mddev
->lock
);
6039 conf
= mddev
->private;
6041 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
6042 spin_unlock(&mddev
->lock
);
6047 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
6049 struct r5conf
*conf
;
6053 if (len
>= PAGE_SIZE
)
6055 if (kstrtoul(page
, 10, &new))
6058 err
= mddev_lock(mddev
);
6061 conf
= mddev
->private;
6064 else if (new > conf
->min_nr_stripes
)
6067 conf
->bypass_threshold
= new;
6068 mddev_unlock(mddev
);
6072 static struct md_sysfs_entry
6073 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
6075 raid5_show_preread_threshold
,
6076 raid5_store_preread_threshold
);
6079 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
6081 struct r5conf
*conf
;
6083 spin_lock(&mddev
->lock
);
6084 conf
= mddev
->private;
6086 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
6087 spin_unlock(&mddev
->lock
);
6092 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
6094 struct r5conf
*conf
;
6098 if (len
>= PAGE_SIZE
)
6100 if (kstrtoul(page
, 10, &new))
6104 err
= mddev_lock(mddev
);
6107 conf
= mddev
->private;
6110 else if (new != conf
->skip_copy
) {
6111 mddev_suspend(mddev
);
6112 conf
->skip_copy
= new;
6114 mddev
->queue
->backing_dev_info
.capabilities
|=
6115 BDI_CAP_STABLE_WRITES
;
6117 mddev
->queue
->backing_dev_info
.capabilities
&=
6118 ~BDI_CAP_STABLE_WRITES
;
6119 mddev_resume(mddev
);
6121 mddev_unlock(mddev
);
6125 static struct md_sysfs_entry
6126 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
6127 raid5_show_skip_copy
,
6128 raid5_store_skip_copy
);
6131 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
6133 struct r5conf
*conf
= mddev
->private;
6135 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
6140 static struct md_sysfs_entry
6141 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
6144 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
6146 struct r5conf
*conf
;
6148 spin_lock(&mddev
->lock
);
6149 conf
= mddev
->private;
6151 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
6152 spin_unlock(&mddev
->lock
);
6156 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6158 int *worker_cnt_per_group
,
6159 struct r5worker_group
**worker_groups
);
6161 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
6163 struct r5conf
*conf
;
6166 struct r5worker_group
*new_groups
, *old_groups
;
6167 int group_cnt
, worker_cnt_per_group
;
6169 if (len
>= PAGE_SIZE
)
6171 if (kstrtoul(page
, 10, &new))
6174 err
= mddev_lock(mddev
);
6177 conf
= mddev
->private;
6180 else if (new != conf
->worker_cnt_per_group
) {
6181 mddev_suspend(mddev
);
6183 old_groups
= conf
->worker_groups
;
6185 flush_workqueue(raid5_wq
);
6187 err
= alloc_thread_groups(conf
, new,
6188 &group_cnt
, &worker_cnt_per_group
,
6191 spin_lock_irq(&conf
->device_lock
);
6192 conf
->group_cnt
= group_cnt
;
6193 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6194 conf
->worker_groups
= new_groups
;
6195 spin_unlock_irq(&conf
->device_lock
);
6198 kfree(old_groups
[0].workers
);
6201 mddev_resume(mddev
);
6203 mddev_unlock(mddev
);
6208 static struct md_sysfs_entry
6209 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
6210 raid5_show_group_thread_cnt
,
6211 raid5_store_group_thread_cnt
);
6213 static struct attribute
*raid5_attrs
[] = {
6214 &raid5_stripecache_size
.attr
,
6215 &raid5_stripecache_active
.attr
,
6216 &raid5_preread_bypass_threshold
.attr
,
6217 &raid5_group_thread_cnt
.attr
,
6218 &raid5_skip_copy
.attr
,
6219 &raid5_rmw_level
.attr
,
6222 static struct attribute_group raid5_attrs_group
= {
6224 .attrs
= raid5_attrs
,
6227 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
6229 int *worker_cnt_per_group
,
6230 struct r5worker_group
**worker_groups
)
6234 struct r5worker
*workers
;
6236 *worker_cnt_per_group
= cnt
;
6239 *worker_groups
= NULL
;
6242 *group_cnt
= num_possible_nodes();
6243 size
= sizeof(struct r5worker
) * cnt
;
6244 workers
= kzalloc(size
* *group_cnt
, GFP_NOIO
);
6245 *worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
6246 *group_cnt
, GFP_NOIO
);
6247 if (!*worker_groups
|| !workers
) {
6249 kfree(*worker_groups
);
6253 for (i
= 0; i
< *group_cnt
; i
++) {
6254 struct r5worker_group
*group
;
6256 group
= &(*worker_groups
)[i
];
6257 INIT_LIST_HEAD(&group
->handle_list
);
6259 group
->workers
= workers
+ i
* cnt
;
6261 for (j
= 0; j
< cnt
; j
++) {
6262 struct r5worker
*worker
= group
->workers
+ j
;
6263 worker
->group
= group
;
6264 INIT_WORK(&worker
->work
, raid5_do_work
);
6266 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
6267 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
6274 static void free_thread_groups(struct r5conf
*conf
)
6276 if (conf
->worker_groups
)
6277 kfree(conf
->worker_groups
[0].workers
);
6278 kfree(conf
->worker_groups
);
6279 conf
->worker_groups
= NULL
;
6283 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
6285 struct r5conf
*conf
= mddev
->private;
6288 sectors
= mddev
->dev_sectors
;
6290 /* size is defined by the smallest of previous and new size */
6291 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
6293 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
6294 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
6295 return sectors
* (raid_disks
- conf
->max_degraded
);
6298 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6300 safe_put_page(percpu
->spare_page
);
6301 if (percpu
->scribble
)
6302 flex_array_free(percpu
->scribble
);
6303 percpu
->spare_page
= NULL
;
6304 percpu
->scribble
= NULL
;
6307 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
6309 if (conf
->level
== 6 && !percpu
->spare_page
)
6310 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
6311 if (!percpu
->scribble
)
6312 percpu
->scribble
= scribble_alloc(max(conf
->raid_disks
,
6313 conf
->previous_raid_disks
),
6314 max(conf
->chunk_sectors
,
6315 conf
->prev_chunk_sectors
)
6319 if (!percpu
->scribble
|| (conf
->level
== 6 && !percpu
->spare_page
)) {
6320 free_scratch_buffer(conf
, percpu
);
6327 static void raid5_free_percpu(struct r5conf
*conf
)
6334 #ifdef CONFIG_HOTPLUG_CPU
6335 unregister_cpu_notifier(&conf
->cpu_notify
);
6339 for_each_possible_cpu(cpu
)
6340 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6343 free_percpu(conf
->percpu
);
6346 static void free_conf(struct r5conf
*conf
)
6349 r5l_exit_log(conf
->log
);
6350 if (conf
->shrinker
.seeks
)
6351 unregister_shrinker(&conf
->shrinker
);
6353 free_thread_groups(conf
);
6354 shrink_stripes(conf
);
6355 raid5_free_percpu(conf
);
6357 kfree(conf
->stripe_hashtbl
);
6361 #ifdef CONFIG_HOTPLUG_CPU
6362 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
6365 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
6366 long cpu
= (long)hcpu
;
6367 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
6370 case CPU_UP_PREPARE
:
6371 case CPU_UP_PREPARE_FROZEN
:
6372 if (alloc_scratch_buffer(conf
, percpu
)) {
6373 pr_err("%s: failed memory allocation for cpu%ld\n",
6375 return notifier_from_errno(-ENOMEM
);
6379 case CPU_DEAD_FROZEN
:
6380 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6389 static int raid5_alloc_percpu(struct r5conf
*conf
)
6394 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
6398 #ifdef CONFIG_HOTPLUG_CPU
6399 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
6400 conf
->cpu_notify
.priority
= 0;
6401 err
= register_cpu_notifier(&conf
->cpu_notify
);
6407 for_each_present_cpu(cpu
) {
6408 err
= alloc_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
6410 pr_err("%s: failed memory allocation for cpu%ld\n",
6420 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
6421 struct shrink_control
*sc
)
6423 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6424 unsigned long ret
= SHRINK_STOP
;
6426 if (mutex_trylock(&conf
->cache_size_mutex
)) {
6428 while (ret
< sc
->nr_to_scan
&&
6429 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
6430 if (drop_one_stripe(conf
) == 0) {
6436 mutex_unlock(&conf
->cache_size_mutex
);
6441 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
6442 struct shrink_control
*sc
)
6444 struct r5conf
*conf
= container_of(shrink
, struct r5conf
, shrinker
);
6446 if (conf
->max_nr_stripes
< conf
->min_nr_stripes
)
6447 /* unlikely, but not impossible */
6449 return conf
->max_nr_stripes
- conf
->min_nr_stripes
;
6452 static struct r5conf
*setup_conf(struct mddev
*mddev
)
6454 struct r5conf
*conf
;
6455 int raid_disk
, memory
, max_disks
;
6456 struct md_rdev
*rdev
;
6457 struct disk_info
*disk
;
6460 int group_cnt
, worker_cnt_per_group
;
6461 struct r5worker_group
*new_group
;
6463 if (mddev
->new_level
!= 5
6464 && mddev
->new_level
!= 4
6465 && mddev
->new_level
!= 6) {
6466 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6467 mdname(mddev
), mddev
->new_level
);
6468 return ERR_PTR(-EIO
);
6470 if ((mddev
->new_level
== 5
6471 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
6472 (mddev
->new_level
== 6
6473 && !algorithm_valid_raid6(mddev
->new_layout
))) {
6474 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
6475 mdname(mddev
), mddev
->new_layout
);
6476 return ERR_PTR(-EIO
);
6478 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
6479 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6480 mdname(mddev
), mddev
->raid_disks
);
6481 return ERR_PTR(-EINVAL
);
6484 if (!mddev
->new_chunk_sectors
||
6485 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
6486 !is_power_of_2(mddev
->new_chunk_sectors
)) {
6487 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
6488 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
6489 return ERR_PTR(-EINVAL
);
6492 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
6495 /* Don't enable multi-threading by default*/
6496 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
6498 conf
->group_cnt
= group_cnt
;
6499 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
6500 conf
->worker_groups
= new_group
;
6503 spin_lock_init(&conf
->device_lock
);
6504 seqcount_init(&conf
->gen_lock
);
6505 mutex_init(&conf
->cache_size_mutex
);
6506 init_waitqueue_head(&conf
->wait_for_quiescent
);
6507 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++) {
6508 init_waitqueue_head(&conf
->wait_for_stripe
[i
]);
6510 init_waitqueue_head(&conf
->wait_for_overlap
);
6511 INIT_LIST_HEAD(&conf
->handle_list
);
6512 INIT_LIST_HEAD(&conf
->hold_list
);
6513 INIT_LIST_HEAD(&conf
->delayed_list
);
6514 INIT_LIST_HEAD(&conf
->bitmap_list
);
6515 bio_list_init(&conf
->return_bi
);
6516 init_llist_head(&conf
->released_stripes
);
6517 atomic_set(&conf
->active_stripes
, 0);
6518 atomic_set(&conf
->preread_active_stripes
, 0);
6519 atomic_set(&conf
->active_aligned_reads
, 0);
6520 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
6521 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
6523 conf
->raid_disks
= mddev
->raid_disks
;
6524 if (mddev
->reshape_position
== MaxSector
)
6525 conf
->previous_raid_disks
= mddev
->raid_disks
;
6527 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6528 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
6530 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
6535 conf
->mddev
= mddev
;
6537 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
6540 /* We init hash_locks[0] separately to that it can be used
6541 * as the reference lock in the spin_lock_nest_lock() call
6542 * in lock_all_device_hash_locks_irq in order to convince
6543 * lockdep that we know what we are doing.
6545 spin_lock_init(conf
->hash_locks
);
6546 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6547 spin_lock_init(conf
->hash_locks
+ i
);
6549 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6550 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
6552 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6553 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
6555 conf
->level
= mddev
->new_level
;
6556 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6557 if (raid5_alloc_percpu(conf
) != 0)
6560 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
6562 rdev_for_each(rdev
, mddev
) {
6563 raid_disk
= rdev
->raid_disk
;
6564 if (raid_disk
>= max_disks
6565 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
6567 disk
= conf
->disks
+ raid_disk
;
6569 if (test_bit(Replacement
, &rdev
->flags
)) {
6570 if (disk
->replacement
)
6572 disk
->replacement
= rdev
;
6579 if (test_bit(In_sync
, &rdev
->flags
)) {
6580 char b
[BDEVNAME_SIZE
];
6581 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
6583 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
6584 } else if (rdev
->saved_raid_disk
!= raid_disk
)
6585 /* Cannot rely on bitmap to complete recovery */
6589 conf
->level
= mddev
->new_level
;
6590 if (conf
->level
== 6) {
6591 conf
->max_degraded
= 2;
6592 if (raid6_call
.xor_syndrome
)
6593 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6595 conf
->rmw_level
= PARITY_DISABLE_RMW
;
6597 conf
->max_degraded
= 1;
6598 conf
->rmw_level
= PARITY_ENABLE_RMW
;
6600 conf
->algorithm
= mddev
->new_layout
;
6601 conf
->reshape_progress
= mddev
->reshape_position
;
6602 if (conf
->reshape_progress
!= MaxSector
) {
6603 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
6604 conf
->prev_algo
= mddev
->layout
;
6606 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
6607 conf
->prev_algo
= conf
->algorithm
;
6610 conf
->min_nr_stripes
= NR_STRIPES
;
6611 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
6612 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
6613 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
6614 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
6616 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6617 mdname(mddev
), memory
);
6620 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
6621 mdname(mddev
), memory
);
6623 * Losing a stripe head costs more than the time to refill it,
6624 * it reduces the queue depth and so can hurt throughput.
6625 * So set it rather large, scaled by number of devices.
6627 conf
->shrinker
.seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
6628 conf
->shrinker
.scan_objects
= raid5_cache_scan
;
6629 conf
->shrinker
.count_objects
= raid5_cache_count
;
6630 conf
->shrinker
.batch
= 128;
6631 conf
->shrinker
.flags
= 0;
6632 register_shrinker(&conf
->shrinker
);
6634 sprintf(pers_name
, "raid%d", mddev
->new_level
);
6635 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
6636 if (!conf
->thread
) {
6638 "md/raid:%s: couldn't allocate thread.\n",
6648 return ERR_PTR(-EIO
);
6650 return ERR_PTR(-ENOMEM
);
6653 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
6656 case ALGORITHM_PARITY_0
:
6657 if (raid_disk
< max_degraded
)
6660 case ALGORITHM_PARITY_N
:
6661 if (raid_disk
>= raid_disks
- max_degraded
)
6664 case ALGORITHM_PARITY_0_6
:
6665 if (raid_disk
== 0 ||
6666 raid_disk
== raid_disks
- 1)
6669 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6670 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6671 case ALGORITHM_LEFT_SYMMETRIC_6
:
6672 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6673 if (raid_disk
== raid_disks
- 1)
6679 static int run(struct mddev
*mddev
)
6681 struct r5conf
*conf
;
6682 int working_disks
= 0;
6683 int dirty_parity_disks
= 0;
6684 struct md_rdev
*rdev
;
6685 struct md_rdev
*journal_dev
= NULL
;
6686 sector_t reshape_offset
= 0;
6688 long long min_offset_diff
= 0;
6691 if (mddev
->recovery_cp
!= MaxSector
)
6692 printk(KERN_NOTICE
"md/raid:%s: not clean"
6693 " -- starting background reconstruction\n",
6696 rdev_for_each(rdev
, mddev
) {
6699 if (test_bit(Journal
, &rdev
->flags
)) {
6703 if (rdev
->raid_disk
< 0)
6705 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
6707 min_offset_diff
= diff
;
6709 } else if (mddev
->reshape_backwards
&&
6710 diff
< min_offset_diff
)
6711 min_offset_diff
= diff
;
6712 else if (!mddev
->reshape_backwards
&&
6713 diff
> min_offset_diff
)
6714 min_offset_diff
= diff
;
6717 if (mddev
->reshape_position
!= MaxSector
) {
6718 /* Check that we can continue the reshape.
6719 * Difficulties arise if the stripe we would write to
6720 * next is at or after the stripe we would read from next.
6721 * For a reshape that changes the number of devices, this
6722 * is only possible for a very short time, and mdadm makes
6723 * sure that time appears to have past before assembling
6724 * the array. So we fail if that time hasn't passed.
6725 * For a reshape that keeps the number of devices the same
6726 * mdadm must be monitoring the reshape can keeping the
6727 * critical areas read-only and backed up. It will start
6728 * the array in read-only mode, so we check for that.
6730 sector_t here_new
, here_old
;
6732 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
6737 printk(KERN_ERR
"md/raid:%s: don't support reshape with journal - aborting.\n",
6742 if (mddev
->new_level
!= mddev
->level
) {
6743 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
6744 "required - aborting.\n",
6748 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
6749 /* reshape_position must be on a new-stripe boundary, and one
6750 * further up in new geometry must map after here in old
6752 * If the chunk sizes are different, then as we perform reshape
6753 * in units of the largest of the two, reshape_position needs
6754 * be a multiple of the largest chunk size times new data disks.
6756 here_new
= mddev
->reshape_position
;
6757 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
6758 new_data_disks
= mddev
->raid_disks
- max_degraded
;
6759 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
6760 printk(KERN_ERR
"md/raid:%s: reshape_position not "
6761 "on a stripe boundary\n", mdname(mddev
));
6764 reshape_offset
= here_new
* chunk_sectors
;
6765 /* here_new is the stripe we will write to */
6766 here_old
= mddev
->reshape_position
;
6767 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
6768 /* here_old is the first stripe that we might need to read
6770 if (mddev
->delta_disks
== 0) {
6771 /* We cannot be sure it is safe to start an in-place
6772 * reshape. It is only safe if user-space is monitoring
6773 * and taking constant backups.
6774 * mdadm always starts a situation like this in
6775 * readonly mode so it can take control before
6776 * allowing any writes. So just check for that.
6778 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
6779 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
6780 /* not really in-place - so OK */;
6781 else if (mddev
->ro
== 0) {
6782 printk(KERN_ERR
"md/raid:%s: in-place reshape "
6783 "must be started in read-only mode "
6788 } else if (mddev
->reshape_backwards
6789 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
6790 here_old
* chunk_sectors
)
6791 : (here_new
* chunk_sectors
>=
6792 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
6793 /* Reading from the same stripe as writing to - bad */
6794 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
6795 "auto-recovery - aborting.\n",
6799 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
6801 /* OK, we should be able to continue; */
6803 BUG_ON(mddev
->level
!= mddev
->new_level
);
6804 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
6805 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
6806 BUG_ON(mddev
->delta_disks
!= 0);
6809 if (mddev
->private == NULL
)
6810 conf
= setup_conf(mddev
);
6812 conf
= mddev
->private;
6815 return PTR_ERR(conf
);
6817 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) && !journal_dev
) {
6818 printk(KERN_ERR
"md/raid:%s: journal disk is missing, force array readonly\n",
6821 set_disk_ro(mddev
->gendisk
, 1);
6824 conf
->min_offset_diff
= min_offset_diff
;
6825 mddev
->thread
= conf
->thread
;
6826 conf
->thread
= NULL
;
6827 mddev
->private = conf
;
6829 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
6831 rdev
= conf
->disks
[i
].rdev
;
6832 if (!rdev
&& conf
->disks
[i
].replacement
) {
6833 /* The replacement is all we have yet */
6834 rdev
= conf
->disks
[i
].replacement
;
6835 conf
->disks
[i
].replacement
= NULL
;
6836 clear_bit(Replacement
, &rdev
->flags
);
6837 conf
->disks
[i
].rdev
= rdev
;
6841 if (conf
->disks
[i
].replacement
&&
6842 conf
->reshape_progress
!= MaxSector
) {
6843 /* replacements and reshape simply do not mix. */
6844 printk(KERN_ERR
"md: cannot handle concurrent "
6845 "replacement and reshape.\n");
6848 if (test_bit(In_sync
, &rdev
->flags
)) {
6852 /* This disc is not fully in-sync. However if it
6853 * just stored parity (beyond the recovery_offset),
6854 * when we don't need to be concerned about the
6855 * array being dirty.
6856 * When reshape goes 'backwards', we never have
6857 * partially completed devices, so we only need
6858 * to worry about reshape going forwards.
6860 /* Hack because v0.91 doesn't store recovery_offset properly. */
6861 if (mddev
->major_version
== 0 &&
6862 mddev
->minor_version
> 90)
6863 rdev
->recovery_offset
= reshape_offset
;
6865 if (rdev
->recovery_offset
< reshape_offset
) {
6866 /* We need to check old and new layout */
6867 if (!only_parity(rdev
->raid_disk
,
6870 conf
->max_degraded
))
6873 if (!only_parity(rdev
->raid_disk
,
6875 conf
->previous_raid_disks
,
6876 conf
->max_degraded
))
6878 dirty_parity_disks
++;
6882 * 0 for a fully functional array, 1 or 2 for a degraded array.
6884 mddev
->degraded
= calc_degraded(conf
);
6886 if (has_failed(conf
)) {
6887 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
6888 " (%d/%d failed)\n",
6889 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
6893 /* device size must be a multiple of chunk size */
6894 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
6895 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
6897 if (mddev
->degraded
> dirty_parity_disks
&&
6898 mddev
->recovery_cp
!= MaxSector
) {
6899 if (mddev
->ok_start_degraded
)
6901 "md/raid:%s: starting dirty degraded array"
6902 " - data corruption possible.\n",
6906 "md/raid:%s: cannot start dirty degraded array.\n",
6912 if (mddev
->degraded
== 0)
6913 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
6914 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
6915 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
6918 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
6919 " out of %d devices, algorithm %d\n",
6920 mdname(mddev
), conf
->level
,
6921 mddev
->raid_disks
- mddev
->degraded
,
6922 mddev
->raid_disks
, mddev
->new_layout
);
6924 print_raid5_conf(conf
);
6926 if (conf
->reshape_progress
!= MaxSector
) {
6927 conf
->reshape_safe
= conf
->reshape_progress
;
6928 atomic_set(&conf
->reshape_stripes
, 0);
6929 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
6930 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
6931 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
6932 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
6933 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
6937 /* Ok, everything is just fine now */
6938 if (mddev
->to_remove
== &raid5_attrs_group
)
6939 mddev
->to_remove
= NULL
;
6940 else if (mddev
->kobj
.sd
&&
6941 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
6943 "raid5: failed to create sysfs attributes for %s\n",
6945 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
6949 bool discard_supported
= true;
6950 /* read-ahead size must cover two whole stripes, which
6951 * is 2 * (datadisks) * chunksize where 'n' is the
6952 * number of raid devices
6954 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
6955 int stripe
= data_disks
*
6956 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
6957 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
6958 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
6960 chunk_size
= mddev
->chunk_sectors
<< 9;
6961 blk_queue_io_min(mddev
->queue
, chunk_size
);
6962 blk_queue_io_opt(mddev
->queue
, chunk_size
*
6963 (conf
->raid_disks
- conf
->max_degraded
));
6964 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
6966 * We can only discard a whole stripe. It doesn't make sense to
6967 * discard data disk but write parity disk
6969 stripe
= stripe
* PAGE_SIZE
;
6970 /* Round up to power of 2, as discard handling
6971 * currently assumes that */
6972 while ((stripe
-1) & stripe
)
6973 stripe
= (stripe
| (stripe
-1)) + 1;
6974 mddev
->queue
->limits
.discard_alignment
= stripe
;
6975 mddev
->queue
->limits
.discard_granularity
= stripe
;
6977 * unaligned part of discard request will be ignored, so can't
6978 * guarantee discard_zeroes_data
6980 mddev
->queue
->limits
.discard_zeroes_data
= 0;
6982 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
6984 rdev_for_each(rdev
, mddev
) {
6985 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6986 rdev
->data_offset
<< 9);
6987 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6988 rdev
->new_data_offset
<< 9);
6990 * discard_zeroes_data is required, otherwise data
6991 * could be lost. Consider a scenario: discard a stripe
6992 * (the stripe could be inconsistent if
6993 * discard_zeroes_data is 0); write one disk of the
6994 * stripe (the stripe could be inconsistent again
6995 * depending on which disks are used to calculate
6996 * parity); the disk is broken; The stripe data of this
6999 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
7000 !bdev_get_queue(rdev
->bdev
)->
7001 limits
.discard_zeroes_data
)
7002 discard_supported
= false;
7003 /* Unfortunately, discard_zeroes_data is not currently
7004 * a guarantee - just a hint. So we only allow DISCARD
7005 * if the sysadmin has confirmed that only safe devices
7006 * are in use by setting a module parameter.
7008 if (!devices_handle_discard_safely
) {
7009 if (discard_supported
) {
7010 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7011 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7013 discard_supported
= false;
7017 if (discard_supported
&&
7018 mddev
->queue
->limits
.max_discard_sectors
>= stripe
&&
7019 mddev
->queue
->limits
.discard_granularity
>= stripe
)
7020 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
7023 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
7028 char b
[BDEVNAME_SIZE
];
7030 printk(KERN_INFO
"md/raid:%s: using device %s as journal\n",
7031 mdname(mddev
), bdevname(journal_dev
->bdev
, b
));
7032 r5l_init_log(conf
, journal_dev
);
7037 md_unregister_thread(&mddev
->thread
);
7038 print_raid5_conf(conf
);
7040 mddev
->private = NULL
;
7041 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
7045 static void raid5_free(struct mddev
*mddev
, void *priv
)
7047 struct r5conf
*conf
= priv
;
7050 mddev
->to_remove
= &raid5_attrs_group
;
7053 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
7055 struct r5conf
*conf
= mddev
->private;
7058 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
7059 conf
->chunk_sectors
/ 2, mddev
->layout
);
7060 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
7061 for (i
= 0; i
< conf
->raid_disks
; i
++)
7062 seq_printf (seq
, "%s",
7063 conf
->disks
[i
].rdev
&&
7064 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
7065 seq_printf (seq
, "]");
7068 static void print_raid5_conf (struct r5conf
*conf
)
7071 struct disk_info
*tmp
;
7073 printk(KERN_DEBUG
"RAID conf printout:\n");
7075 printk("(conf==NULL)\n");
7078 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
7080 conf
->raid_disks
- conf
->mddev
->degraded
);
7082 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7083 char b
[BDEVNAME_SIZE
];
7084 tmp
= conf
->disks
+ i
;
7086 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
7087 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
7088 bdevname(tmp
->rdev
->bdev
, b
));
7092 static int raid5_spare_active(struct mddev
*mddev
)
7095 struct r5conf
*conf
= mddev
->private;
7096 struct disk_info
*tmp
;
7098 unsigned long flags
;
7100 for (i
= 0; i
< conf
->raid_disks
; i
++) {
7101 tmp
= conf
->disks
+ i
;
7102 if (tmp
->replacement
7103 && tmp
->replacement
->recovery_offset
== MaxSector
7104 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
7105 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
7106 /* Replacement has just become active. */
7108 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
7111 /* Replaced device not technically faulty,
7112 * but we need to be sure it gets removed
7113 * and never re-added.
7115 set_bit(Faulty
, &tmp
->rdev
->flags
);
7116 sysfs_notify_dirent_safe(
7117 tmp
->rdev
->sysfs_state
);
7119 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
7120 } else if (tmp
->rdev
7121 && tmp
->rdev
->recovery_offset
== MaxSector
7122 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
7123 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
7125 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
7128 spin_lock_irqsave(&conf
->device_lock
, flags
);
7129 mddev
->degraded
= calc_degraded(conf
);
7130 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7131 print_raid5_conf(conf
);
7135 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7137 struct r5conf
*conf
= mddev
->private;
7139 int number
= rdev
->raid_disk
;
7140 struct md_rdev
**rdevp
;
7141 struct disk_info
*p
= conf
->disks
+ number
;
7143 print_raid5_conf(conf
);
7144 if (test_bit(Journal
, &rdev
->flags
)) {
7146 * journal disk is not removable, but we need give a chance to
7147 * update superblock of other disks. Otherwise journal disk
7148 * will be considered as 'fresh'
7150 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7153 if (rdev
== p
->rdev
)
7155 else if (rdev
== p
->replacement
)
7156 rdevp
= &p
->replacement
;
7160 if (number
>= conf
->raid_disks
&&
7161 conf
->reshape_progress
== MaxSector
)
7162 clear_bit(In_sync
, &rdev
->flags
);
7164 if (test_bit(In_sync
, &rdev
->flags
) ||
7165 atomic_read(&rdev
->nr_pending
)) {
7169 /* Only remove non-faulty devices if recovery
7172 if (!test_bit(Faulty
, &rdev
->flags
) &&
7173 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
7174 !has_failed(conf
) &&
7175 (!p
->replacement
|| p
->replacement
== rdev
) &&
7176 number
< conf
->raid_disks
) {
7182 if (atomic_read(&rdev
->nr_pending
)) {
7183 /* lost the race, try later */
7186 } else if (p
->replacement
) {
7187 /* We must have just cleared 'rdev' */
7188 p
->rdev
= p
->replacement
;
7189 clear_bit(Replacement
, &p
->replacement
->flags
);
7190 smp_mb(); /* Make sure other CPUs may see both as identical
7191 * but will never see neither - if they are careful
7193 p
->replacement
= NULL
;
7194 clear_bit(WantReplacement
, &rdev
->flags
);
7196 /* We might have just removed the Replacement as faulty-
7197 * clear the bit just in case
7199 clear_bit(WantReplacement
, &rdev
->flags
);
7202 print_raid5_conf(conf
);
7206 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
7208 struct r5conf
*conf
= mddev
->private;
7211 struct disk_info
*p
;
7213 int last
= conf
->raid_disks
- 1;
7215 if (test_bit(Journal
, &rdev
->flags
))
7217 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
7220 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
7221 /* no point adding a device */
7224 if (rdev
->raid_disk
>= 0)
7225 first
= last
= rdev
->raid_disk
;
7228 * find the disk ... but prefer rdev->saved_raid_disk
7231 if (rdev
->saved_raid_disk
>= 0 &&
7232 rdev
->saved_raid_disk
>= first
&&
7233 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
7234 first
= rdev
->saved_raid_disk
;
7236 for (disk
= first
; disk
<= last
; disk
++) {
7237 p
= conf
->disks
+ disk
;
7238 if (p
->rdev
== NULL
) {
7239 clear_bit(In_sync
, &rdev
->flags
);
7240 rdev
->raid_disk
= disk
;
7242 if (rdev
->saved_raid_disk
!= disk
)
7244 rcu_assign_pointer(p
->rdev
, rdev
);
7248 for (disk
= first
; disk
<= last
; disk
++) {
7249 p
= conf
->disks
+ disk
;
7250 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
7251 p
->replacement
== NULL
) {
7252 clear_bit(In_sync
, &rdev
->flags
);
7253 set_bit(Replacement
, &rdev
->flags
);
7254 rdev
->raid_disk
= disk
;
7257 rcu_assign_pointer(p
->replacement
, rdev
);
7262 print_raid5_conf(conf
);
7266 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
7268 /* no resync is happening, and there is enough space
7269 * on all devices, so we can resize.
7270 * We need to make sure resync covers any new space.
7271 * If the array is shrinking we should possibly wait until
7272 * any io in the removed space completes, but it hardly seems
7276 struct r5conf
*conf
= mddev
->private;
7280 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7281 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
7282 if (mddev
->external_size
&&
7283 mddev
->array_sectors
> newsize
)
7285 if (mddev
->bitmap
) {
7286 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
7290 md_set_array_sectors(mddev
, newsize
);
7291 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7292 revalidate_disk(mddev
->gendisk
);
7293 if (sectors
> mddev
->dev_sectors
&&
7294 mddev
->recovery_cp
> mddev
->dev_sectors
) {
7295 mddev
->recovery_cp
= mddev
->dev_sectors
;
7296 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7298 mddev
->dev_sectors
= sectors
;
7299 mddev
->resync_max_sectors
= sectors
;
7303 static int check_stripe_cache(struct mddev
*mddev
)
7305 /* Can only proceed if there are plenty of stripe_heads.
7306 * We need a minimum of one full stripe,, and for sensible progress
7307 * it is best to have about 4 times that.
7308 * If we require 4 times, then the default 256 4K stripe_heads will
7309 * allow for chunk sizes up to 256K, which is probably OK.
7310 * If the chunk size is greater, user-space should request more
7311 * stripe_heads first.
7313 struct r5conf
*conf
= mddev
->private;
7314 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7315 > conf
->min_nr_stripes
||
7316 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
7317 > conf
->min_nr_stripes
) {
7318 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7320 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
7327 static int check_reshape(struct mddev
*mddev
)
7329 struct r5conf
*conf
= mddev
->private;
7333 if (mddev
->delta_disks
== 0 &&
7334 mddev
->new_layout
== mddev
->layout
&&
7335 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
7336 return 0; /* nothing to do */
7337 if (has_failed(conf
))
7339 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
7340 /* We might be able to shrink, but the devices must
7341 * be made bigger first.
7342 * For raid6, 4 is the minimum size.
7343 * Otherwise 2 is the minimum
7346 if (mddev
->level
== 6)
7348 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
7352 if (!check_stripe_cache(mddev
))
7355 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
7356 mddev
->delta_disks
> 0)
7357 if (resize_chunks(conf
,
7358 conf
->previous_raid_disks
7359 + max(0, mddev
->delta_disks
),
7360 max(mddev
->new_chunk_sectors
,
7361 mddev
->chunk_sectors
)
7364 return resize_stripes(conf
, (conf
->previous_raid_disks
7365 + mddev
->delta_disks
));
7368 static int raid5_start_reshape(struct mddev
*mddev
)
7370 struct r5conf
*conf
= mddev
->private;
7371 struct md_rdev
*rdev
;
7373 unsigned long flags
;
7375 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
7378 if (!check_stripe_cache(mddev
))
7381 if (has_failed(conf
))
7384 rdev_for_each(rdev
, mddev
) {
7385 if (!test_bit(In_sync
, &rdev
->flags
)
7386 && !test_bit(Faulty
, &rdev
->flags
))
7390 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
7391 /* Not enough devices even to make a degraded array
7396 /* Refuse to reduce size of the array. Any reductions in
7397 * array size must be through explicit setting of array_size
7400 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
7401 < mddev
->array_sectors
) {
7402 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
7403 "before number of disks\n", mdname(mddev
));
7407 atomic_set(&conf
->reshape_stripes
, 0);
7408 spin_lock_irq(&conf
->device_lock
);
7409 write_seqcount_begin(&conf
->gen_lock
);
7410 conf
->previous_raid_disks
= conf
->raid_disks
;
7411 conf
->raid_disks
+= mddev
->delta_disks
;
7412 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7413 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7414 conf
->prev_algo
= conf
->algorithm
;
7415 conf
->algorithm
= mddev
->new_layout
;
7417 /* Code that selects data_offset needs to see the generation update
7418 * if reshape_progress has been set - so a memory barrier needed.
7421 if (mddev
->reshape_backwards
)
7422 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
7424 conf
->reshape_progress
= 0;
7425 conf
->reshape_safe
= conf
->reshape_progress
;
7426 write_seqcount_end(&conf
->gen_lock
);
7427 spin_unlock_irq(&conf
->device_lock
);
7429 /* Now make sure any requests that proceeded on the assumption
7430 * the reshape wasn't running - like Discard or Read - have
7433 mddev_suspend(mddev
);
7434 mddev_resume(mddev
);
7436 /* Add some new drives, as many as will fit.
7437 * We know there are enough to make the newly sized array work.
7438 * Don't add devices if we are reducing the number of
7439 * devices in the array. This is because it is not possible
7440 * to correctly record the "partially reconstructed" state of
7441 * such devices during the reshape and confusion could result.
7443 if (mddev
->delta_disks
>= 0) {
7444 rdev_for_each(rdev
, mddev
)
7445 if (rdev
->raid_disk
< 0 &&
7446 !test_bit(Faulty
, &rdev
->flags
)) {
7447 if (raid5_add_disk(mddev
, rdev
) == 0) {
7449 >= conf
->previous_raid_disks
)
7450 set_bit(In_sync
, &rdev
->flags
);
7452 rdev
->recovery_offset
= 0;
7454 if (sysfs_link_rdev(mddev
, rdev
))
7455 /* Failure here is OK */;
7457 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
7458 && !test_bit(Faulty
, &rdev
->flags
)) {
7459 /* This is a spare that was manually added */
7460 set_bit(In_sync
, &rdev
->flags
);
7463 /* When a reshape changes the number of devices,
7464 * ->degraded is measured against the larger of the
7465 * pre and post number of devices.
7467 spin_lock_irqsave(&conf
->device_lock
, flags
);
7468 mddev
->degraded
= calc_degraded(conf
);
7469 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
7471 mddev
->raid_disks
= conf
->raid_disks
;
7472 mddev
->reshape_position
= conf
->reshape_progress
;
7473 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7475 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7476 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7477 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7478 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7479 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7480 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
7482 if (!mddev
->sync_thread
) {
7483 mddev
->recovery
= 0;
7484 spin_lock_irq(&conf
->device_lock
);
7485 write_seqcount_begin(&conf
->gen_lock
);
7486 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
7487 mddev
->new_chunk_sectors
=
7488 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
7489 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
7490 rdev_for_each(rdev
, mddev
)
7491 rdev
->new_data_offset
= rdev
->data_offset
;
7493 conf
->generation
--;
7494 conf
->reshape_progress
= MaxSector
;
7495 mddev
->reshape_position
= MaxSector
;
7496 write_seqcount_end(&conf
->gen_lock
);
7497 spin_unlock_irq(&conf
->device_lock
);
7500 conf
->reshape_checkpoint
= jiffies
;
7501 md_wakeup_thread(mddev
->sync_thread
);
7502 md_new_event(mddev
);
7506 /* This is called from the reshape thread and should make any
7507 * changes needed in 'conf'
7509 static void end_reshape(struct r5conf
*conf
)
7512 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
7513 struct md_rdev
*rdev
;
7515 spin_lock_irq(&conf
->device_lock
);
7516 conf
->previous_raid_disks
= conf
->raid_disks
;
7517 rdev_for_each(rdev
, conf
->mddev
)
7518 rdev
->data_offset
= rdev
->new_data_offset
;
7520 conf
->reshape_progress
= MaxSector
;
7521 conf
->mddev
->reshape_position
= MaxSector
;
7522 spin_unlock_irq(&conf
->device_lock
);
7523 wake_up(&conf
->wait_for_overlap
);
7525 /* read-ahead size must cover two whole stripes, which is
7526 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7528 if (conf
->mddev
->queue
) {
7529 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
7530 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
7532 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
7533 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
7538 /* This is called from the raid5d thread with mddev_lock held.
7539 * It makes config changes to the device.
7541 static void raid5_finish_reshape(struct mddev
*mddev
)
7543 struct r5conf
*conf
= mddev
->private;
7545 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7547 if (mddev
->delta_disks
> 0) {
7548 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
7549 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
7550 revalidate_disk(mddev
->gendisk
);
7553 spin_lock_irq(&conf
->device_lock
);
7554 mddev
->degraded
= calc_degraded(conf
);
7555 spin_unlock_irq(&conf
->device_lock
);
7556 for (d
= conf
->raid_disks
;
7557 d
< conf
->raid_disks
- mddev
->delta_disks
;
7559 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
7561 clear_bit(In_sync
, &rdev
->flags
);
7562 rdev
= conf
->disks
[d
].replacement
;
7564 clear_bit(In_sync
, &rdev
->flags
);
7567 mddev
->layout
= conf
->algorithm
;
7568 mddev
->chunk_sectors
= conf
->chunk_sectors
;
7569 mddev
->reshape_position
= MaxSector
;
7570 mddev
->delta_disks
= 0;
7571 mddev
->reshape_backwards
= 0;
7575 static void raid5_quiesce(struct mddev
*mddev
, int state
)
7577 struct r5conf
*conf
= mddev
->private;
7580 case 2: /* resume for a suspend */
7581 wake_up(&conf
->wait_for_overlap
);
7584 case 1: /* stop all writes */
7585 lock_all_device_hash_locks_irq(conf
);
7586 /* '2' tells resync/reshape to pause so that all
7587 * active stripes can drain
7590 wait_event_cmd(conf
->wait_for_quiescent
,
7591 atomic_read(&conf
->active_stripes
) == 0 &&
7592 atomic_read(&conf
->active_aligned_reads
) == 0,
7593 unlock_all_device_hash_locks_irq(conf
),
7594 lock_all_device_hash_locks_irq(conf
));
7596 unlock_all_device_hash_locks_irq(conf
);
7597 /* allow reshape to continue */
7598 wake_up(&conf
->wait_for_overlap
);
7601 case 0: /* re-enable writes */
7602 lock_all_device_hash_locks_irq(conf
);
7604 wake_up(&conf
->wait_for_quiescent
);
7605 wake_up(&conf
->wait_for_overlap
);
7606 unlock_all_device_hash_locks_irq(conf
);
7609 r5l_quiesce(conf
->log
, state
);
7612 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
7614 struct r0conf
*raid0_conf
= mddev
->private;
7617 /* for raid0 takeover only one zone is supported */
7618 if (raid0_conf
->nr_strip_zones
> 1) {
7619 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7621 return ERR_PTR(-EINVAL
);
7624 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
7625 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
7626 mddev
->dev_sectors
= sectors
;
7627 mddev
->new_level
= level
;
7628 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7629 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
7630 mddev
->raid_disks
+= 1;
7631 mddev
->delta_disks
= 1;
7632 /* make sure it will be not marked as dirty */
7633 mddev
->recovery_cp
= MaxSector
;
7635 return setup_conf(mddev
);
7638 static void *raid5_takeover_raid1(struct mddev
*mddev
)
7642 if (mddev
->raid_disks
!= 2 ||
7643 mddev
->degraded
> 1)
7644 return ERR_PTR(-EINVAL
);
7646 /* Should check if there are write-behind devices? */
7648 chunksect
= 64*2; /* 64K by default */
7650 /* The array must be an exact multiple of chunksize */
7651 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
7654 if ((chunksect
<<9) < STRIPE_SIZE
)
7655 /* array size does not allow a suitable chunk size */
7656 return ERR_PTR(-EINVAL
);
7658 mddev
->new_level
= 5;
7659 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7660 mddev
->new_chunk_sectors
= chunksect
;
7662 return setup_conf(mddev
);
7665 static void *raid5_takeover_raid6(struct mddev
*mddev
)
7669 switch (mddev
->layout
) {
7670 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7671 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
7673 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7674 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
7676 case ALGORITHM_LEFT_SYMMETRIC_6
:
7677 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
7679 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7680 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
7682 case ALGORITHM_PARITY_0_6
:
7683 new_layout
= ALGORITHM_PARITY_0
;
7685 case ALGORITHM_PARITY_N
:
7686 new_layout
= ALGORITHM_PARITY_N
;
7689 return ERR_PTR(-EINVAL
);
7691 mddev
->new_level
= 5;
7692 mddev
->new_layout
= new_layout
;
7693 mddev
->delta_disks
= -1;
7694 mddev
->raid_disks
-= 1;
7695 return setup_conf(mddev
);
7698 static int raid5_check_reshape(struct mddev
*mddev
)
7700 /* For a 2-drive array, the layout and chunk size can be changed
7701 * immediately as not restriping is needed.
7702 * For larger arrays we record the new value - after validation
7703 * to be used by a reshape pass.
7705 struct r5conf
*conf
= mddev
->private;
7706 int new_chunk
= mddev
->new_chunk_sectors
;
7708 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
7710 if (new_chunk
> 0) {
7711 if (!is_power_of_2(new_chunk
))
7713 if (new_chunk
< (PAGE_SIZE
>>9))
7715 if (mddev
->array_sectors
& (new_chunk
-1))
7716 /* not factor of array size */
7720 /* They look valid */
7722 if (mddev
->raid_disks
== 2) {
7723 /* can make the change immediately */
7724 if (mddev
->new_layout
>= 0) {
7725 conf
->algorithm
= mddev
->new_layout
;
7726 mddev
->layout
= mddev
->new_layout
;
7728 if (new_chunk
> 0) {
7729 conf
->chunk_sectors
= new_chunk
;
7730 mddev
->chunk_sectors
= new_chunk
;
7732 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7733 md_wakeup_thread(mddev
->thread
);
7735 return check_reshape(mddev
);
7738 static int raid6_check_reshape(struct mddev
*mddev
)
7740 int new_chunk
= mddev
->new_chunk_sectors
;
7742 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
7744 if (new_chunk
> 0) {
7745 if (!is_power_of_2(new_chunk
))
7747 if (new_chunk
< (PAGE_SIZE
>> 9))
7749 if (mddev
->array_sectors
& (new_chunk
-1))
7750 /* not factor of array size */
7754 /* They look valid */
7755 return check_reshape(mddev
);
7758 static void *raid5_takeover(struct mddev
*mddev
)
7760 /* raid5 can take over:
7761 * raid0 - if there is only one strip zone - make it a raid4 layout
7762 * raid1 - if there are two drives. We need to know the chunk size
7763 * raid4 - trivial - just use a raid4 layout.
7764 * raid6 - Providing it is a *_6 layout
7766 if (mddev
->level
== 0)
7767 return raid45_takeover_raid0(mddev
, 5);
7768 if (mddev
->level
== 1)
7769 return raid5_takeover_raid1(mddev
);
7770 if (mddev
->level
== 4) {
7771 mddev
->new_layout
= ALGORITHM_PARITY_N
;
7772 mddev
->new_level
= 5;
7773 return setup_conf(mddev
);
7775 if (mddev
->level
== 6)
7776 return raid5_takeover_raid6(mddev
);
7778 return ERR_PTR(-EINVAL
);
7781 static void *raid4_takeover(struct mddev
*mddev
)
7783 /* raid4 can take over:
7784 * raid0 - if there is only one strip zone
7785 * raid5 - if layout is right
7787 if (mddev
->level
== 0)
7788 return raid45_takeover_raid0(mddev
, 4);
7789 if (mddev
->level
== 5 &&
7790 mddev
->layout
== ALGORITHM_PARITY_N
) {
7791 mddev
->new_layout
= 0;
7792 mddev
->new_level
= 4;
7793 return setup_conf(mddev
);
7795 return ERR_PTR(-EINVAL
);
7798 static struct md_personality raid5_personality
;
7800 static void *raid6_takeover(struct mddev
*mddev
)
7802 /* Currently can only take over a raid5. We map the
7803 * personality to an equivalent raid6 personality
7804 * with the Q block at the end.
7808 if (mddev
->pers
!= &raid5_personality
)
7809 return ERR_PTR(-EINVAL
);
7810 if (mddev
->degraded
> 1)
7811 return ERR_PTR(-EINVAL
);
7812 if (mddev
->raid_disks
> 253)
7813 return ERR_PTR(-EINVAL
);
7814 if (mddev
->raid_disks
< 3)
7815 return ERR_PTR(-EINVAL
);
7817 switch (mddev
->layout
) {
7818 case ALGORITHM_LEFT_ASYMMETRIC
:
7819 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
7821 case ALGORITHM_RIGHT_ASYMMETRIC
:
7822 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
7824 case ALGORITHM_LEFT_SYMMETRIC
:
7825 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
7827 case ALGORITHM_RIGHT_SYMMETRIC
:
7828 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
7830 case ALGORITHM_PARITY_0
:
7831 new_layout
= ALGORITHM_PARITY_0_6
;
7833 case ALGORITHM_PARITY_N
:
7834 new_layout
= ALGORITHM_PARITY_N
;
7837 return ERR_PTR(-EINVAL
);
7839 mddev
->new_level
= 6;
7840 mddev
->new_layout
= new_layout
;
7841 mddev
->delta_disks
= 1;
7842 mddev
->raid_disks
+= 1;
7843 return setup_conf(mddev
);
7846 static struct md_personality raid6_personality
=
7850 .owner
= THIS_MODULE
,
7851 .make_request
= make_request
,
7855 .error_handler
= error
,
7856 .hot_add_disk
= raid5_add_disk
,
7857 .hot_remove_disk
= raid5_remove_disk
,
7858 .spare_active
= raid5_spare_active
,
7859 .sync_request
= sync_request
,
7860 .resize
= raid5_resize
,
7862 .check_reshape
= raid6_check_reshape
,
7863 .start_reshape
= raid5_start_reshape
,
7864 .finish_reshape
= raid5_finish_reshape
,
7865 .quiesce
= raid5_quiesce
,
7866 .takeover
= raid6_takeover
,
7867 .congested
= raid5_congested
,
7869 static struct md_personality raid5_personality
=
7873 .owner
= THIS_MODULE
,
7874 .make_request
= make_request
,
7878 .error_handler
= error
,
7879 .hot_add_disk
= raid5_add_disk
,
7880 .hot_remove_disk
= raid5_remove_disk
,
7881 .spare_active
= raid5_spare_active
,
7882 .sync_request
= sync_request
,
7883 .resize
= raid5_resize
,
7885 .check_reshape
= raid5_check_reshape
,
7886 .start_reshape
= raid5_start_reshape
,
7887 .finish_reshape
= raid5_finish_reshape
,
7888 .quiesce
= raid5_quiesce
,
7889 .takeover
= raid5_takeover
,
7890 .congested
= raid5_congested
,
7893 static struct md_personality raid4_personality
=
7897 .owner
= THIS_MODULE
,
7898 .make_request
= make_request
,
7902 .error_handler
= error
,
7903 .hot_add_disk
= raid5_add_disk
,
7904 .hot_remove_disk
= raid5_remove_disk
,
7905 .spare_active
= raid5_spare_active
,
7906 .sync_request
= sync_request
,
7907 .resize
= raid5_resize
,
7909 .check_reshape
= raid5_check_reshape
,
7910 .start_reshape
= raid5_start_reshape
,
7911 .finish_reshape
= raid5_finish_reshape
,
7912 .quiesce
= raid5_quiesce
,
7913 .takeover
= raid4_takeover
,
7914 .congested
= raid5_congested
,
7917 static int __init
raid5_init(void)
7919 raid5_wq
= alloc_workqueue("raid5wq",
7920 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
7923 register_md_personality(&raid6_personality
);
7924 register_md_personality(&raid5_personality
);
7925 register_md_personality(&raid4_personality
);
7929 static void raid5_exit(void)
7931 unregister_md_personality(&raid6_personality
);
7932 unregister_md_personality(&raid5_personality
);
7933 unregister_md_personality(&raid4_personality
);
7934 destroy_workqueue(raid5_wq
);
7937 module_init(raid5_init
);
7938 module_exit(raid5_exit
);
7939 MODULE_LICENSE("GPL");
7940 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7941 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7942 MODULE_ALIAS("md-raid5");
7943 MODULE_ALIAS("md-raid4");
7944 MODULE_ALIAS("md-level-5");
7945 MODULE_ALIAS("md-level-4");
7946 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7947 MODULE_ALIAS("md-raid6");
7948 MODULE_ALIAS("md-level-6");
7950 /* This used to be two separate modules, they were: */
7951 MODULE_ALIAS("raid5");
7952 MODULE_ALIAS("raid6");