posix-clock: Fix return code on the poll method's error path
[linux/fpc-iii.git] / drivers / media / rc / rc-main.c
blob3f0f71adabb4dbba061ef57e1f798ca0e9187c77
1 /* rc-main.c - Remote Controller core module
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/leds.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include "rc-core-priv.h"
26 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
27 #define IR_TAB_MIN_SIZE 256
28 #define IR_TAB_MAX_SIZE 8192
29 #define RC_DEV_MAX 256
31 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
32 #define IR_KEYPRESS_TIMEOUT 250
34 /* Used to keep track of known keymaps */
35 static LIST_HEAD(rc_map_list);
36 static DEFINE_SPINLOCK(rc_map_lock);
37 static struct led_trigger *led_feedback;
39 /* Used to keep track of rc devices */
40 static DEFINE_IDA(rc_ida);
42 static struct rc_map_list *seek_rc_map(const char *name)
44 struct rc_map_list *map = NULL;
46 spin_lock(&rc_map_lock);
47 list_for_each_entry(map, &rc_map_list, list) {
48 if (!strcmp(name, map->map.name)) {
49 spin_unlock(&rc_map_lock);
50 return map;
53 spin_unlock(&rc_map_lock);
55 return NULL;
58 struct rc_map *rc_map_get(const char *name)
61 struct rc_map_list *map;
63 map = seek_rc_map(name);
64 #ifdef MODULE
65 if (!map) {
66 int rc = request_module("%s", name);
67 if (rc < 0) {
68 printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
69 return NULL;
71 msleep(20); /* Give some time for IR to register */
73 map = seek_rc_map(name);
75 #endif
76 if (!map) {
77 printk(KERN_ERR "IR keymap %s not found\n", name);
78 return NULL;
81 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
83 return &map->map;
85 EXPORT_SYMBOL_GPL(rc_map_get);
87 int rc_map_register(struct rc_map_list *map)
89 spin_lock(&rc_map_lock);
90 list_add_tail(&map->list, &rc_map_list);
91 spin_unlock(&rc_map_lock);
92 return 0;
94 EXPORT_SYMBOL_GPL(rc_map_register);
96 void rc_map_unregister(struct rc_map_list *map)
98 spin_lock(&rc_map_lock);
99 list_del(&map->list);
100 spin_unlock(&rc_map_lock);
102 EXPORT_SYMBOL_GPL(rc_map_unregister);
105 static struct rc_map_table empty[] = {
106 { 0x2a, KEY_COFFEE },
109 static struct rc_map_list empty_map = {
110 .map = {
111 .scan = empty,
112 .size = ARRAY_SIZE(empty),
113 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
114 .name = RC_MAP_EMPTY,
119 * ir_create_table() - initializes a scancode table
120 * @rc_map: the rc_map to initialize
121 * @name: name to assign to the table
122 * @rc_type: ir type to assign to the new table
123 * @size: initial size of the table
124 * @return: zero on success or a negative error code
126 * This routine will initialize the rc_map and will allocate
127 * memory to hold at least the specified number of elements.
129 static int ir_create_table(struct rc_map *rc_map,
130 const char *name, u64 rc_type, size_t size)
132 rc_map->name = name;
133 rc_map->rc_type = rc_type;
134 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
135 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
136 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
137 if (!rc_map->scan)
138 return -ENOMEM;
140 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
141 rc_map->size, rc_map->alloc);
142 return 0;
146 * ir_free_table() - frees memory allocated by a scancode table
147 * @rc_map: the table whose mappings need to be freed
149 * This routine will free memory alloctaed for key mappings used by given
150 * scancode table.
152 static void ir_free_table(struct rc_map *rc_map)
154 rc_map->size = 0;
155 kfree(rc_map->scan);
156 rc_map->scan = NULL;
160 * ir_resize_table() - resizes a scancode table if necessary
161 * @rc_map: the rc_map to resize
162 * @gfp_flags: gfp flags to use when allocating memory
163 * @return: zero on success or a negative error code
165 * This routine will shrink the rc_map if it has lots of
166 * unused entries and grow it if it is full.
168 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
170 unsigned int oldalloc = rc_map->alloc;
171 unsigned int newalloc = oldalloc;
172 struct rc_map_table *oldscan = rc_map->scan;
173 struct rc_map_table *newscan;
175 if (rc_map->size == rc_map->len) {
176 /* All entries in use -> grow keytable */
177 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
178 return -ENOMEM;
180 newalloc *= 2;
181 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
184 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
185 /* Less than 1/3 of entries in use -> shrink keytable */
186 newalloc /= 2;
187 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
190 if (newalloc == oldalloc)
191 return 0;
193 newscan = kmalloc(newalloc, gfp_flags);
194 if (!newscan) {
195 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
196 return -ENOMEM;
199 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
200 rc_map->scan = newscan;
201 rc_map->alloc = newalloc;
202 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
203 kfree(oldscan);
204 return 0;
208 * ir_update_mapping() - set a keycode in the scancode->keycode table
209 * @dev: the struct rc_dev device descriptor
210 * @rc_map: scancode table to be adjusted
211 * @index: index of the mapping that needs to be updated
212 * @keycode: the desired keycode
213 * @return: previous keycode assigned to the mapping
215 * This routine is used to update scancode->keycode mapping at given
216 * position.
218 static unsigned int ir_update_mapping(struct rc_dev *dev,
219 struct rc_map *rc_map,
220 unsigned int index,
221 unsigned int new_keycode)
223 int old_keycode = rc_map->scan[index].keycode;
224 int i;
226 /* Did the user wish to remove the mapping? */
227 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
228 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
229 index, rc_map->scan[index].scancode);
230 rc_map->len--;
231 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
232 (rc_map->len - index) * sizeof(struct rc_map_table));
233 } else {
234 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
235 index,
236 old_keycode == KEY_RESERVED ? "New" : "Replacing",
237 rc_map->scan[index].scancode, new_keycode);
238 rc_map->scan[index].keycode = new_keycode;
239 __set_bit(new_keycode, dev->input_dev->keybit);
242 if (old_keycode != KEY_RESERVED) {
243 /* A previous mapping was updated... */
244 __clear_bit(old_keycode, dev->input_dev->keybit);
245 /* ... but another scancode might use the same keycode */
246 for (i = 0; i < rc_map->len; i++) {
247 if (rc_map->scan[i].keycode == old_keycode) {
248 __set_bit(old_keycode, dev->input_dev->keybit);
249 break;
253 /* Possibly shrink the keytable, failure is not a problem */
254 ir_resize_table(rc_map, GFP_ATOMIC);
257 return old_keycode;
261 * ir_establish_scancode() - set a keycode in the scancode->keycode table
262 * @dev: the struct rc_dev device descriptor
263 * @rc_map: scancode table to be searched
264 * @scancode: the desired scancode
265 * @resize: controls whether we allowed to resize the table to
266 * accommodate not yet present scancodes
267 * @return: index of the mapping containing scancode in question
268 * or -1U in case of failure.
270 * This routine is used to locate given scancode in rc_map.
271 * If scancode is not yet present the routine will allocate a new slot
272 * for it.
274 static unsigned int ir_establish_scancode(struct rc_dev *dev,
275 struct rc_map *rc_map,
276 unsigned int scancode,
277 bool resize)
279 unsigned int i;
282 * Unfortunately, some hardware-based IR decoders don't provide
283 * all bits for the complete IR code. In general, they provide only
284 * the command part of the IR code. Yet, as it is possible to replace
285 * the provided IR with another one, it is needed to allow loading
286 * IR tables from other remotes. So, we support specifying a mask to
287 * indicate the valid bits of the scancodes.
289 if (dev->scancode_mask)
290 scancode &= dev->scancode_mask;
292 /* First check if we already have a mapping for this ir command */
293 for (i = 0; i < rc_map->len; i++) {
294 if (rc_map->scan[i].scancode == scancode)
295 return i;
297 /* Keytable is sorted from lowest to highest scancode */
298 if (rc_map->scan[i].scancode >= scancode)
299 break;
302 /* No previous mapping found, we might need to grow the table */
303 if (rc_map->size == rc_map->len) {
304 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
305 return -1U;
308 /* i is the proper index to insert our new keycode */
309 if (i < rc_map->len)
310 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
311 (rc_map->len - i) * sizeof(struct rc_map_table));
312 rc_map->scan[i].scancode = scancode;
313 rc_map->scan[i].keycode = KEY_RESERVED;
314 rc_map->len++;
316 return i;
320 * ir_setkeycode() - set a keycode in the scancode->keycode table
321 * @idev: the struct input_dev device descriptor
322 * @scancode: the desired scancode
323 * @keycode: result
324 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
326 * This routine is used to handle evdev EVIOCSKEY ioctl.
328 static int ir_setkeycode(struct input_dev *idev,
329 const struct input_keymap_entry *ke,
330 unsigned int *old_keycode)
332 struct rc_dev *rdev = input_get_drvdata(idev);
333 struct rc_map *rc_map = &rdev->rc_map;
334 unsigned int index;
335 unsigned int scancode;
336 int retval = 0;
337 unsigned long flags;
339 spin_lock_irqsave(&rc_map->lock, flags);
341 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
342 index = ke->index;
343 if (index >= rc_map->len) {
344 retval = -EINVAL;
345 goto out;
347 } else {
348 retval = input_scancode_to_scalar(ke, &scancode);
349 if (retval)
350 goto out;
352 index = ir_establish_scancode(rdev, rc_map, scancode, true);
353 if (index >= rc_map->len) {
354 retval = -ENOMEM;
355 goto out;
359 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
361 out:
362 spin_unlock_irqrestore(&rc_map->lock, flags);
363 return retval;
367 * ir_setkeytable() - sets several entries in the scancode->keycode table
368 * @dev: the struct rc_dev device descriptor
369 * @to: the struct rc_map to copy entries to
370 * @from: the struct rc_map to copy entries from
371 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
373 * This routine is used to handle table initialization.
375 static int ir_setkeytable(struct rc_dev *dev,
376 const struct rc_map *from)
378 struct rc_map *rc_map = &dev->rc_map;
379 unsigned int i, index;
380 int rc;
382 rc = ir_create_table(rc_map, from->name,
383 from->rc_type, from->size);
384 if (rc)
385 return rc;
387 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
388 rc_map->size, rc_map->alloc);
390 for (i = 0; i < from->size; i++) {
391 index = ir_establish_scancode(dev, rc_map,
392 from->scan[i].scancode, false);
393 if (index >= rc_map->len) {
394 rc = -ENOMEM;
395 break;
398 ir_update_mapping(dev, rc_map, index,
399 from->scan[i].keycode);
402 if (rc)
403 ir_free_table(rc_map);
405 return rc;
409 * ir_lookup_by_scancode() - locate mapping by scancode
410 * @rc_map: the struct rc_map to search
411 * @scancode: scancode to look for in the table
412 * @return: index in the table, -1U if not found
414 * This routine performs binary search in RC keykeymap table for
415 * given scancode.
417 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
418 unsigned int scancode)
420 int start = 0;
421 int end = rc_map->len - 1;
422 int mid;
424 while (start <= end) {
425 mid = (start + end) / 2;
426 if (rc_map->scan[mid].scancode < scancode)
427 start = mid + 1;
428 else if (rc_map->scan[mid].scancode > scancode)
429 end = mid - 1;
430 else
431 return mid;
434 return -1U;
438 * ir_getkeycode() - get a keycode from the scancode->keycode table
439 * @idev: the struct input_dev device descriptor
440 * @scancode: the desired scancode
441 * @keycode: used to return the keycode, if found, or KEY_RESERVED
442 * @return: always returns zero.
444 * This routine is used to handle evdev EVIOCGKEY ioctl.
446 static int ir_getkeycode(struct input_dev *idev,
447 struct input_keymap_entry *ke)
449 struct rc_dev *rdev = input_get_drvdata(idev);
450 struct rc_map *rc_map = &rdev->rc_map;
451 struct rc_map_table *entry;
452 unsigned long flags;
453 unsigned int index;
454 unsigned int scancode;
455 int retval;
457 spin_lock_irqsave(&rc_map->lock, flags);
459 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
460 index = ke->index;
461 } else {
462 retval = input_scancode_to_scalar(ke, &scancode);
463 if (retval)
464 goto out;
466 index = ir_lookup_by_scancode(rc_map, scancode);
469 if (index < rc_map->len) {
470 entry = &rc_map->scan[index];
472 ke->index = index;
473 ke->keycode = entry->keycode;
474 ke->len = sizeof(entry->scancode);
475 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
477 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
479 * We do not really know the valid range of scancodes
480 * so let's respond with KEY_RESERVED to anything we
481 * do not have mapping for [yet].
483 ke->index = index;
484 ke->keycode = KEY_RESERVED;
485 } else {
486 retval = -EINVAL;
487 goto out;
490 retval = 0;
492 out:
493 spin_unlock_irqrestore(&rc_map->lock, flags);
494 return retval;
498 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
499 * @dev: the struct rc_dev descriptor of the device
500 * @scancode: the scancode to look for
501 * @return: the corresponding keycode, or KEY_RESERVED
503 * This routine is used by drivers which need to convert a scancode to a
504 * keycode. Normally it should not be used since drivers should have no
505 * interest in keycodes.
507 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
509 struct rc_map *rc_map = &dev->rc_map;
510 unsigned int keycode;
511 unsigned int index;
512 unsigned long flags;
514 spin_lock_irqsave(&rc_map->lock, flags);
516 index = ir_lookup_by_scancode(rc_map, scancode);
517 keycode = index < rc_map->len ?
518 rc_map->scan[index].keycode : KEY_RESERVED;
520 spin_unlock_irqrestore(&rc_map->lock, flags);
522 if (keycode != KEY_RESERVED)
523 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
524 dev->input_name, scancode, keycode);
526 return keycode;
528 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
531 * ir_do_keyup() - internal function to signal the release of a keypress
532 * @dev: the struct rc_dev descriptor of the device
533 * @sync: whether or not to call input_sync
535 * This function is used internally to release a keypress, it must be
536 * called with keylock held.
538 static void ir_do_keyup(struct rc_dev *dev, bool sync)
540 if (!dev->keypressed)
541 return;
543 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
544 input_report_key(dev->input_dev, dev->last_keycode, 0);
545 led_trigger_event(led_feedback, LED_OFF);
546 if (sync)
547 input_sync(dev->input_dev);
548 dev->keypressed = false;
552 * rc_keyup() - signals the release of a keypress
553 * @dev: the struct rc_dev descriptor of the device
555 * This routine is used to signal that a key has been released on the
556 * remote control.
558 void rc_keyup(struct rc_dev *dev)
560 unsigned long flags;
562 spin_lock_irqsave(&dev->keylock, flags);
563 ir_do_keyup(dev, true);
564 spin_unlock_irqrestore(&dev->keylock, flags);
566 EXPORT_SYMBOL_GPL(rc_keyup);
569 * ir_timer_keyup() - generates a keyup event after a timeout
570 * @cookie: a pointer to the struct rc_dev for the device
572 * This routine will generate a keyup event some time after a keydown event
573 * is generated when no further activity has been detected.
575 static void ir_timer_keyup(unsigned long cookie)
577 struct rc_dev *dev = (struct rc_dev *)cookie;
578 unsigned long flags;
581 * ir->keyup_jiffies is used to prevent a race condition if a
582 * hardware interrupt occurs at this point and the keyup timer
583 * event is moved further into the future as a result.
585 * The timer will then be reactivated and this function called
586 * again in the future. We need to exit gracefully in that case
587 * to allow the input subsystem to do its auto-repeat magic or
588 * a keyup event might follow immediately after the keydown.
590 spin_lock_irqsave(&dev->keylock, flags);
591 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
592 ir_do_keyup(dev, true);
593 spin_unlock_irqrestore(&dev->keylock, flags);
597 * rc_repeat() - signals that a key is still pressed
598 * @dev: the struct rc_dev descriptor of the device
600 * This routine is used by IR decoders when a repeat message which does
601 * not include the necessary bits to reproduce the scancode has been
602 * received.
604 void rc_repeat(struct rc_dev *dev)
606 unsigned long flags;
608 spin_lock_irqsave(&dev->keylock, flags);
610 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
611 input_sync(dev->input_dev);
613 if (!dev->keypressed)
614 goto out;
616 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
617 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
619 out:
620 spin_unlock_irqrestore(&dev->keylock, flags);
622 EXPORT_SYMBOL_GPL(rc_repeat);
625 * ir_do_keydown() - internal function to process a keypress
626 * @dev: the struct rc_dev descriptor of the device
627 * @protocol: the protocol of the keypress
628 * @scancode: the scancode of the keypress
629 * @keycode: the keycode of the keypress
630 * @toggle: the toggle value of the keypress
632 * This function is used internally to register a keypress, it must be
633 * called with keylock held.
635 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
636 u32 scancode, u32 keycode, u8 toggle)
638 bool new_event = (!dev->keypressed ||
639 dev->last_protocol != protocol ||
640 dev->last_scancode != scancode ||
641 dev->last_toggle != toggle);
643 if (new_event && dev->keypressed)
644 ir_do_keyup(dev, false);
646 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
648 if (new_event && keycode != KEY_RESERVED) {
649 /* Register a keypress */
650 dev->keypressed = true;
651 dev->last_protocol = protocol;
652 dev->last_scancode = scancode;
653 dev->last_toggle = toggle;
654 dev->last_keycode = keycode;
656 IR_dprintk(1, "%s: key down event, "
657 "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
658 dev->input_name, keycode, protocol, scancode);
659 input_report_key(dev->input_dev, keycode, 1);
661 led_trigger_event(led_feedback, LED_FULL);
664 input_sync(dev->input_dev);
668 * rc_keydown() - generates input event for a key press
669 * @dev: the struct rc_dev descriptor of the device
670 * @protocol: the protocol for the keypress
671 * @scancode: the scancode for the keypress
672 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
673 * support toggle values, this should be set to zero)
675 * This routine is used to signal that a key has been pressed on the
676 * remote control.
678 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
680 unsigned long flags;
681 u32 keycode = rc_g_keycode_from_table(dev, scancode);
683 spin_lock_irqsave(&dev->keylock, flags);
684 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
686 if (dev->keypressed) {
687 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
688 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
690 spin_unlock_irqrestore(&dev->keylock, flags);
692 EXPORT_SYMBOL_GPL(rc_keydown);
695 * rc_keydown_notimeout() - generates input event for a key press without
696 * an automatic keyup event at a later time
697 * @dev: the struct rc_dev descriptor of the device
698 * @protocol: the protocol for the keypress
699 * @scancode: the scancode for the keypress
700 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
701 * support toggle values, this should be set to zero)
703 * This routine is used to signal that a key has been pressed on the
704 * remote control. The driver must manually call rc_keyup() at a later stage.
706 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
707 u32 scancode, u8 toggle)
709 unsigned long flags;
710 u32 keycode = rc_g_keycode_from_table(dev, scancode);
712 spin_lock_irqsave(&dev->keylock, flags);
713 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
714 spin_unlock_irqrestore(&dev->keylock, flags);
716 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
718 int rc_open(struct rc_dev *rdev)
720 int rval = 0;
722 if (!rdev)
723 return -EINVAL;
725 mutex_lock(&rdev->lock);
726 if (!rdev->users++ && rdev->open != NULL)
727 rval = rdev->open(rdev);
729 if (rval)
730 rdev->users--;
732 mutex_unlock(&rdev->lock);
734 return rval;
736 EXPORT_SYMBOL_GPL(rc_open);
738 static int ir_open(struct input_dev *idev)
740 struct rc_dev *rdev = input_get_drvdata(idev);
742 return rc_open(rdev);
745 void rc_close(struct rc_dev *rdev)
747 if (rdev) {
748 mutex_lock(&rdev->lock);
750 if (!--rdev->users && rdev->close != NULL)
751 rdev->close(rdev);
753 mutex_unlock(&rdev->lock);
756 EXPORT_SYMBOL_GPL(rc_close);
758 static void ir_close(struct input_dev *idev)
760 struct rc_dev *rdev = input_get_drvdata(idev);
761 rc_close(rdev);
764 /* class for /sys/class/rc */
765 static char *rc_devnode(struct device *dev, umode_t *mode)
767 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
770 static struct class rc_class = {
771 .name = "rc",
772 .devnode = rc_devnode,
776 * These are the protocol textual descriptions that are
777 * used by the sysfs protocols file. Note that the order
778 * of the entries is relevant.
780 static struct {
781 u64 type;
782 char *name;
783 } proto_names[] = {
784 { RC_BIT_NONE, "none" },
785 { RC_BIT_OTHER, "other" },
786 { RC_BIT_UNKNOWN, "unknown" },
787 { RC_BIT_RC5 |
788 RC_BIT_RC5X, "rc-5" },
789 { RC_BIT_NEC, "nec" },
790 { RC_BIT_RC6_0 |
791 RC_BIT_RC6_6A_20 |
792 RC_BIT_RC6_6A_24 |
793 RC_BIT_RC6_6A_32 |
794 RC_BIT_RC6_MCE, "rc-6" },
795 { RC_BIT_JVC, "jvc" },
796 { RC_BIT_SONY12 |
797 RC_BIT_SONY15 |
798 RC_BIT_SONY20, "sony" },
799 { RC_BIT_RC5_SZ, "rc-5-sz" },
800 { RC_BIT_SANYO, "sanyo" },
801 { RC_BIT_SHARP, "sharp" },
802 { RC_BIT_MCE_KBD, "mce_kbd" },
803 { RC_BIT_XMP, "xmp" },
807 * struct rc_filter_attribute - Device attribute relating to a filter type.
808 * @attr: Device attribute.
809 * @type: Filter type.
810 * @mask: false for filter value, true for filter mask.
812 struct rc_filter_attribute {
813 struct device_attribute attr;
814 enum rc_filter_type type;
815 bool mask;
817 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
819 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \
820 struct rc_filter_attribute dev_attr_##_name = { \
821 .attr = __ATTR(_name, _mode, _show, _store), \
822 .type = (_type), \
824 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
825 struct rc_filter_attribute dev_attr_##_name = { \
826 .attr = __ATTR(_name, _mode, _show, _store), \
827 .type = (_type), \
828 .mask = (_mask), \
831 static bool lirc_is_present(void)
833 #if defined(CONFIG_LIRC_MODULE)
834 struct module *lirc;
836 mutex_lock(&module_mutex);
837 lirc = find_module("lirc_dev");
838 mutex_unlock(&module_mutex);
840 return lirc ? true : false;
841 #elif defined(CONFIG_LIRC)
842 return true;
843 #else
844 return false;
845 #endif
849 * show_protocols() - shows the current/wakeup IR protocol(s)
850 * @device: the device descriptor
851 * @mattr: the device attribute struct
852 * @buf: a pointer to the output buffer
854 * This routine is a callback routine for input read the IR protocol type(s).
855 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
856 * It returns the protocol names of supported protocols.
857 * Enabled protocols are printed in brackets.
859 * dev->lock is taken to guard against races between device
860 * registration, store_protocols and show_protocols.
862 static ssize_t show_protocols(struct device *device,
863 struct device_attribute *mattr, char *buf)
865 struct rc_dev *dev = to_rc_dev(device);
866 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
867 u64 allowed, enabled;
868 char *tmp = buf;
869 int i;
871 /* Device is being removed */
872 if (!dev)
873 return -EINVAL;
875 mutex_lock(&dev->lock);
877 if (fattr->type == RC_FILTER_NORMAL) {
878 enabled = dev->enabled_protocols;
879 allowed = dev->allowed_protocols;
880 if (dev->raw && !allowed)
881 allowed = ir_raw_get_allowed_protocols();
882 } else {
883 enabled = dev->enabled_wakeup_protocols;
884 allowed = dev->allowed_wakeup_protocols;
887 mutex_unlock(&dev->lock);
889 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
890 __func__, (long long)allowed, (long long)enabled);
892 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
893 if (allowed & enabled & proto_names[i].type)
894 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
895 else if (allowed & proto_names[i].type)
896 tmp += sprintf(tmp, "%s ", proto_names[i].name);
898 if (allowed & proto_names[i].type)
899 allowed &= ~proto_names[i].type;
902 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
903 tmp += sprintf(tmp, "[lirc] ");
905 if (tmp != buf)
906 tmp--;
907 *tmp = '\n';
909 return tmp + 1 - buf;
913 * parse_protocol_change() - parses a protocol change request
914 * @protocols: pointer to the bitmask of current protocols
915 * @buf: pointer to the buffer with a list of changes
917 * Writing "+proto" will add a protocol to the protocol mask.
918 * Writing "-proto" will remove a protocol from protocol mask.
919 * Writing "proto" will enable only "proto".
920 * Writing "none" will disable all protocols.
921 * Returns the number of changes performed or a negative error code.
923 static int parse_protocol_change(u64 *protocols, const char *buf)
925 const char *tmp;
926 unsigned count = 0;
927 bool enable, disable;
928 u64 mask;
929 int i;
931 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
932 if (!*tmp)
933 break;
935 if (*tmp == '+') {
936 enable = true;
937 disable = false;
938 tmp++;
939 } else if (*tmp == '-') {
940 enable = false;
941 disable = true;
942 tmp++;
943 } else {
944 enable = false;
945 disable = false;
948 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
949 if (!strcasecmp(tmp, proto_names[i].name)) {
950 mask = proto_names[i].type;
951 break;
955 if (i == ARRAY_SIZE(proto_names)) {
956 if (!strcasecmp(tmp, "lirc"))
957 mask = 0;
958 else {
959 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
960 return -EINVAL;
964 count++;
966 if (enable)
967 *protocols |= mask;
968 else if (disable)
969 *protocols &= ~mask;
970 else
971 *protocols = mask;
974 if (!count) {
975 IR_dprintk(1, "Protocol not specified\n");
976 return -EINVAL;
979 return count;
983 * store_protocols() - changes the current/wakeup IR protocol(s)
984 * @device: the device descriptor
985 * @mattr: the device attribute struct
986 * @buf: a pointer to the input buffer
987 * @len: length of the input buffer
989 * This routine is for changing the IR protocol type.
990 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
991 * See parse_protocol_change() for the valid commands.
992 * Returns @len on success or a negative error code.
994 * dev->lock is taken to guard against races between device
995 * registration, store_protocols and show_protocols.
997 static ssize_t store_protocols(struct device *device,
998 struct device_attribute *mattr,
999 const char *buf, size_t len)
1001 struct rc_dev *dev = to_rc_dev(device);
1002 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1003 u64 *current_protocols;
1004 int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1005 struct rc_scancode_filter *filter;
1006 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1007 u64 old_protocols, new_protocols;
1008 ssize_t rc;
1010 /* Device is being removed */
1011 if (!dev)
1012 return -EINVAL;
1014 if (fattr->type == RC_FILTER_NORMAL) {
1015 IR_dprintk(1, "Normal protocol change requested\n");
1016 current_protocols = &dev->enabled_protocols;
1017 change_protocol = dev->change_protocol;
1018 filter = &dev->scancode_filter;
1019 set_filter = dev->s_filter;
1020 } else {
1021 IR_dprintk(1, "Wakeup protocol change requested\n");
1022 current_protocols = &dev->enabled_wakeup_protocols;
1023 change_protocol = dev->change_wakeup_protocol;
1024 filter = &dev->scancode_wakeup_filter;
1025 set_filter = dev->s_wakeup_filter;
1028 if (!change_protocol) {
1029 IR_dprintk(1, "Protocol switching not supported\n");
1030 return -EINVAL;
1033 mutex_lock(&dev->lock);
1035 old_protocols = *current_protocols;
1036 new_protocols = old_protocols;
1037 rc = parse_protocol_change(&new_protocols, buf);
1038 if (rc < 0)
1039 goto out;
1041 rc = change_protocol(dev, &new_protocols);
1042 if (rc < 0) {
1043 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1044 (long long)new_protocols);
1045 goto out;
1048 if (new_protocols != old_protocols) {
1049 *current_protocols = new_protocols;
1050 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1051 (long long)new_protocols);
1055 * If a protocol change was attempted the filter may need updating, even
1056 * if the actual protocol mask hasn't changed (since the driver may have
1057 * cleared the filter).
1058 * Try setting the same filter with the new protocol (if any).
1059 * Fall back to clearing the filter.
1061 if (set_filter && filter->mask) {
1062 if (new_protocols)
1063 rc = set_filter(dev, filter);
1064 else
1065 rc = -1;
1067 if (rc < 0) {
1068 filter->data = 0;
1069 filter->mask = 0;
1070 set_filter(dev, filter);
1074 rc = len;
1076 out:
1077 mutex_unlock(&dev->lock);
1078 return rc;
1082 * show_filter() - shows the current scancode filter value or mask
1083 * @device: the device descriptor
1084 * @attr: the device attribute struct
1085 * @buf: a pointer to the output buffer
1087 * This routine is a callback routine to read a scancode filter value or mask.
1088 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1089 * It prints the current scancode filter value or mask of the appropriate filter
1090 * type in hexadecimal into @buf and returns the size of the buffer.
1092 * Bits of the filter value corresponding to set bits in the filter mask are
1093 * compared against input scancodes and non-matching scancodes are discarded.
1095 * dev->lock is taken to guard against races between device registration,
1096 * store_filter and show_filter.
1098 static ssize_t show_filter(struct device *device,
1099 struct device_attribute *attr,
1100 char *buf)
1102 struct rc_dev *dev = to_rc_dev(device);
1103 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1104 struct rc_scancode_filter *filter;
1105 u32 val;
1107 /* Device is being removed */
1108 if (!dev)
1109 return -EINVAL;
1111 if (fattr->type == RC_FILTER_NORMAL)
1112 filter = &dev->scancode_filter;
1113 else
1114 filter = &dev->scancode_wakeup_filter;
1116 mutex_lock(&dev->lock);
1117 if (fattr->mask)
1118 val = filter->mask;
1119 else
1120 val = filter->data;
1121 mutex_unlock(&dev->lock);
1123 return sprintf(buf, "%#x\n", val);
1127 * store_filter() - changes the scancode filter value
1128 * @device: the device descriptor
1129 * @attr: the device attribute struct
1130 * @buf: a pointer to the input buffer
1131 * @len: length of the input buffer
1133 * This routine is for changing a scancode filter value or mask.
1134 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1135 * Returns -EINVAL if an invalid filter value for the current protocol was
1136 * specified or if scancode filtering is not supported by the driver, otherwise
1137 * returns @len.
1139 * Bits of the filter value corresponding to set bits in the filter mask are
1140 * compared against input scancodes and non-matching scancodes are discarded.
1142 * dev->lock is taken to guard against races between device registration,
1143 * store_filter and show_filter.
1145 static ssize_t store_filter(struct device *device,
1146 struct device_attribute *attr,
1147 const char *buf, size_t len)
1149 struct rc_dev *dev = to_rc_dev(device);
1150 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1151 struct rc_scancode_filter new_filter, *filter;
1152 int ret;
1153 unsigned long val;
1154 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1155 u64 *enabled_protocols;
1157 /* Device is being removed */
1158 if (!dev)
1159 return -EINVAL;
1161 ret = kstrtoul(buf, 0, &val);
1162 if (ret < 0)
1163 return ret;
1165 if (fattr->type == RC_FILTER_NORMAL) {
1166 set_filter = dev->s_filter;
1167 enabled_protocols = &dev->enabled_protocols;
1168 filter = &dev->scancode_filter;
1169 } else {
1170 set_filter = dev->s_wakeup_filter;
1171 enabled_protocols = &dev->enabled_wakeup_protocols;
1172 filter = &dev->scancode_wakeup_filter;
1175 if (!set_filter)
1176 return -EINVAL;
1178 mutex_lock(&dev->lock);
1180 new_filter = *filter;
1181 if (fattr->mask)
1182 new_filter.mask = val;
1183 else
1184 new_filter.data = val;
1186 if (!*enabled_protocols && val) {
1187 /* refuse to set a filter unless a protocol is enabled */
1188 ret = -EINVAL;
1189 goto unlock;
1192 ret = set_filter(dev, &new_filter);
1193 if (ret < 0)
1194 goto unlock;
1196 *filter = new_filter;
1198 unlock:
1199 mutex_unlock(&dev->lock);
1200 return (ret < 0) ? ret : len;
1203 static void rc_dev_release(struct device *device)
1207 #define ADD_HOTPLUG_VAR(fmt, val...) \
1208 do { \
1209 int err = add_uevent_var(env, fmt, val); \
1210 if (err) \
1211 return err; \
1212 } while (0)
1214 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1216 struct rc_dev *dev = to_rc_dev(device);
1218 if (dev->rc_map.name)
1219 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1220 if (dev->driver_name)
1221 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1223 return 0;
1227 * Static device attribute struct with the sysfs attributes for IR's
1229 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1230 show_protocols, store_protocols, RC_FILTER_NORMAL);
1231 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1232 show_protocols, store_protocols, RC_FILTER_WAKEUP);
1233 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1234 show_filter, store_filter, RC_FILTER_NORMAL, false);
1235 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1236 show_filter, store_filter, RC_FILTER_NORMAL, true);
1237 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1238 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1239 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1240 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1242 static struct attribute *rc_dev_protocol_attrs[] = {
1243 &dev_attr_protocols.attr.attr,
1244 NULL,
1247 static struct attribute_group rc_dev_protocol_attr_grp = {
1248 .attrs = rc_dev_protocol_attrs,
1251 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1252 &dev_attr_wakeup_protocols.attr.attr,
1253 NULL,
1256 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1257 .attrs = rc_dev_wakeup_protocol_attrs,
1260 static struct attribute *rc_dev_filter_attrs[] = {
1261 &dev_attr_filter.attr.attr,
1262 &dev_attr_filter_mask.attr.attr,
1263 NULL,
1266 static struct attribute_group rc_dev_filter_attr_grp = {
1267 .attrs = rc_dev_filter_attrs,
1270 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1271 &dev_attr_wakeup_filter.attr.attr,
1272 &dev_attr_wakeup_filter_mask.attr.attr,
1273 NULL,
1276 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1277 .attrs = rc_dev_wakeup_filter_attrs,
1280 static struct device_type rc_dev_type = {
1281 .release = rc_dev_release,
1282 .uevent = rc_dev_uevent,
1285 struct rc_dev *rc_allocate_device(void)
1287 struct rc_dev *dev;
1289 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1290 if (!dev)
1291 return NULL;
1293 dev->input_dev = input_allocate_device();
1294 if (!dev->input_dev) {
1295 kfree(dev);
1296 return NULL;
1299 dev->input_dev->getkeycode = ir_getkeycode;
1300 dev->input_dev->setkeycode = ir_setkeycode;
1301 input_set_drvdata(dev->input_dev, dev);
1303 spin_lock_init(&dev->rc_map.lock);
1304 spin_lock_init(&dev->keylock);
1305 mutex_init(&dev->lock);
1306 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1308 dev->dev.type = &rc_dev_type;
1309 dev->dev.class = &rc_class;
1310 device_initialize(&dev->dev);
1312 __module_get(THIS_MODULE);
1313 return dev;
1315 EXPORT_SYMBOL_GPL(rc_allocate_device);
1317 void rc_free_device(struct rc_dev *dev)
1319 if (!dev)
1320 return;
1322 input_free_device(dev->input_dev);
1324 put_device(&dev->dev);
1326 kfree(dev);
1327 module_put(THIS_MODULE);
1329 EXPORT_SYMBOL_GPL(rc_free_device);
1331 int rc_register_device(struct rc_dev *dev)
1333 static bool raw_init = false; /* raw decoders loaded? */
1334 struct rc_map *rc_map;
1335 const char *path;
1336 int attr = 0;
1337 int minor;
1338 int rc;
1340 if (!dev || !dev->map_name)
1341 return -EINVAL;
1343 rc_map = rc_map_get(dev->map_name);
1344 if (!rc_map)
1345 rc_map = rc_map_get(RC_MAP_EMPTY);
1346 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1347 return -EINVAL;
1349 set_bit(EV_KEY, dev->input_dev->evbit);
1350 set_bit(EV_REP, dev->input_dev->evbit);
1351 set_bit(EV_MSC, dev->input_dev->evbit);
1352 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1353 if (dev->open)
1354 dev->input_dev->open = ir_open;
1355 if (dev->close)
1356 dev->input_dev->close = ir_close;
1358 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1359 if (minor < 0)
1360 return minor;
1362 dev->minor = minor;
1363 dev_set_name(&dev->dev, "rc%u", dev->minor);
1364 dev_set_drvdata(&dev->dev, dev);
1366 dev->dev.groups = dev->sysfs_groups;
1367 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1368 if (dev->s_filter)
1369 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1370 if (dev->s_wakeup_filter)
1371 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1372 if (dev->change_wakeup_protocol)
1373 dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1374 dev->sysfs_groups[attr++] = NULL;
1377 * Take the lock here, as the device sysfs node will appear
1378 * when device_add() is called, which may trigger an ir-keytable udev
1379 * rule, which will in turn call show_protocols and access
1380 * dev->enabled_protocols before it has been initialized.
1382 mutex_lock(&dev->lock);
1384 rc = device_add(&dev->dev);
1385 if (rc)
1386 goto out_unlock;
1388 rc = ir_setkeytable(dev, rc_map);
1389 if (rc)
1390 goto out_dev;
1392 dev->input_dev->dev.parent = &dev->dev;
1393 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1394 dev->input_dev->phys = dev->input_phys;
1395 dev->input_dev->name = dev->input_name;
1397 /* input_register_device can call ir_open, so unlock mutex here */
1398 mutex_unlock(&dev->lock);
1400 rc = input_register_device(dev->input_dev);
1402 mutex_lock(&dev->lock);
1404 if (rc)
1405 goto out_table;
1408 * Default delay of 250ms is too short for some protocols, especially
1409 * since the timeout is currently set to 250ms. Increase it to 500ms,
1410 * to avoid wrong repetition of the keycodes. Note that this must be
1411 * set after the call to input_register_device().
1413 dev->input_dev->rep[REP_DELAY] = 500;
1416 * As a repeat event on protocols like RC-5 and NEC take as long as
1417 * 110/114ms, using 33ms as a repeat period is not the right thing
1418 * to do.
1420 dev->input_dev->rep[REP_PERIOD] = 125;
1422 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1423 printk(KERN_INFO "%s: %s as %s\n",
1424 dev_name(&dev->dev),
1425 dev->input_name ? dev->input_name : "Unspecified device",
1426 path ? path : "N/A");
1427 kfree(path);
1429 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1430 /* Load raw decoders, if they aren't already */
1431 if (!raw_init) {
1432 IR_dprintk(1, "Loading raw decoders\n");
1433 ir_raw_init();
1434 raw_init = true;
1436 /* calls ir_register_device so unlock mutex here*/
1437 mutex_unlock(&dev->lock);
1438 rc = ir_raw_event_register(dev);
1439 mutex_lock(&dev->lock);
1440 if (rc < 0)
1441 goto out_input;
1444 if (dev->change_protocol) {
1445 u64 rc_type = (1ll << rc_map->rc_type);
1446 rc = dev->change_protocol(dev, &rc_type);
1447 if (rc < 0)
1448 goto out_raw;
1449 dev->enabled_protocols = rc_type;
1452 mutex_unlock(&dev->lock);
1454 IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1455 dev->minor,
1456 dev->driver_name ? dev->driver_name : "unknown",
1457 rc_map->name ? rc_map->name : "unknown",
1458 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1460 return 0;
1462 out_raw:
1463 if (dev->driver_type == RC_DRIVER_IR_RAW)
1464 ir_raw_event_unregister(dev);
1465 out_input:
1466 input_unregister_device(dev->input_dev);
1467 dev->input_dev = NULL;
1468 out_table:
1469 ir_free_table(&dev->rc_map);
1470 out_dev:
1471 device_del(&dev->dev);
1472 out_unlock:
1473 mutex_unlock(&dev->lock);
1474 ida_simple_remove(&rc_ida, minor);
1475 return rc;
1477 EXPORT_SYMBOL_GPL(rc_register_device);
1479 void rc_unregister_device(struct rc_dev *dev)
1481 if (!dev)
1482 return;
1484 del_timer_sync(&dev->timer_keyup);
1486 if (dev->driver_type == RC_DRIVER_IR_RAW)
1487 ir_raw_event_unregister(dev);
1489 /* Freeing the table should also call the stop callback */
1490 ir_free_table(&dev->rc_map);
1491 IR_dprintk(1, "Freed keycode table\n");
1493 input_unregister_device(dev->input_dev);
1494 dev->input_dev = NULL;
1496 device_del(&dev->dev);
1498 ida_simple_remove(&rc_ida, dev->minor);
1500 rc_free_device(dev);
1503 EXPORT_SYMBOL_GPL(rc_unregister_device);
1506 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1509 static int __init rc_core_init(void)
1511 int rc = class_register(&rc_class);
1512 if (rc) {
1513 printk(KERN_ERR "rc_core: unable to register rc class\n");
1514 return rc;
1517 led_trigger_register_simple("rc-feedback", &led_feedback);
1518 rc_map_register(&empty_map);
1520 return 0;
1523 static void __exit rc_core_exit(void)
1525 class_unregister(&rc_class);
1526 led_trigger_unregister_simple(led_feedback);
1527 rc_map_unregister(&empty_map);
1530 subsys_initcall(rc_core_init);
1531 module_exit(rc_core_exit);
1533 int rc_core_debug; /* ir_debug level (0,1,2) */
1534 EXPORT_SYMBOL_GPL(rc_core_debug);
1535 module_param_named(debug, rc_core_debug, int, 0644);
1537 MODULE_AUTHOR("Mauro Carvalho Chehab");
1538 MODULE_LICENSE("GPL");