posix-clock: Fix return code on the poll method's error path
[linux/fpc-iii.git] / drivers / mmc / core / core.c
blob5ae89e48fd85b575cf743363b3a298b49872b7db
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
53 * Background operations can take a long time, depending on the housekeeping
54 * operations the card has to perform.
56 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
58 static struct workqueue_struct *workqueue;
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
70 * Internal function. Schedule delayed work in the MMC work queue.
72 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
75 return queue_delayed_work(workqueue, work, delay);
79 * Internal function. Flush all scheduled work from the MMC work queue.
81 static void mmc_flush_scheduled_work(void)
83 flush_workqueue(workqueue);
86 #ifdef CONFIG_FAIL_MMC_REQUEST
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
92 static void mmc_should_fail_request(struct mmc_host *host,
93 struct mmc_request *mrq)
95 struct mmc_command *cmd = mrq->cmd;
96 struct mmc_data *data = mrq->data;
97 static const int data_errors[] = {
98 -ETIMEDOUT,
99 -EILSEQ,
100 -EIO,
103 if (!data)
104 return;
106 if (cmd->error || data->error ||
107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 return;
110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
114 #else /* CONFIG_FAIL_MMC_REQUEST */
116 static inline void mmc_should_fail_request(struct mmc_host *host,
117 struct mmc_request *mrq)
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
124 * mmc_request_done - finish processing an MMC request
125 * @host: MMC host which completed request
126 * @mrq: MMC request which request
128 * MMC drivers should call this function when they have completed
129 * their processing of a request.
131 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
133 struct mmc_command *cmd = mrq->cmd;
134 int err = cmd->error;
136 /* Flag re-tuning needed on CRC errors */
137 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
138 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
139 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
140 (mrq->data && mrq->data->error == -EILSEQ) ||
141 (mrq->stop && mrq->stop->error == -EILSEQ)))
142 mmc_retune_needed(host);
144 if (err && cmd->retries && mmc_host_is_spi(host)) {
145 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
146 cmd->retries = 0;
149 if (err && cmd->retries && !mmc_card_removed(host->card)) {
151 * Request starter must handle retries - see
152 * mmc_wait_for_req_done().
154 if (mrq->done)
155 mrq->done(mrq);
156 } else {
157 mmc_should_fail_request(host, mrq);
159 led_trigger_event(host->led, LED_OFF);
161 if (mrq->sbc) {
162 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
163 mmc_hostname(host), mrq->sbc->opcode,
164 mrq->sbc->error,
165 mrq->sbc->resp[0], mrq->sbc->resp[1],
166 mrq->sbc->resp[2], mrq->sbc->resp[3]);
169 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
170 mmc_hostname(host), cmd->opcode, err,
171 cmd->resp[0], cmd->resp[1],
172 cmd->resp[2], cmd->resp[3]);
174 if (mrq->data) {
175 pr_debug("%s: %d bytes transferred: %d\n",
176 mmc_hostname(host),
177 mrq->data->bytes_xfered, mrq->data->error);
180 if (mrq->stop) {
181 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->stop->opcode,
183 mrq->stop->error,
184 mrq->stop->resp[0], mrq->stop->resp[1],
185 mrq->stop->resp[2], mrq->stop->resp[3]);
188 if (mrq->done)
189 mrq->done(mrq);
193 EXPORT_SYMBOL(mmc_request_done);
195 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
197 int err;
199 /* Assumes host controller has been runtime resumed by mmc_claim_host */
200 err = mmc_retune(host);
201 if (err) {
202 mrq->cmd->error = err;
203 mmc_request_done(host, mrq);
204 return;
208 * For sdio rw commands we must wait for card busy otherwise some
209 * sdio devices won't work properly.
211 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
212 int tries = 500; /* Wait aprox 500ms at maximum */
214 while (host->ops->card_busy(host) && --tries)
215 mmc_delay(1);
217 if (tries == 0) {
218 mrq->cmd->error = -EBUSY;
219 mmc_request_done(host, mrq);
220 return;
224 host->ops->request(host, mrq);
227 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
229 #ifdef CONFIG_MMC_DEBUG
230 unsigned int i, sz;
231 struct scatterlist *sg;
232 #endif
233 mmc_retune_hold(host);
235 if (mmc_card_removed(host->card))
236 return -ENOMEDIUM;
238 if (mrq->sbc) {
239 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
240 mmc_hostname(host), mrq->sbc->opcode,
241 mrq->sbc->arg, mrq->sbc->flags);
244 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
245 mmc_hostname(host), mrq->cmd->opcode,
246 mrq->cmd->arg, mrq->cmd->flags);
248 if (mrq->data) {
249 pr_debug("%s: blksz %d blocks %d flags %08x "
250 "tsac %d ms nsac %d\n",
251 mmc_hostname(host), mrq->data->blksz,
252 mrq->data->blocks, mrq->data->flags,
253 mrq->data->timeout_ns / 1000000,
254 mrq->data->timeout_clks);
257 if (mrq->stop) {
258 pr_debug("%s: CMD%u arg %08x flags %08x\n",
259 mmc_hostname(host), mrq->stop->opcode,
260 mrq->stop->arg, mrq->stop->flags);
263 WARN_ON(!host->claimed);
265 mrq->cmd->error = 0;
266 mrq->cmd->mrq = mrq;
267 if (mrq->sbc) {
268 mrq->sbc->error = 0;
269 mrq->sbc->mrq = mrq;
271 if (mrq->data) {
272 BUG_ON(mrq->data->blksz > host->max_blk_size);
273 BUG_ON(mrq->data->blocks > host->max_blk_count);
274 BUG_ON(mrq->data->blocks * mrq->data->blksz >
275 host->max_req_size);
277 #ifdef CONFIG_MMC_DEBUG
278 sz = 0;
279 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
280 sz += sg->length;
281 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
282 #endif
284 mrq->cmd->data = mrq->data;
285 mrq->data->error = 0;
286 mrq->data->mrq = mrq;
287 if (mrq->stop) {
288 mrq->data->stop = mrq->stop;
289 mrq->stop->error = 0;
290 mrq->stop->mrq = mrq;
293 led_trigger_event(host->led, LED_FULL);
294 __mmc_start_request(host, mrq);
296 return 0;
300 * mmc_start_bkops - start BKOPS for supported cards
301 * @card: MMC card to start BKOPS
302 * @form_exception: A flag to indicate if this function was
303 * called due to an exception raised by the card
305 * Start background operations whenever requested.
306 * When the urgent BKOPS bit is set in a R1 command response
307 * then background operations should be started immediately.
309 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
311 int err;
312 int timeout;
313 bool use_busy_signal;
315 BUG_ON(!card);
317 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
318 return;
320 err = mmc_read_bkops_status(card);
321 if (err) {
322 pr_err("%s: Failed to read bkops status: %d\n",
323 mmc_hostname(card->host), err);
324 return;
327 if (!card->ext_csd.raw_bkops_status)
328 return;
330 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
331 from_exception)
332 return;
334 mmc_claim_host(card->host);
335 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
336 timeout = MMC_BKOPS_MAX_TIMEOUT;
337 use_busy_signal = true;
338 } else {
339 timeout = 0;
340 use_busy_signal = false;
343 mmc_retune_hold(card->host);
345 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
346 EXT_CSD_BKOPS_START, 1, timeout,
347 use_busy_signal, true, false);
348 if (err) {
349 pr_warn("%s: Error %d starting bkops\n",
350 mmc_hostname(card->host), err);
351 mmc_retune_release(card->host);
352 goto out;
356 * For urgent bkops status (LEVEL_2 and more)
357 * bkops executed synchronously, otherwise
358 * the operation is in progress
360 if (!use_busy_signal)
361 mmc_card_set_doing_bkops(card);
362 else
363 mmc_retune_release(card->host);
364 out:
365 mmc_release_host(card->host);
367 EXPORT_SYMBOL(mmc_start_bkops);
370 * mmc_wait_data_done() - done callback for data request
371 * @mrq: done data request
373 * Wakes up mmc context, passed as a callback to host controller driver
375 static void mmc_wait_data_done(struct mmc_request *mrq)
377 struct mmc_context_info *context_info = &mrq->host->context_info;
379 context_info->is_done_rcv = true;
380 wake_up_interruptible(&context_info->wait);
383 static void mmc_wait_done(struct mmc_request *mrq)
385 complete(&mrq->completion);
389 *__mmc_start_data_req() - starts data request
390 * @host: MMC host to start the request
391 * @mrq: data request to start
393 * Sets the done callback to be called when request is completed by the card.
394 * Starts data mmc request execution
396 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
398 int err;
400 mrq->done = mmc_wait_data_done;
401 mrq->host = host;
403 err = mmc_start_request(host, mrq);
404 if (err) {
405 mrq->cmd->error = err;
406 mmc_wait_data_done(mrq);
409 return err;
412 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
414 int err;
416 init_completion(&mrq->completion);
417 mrq->done = mmc_wait_done;
419 err = mmc_start_request(host, mrq);
420 if (err) {
421 mrq->cmd->error = err;
422 complete(&mrq->completion);
425 return err;
429 * mmc_wait_for_data_req_done() - wait for request completed
430 * @host: MMC host to prepare the command.
431 * @mrq: MMC request to wait for
433 * Blocks MMC context till host controller will ack end of data request
434 * execution or new request notification arrives from the block layer.
435 * Handles command retries.
437 * Returns enum mmc_blk_status after checking errors.
439 static int mmc_wait_for_data_req_done(struct mmc_host *host,
440 struct mmc_request *mrq,
441 struct mmc_async_req *next_req)
443 struct mmc_command *cmd;
444 struct mmc_context_info *context_info = &host->context_info;
445 int err;
446 unsigned long flags;
448 while (1) {
449 wait_event_interruptible(context_info->wait,
450 (context_info->is_done_rcv ||
451 context_info->is_new_req));
452 spin_lock_irqsave(&context_info->lock, flags);
453 context_info->is_waiting_last_req = false;
454 spin_unlock_irqrestore(&context_info->lock, flags);
455 if (context_info->is_done_rcv) {
456 context_info->is_done_rcv = false;
457 context_info->is_new_req = false;
458 cmd = mrq->cmd;
460 if (!cmd->error || !cmd->retries ||
461 mmc_card_removed(host->card)) {
462 err = host->areq->err_check(host->card,
463 host->areq);
464 break; /* return err */
465 } else {
466 mmc_retune_recheck(host);
467 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
468 mmc_hostname(host),
469 cmd->opcode, cmd->error);
470 cmd->retries--;
471 cmd->error = 0;
472 __mmc_start_request(host, mrq);
473 continue; /* wait for done/new event again */
475 } else if (context_info->is_new_req) {
476 context_info->is_new_req = false;
477 if (!next_req)
478 return MMC_BLK_NEW_REQUEST;
481 mmc_retune_release(host);
482 return err;
485 static void mmc_wait_for_req_done(struct mmc_host *host,
486 struct mmc_request *mrq)
488 struct mmc_command *cmd;
490 while (1) {
491 wait_for_completion(&mrq->completion);
493 cmd = mrq->cmd;
496 * If host has timed out waiting for the sanitize
497 * to complete, card might be still in programming state
498 * so let's try to bring the card out of programming
499 * state.
501 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
502 if (!mmc_interrupt_hpi(host->card)) {
503 pr_warn("%s: %s: Interrupted sanitize\n",
504 mmc_hostname(host), __func__);
505 cmd->error = 0;
506 break;
507 } else {
508 pr_err("%s: %s: Failed to interrupt sanitize\n",
509 mmc_hostname(host), __func__);
512 if (!cmd->error || !cmd->retries ||
513 mmc_card_removed(host->card))
514 break;
516 mmc_retune_recheck(host);
518 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
519 mmc_hostname(host), cmd->opcode, cmd->error);
520 cmd->retries--;
521 cmd->error = 0;
522 __mmc_start_request(host, mrq);
525 mmc_retune_release(host);
529 * mmc_pre_req - Prepare for a new request
530 * @host: MMC host to prepare command
531 * @mrq: MMC request to prepare for
532 * @is_first_req: true if there is no previous started request
533 * that may run in parellel to this call, otherwise false
535 * mmc_pre_req() is called in prior to mmc_start_req() to let
536 * host prepare for the new request. Preparation of a request may be
537 * performed while another request is running on the host.
539 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
540 bool is_first_req)
542 if (host->ops->pre_req)
543 host->ops->pre_req(host, mrq, is_first_req);
547 * mmc_post_req - Post process a completed request
548 * @host: MMC host to post process command
549 * @mrq: MMC request to post process for
550 * @err: Error, if non zero, clean up any resources made in pre_req
552 * Let the host post process a completed request. Post processing of
553 * a request may be performed while another reuqest is running.
555 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
556 int err)
558 if (host->ops->post_req)
559 host->ops->post_req(host, mrq, err);
563 * mmc_start_req - start a non-blocking request
564 * @host: MMC host to start command
565 * @areq: async request to start
566 * @error: out parameter returns 0 for success, otherwise non zero
568 * Start a new MMC custom command request for a host.
569 * If there is on ongoing async request wait for completion
570 * of that request and start the new one and return.
571 * Does not wait for the new request to complete.
573 * Returns the completed request, NULL in case of none completed.
574 * Wait for the an ongoing request (previoulsy started) to complete and
575 * return the completed request. If there is no ongoing request, NULL
576 * is returned without waiting. NULL is not an error condition.
578 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
579 struct mmc_async_req *areq, int *error)
581 int err = 0;
582 int start_err = 0;
583 struct mmc_async_req *data = host->areq;
585 /* Prepare a new request */
586 if (areq)
587 mmc_pre_req(host, areq->mrq, !host->areq);
589 if (host->areq) {
590 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
591 if (err == MMC_BLK_NEW_REQUEST) {
592 if (error)
593 *error = err;
595 * The previous request was not completed,
596 * nothing to return
598 return NULL;
601 * Check BKOPS urgency for each R1 response
603 if (host->card && mmc_card_mmc(host->card) &&
604 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
605 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
606 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
608 /* Cancel the prepared request */
609 if (areq)
610 mmc_post_req(host, areq->mrq, -EINVAL);
612 mmc_start_bkops(host->card, true);
614 /* prepare the request again */
615 if (areq)
616 mmc_pre_req(host, areq->mrq, !host->areq);
620 if (!err && areq)
621 start_err = __mmc_start_data_req(host, areq->mrq);
623 if (host->areq)
624 mmc_post_req(host, host->areq->mrq, 0);
626 /* Cancel a prepared request if it was not started. */
627 if ((err || start_err) && areq)
628 mmc_post_req(host, areq->mrq, -EINVAL);
630 if (err)
631 host->areq = NULL;
632 else
633 host->areq = areq;
635 if (error)
636 *error = err;
637 return data;
639 EXPORT_SYMBOL(mmc_start_req);
642 * mmc_wait_for_req - start a request and wait for completion
643 * @host: MMC host to start command
644 * @mrq: MMC request to start
646 * Start a new MMC custom command request for a host, and wait
647 * for the command to complete. Does not attempt to parse the
648 * response.
650 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
652 __mmc_start_req(host, mrq);
653 mmc_wait_for_req_done(host, mrq);
655 EXPORT_SYMBOL(mmc_wait_for_req);
658 * mmc_interrupt_hpi - Issue for High priority Interrupt
659 * @card: the MMC card associated with the HPI transfer
661 * Issued High Priority Interrupt, and check for card status
662 * until out-of prg-state.
664 int mmc_interrupt_hpi(struct mmc_card *card)
666 int err;
667 u32 status;
668 unsigned long prg_wait;
670 BUG_ON(!card);
672 if (!card->ext_csd.hpi_en) {
673 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
674 return 1;
677 mmc_claim_host(card->host);
678 err = mmc_send_status(card, &status);
679 if (err) {
680 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
681 goto out;
684 switch (R1_CURRENT_STATE(status)) {
685 case R1_STATE_IDLE:
686 case R1_STATE_READY:
687 case R1_STATE_STBY:
688 case R1_STATE_TRAN:
690 * In idle and transfer states, HPI is not needed and the caller
691 * can issue the next intended command immediately
693 goto out;
694 case R1_STATE_PRG:
695 break;
696 default:
697 /* In all other states, it's illegal to issue HPI */
698 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
699 mmc_hostname(card->host), R1_CURRENT_STATE(status));
700 err = -EINVAL;
701 goto out;
704 err = mmc_send_hpi_cmd(card, &status);
705 if (err)
706 goto out;
708 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
709 do {
710 err = mmc_send_status(card, &status);
712 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
713 break;
714 if (time_after(jiffies, prg_wait))
715 err = -ETIMEDOUT;
716 } while (!err);
718 out:
719 mmc_release_host(card->host);
720 return err;
722 EXPORT_SYMBOL(mmc_interrupt_hpi);
725 * mmc_wait_for_cmd - start a command and wait for completion
726 * @host: MMC host to start command
727 * @cmd: MMC command to start
728 * @retries: maximum number of retries
730 * Start a new MMC command for a host, and wait for the command
731 * to complete. Return any error that occurred while the command
732 * was executing. Do not attempt to parse the response.
734 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
736 struct mmc_request mrq = {NULL};
738 WARN_ON(!host->claimed);
740 memset(cmd->resp, 0, sizeof(cmd->resp));
741 cmd->retries = retries;
743 mrq.cmd = cmd;
744 cmd->data = NULL;
746 mmc_wait_for_req(host, &mrq);
748 return cmd->error;
751 EXPORT_SYMBOL(mmc_wait_for_cmd);
754 * mmc_stop_bkops - stop ongoing BKOPS
755 * @card: MMC card to check BKOPS
757 * Send HPI command to stop ongoing background operations to
758 * allow rapid servicing of foreground operations, e.g. read/
759 * writes. Wait until the card comes out of the programming state
760 * to avoid errors in servicing read/write requests.
762 int mmc_stop_bkops(struct mmc_card *card)
764 int err = 0;
766 BUG_ON(!card);
767 err = mmc_interrupt_hpi(card);
770 * If err is EINVAL, we can't issue an HPI.
771 * It should complete the BKOPS.
773 if (!err || (err == -EINVAL)) {
774 mmc_card_clr_doing_bkops(card);
775 mmc_retune_release(card->host);
776 err = 0;
779 return err;
781 EXPORT_SYMBOL(mmc_stop_bkops);
783 int mmc_read_bkops_status(struct mmc_card *card)
785 int err;
786 u8 *ext_csd;
788 mmc_claim_host(card->host);
789 err = mmc_get_ext_csd(card, &ext_csd);
790 mmc_release_host(card->host);
791 if (err)
792 return err;
794 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
795 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
796 kfree(ext_csd);
797 return 0;
799 EXPORT_SYMBOL(mmc_read_bkops_status);
802 * mmc_set_data_timeout - set the timeout for a data command
803 * @data: data phase for command
804 * @card: the MMC card associated with the data transfer
806 * Computes the data timeout parameters according to the
807 * correct algorithm given the card type.
809 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
811 unsigned int mult;
814 * SDIO cards only define an upper 1 s limit on access.
816 if (mmc_card_sdio(card)) {
817 data->timeout_ns = 1000000000;
818 data->timeout_clks = 0;
819 return;
823 * SD cards use a 100 multiplier rather than 10
825 mult = mmc_card_sd(card) ? 100 : 10;
828 * Scale up the multiplier (and therefore the timeout) by
829 * the r2w factor for writes.
831 if (data->flags & MMC_DATA_WRITE)
832 mult <<= card->csd.r2w_factor;
834 data->timeout_ns = card->csd.tacc_ns * mult;
835 data->timeout_clks = card->csd.tacc_clks * mult;
838 * SD cards also have an upper limit on the timeout.
840 if (mmc_card_sd(card)) {
841 unsigned int timeout_us, limit_us;
843 timeout_us = data->timeout_ns / 1000;
844 if (card->host->ios.clock)
845 timeout_us += data->timeout_clks * 1000 /
846 (card->host->ios.clock / 1000);
848 if (data->flags & MMC_DATA_WRITE)
850 * The MMC spec "It is strongly recommended
851 * for hosts to implement more than 500ms
852 * timeout value even if the card indicates
853 * the 250ms maximum busy length." Even the
854 * previous value of 300ms is known to be
855 * insufficient for some cards.
857 limit_us = 3000000;
858 else
859 limit_us = 100000;
862 * SDHC cards always use these fixed values.
864 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
865 data->timeout_ns = limit_us * 1000;
866 data->timeout_clks = 0;
869 /* assign limit value if invalid */
870 if (timeout_us == 0)
871 data->timeout_ns = limit_us * 1000;
875 * Some cards require longer data read timeout than indicated in CSD.
876 * Address this by setting the read timeout to a "reasonably high"
877 * value. For the cards tested, 300ms has proven enough. If necessary,
878 * this value can be increased if other problematic cards require this.
880 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
881 data->timeout_ns = 300000000;
882 data->timeout_clks = 0;
886 * Some cards need very high timeouts if driven in SPI mode.
887 * The worst observed timeout was 900ms after writing a
888 * continuous stream of data until the internal logic
889 * overflowed.
891 if (mmc_host_is_spi(card->host)) {
892 if (data->flags & MMC_DATA_WRITE) {
893 if (data->timeout_ns < 1000000000)
894 data->timeout_ns = 1000000000; /* 1s */
895 } else {
896 if (data->timeout_ns < 100000000)
897 data->timeout_ns = 100000000; /* 100ms */
901 EXPORT_SYMBOL(mmc_set_data_timeout);
904 * mmc_align_data_size - pads a transfer size to a more optimal value
905 * @card: the MMC card associated with the data transfer
906 * @sz: original transfer size
908 * Pads the original data size with a number of extra bytes in
909 * order to avoid controller bugs and/or performance hits
910 * (e.g. some controllers revert to PIO for certain sizes).
912 * Returns the improved size, which might be unmodified.
914 * Note that this function is only relevant when issuing a
915 * single scatter gather entry.
917 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
920 * FIXME: We don't have a system for the controller to tell
921 * the core about its problems yet, so for now we just 32-bit
922 * align the size.
924 sz = ((sz + 3) / 4) * 4;
926 return sz;
928 EXPORT_SYMBOL(mmc_align_data_size);
931 * __mmc_claim_host - exclusively claim a host
932 * @host: mmc host to claim
933 * @abort: whether or not the operation should be aborted
935 * Claim a host for a set of operations. If @abort is non null and
936 * dereference a non-zero value then this will return prematurely with
937 * that non-zero value without acquiring the lock. Returns zero
938 * with the lock held otherwise.
940 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
942 DECLARE_WAITQUEUE(wait, current);
943 unsigned long flags;
944 int stop;
945 bool pm = false;
947 might_sleep();
949 add_wait_queue(&host->wq, &wait);
950 spin_lock_irqsave(&host->lock, flags);
951 while (1) {
952 set_current_state(TASK_UNINTERRUPTIBLE);
953 stop = abort ? atomic_read(abort) : 0;
954 if (stop || !host->claimed || host->claimer == current)
955 break;
956 spin_unlock_irqrestore(&host->lock, flags);
957 schedule();
958 spin_lock_irqsave(&host->lock, flags);
960 set_current_state(TASK_RUNNING);
961 if (!stop) {
962 host->claimed = 1;
963 host->claimer = current;
964 host->claim_cnt += 1;
965 if (host->claim_cnt == 1)
966 pm = true;
967 } else
968 wake_up(&host->wq);
969 spin_unlock_irqrestore(&host->lock, flags);
970 remove_wait_queue(&host->wq, &wait);
972 if (pm)
973 pm_runtime_get_sync(mmc_dev(host));
975 return stop;
977 EXPORT_SYMBOL(__mmc_claim_host);
980 * mmc_release_host - release a host
981 * @host: mmc host to release
983 * Release a MMC host, allowing others to claim the host
984 * for their operations.
986 void mmc_release_host(struct mmc_host *host)
988 unsigned long flags;
990 WARN_ON(!host->claimed);
992 spin_lock_irqsave(&host->lock, flags);
993 if (--host->claim_cnt) {
994 /* Release for nested claim */
995 spin_unlock_irqrestore(&host->lock, flags);
996 } else {
997 host->claimed = 0;
998 host->claimer = NULL;
999 spin_unlock_irqrestore(&host->lock, flags);
1000 wake_up(&host->wq);
1001 pm_runtime_mark_last_busy(mmc_dev(host));
1002 pm_runtime_put_autosuspend(mmc_dev(host));
1005 EXPORT_SYMBOL(mmc_release_host);
1008 * This is a helper function, which fetches a runtime pm reference for the
1009 * card device and also claims the host.
1011 void mmc_get_card(struct mmc_card *card)
1013 pm_runtime_get_sync(&card->dev);
1014 mmc_claim_host(card->host);
1016 EXPORT_SYMBOL(mmc_get_card);
1019 * This is a helper function, which releases the host and drops the runtime
1020 * pm reference for the card device.
1022 void mmc_put_card(struct mmc_card *card)
1024 mmc_release_host(card->host);
1025 pm_runtime_mark_last_busy(&card->dev);
1026 pm_runtime_put_autosuspend(&card->dev);
1028 EXPORT_SYMBOL(mmc_put_card);
1031 * Internal function that does the actual ios call to the host driver,
1032 * optionally printing some debug output.
1034 static inline void mmc_set_ios(struct mmc_host *host)
1036 struct mmc_ios *ios = &host->ios;
1038 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1039 "width %u timing %u\n",
1040 mmc_hostname(host), ios->clock, ios->bus_mode,
1041 ios->power_mode, ios->chip_select, ios->vdd,
1042 ios->bus_width, ios->timing);
1044 host->ops->set_ios(host, ios);
1048 * Control chip select pin on a host.
1050 void mmc_set_chip_select(struct mmc_host *host, int mode)
1052 host->ios.chip_select = mode;
1053 mmc_set_ios(host);
1057 * Sets the host clock to the highest possible frequency that
1058 * is below "hz".
1060 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1062 WARN_ON(hz && hz < host->f_min);
1064 if (hz > host->f_max)
1065 hz = host->f_max;
1067 host->ios.clock = hz;
1068 mmc_set_ios(host);
1071 int mmc_execute_tuning(struct mmc_card *card)
1073 struct mmc_host *host = card->host;
1074 u32 opcode;
1075 int err;
1077 if (!host->ops->execute_tuning)
1078 return 0;
1080 if (mmc_card_mmc(card))
1081 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1082 else
1083 opcode = MMC_SEND_TUNING_BLOCK;
1085 err = host->ops->execute_tuning(host, opcode);
1087 if (err)
1088 pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1089 else
1090 mmc_retune_enable(host);
1092 return err;
1096 * Change the bus mode (open drain/push-pull) of a host.
1098 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1100 host->ios.bus_mode = mode;
1101 mmc_set_ios(host);
1105 * Change data bus width of a host.
1107 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1109 host->ios.bus_width = width;
1110 mmc_set_ios(host);
1114 * Set initial state after a power cycle or a hw_reset.
1116 void mmc_set_initial_state(struct mmc_host *host)
1118 mmc_retune_disable(host);
1120 if (mmc_host_is_spi(host))
1121 host->ios.chip_select = MMC_CS_HIGH;
1122 else
1123 host->ios.chip_select = MMC_CS_DONTCARE;
1124 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1125 host->ios.bus_width = MMC_BUS_WIDTH_1;
1126 host->ios.timing = MMC_TIMING_LEGACY;
1127 host->ios.drv_type = 0;
1129 mmc_set_ios(host);
1133 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1134 * @vdd: voltage (mV)
1135 * @low_bits: prefer low bits in boundary cases
1137 * This function returns the OCR bit number according to the provided @vdd
1138 * value. If conversion is not possible a negative errno value returned.
1140 * Depending on the @low_bits flag the function prefers low or high OCR bits
1141 * on boundary voltages. For example,
1142 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1143 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1145 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1147 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1149 const int max_bit = ilog2(MMC_VDD_35_36);
1150 int bit;
1152 if (vdd < 1650 || vdd > 3600)
1153 return -EINVAL;
1155 if (vdd >= 1650 && vdd <= 1950)
1156 return ilog2(MMC_VDD_165_195);
1158 if (low_bits)
1159 vdd -= 1;
1161 /* Base 2000 mV, step 100 mV, bit's base 8. */
1162 bit = (vdd - 2000) / 100 + 8;
1163 if (bit > max_bit)
1164 return max_bit;
1165 return bit;
1169 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1170 * @vdd_min: minimum voltage value (mV)
1171 * @vdd_max: maximum voltage value (mV)
1173 * This function returns the OCR mask bits according to the provided @vdd_min
1174 * and @vdd_max values. If conversion is not possible the function returns 0.
1176 * Notes wrt boundary cases:
1177 * This function sets the OCR bits for all boundary voltages, for example
1178 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1179 * MMC_VDD_34_35 mask.
1181 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1183 u32 mask = 0;
1185 if (vdd_max < vdd_min)
1186 return 0;
1188 /* Prefer high bits for the boundary vdd_max values. */
1189 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1190 if (vdd_max < 0)
1191 return 0;
1193 /* Prefer low bits for the boundary vdd_min values. */
1194 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1195 if (vdd_min < 0)
1196 return 0;
1198 /* Fill the mask, from max bit to min bit. */
1199 while (vdd_max >= vdd_min)
1200 mask |= 1 << vdd_max--;
1202 return mask;
1204 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1206 #ifdef CONFIG_OF
1209 * mmc_of_parse_voltage - return mask of supported voltages
1210 * @np: The device node need to be parsed.
1211 * @mask: mask of voltages available for MMC/SD/SDIO
1213 * 1. Return zero on success.
1214 * 2. Return negative errno: voltage-range is invalid.
1216 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1218 const u32 *voltage_ranges;
1219 int num_ranges, i;
1221 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1222 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1223 if (!voltage_ranges || !num_ranges) {
1224 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1225 return -EINVAL;
1228 for (i = 0; i < num_ranges; i++) {
1229 const int j = i * 2;
1230 u32 ocr_mask;
1232 ocr_mask = mmc_vddrange_to_ocrmask(
1233 be32_to_cpu(voltage_ranges[j]),
1234 be32_to_cpu(voltage_ranges[j + 1]));
1235 if (!ocr_mask) {
1236 pr_err("%s: voltage-range #%d is invalid\n",
1237 np->full_name, i);
1238 return -EINVAL;
1240 *mask |= ocr_mask;
1243 return 0;
1245 EXPORT_SYMBOL(mmc_of_parse_voltage);
1247 #endif /* CONFIG_OF */
1249 static int mmc_of_get_func_num(struct device_node *node)
1251 u32 reg;
1252 int ret;
1254 ret = of_property_read_u32(node, "reg", &reg);
1255 if (ret < 0)
1256 return ret;
1258 return reg;
1261 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1262 unsigned func_num)
1264 struct device_node *node;
1266 if (!host->parent || !host->parent->of_node)
1267 return NULL;
1269 for_each_child_of_node(host->parent->of_node, node) {
1270 if (mmc_of_get_func_num(node) == func_num)
1271 return node;
1274 return NULL;
1277 #ifdef CONFIG_REGULATOR
1280 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1281 * @vdd_bit: OCR bit number
1282 * @min_uV: minimum voltage value (mV)
1283 * @max_uV: maximum voltage value (mV)
1285 * This function returns the voltage range according to the provided OCR
1286 * bit number. If conversion is not possible a negative errno value returned.
1288 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1290 int tmp;
1292 if (!vdd_bit)
1293 return -EINVAL;
1296 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1297 * bits this regulator doesn't quite support ... don't
1298 * be too picky, most cards and regulators are OK with
1299 * a 0.1V range goof (it's a small error percentage).
1301 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1302 if (tmp == 0) {
1303 *min_uV = 1650 * 1000;
1304 *max_uV = 1950 * 1000;
1305 } else {
1306 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1307 *max_uV = *min_uV + 100 * 1000;
1310 return 0;
1314 * mmc_regulator_get_ocrmask - return mask of supported voltages
1315 * @supply: regulator to use
1317 * This returns either a negative errno, or a mask of voltages that
1318 * can be provided to MMC/SD/SDIO devices using the specified voltage
1319 * regulator. This would normally be called before registering the
1320 * MMC host adapter.
1322 int mmc_regulator_get_ocrmask(struct regulator *supply)
1324 int result = 0;
1325 int count;
1326 int i;
1327 int vdd_uV;
1328 int vdd_mV;
1330 count = regulator_count_voltages(supply);
1331 if (count < 0)
1332 return count;
1334 for (i = 0; i < count; i++) {
1335 vdd_uV = regulator_list_voltage(supply, i);
1336 if (vdd_uV <= 0)
1337 continue;
1339 vdd_mV = vdd_uV / 1000;
1340 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1343 if (!result) {
1344 vdd_uV = regulator_get_voltage(supply);
1345 if (vdd_uV <= 0)
1346 return vdd_uV;
1348 vdd_mV = vdd_uV / 1000;
1349 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1352 return result;
1354 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1357 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1358 * @mmc: the host to regulate
1359 * @supply: regulator to use
1360 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1362 * Returns zero on success, else negative errno.
1364 * MMC host drivers may use this to enable or disable a regulator using
1365 * a particular supply voltage. This would normally be called from the
1366 * set_ios() method.
1368 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1369 struct regulator *supply,
1370 unsigned short vdd_bit)
1372 int result = 0;
1373 int min_uV, max_uV;
1375 if (vdd_bit) {
1376 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1378 result = regulator_set_voltage(supply, min_uV, max_uV);
1379 if (result == 0 && !mmc->regulator_enabled) {
1380 result = regulator_enable(supply);
1381 if (!result)
1382 mmc->regulator_enabled = true;
1384 } else if (mmc->regulator_enabled) {
1385 result = regulator_disable(supply);
1386 if (result == 0)
1387 mmc->regulator_enabled = false;
1390 if (result)
1391 dev_err(mmc_dev(mmc),
1392 "could not set regulator OCR (%d)\n", result);
1393 return result;
1395 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1397 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1398 int min_uV, int target_uV,
1399 int max_uV)
1402 * Check if supported first to avoid errors since we may try several
1403 * signal levels during power up and don't want to show errors.
1405 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1406 return -EINVAL;
1408 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1409 max_uV);
1413 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1415 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1416 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1417 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1418 * SD card spec also define VQMMC in terms of VMMC.
1419 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1421 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1422 * requested voltage. This is definitely a good idea for UHS where there's a
1423 * separate regulator on the card that's trying to make 1.8V and it's best if
1424 * we match.
1426 * This function is expected to be used by a controller's
1427 * start_signal_voltage_switch() function.
1429 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1431 struct device *dev = mmc_dev(mmc);
1432 int ret, volt, min_uV, max_uV;
1434 /* If no vqmmc supply then we can't change the voltage */
1435 if (IS_ERR(mmc->supply.vqmmc))
1436 return -EINVAL;
1438 switch (ios->signal_voltage) {
1439 case MMC_SIGNAL_VOLTAGE_120:
1440 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1441 1100000, 1200000, 1300000);
1442 case MMC_SIGNAL_VOLTAGE_180:
1443 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1444 1700000, 1800000, 1950000);
1445 case MMC_SIGNAL_VOLTAGE_330:
1446 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1447 if (ret < 0)
1448 return ret;
1450 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1451 __func__, volt, max_uV);
1453 min_uV = max(volt - 300000, 2700000);
1454 max_uV = min(max_uV + 200000, 3600000);
1457 * Due to a limitation in the current implementation of
1458 * regulator_set_voltage_triplet() which is taking the lowest
1459 * voltage possible if below the target, search for a suitable
1460 * voltage in two steps and try to stay close to vmmc
1461 * with a 0.3V tolerance at first.
1463 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1464 min_uV, volt, max_uV))
1465 return 0;
1467 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1468 2700000, volt, 3600000);
1469 default:
1470 return -EINVAL;
1473 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1475 #endif /* CONFIG_REGULATOR */
1477 int mmc_regulator_get_supply(struct mmc_host *mmc)
1479 struct device *dev = mmc_dev(mmc);
1480 int ret;
1482 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1483 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1485 if (IS_ERR(mmc->supply.vmmc)) {
1486 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1487 return -EPROBE_DEFER;
1488 dev_info(dev, "No vmmc regulator found\n");
1489 } else {
1490 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1491 if (ret > 0)
1492 mmc->ocr_avail = ret;
1493 else
1494 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1497 if (IS_ERR(mmc->supply.vqmmc)) {
1498 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1499 return -EPROBE_DEFER;
1500 dev_info(dev, "No vqmmc regulator found\n");
1503 return 0;
1505 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1508 * Mask off any voltages we don't support and select
1509 * the lowest voltage
1511 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1513 int bit;
1516 * Sanity check the voltages that the card claims to
1517 * support.
1519 if (ocr & 0x7F) {
1520 dev_warn(mmc_dev(host),
1521 "card claims to support voltages below defined range\n");
1522 ocr &= ~0x7F;
1525 ocr &= host->ocr_avail;
1526 if (!ocr) {
1527 dev_warn(mmc_dev(host), "no support for card's volts\n");
1528 return 0;
1531 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1532 bit = ffs(ocr) - 1;
1533 ocr &= 3 << bit;
1534 mmc_power_cycle(host, ocr);
1535 } else {
1536 bit = fls(ocr) - 1;
1537 ocr &= 3 << bit;
1538 if (bit != host->ios.vdd)
1539 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1542 return ocr;
1545 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1547 int err = 0;
1548 int old_signal_voltage = host->ios.signal_voltage;
1550 host->ios.signal_voltage = signal_voltage;
1551 if (host->ops->start_signal_voltage_switch)
1552 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1554 if (err)
1555 host->ios.signal_voltage = old_signal_voltage;
1557 return err;
1561 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1563 struct mmc_command cmd = {0};
1564 int err = 0;
1565 u32 clock;
1567 BUG_ON(!host);
1570 * Send CMD11 only if the request is to switch the card to
1571 * 1.8V signalling.
1573 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1574 return __mmc_set_signal_voltage(host, signal_voltage);
1577 * If we cannot switch voltages, return failure so the caller
1578 * can continue without UHS mode
1580 if (!host->ops->start_signal_voltage_switch)
1581 return -EPERM;
1582 if (!host->ops->card_busy)
1583 pr_warn("%s: cannot verify signal voltage switch\n",
1584 mmc_hostname(host));
1586 cmd.opcode = SD_SWITCH_VOLTAGE;
1587 cmd.arg = 0;
1588 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1590 err = mmc_wait_for_cmd(host, &cmd, 0);
1591 if (err)
1592 return err;
1594 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1595 return -EIO;
1598 * The card should drive cmd and dat[0:3] low immediately
1599 * after the response of cmd11, but wait 1 ms to be sure
1601 mmc_delay(1);
1602 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1603 err = -EAGAIN;
1604 goto power_cycle;
1607 * During a signal voltage level switch, the clock must be gated
1608 * for 5 ms according to the SD spec
1610 clock = host->ios.clock;
1611 host->ios.clock = 0;
1612 mmc_set_ios(host);
1614 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1616 * Voltages may not have been switched, but we've already
1617 * sent CMD11, so a power cycle is required anyway
1619 err = -EAGAIN;
1620 goto power_cycle;
1623 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1624 mmc_delay(10);
1625 host->ios.clock = clock;
1626 mmc_set_ios(host);
1628 /* Wait for at least 1 ms according to spec */
1629 mmc_delay(1);
1632 * Failure to switch is indicated by the card holding
1633 * dat[0:3] low
1635 if (host->ops->card_busy && host->ops->card_busy(host))
1636 err = -EAGAIN;
1638 power_cycle:
1639 if (err) {
1640 pr_debug("%s: Signal voltage switch failed, "
1641 "power cycling card\n", mmc_hostname(host));
1642 mmc_power_cycle(host, ocr);
1645 return err;
1649 * Select timing parameters for host.
1651 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1653 host->ios.timing = timing;
1654 mmc_set_ios(host);
1658 * Select appropriate driver type for host.
1660 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1662 host->ios.drv_type = drv_type;
1663 mmc_set_ios(host);
1666 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1667 int card_drv_type, int *drv_type)
1669 struct mmc_host *host = card->host;
1670 int host_drv_type = SD_DRIVER_TYPE_B;
1672 *drv_type = 0;
1674 if (!host->ops->select_drive_strength)
1675 return 0;
1677 /* Use SD definition of driver strength for hosts */
1678 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1679 host_drv_type |= SD_DRIVER_TYPE_A;
1681 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1682 host_drv_type |= SD_DRIVER_TYPE_C;
1684 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1685 host_drv_type |= SD_DRIVER_TYPE_D;
1688 * The drive strength that the hardware can support
1689 * depends on the board design. Pass the appropriate
1690 * information and let the hardware specific code
1691 * return what is possible given the options
1693 return host->ops->select_drive_strength(card, max_dtr,
1694 host_drv_type,
1695 card_drv_type,
1696 drv_type);
1700 * Apply power to the MMC stack. This is a two-stage process.
1701 * First, we enable power to the card without the clock running.
1702 * We then wait a bit for the power to stabilise. Finally,
1703 * enable the bus drivers and clock to the card.
1705 * We must _NOT_ enable the clock prior to power stablising.
1707 * If a host does all the power sequencing itself, ignore the
1708 * initial MMC_POWER_UP stage.
1710 void mmc_power_up(struct mmc_host *host, u32 ocr)
1712 if (host->ios.power_mode == MMC_POWER_ON)
1713 return;
1715 mmc_pwrseq_pre_power_on(host);
1717 host->ios.vdd = fls(ocr) - 1;
1718 host->ios.power_mode = MMC_POWER_UP;
1719 /* Set initial state and call mmc_set_ios */
1720 mmc_set_initial_state(host);
1722 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1723 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1724 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1725 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1726 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1727 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1728 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1731 * This delay should be sufficient to allow the power supply
1732 * to reach the minimum voltage.
1734 mmc_delay(10);
1736 mmc_pwrseq_post_power_on(host);
1738 host->ios.clock = host->f_init;
1740 host->ios.power_mode = MMC_POWER_ON;
1741 mmc_set_ios(host);
1744 * This delay must be at least 74 clock sizes, or 1 ms, or the
1745 * time required to reach a stable voltage.
1747 mmc_delay(10);
1750 void mmc_power_off(struct mmc_host *host)
1752 if (host->ios.power_mode == MMC_POWER_OFF)
1753 return;
1755 mmc_pwrseq_power_off(host);
1757 host->ios.clock = 0;
1758 host->ios.vdd = 0;
1760 host->ios.power_mode = MMC_POWER_OFF;
1761 /* Set initial state and call mmc_set_ios */
1762 mmc_set_initial_state(host);
1765 * Some configurations, such as the 802.11 SDIO card in the OLPC
1766 * XO-1.5, require a short delay after poweroff before the card
1767 * can be successfully turned on again.
1769 mmc_delay(1);
1772 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1774 mmc_power_off(host);
1775 /* Wait at least 1 ms according to SD spec */
1776 mmc_delay(1);
1777 mmc_power_up(host, ocr);
1781 * Cleanup when the last reference to the bus operator is dropped.
1783 static void __mmc_release_bus(struct mmc_host *host)
1785 BUG_ON(!host);
1786 BUG_ON(host->bus_refs);
1787 BUG_ON(!host->bus_dead);
1789 host->bus_ops = NULL;
1793 * Increase reference count of bus operator
1795 static inline void mmc_bus_get(struct mmc_host *host)
1797 unsigned long flags;
1799 spin_lock_irqsave(&host->lock, flags);
1800 host->bus_refs++;
1801 spin_unlock_irqrestore(&host->lock, flags);
1805 * Decrease reference count of bus operator and free it if
1806 * it is the last reference.
1808 static inline void mmc_bus_put(struct mmc_host *host)
1810 unsigned long flags;
1812 spin_lock_irqsave(&host->lock, flags);
1813 host->bus_refs--;
1814 if ((host->bus_refs == 0) && host->bus_ops)
1815 __mmc_release_bus(host);
1816 spin_unlock_irqrestore(&host->lock, flags);
1820 * Assign a mmc bus handler to a host. Only one bus handler may control a
1821 * host at any given time.
1823 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1825 unsigned long flags;
1827 BUG_ON(!host);
1828 BUG_ON(!ops);
1830 WARN_ON(!host->claimed);
1832 spin_lock_irqsave(&host->lock, flags);
1834 BUG_ON(host->bus_ops);
1835 BUG_ON(host->bus_refs);
1837 host->bus_ops = ops;
1838 host->bus_refs = 1;
1839 host->bus_dead = 0;
1841 spin_unlock_irqrestore(&host->lock, flags);
1845 * Remove the current bus handler from a host.
1847 void mmc_detach_bus(struct mmc_host *host)
1849 unsigned long flags;
1851 BUG_ON(!host);
1853 WARN_ON(!host->claimed);
1854 WARN_ON(!host->bus_ops);
1856 spin_lock_irqsave(&host->lock, flags);
1858 host->bus_dead = 1;
1860 spin_unlock_irqrestore(&host->lock, flags);
1862 mmc_bus_put(host);
1865 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1866 bool cd_irq)
1868 #ifdef CONFIG_MMC_DEBUG
1869 unsigned long flags;
1870 spin_lock_irqsave(&host->lock, flags);
1871 WARN_ON(host->removed);
1872 spin_unlock_irqrestore(&host->lock, flags);
1873 #endif
1876 * If the device is configured as wakeup, we prevent a new sleep for
1877 * 5 s to give provision for user space to consume the event.
1879 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1880 device_can_wakeup(mmc_dev(host)))
1881 pm_wakeup_event(mmc_dev(host), 5000);
1883 host->detect_change = 1;
1884 mmc_schedule_delayed_work(&host->detect, delay);
1888 * mmc_detect_change - process change of state on a MMC socket
1889 * @host: host which changed state.
1890 * @delay: optional delay to wait before detection (jiffies)
1892 * MMC drivers should call this when they detect a card has been
1893 * inserted or removed. The MMC layer will confirm that any
1894 * present card is still functional, and initialize any newly
1895 * inserted.
1897 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1899 _mmc_detect_change(host, delay, true);
1901 EXPORT_SYMBOL(mmc_detect_change);
1903 void mmc_init_erase(struct mmc_card *card)
1905 unsigned int sz;
1907 if (is_power_of_2(card->erase_size))
1908 card->erase_shift = ffs(card->erase_size) - 1;
1909 else
1910 card->erase_shift = 0;
1913 * It is possible to erase an arbitrarily large area of an SD or MMC
1914 * card. That is not desirable because it can take a long time
1915 * (minutes) potentially delaying more important I/O, and also the
1916 * timeout calculations become increasingly hugely over-estimated.
1917 * Consequently, 'pref_erase' is defined as a guide to limit erases
1918 * to that size and alignment.
1920 * For SD cards that define Allocation Unit size, limit erases to one
1921 * Allocation Unit at a time. For MMC cards that define High Capacity
1922 * Erase Size, whether it is switched on or not, limit to that size.
1923 * Otherwise just have a stab at a good value. For modern cards it
1924 * will end up being 4MiB. Note that if the value is too small, it
1925 * can end up taking longer to erase.
1927 if (mmc_card_sd(card) && card->ssr.au) {
1928 card->pref_erase = card->ssr.au;
1929 card->erase_shift = ffs(card->ssr.au) - 1;
1930 } else if (card->ext_csd.hc_erase_size) {
1931 card->pref_erase = card->ext_csd.hc_erase_size;
1932 } else if (card->erase_size) {
1933 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1934 if (sz < 128)
1935 card->pref_erase = 512 * 1024 / 512;
1936 else if (sz < 512)
1937 card->pref_erase = 1024 * 1024 / 512;
1938 else if (sz < 1024)
1939 card->pref_erase = 2 * 1024 * 1024 / 512;
1940 else
1941 card->pref_erase = 4 * 1024 * 1024 / 512;
1942 if (card->pref_erase < card->erase_size)
1943 card->pref_erase = card->erase_size;
1944 else {
1945 sz = card->pref_erase % card->erase_size;
1946 if (sz)
1947 card->pref_erase += card->erase_size - sz;
1949 } else
1950 card->pref_erase = 0;
1953 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1954 unsigned int arg, unsigned int qty)
1956 unsigned int erase_timeout;
1958 if (arg == MMC_DISCARD_ARG ||
1959 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1960 erase_timeout = card->ext_csd.trim_timeout;
1961 } else if (card->ext_csd.erase_group_def & 1) {
1962 /* High Capacity Erase Group Size uses HC timeouts */
1963 if (arg == MMC_TRIM_ARG)
1964 erase_timeout = card->ext_csd.trim_timeout;
1965 else
1966 erase_timeout = card->ext_csd.hc_erase_timeout;
1967 } else {
1968 /* CSD Erase Group Size uses write timeout */
1969 unsigned int mult = (10 << card->csd.r2w_factor);
1970 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1971 unsigned int timeout_us;
1973 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1974 if (card->csd.tacc_ns < 1000000)
1975 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1976 else
1977 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1980 * ios.clock is only a target. The real clock rate might be
1981 * less but not that much less, so fudge it by multiplying by 2.
1983 timeout_clks <<= 1;
1984 timeout_us += (timeout_clks * 1000) /
1985 (card->host->ios.clock / 1000);
1987 erase_timeout = timeout_us / 1000;
1990 * Theoretically, the calculation could underflow so round up
1991 * to 1ms in that case.
1993 if (!erase_timeout)
1994 erase_timeout = 1;
1997 /* Multiplier for secure operations */
1998 if (arg & MMC_SECURE_ARGS) {
1999 if (arg == MMC_SECURE_ERASE_ARG)
2000 erase_timeout *= card->ext_csd.sec_erase_mult;
2001 else
2002 erase_timeout *= card->ext_csd.sec_trim_mult;
2005 erase_timeout *= qty;
2008 * Ensure at least a 1 second timeout for SPI as per
2009 * 'mmc_set_data_timeout()'
2011 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2012 erase_timeout = 1000;
2014 return erase_timeout;
2017 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2018 unsigned int arg,
2019 unsigned int qty)
2021 unsigned int erase_timeout;
2023 if (card->ssr.erase_timeout) {
2024 /* Erase timeout specified in SD Status Register (SSR) */
2025 erase_timeout = card->ssr.erase_timeout * qty +
2026 card->ssr.erase_offset;
2027 } else {
2029 * Erase timeout not specified in SD Status Register (SSR) so
2030 * use 250ms per write block.
2032 erase_timeout = 250 * qty;
2035 /* Must not be less than 1 second */
2036 if (erase_timeout < 1000)
2037 erase_timeout = 1000;
2039 return erase_timeout;
2042 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2043 unsigned int arg,
2044 unsigned int qty)
2046 if (mmc_card_sd(card))
2047 return mmc_sd_erase_timeout(card, arg, qty);
2048 else
2049 return mmc_mmc_erase_timeout(card, arg, qty);
2052 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2053 unsigned int to, unsigned int arg)
2055 struct mmc_command cmd = {0};
2056 unsigned int qty = 0;
2057 unsigned long timeout;
2058 int err;
2060 mmc_retune_hold(card->host);
2063 * qty is used to calculate the erase timeout which depends on how many
2064 * erase groups (or allocation units in SD terminology) are affected.
2065 * We count erasing part of an erase group as one erase group.
2066 * For SD, the allocation units are always a power of 2. For MMC, the
2067 * erase group size is almost certainly also power of 2, but it does not
2068 * seem to insist on that in the JEDEC standard, so we fall back to
2069 * division in that case. SD may not specify an allocation unit size,
2070 * in which case the timeout is based on the number of write blocks.
2072 * Note that the timeout for secure trim 2 will only be correct if the
2073 * number of erase groups specified is the same as the total of all
2074 * preceding secure trim 1 commands. Since the power may have been
2075 * lost since the secure trim 1 commands occurred, it is generally
2076 * impossible to calculate the secure trim 2 timeout correctly.
2078 if (card->erase_shift)
2079 qty += ((to >> card->erase_shift) -
2080 (from >> card->erase_shift)) + 1;
2081 else if (mmc_card_sd(card))
2082 qty += to - from + 1;
2083 else
2084 qty += ((to / card->erase_size) -
2085 (from / card->erase_size)) + 1;
2087 if (!mmc_card_blockaddr(card)) {
2088 from <<= 9;
2089 to <<= 9;
2092 if (mmc_card_sd(card))
2093 cmd.opcode = SD_ERASE_WR_BLK_START;
2094 else
2095 cmd.opcode = MMC_ERASE_GROUP_START;
2096 cmd.arg = from;
2097 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2098 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2099 if (err) {
2100 pr_err("mmc_erase: group start error %d, "
2101 "status %#x\n", err, cmd.resp[0]);
2102 err = -EIO;
2103 goto out;
2106 memset(&cmd, 0, sizeof(struct mmc_command));
2107 if (mmc_card_sd(card))
2108 cmd.opcode = SD_ERASE_WR_BLK_END;
2109 else
2110 cmd.opcode = MMC_ERASE_GROUP_END;
2111 cmd.arg = to;
2112 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2113 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2114 if (err) {
2115 pr_err("mmc_erase: group end error %d, status %#x\n",
2116 err, cmd.resp[0]);
2117 err = -EIO;
2118 goto out;
2121 memset(&cmd, 0, sizeof(struct mmc_command));
2122 cmd.opcode = MMC_ERASE;
2123 cmd.arg = arg;
2124 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2125 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2126 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2127 if (err) {
2128 pr_err("mmc_erase: erase error %d, status %#x\n",
2129 err, cmd.resp[0]);
2130 err = -EIO;
2131 goto out;
2134 if (mmc_host_is_spi(card->host))
2135 goto out;
2137 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2138 do {
2139 memset(&cmd, 0, sizeof(struct mmc_command));
2140 cmd.opcode = MMC_SEND_STATUS;
2141 cmd.arg = card->rca << 16;
2142 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2143 /* Do not retry else we can't see errors */
2144 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2145 if (err || (cmd.resp[0] & 0xFDF92000)) {
2146 pr_err("error %d requesting status %#x\n",
2147 err, cmd.resp[0]);
2148 err = -EIO;
2149 goto out;
2152 /* Timeout if the device never becomes ready for data and
2153 * never leaves the program state.
2155 if (time_after(jiffies, timeout)) {
2156 pr_err("%s: Card stuck in programming state! %s\n",
2157 mmc_hostname(card->host), __func__);
2158 err = -EIO;
2159 goto out;
2162 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2163 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2164 out:
2165 mmc_retune_release(card->host);
2166 return err;
2170 * mmc_erase - erase sectors.
2171 * @card: card to erase
2172 * @from: first sector to erase
2173 * @nr: number of sectors to erase
2174 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2176 * Caller must claim host before calling this function.
2178 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2179 unsigned int arg)
2181 unsigned int rem, to = from + nr;
2182 int err;
2184 if (!(card->host->caps & MMC_CAP_ERASE) ||
2185 !(card->csd.cmdclass & CCC_ERASE))
2186 return -EOPNOTSUPP;
2188 if (!card->erase_size)
2189 return -EOPNOTSUPP;
2191 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2192 return -EOPNOTSUPP;
2194 if ((arg & MMC_SECURE_ARGS) &&
2195 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2196 return -EOPNOTSUPP;
2198 if ((arg & MMC_TRIM_ARGS) &&
2199 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2200 return -EOPNOTSUPP;
2202 if (arg == MMC_SECURE_ERASE_ARG) {
2203 if (from % card->erase_size || nr % card->erase_size)
2204 return -EINVAL;
2207 if (arg == MMC_ERASE_ARG) {
2208 rem = from % card->erase_size;
2209 if (rem) {
2210 rem = card->erase_size - rem;
2211 from += rem;
2212 if (nr > rem)
2213 nr -= rem;
2214 else
2215 return 0;
2217 rem = nr % card->erase_size;
2218 if (rem)
2219 nr -= rem;
2222 if (nr == 0)
2223 return 0;
2225 to = from + nr;
2227 if (to <= from)
2228 return -EINVAL;
2230 /* 'from' and 'to' are inclusive */
2231 to -= 1;
2234 * Special case where only one erase-group fits in the timeout budget:
2235 * If the region crosses an erase-group boundary on this particular
2236 * case, we will be trimming more than one erase-group which, does not
2237 * fit in the timeout budget of the controller, so we need to split it
2238 * and call mmc_do_erase() twice if necessary. This special case is
2239 * identified by the card->eg_boundary flag.
2241 rem = card->erase_size - (from % card->erase_size);
2242 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2243 err = mmc_do_erase(card, from, from + rem - 1, arg);
2244 from += rem;
2245 if ((err) || (to <= from))
2246 return err;
2249 return mmc_do_erase(card, from, to, arg);
2251 EXPORT_SYMBOL(mmc_erase);
2253 int mmc_can_erase(struct mmc_card *card)
2255 if ((card->host->caps & MMC_CAP_ERASE) &&
2256 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2257 return 1;
2258 return 0;
2260 EXPORT_SYMBOL(mmc_can_erase);
2262 int mmc_can_trim(struct mmc_card *card)
2264 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2265 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2266 return 1;
2267 return 0;
2269 EXPORT_SYMBOL(mmc_can_trim);
2271 int mmc_can_discard(struct mmc_card *card)
2274 * As there's no way to detect the discard support bit at v4.5
2275 * use the s/w feature support filed.
2277 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2278 return 1;
2279 return 0;
2281 EXPORT_SYMBOL(mmc_can_discard);
2283 int mmc_can_sanitize(struct mmc_card *card)
2285 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2286 return 0;
2287 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2288 return 1;
2289 return 0;
2291 EXPORT_SYMBOL(mmc_can_sanitize);
2293 int mmc_can_secure_erase_trim(struct mmc_card *card)
2295 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2296 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2297 return 1;
2298 return 0;
2300 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2302 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2303 unsigned int nr)
2305 if (!card->erase_size)
2306 return 0;
2307 if (from % card->erase_size || nr % card->erase_size)
2308 return 0;
2309 return 1;
2311 EXPORT_SYMBOL(mmc_erase_group_aligned);
2313 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2314 unsigned int arg)
2316 struct mmc_host *host = card->host;
2317 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2318 unsigned int last_timeout = 0;
2320 if (card->erase_shift)
2321 max_qty = UINT_MAX >> card->erase_shift;
2322 else if (mmc_card_sd(card))
2323 max_qty = UINT_MAX;
2324 else
2325 max_qty = UINT_MAX / card->erase_size;
2327 /* Find the largest qty with an OK timeout */
2328 do {
2329 y = 0;
2330 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2331 timeout = mmc_erase_timeout(card, arg, qty + x);
2332 if (timeout > host->max_busy_timeout)
2333 break;
2334 if (timeout < last_timeout)
2335 break;
2336 last_timeout = timeout;
2337 y = x;
2339 qty += y;
2340 } while (y);
2342 if (!qty)
2343 return 0;
2346 * When specifying a sector range to trim, chances are we might cross
2347 * an erase-group boundary even if the amount of sectors is less than
2348 * one erase-group.
2349 * If we can only fit one erase-group in the controller timeout budget,
2350 * we have to care that erase-group boundaries are not crossed by a
2351 * single trim operation. We flag that special case with "eg_boundary".
2352 * In all other cases we can just decrement qty and pretend that we
2353 * always touch (qty + 1) erase-groups as a simple optimization.
2355 if (qty == 1)
2356 card->eg_boundary = 1;
2357 else
2358 qty--;
2360 /* Convert qty to sectors */
2361 if (card->erase_shift)
2362 max_discard = qty << card->erase_shift;
2363 else if (mmc_card_sd(card))
2364 max_discard = qty + 1;
2365 else
2366 max_discard = qty * card->erase_size;
2368 return max_discard;
2371 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2373 struct mmc_host *host = card->host;
2374 unsigned int max_discard, max_trim;
2376 if (!host->max_busy_timeout)
2377 return UINT_MAX;
2380 * Without erase_group_def set, MMC erase timeout depends on clock
2381 * frequence which can change. In that case, the best choice is
2382 * just the preferred erase size.
2384 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2385 return card->pref_erase;
2387 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2388 if (mmc_can_trim(card)) {
2389 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2390 if (max_trim < max_discard)
2391 max_discard = max_trim;
2392 } else if (max_discard < card->erase_size) {
2393 max_discard = 0;
2395 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2396 mmc_hostname(host), max_discard, host->max_busy_timeout);
2397 return max_discard;
2399 EXPORT_SYMBOL(mmc_calc_max_discard);
2401 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2403 struct mmc_command cmd = {0};
2405 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2406 return 0;
2408 cmd.opcode = MMC_SET_BLOCKLEN;
2409 cmd.arg = blocklen;
2410 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2411 return mmc_wait_for_cmd(card->host, &cmd, 5);
2413 EXPORT_SYMBOL(mmc_set_blocklen);
2415 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2416 bool is_rel_write)
2418 struct mmc_command cmd = {0};
2420 cmd.opcode = MMC_SET_BLOCK_COUNT;
2421 cmd.arg = blockcount & 0x0000FFFF;
2422 if (is_rel_write)
2423 cmd.arg |= 1 << 31;
2424 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2425 return mmc_wait_for_cmd(card->host, &cmd, 5);
2427 EXPORT_SYMBOL(mmc_set_blockcount);
2429 static void mmc_hw_reset_for_init(struct mmc_host *host)
2431 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2432 return;
2433 host->ops->hw_reset(host);
2436 int mmc_hw_reset(struct mmc_host *host)
2438 int ret;
2440 if (!host->card)
2441 return -EINVAL;
2443 mmc_bus_get(host);
2444 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2445 mmc_bus_put(host);
2446 return -EOPNOTSUPP;
2449 ret = host->bus_ops->reset(host);
2450 mmc_bus_put(host);
2452 if (ret != -EOPNOTSUPP)
2453 pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2455 return ret;
2457 EXPORT_SYMBOL(mmc_hw_reset);
2459 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2461 host->f_init = freq;
2463 #ifdef CONFIG_MMC_DEBUG
2464 pr_info("%s: %s: trying to init card at %u Hz\n",
2465 mmc_hostname(host), __func__, host->f_init);
2466 #endif
2467 mmc_power_up(host, host->ocr_avail);
2470 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2471 * do a hardware reset if possible.
2473 mmc_hw_reset_for_init(host);
2476 * sdio_reset sends CMD52 to reset card. Since we do not know
2477 * if the card is being re-initialized, just send it. CMD52
2478 * should be ignored by SD/eMMC cards.
2480 sdio_reset(host);
2481 mmc_go_idle(host);
2483 mmc_send_if_cond(host, host->ocr_avail);
2485 /* Order's important: probe SDIO, then SD, then MMC */
2486 if (!mmc_attach_sdio(host))
2487 return 0;
2488 if (!mmc_attach_sd(host))
2489 return 0;
2490 if (!mmc_attach_mmc(host))
2491 return 0;
2493 mmc_power_off(host);
2494 return -EIO;
2497 int _mmc_detect_card_removed(struct mmc_host *host)
2499 int ret;
2501 if (host->caps & MMC_CAP_NONREMOVABLE)
2502 return 0;
2504 if (!host->card || mmc_card_removed(host->card))
2505 return 1;
2507 ret = host->bus_ops->alive(host);
2510 * Card detect status and alive check may be out of sync if card is
2511 * removed slowly, when card detect switch changes while card/slot
2512 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514 * detect work 200ms later for this case.
2516 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2517 mmc_detect_change(host, msecs_to_jiffies(200));
2518 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2521 if (ret) {
2522 mmc_card_set_removed(host->card);
2523 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2526 return ret;
2529 int mmc_detect_card_removed(struct mmc_host *host)
2531 struct mmc_card *card = host->card;
2532 int ret;
2534 WARN_ON(!host->claimed);
2536 if (!card)
2537 return 1;
2539 ret = mmc_card_removed(card);
2541 * The card will be considered unchanged unless we have been asked to
2542 * detect a change or host requires polling to provide card detection.
2544 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2545 return ret;
2547 host->detect_change = 0;
2548 if (!ret) {
2549 ret = _mmc_detect_card_removed(host);
2550 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2552 * Schedule a detect work as soon as possible to let a
2553 * rescan handle the card removal.
2555 cancel_delayed_work(&host->detect);
2556 _mmc_detect_change(host, 0, false);
2560 return ret;
2562 EXPORT_SYMBOL(mmc_detect_card_removed);
2564 void mmc_rescan(struct work_struct *work)
2566 struct mmc_host *host =
2567 container_of(work, struct mmc_host, detect.work);
2568 int i;
2570 if (host->trigger_card_event && host->ops->card_event) {
2571 host->ops->card_event(host);
2572 host->trigger_card_event = false;
2575 if (host->rescan_disable)
2576 return;
2578 /* If there is a non-removable card registered, only scan once */
2579 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2580 return;
2581 host->rescan_entered = 1;
2583 mmc_bus_get(host);
2586 * if there is a _removable_ card registered, check whether it is
2587 * still present
2589 if (host->bus_ops && !host->bus_dead
2590 && !(host->caps & MMC_CAP_NONREMOVABLE))
2591 host->bus_ops->detect(host);
2593 host->detect_change = 0;
2596 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2597 * the card is no longer present.
2599 mmc_bus_put(host);
2600 mmc_bus_get(host);
2602 /* if there still is a card present, stop here */
2603 if (host->bus_ops != NULL) {
2604 mmc_bus_put(host);
2605 goto out;
2609 * Only we can add a new handler, so it's safe to
2610 * release the lock here.
2612 mmc_bus_put(host);
2614 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2615 host->ops->get_cd(host) == 0) {
2616 mmc_claim_host(host);
2617 mmc_power_off(host);
2618 mmc_release_host(host);
2619 goto out;
2622 mmc_claim_host(host);
2623 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2624 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2625 break;
2626 if (freqs[i] <= host->f_min)
2627 break;
2629 mmc_release_host(host);
2631 out:
2632 if (host->caps & MMC_CAP_NEEDS_POLL)
2633 mmc_schedule_delayed_work(&host->detect, HZ);
2636 void mmc_start_host(struct mmc_host *host)
2638 host->f_init = max(freqs[0], host->f_min);
2639 host->rescan_disable = 0;
2640 host->ios.power_mode = MMC_POWER_UNDEFINED;
2642 mmc_claim_host(host);
2643 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2644 mmc_power_off(host);
2645 else
2646 mmc_power_up(host, host->ocr_avail);
2647 mmc_release_host(host);
2649 mmc_gpiod_request_cd_irq(host);
2650 _mmc_detect_change(host, 0, false);
2653 void mmc_stop_host(struct mmc_host *host)
2655 #ifdef CONFIG_MMC_DEBUG
2656 unsigned long flags;
2657 spin_lock_irqsave(&host->lock, flags);
2658 host->removed = 1;
2659 spin_unlock_irqrestore(&host->lock, flags);
2660 #endif
2661 if (host->slot.cd_irq >= 0)
2662 disable_irq(host->slot.cd_irq);
2664 host->rescan_disable = 1;
2665 cancel_delayed_work_sync(&host->detect);
2666 mmc_flush_scheduled_work();
2668 /* clear pm flags now and let card drivers set them as needed */
2669 host->pm_flags = 0;
2671 mmc_bus_get(host);
2672 if (host->bus_ops && !host->bus_dead) {
2673 /* Calling bus_ops->remove() with a claimed host can deadlock */
2674 host->bus_ops->remove(host);
2675 mmc_claim_host(host);
2676 mmc_detach_bus(host);
2677 mmc_power_off(host);
2678 mmc_release_host(host);
2679 mmc_bus_put(host);
2680 return;
2682 mmc_bus_put(host);
2684 BUG_ON(host->card);
2686 mmc_claim_host(host);
2687 mmc_power_off(host);
2688 mmc_release_host(host);
2691 int mmc_power_save_host(struct mmc_host *host)
2693 int ret = 0;
2695 #ifdef CONFIG_MMC_DEBUG
2696 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2697 #endif
2699 mmc_bus_get(host);
2701 if (!host->bus_ops || host->bus_dead) {
2702 mmc_bus_put(host);
2703 return -EINVAL;
2706 if (host->bus_ops->power_save)
2707 ret = host->bus_ops->power_save(host);
2709 mmc_bus_put(host);
2711 mmc_power_off(host);
2713 return ret;
2715 EXPORT_SYMBOL(mmc_power_save_host);
2717 int mmc_power_restore_host(struct mmc_host *host)
2719 int ret;
2721 #ifdef CONFIG_MMC_DEBUG
2722 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2723 #endif
2725 mmc_bus_get(host);
2727 if (!host->bus_ops || host->bus_dead) {
2728 mmc_bus_put(host);
2729 return -EINVAL;
2732 mmc_power_up(host, host->card->ocr);
2733 ret = host->bus_ops->power_restore(host);
2735 mmc_bus_put(host);
2737 return ret;
2739 EXPORT_SYMBOL(mmc_power_restore_host);
2742 * Flush the cache to the non-volatile storage.
2744 int mmc_flush_cache(struct mmc_card *card)
2746 int err = 0;
2748 if (mmc_card_mmc(card) &&
2749 (card->ext_csd.cache_size > 0) &&
2750 (card->ext_csd.cache_ctrl & 1)) {
2751 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2752 EXT_CSD_FLUSH_CACHE, 1, 0);
2753 if (err)
2754 pr_err("%s: cache flush error %d\n",
2755 mmc_hostname(card->host), err);
2758 return err;
2760 EXPORT_SYMBOL(mmc_flush_cache);
2762 #ifdef CONFIG_PM
2764 /* Do the card removal on suspend if card is assumed removeable
2765 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2766 to sync the card.
2768 int mmc_pm_notify(struct notifier_block *notify_block,
2769 unsigned long mode, void *unused)
2771 struct mmc_host *host = container_of(
2772 notify_block, struct mmc_host, pm_notify);
2773 unsigned long flags;
2774 int err = 0;
2776 switch (mode) {
2777 case PM_HIBERNATION_PREPARE:
2778 case PM_SUSPEND_PREPARE:
2779 case PM_RESTORE_PREPARE:
2780 spin_lock_irqsave(&host->lock, flags);
2781 host->rescan_disable = 1;
2782 spin_unlock_irqrestore(&host->lock, flags);
2783 cancel_delayed_work_sync(&host->detect);
2785 if (!host->bus_ops)
2786 break;
2788 /* Validate prerequisites for suspend */
2789 if (host->bus_ops->pre_suspend)
2790 err = host->bus_ops->pre_suspend(host);
2791 if (!err)
2792 break;
2794 /* Calling bus_ops->remove() with a claimed host can deadlock */
2795 host->bus_ops->remove(host);
2796 mmc_claim_host(host);
2797 mmc_detach_bus(host);
2798 mmc_power_off(host);
2799 mmc_release_host(host);
2800 host->pm_flags = 0;
2801 break;
2803 case PM_POST_SUSPEND:
2804 case PM_POST_HIBERNATION:
2805 case PM_POST_RESTORE:
2807 spin_lock_irqsave(&host->lock, flags);
2808 host->rescan_disable = 0;
2809 spin_unlock_irqrestore(&host->lock, flags);
2810 _mmc_detect_change(host, 0, false);
2814 return 0;
2816 #endif
2819 * mmc_init_context_info() - init synchronization context
2820 * @host: mmc host
2822 * Init struct context_info needed to implement asynchronous
2823 * request mechanism, used by mmc core, host driver and mmc requests
2824 * supplier.
2826 void mmc_init_context_info(struct mmc_host *host)
2828 spin_lock_init(&host->context_info.lock);
2829 host->context_info.is_new_req = false;
2830 host->context_info.is_done_rcv = false;
2831 host->context_info.is_waiting_last_req = false;
2832 init_waitqueue_head(&host->context_info.wait);
2835 static int __init mmc_init(void)
2837 int ret;
2839 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2840 if (!workqueue)
2841 return -ENOMEM;
2843 ret = mmc_register_bus();
2844 if (ret)
2845 goto destroy_workqueue;
2847 ret = mmc_register_host_class();
2848 if (ret)
2849 goto unregister_bus;
2851 ret = sdio_register_bus();
2852 if (ret)
2853 goto unregister_host_class;
2855 return 0;
2857 unregister_host_class:
2858 mmc_unregister_host_class();
2859 unregister_bus:
2860 mmc_unregister_bus();
2861 destroy_workqueue:
2862 destroy_workqueue(workqueue);
2864 return ret;
2867 static void __exit mmc_exit(void)
2869 sdio_unregister_bus();
2870 mmc_unregister_host_class();
2871 mmc_unregister_bus();
2872 destroy_workqueue(workqueue);
2875 subsys_initcall(mmc_init);
2876 module_exit(mmc_exit);
2878 MODULE_LICENSE("GPL");