2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
30 MODULE_LICENSE("GPL");
33 * We define a module parameter that allows the user to override
34 * the hardware and decide what timing mode should be used.
36 #define NAND_DEFAULT_TIMINGS -1
38 static int onfi_timing_mode
= NAND_DEFAULT_TIMINGS
;
39 module_param(onfi_timing_mode
, int, S_IRUGO
);
40 MODULE_PARM_DESC(onfi_timing_mode
,
41 "Overrides default ONFI setting. -1 indicates use default timings");
43 #define DENALI_NAND_NAME "denali-nand"
46 * We define a macro here that combines all interrupts this driver uses into
47 * a single constant value, for convenience.
49 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
50 INTR_STATUS__ECC_TRANSACTION_DONE | \
51 INTR_STATUS__ECC_ERR | \
52 INTR_STATUS__PROGRAM_FAIL | \
53 INTR_STATUS__LOAD_COMP | \
54 INTR_STATUS__PROGRAM_COMP | \
55 INTR_STATUS__TIME_OUT | \
56 INTR_STATUS__ERASE_FAIL | \
57 INTR_STATUS__RST_COMP | \
58 INTR_STATUS__ERASE_COMP)
61 * indicates whether or not the internal value for the flash bank is
64 #define CHIP_SELECT_INVALID -1
66 #define SUPPORT_8BITECC 1
69 * This macro divides two integers and rounds fractional values up
70 * to the nearest integer value.
72 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
75 * this macro allows us to convert from an MTD structure to our own
76 * device context (denali) structure.
78 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
81 * These constants are defined by the driver to enable common driver
82 * configuration options.
84 #define SPARE_ACCESS 0x41
85 #define MAIN_ACCESS 0x42
86 #define MAIN_SPARE_ACCESS 0x43
87 #define PIPELINE_ACCESS 0x2000
90 #define DENALI_WRITE 0x100
92 /* types of device accesses. We can issue commands and get status */
93 #define COMMAND_CYCLE 0
95 #define STATUS_CYCLE 2
98 * this is a helper macro that allows us to
99 * format the bank into the proper bits for the controller
101 #define BANK(x) ((x) << 24)
103 /* forward declarations */
104 static void clear_interrupts(struct denali_nand_info
*denali
);
105 static uint32_t wait_for_irq(struct denali_nand_info
*denali
,
107 static void denali_irq_enable(struct denali_nand_info
*denali
,
109 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
);
112 * Certain operations for the denali NAND controller use an indexed mode to
113 * read/write data. The operation is performed by writing the address value
114 * of the command to the device memory followed by the data. This function
115 * abstracts this common operation.
117 static void index_addr(struct denali_nand_info
*denali
,
118 uint32_t address
, uint32_t data
)
120 iowrite32(address
, denali
->flash_mem
);
121 iowrite32(data
, denali
->flash_mem
+ 0x10);
124 /* Perform an indexed read of the device */
125 static void index_addr_read_data(struct denali_nand_info
*denali
,
126 uint32_t address
, uint32_t *pdata
)
128 iowrite32(address
, denali
->flash_mem
);
129 *pdata
= ioread32(denali
->flash_mem
+ 0x10);
133 * We need to buffer some data for some of the NAND core routines.
134 * The operations manage buffering that data.
136 static void reset_buf(struct denali_nand_info
*denali
)
138 denali
->buf
.head
= denali
->buf
.tail
= 0;
141 static void write_byte_to_buf(struct denali_nand_info
*denali
, uint8_t byte
)
143 denali
->buf
.buf
[denali
->buf
.tail
++] = byte
;
146 /* reads the status of the device */
147 static void read_status(struct denali_nand_info
*denali
)
151 /* initialize the data buffer to store status */
154 cmd
= ioread32(denali
->flash_reg
+ WRITE_PROTECT
);
156 write_byte_to_buf(denali
, NAND_STATUS_WP
);
158 write_byte_to_buf(denali
, 0);
161 /* resets a specific device connected to the core */
162 static void reset_bank(struct denali_nand_info
*denali
)
165 uint32_t irq_mask
= INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
;
167 clear_interrupts(denali
);
169 iowrite32(1 << denali
->flash_bank
, denali
->flash_reg
+ DEVICE_RESET
);
171 irq_status
= wait_for_irq(denali
, irq_mask
);
173 if (irq_status
& INTR_STATUS__TIME_OUT
)
174 dev_err(denali
->dev
, "reset bank failed.\n");
177 /* Reset the flash controller */
178 static uint16_t denali_nand_reset(struct denali_nand_info
*denali
)
182 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
183 __FILE__
, __LINE__
, __func__
);
185 for (i
= 0; i
< denali
->max_banks
; i
++)
186 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
187 denali
->flash_reg
+ INTR_STATUS(i
));
189 for (i
= 0; i
< denali
->max_banks
; i
++) {
190 iowrite32(1 << i
, denali
->flash_reg
+ DEVICE_RESET
);
191 while (!(ioread32(denali
->flash_reg
+ INTR_STATUS(i
)) &
192 (INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
)))
194 if (ioread32(denali
->flash_reg
+ INTR_STATUS(i
)) &
195 INTR_STATUS__TIME_OUT
)
197 "NAND Reset operation timed out on bank %d\n", i
);
200 for (i
= 0; i
< denali
->max_banks
; i
++)
201 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
202 denali
->flash_reg
+ INTR_STATUS(i
));
208 * this routine calculates the ONFI timing values for a given mode and
209 * programs the clocking register accordingly. The mode is determined by
210 * the get_onfi_nand_para routine.
212 static void nand_onfi_timing_set(struct denali_nand_info
*denali
,
215 uint16_t Trea
[6] = {40, 30, 25, 20, 20, 16};
216 uint16_t Trp
[6] = {50, 25, 17, 15, 12, 10};
217 uint16_t Treh
[6] = {30, 15, 15, 10, 10, 7};
218 uint16_t Trc
[6] = {100, 50, 35, 30, 25, 20};
219 uint16_t Trhoh
[6] = {0, 15, 15, 15, 15, 15};
220 uint16_t Trloh
[6] = {0, 0, 0, 0, 5, 5};
221 uint16_t Tcea
[6] = {100, 45, 30, 25, 25, 25};
222 uint16_t Tadl
[6] = {200, 100, 100, 100, 70, 70};
223 uint16_t Trhw
[6] = {200, 100, 100, 100, 100, 100};
224 uint16_t Trhz
[6] = {200, 100, 100, 100, 100, 100};
225 uint16_t Twhr
[6] = {120, 80, 80, 60, 60, 60};
226 uint16_t Tcs
[6] = {70, 35, 25, 25, 20, 15};
228 uint16_t data_invalid_rhoh
, data_invalid_rloh
, data_invalid
;
229 uint16_t dv_window
= 0;
230 uint16_t en_lo
, en_hi
;
232 uint16_t addr_2_data
, re_2_we
, re_2_re
, we_2_re
, cs_cnt
;
234 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
235 __FILE__
, __LINE__
, __func__
);
237 en_lo
= CEIL_DIV(Trp
[mode
], CLK_X
);
238 en_hi
= CEIL_DIV(Treh
[mode
], CLK_X
);
240 if ((en_hi
* CLK_X
) < (Treh
[mode
] + 2))
244 if ((en_lo
+ en_hi
) * CLK_X
< Trc
[mode
])
245 en_lo
+= CEIL_DIV((Trc
[mode
] - (en_lo
+ en_hi
) * CLK_X
), CLK_X
);
247 if ((en_lo
+ en_hi
) < CLK_MULTI
)
248 en_lo
+= CLK_MULTI
- en_lo
- en_hi
;
250 while (dv_window
< 8) {
251 data_invalid_rhoh
= en_lo
* CLK_X
+ Trhoh
[mode
];
253 data_invalid_rloh
= (en_lo
+ en_hi
) * CLK_X
+ Trloh
[mode
];
255 data_invalid
= data_invalid_rhoh
< data_invalid_rloh
?
256 data_invalid_rhoh
: data_invalid_rloh
;
258 dv_window
= data_invalid
- Trea
[mode
];
264 acc_clks
= CEIL_DIV(Trea
[mode
], CLK_X
);
266 while (acc_clks
* CLK_X
- Trea
[mode
] < 3)
269 if (data_invalid
- acc_clks
* CLK_X
< 2)
270 dev_warn(denali
->dev
, "%s, Line %d: Warning!\n",
273 addr_2_data
= CEIL_DIV(Tadl
[mode
], CLK_X
);
274 re_2_we
= CEIL_DIV(Trhw
[mode
], CLK_X
);
275 re_2_re
= CEIL_DIV(Trhz
[mode
], CLK_X
);
276 we_2_re
= CEIL_DIV(Twhr
[mode
], CLK_X
);
277 cs_cnt
= CEIL_DIV((Tcs
[mode
] - Trp
[mode
]), CLK_X
);
282 while (cs_cnt
* CLK_X
+ Trea
[mode
] < Tcea
[mode
])
291 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
292 if (ioread32(denali
->flash_reg
+ MANUFACTURER_ID
) == 0 &&
293 ioread32(denali
->flash_reg
+ DEVICE_ID
) == 0x88)
296 iowrite32(acc_clks
, denali
->flash_reg
+ ACC_CLKS
);
297 iowrite32(re_2_we
, denali
->flash_reg
+ RE_2_WE
);
298 iowrite32(re_2_re
, denali
->flash_reg
+ RE_2_RE
);
299 iowrite32(we_2_re
, denali
->flash_reg
+ WE_2_RE
);
300 iowrite32(addr_2_data
, denali
->flash_reg
+ ADDR_2_DATA
);
301 iowrite32(en_lo
, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
302 iowrite32(en_hi
, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
303 iowrite32(cs_cnt
, denali
->flash_reg
+ CS_SETUP_CNT
);
306 /* queries the NAND device to see what ONFI modes it supports. */
307 static uint16_t get_onfi_nand_para(struct denali_nand_info
*denali
)
312 * we needn't to do a reset here because driver has already
313 * reset all the banks before
315 if (!(ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
316 ONFI_TIMING_MODE__VALUE
))
319 for (i
= 5; i
> 0; i
--) {
320 if (ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
325 nand_onfi_timing_set(denali
, i
);
328 * By now, all the ONFI devices we know support the page cache
329 * rw feature. So here we enable the pipeline_rw_ahead feature
331 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
332 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
337 static void get_samsung_nand_para(struct denali_nand_info
*denali
,
340 if (device_id
== 0xd3) { /* Samsung K9WAG08U1A */
341 /* Set timing register values according to datasheet */
342 iowrite32(5, denali
->flash_reg
+ ACC_CLKS
);
343 iowrite32(20, denali
->flash_reg
+ RE_2_WE
);
344 iowrite32(12, denali
->flash_reg
+ WE_2_RE
);
345 iowrite32(14, denali
->flash_reg
+ ADDR_2_DATA
);
346 iowrite32(3, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
347 iowrite32(2, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
348 iowrite32(2, denali
->flash_reg
+ CS_SETUP_CNT
);
352 static void get_toshiba_nand_para(struct denali_nand_info
*denali
)
357 * Workaround to fix a controller bug which reports a wrong
358 * spare area size for some kind of Toshiba NAND device
360 if ((ioread32(denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
) == 4096) &&
361 (ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
) == 64)) {
362 iowrite32(216, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
363 tmp
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
) *
364 ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
366 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
368 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
369 #elif SUPPORT_8BITECC
370 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
375 static void get_hynix_nand_para(struct denali_nand_info
*denali
,
378 uint32_t main_size
, spare_size
;
381 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
382 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
383 iowrite32(128, denali
->flash_reg
+ PAGES_PER_BLOCK
);
384 iowrite32(4096, denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
);
385 iowrite32(224, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
387 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
389 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
391 denali
->flash_reg
+ LOGICAL_PAGE_DATA_SIZE
);
392 iowrite32(spare_size
,
393 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
394 iowrite32(0, denali
->flash_reg
+ DEVICE_WIDTH
);
396 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
397 #elif SUPPORT_8BITECC
398 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
402 dev_warn(denali
->dev
,
403 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
404 "Will use default parameter values instead.\n",
410 * determines how many NAND chips are connected to the controller. Note for
411 * Intel CE4100 devices we don't support more than one device.
413 static void find_valid_banks(struct denali_nand_info
*denali
)
415 uint32_t id
[denali
->max_banks
];
418 denali
->total_used_banks
= 1;
419 for (i
= 0; i
< denali
->max_banks
; i
++) {
420 index_addr(denali
, MODE_11
| (i
<< 24) | 0, 0x90);
421 index_addr(denali
, MODE_11
| (i
<< 24) | 1, 0);
422 index_addr_read_data(denali
, MODE_11
| (i
<< 24) | 2, &id
[i
]);
425 "Return 1st ID for bank[%d]: %x\n", i
, id
[i
]);
428 if (!(id
[i
] & 0x0ff))
431 if ((id
[i
] & 0x0ff) == (id
[0] & 0x0ff))
432 denali
->total_used_banks
++;
438 if (denali
->platform
== INTEL_CE4100
) {
440 * Platform limitations of the CE4100 device limit
441 * users to a single chip solution for NAND.
442 * Multichip support is not enabled.
444 if (denali
->total_used_banks
!= 1) {
446 "Sorry, Intel CE4100 only supports a single NAND device.\n");
451 "denali->total_used_banks: %d\n", denali
->total_used_banks
);
455 * Use the configuration feature register to determine the maximum number of
456 * banks that the hardware supports.
458 static void detect_max_banks(struct denali_nand_info
*denali
)
460 uint32_t features
= ioread32(denali
->flash_reg
+ FEATURES
);
462 * Read the revision register, so we can calculate the max_banks
463 * properly: the encoding changed from rev 5.0 to 5.1
465 u32 revision
= MAKE_COMPARABLE_REVISION(
466 ioread32(denali
->flash_reg
+ REVISION
));
468 if (revision
< REVISION_5_1
)
469 denali
->max_banks
= 2 << (features
& FEATURES__N_BANKS
);
471 denali
->max_banks
= 1 << (features
& FEATURES__N_BANKS
);
474 static void detect_partition_feature(struct denali_nand_info
*denali
)
477 * For MRST platform, denali->fwblks represent the
478 * number of blocks firmware is taken,
479 * FW is in protect partition and MTD driver has no
480 * permission to access it. So let driver know how many
481 * blocks it can't touch.
483 if (ioread32(denali
->flash_reg
+ FEATURES
) & FEATURES__PARTITION
) {
484 if ((ioread32(denali
->flash_reg
+ PERM_SRC_ID(1)) &
485 PERM_SRC_ID__SRCID
) == SPECTRA_PARTITION_ID
) {
487 ((ioread32(denali
->flash_reg
+ MIN_MAX_BANK(1)) &
488 MIN_MAX_BANK__MIN_VALUE
) *
491 (ioread32(denali
->flash_reg
+ MIN_BLK_ADDR(1)) &
492 MIN_BLK_ADDR__VALUE
);
494 denali
->fwblks
= SPECTRA_START_BLOCK
;
497 denali
->fwblks
= SPECTRA_START_BLOCK
;
501 static uint16_t denali_nand_timing_set(struct denali_nand_info
*denali
)
503 uint16_t status
= PASS
;
504 uint32_t id_bytes
[8], addr
;
505 uint8_t maf_id
, device_id
;
508 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
509 __FILE__
, __LINE__
, __func__
);
512 * Use read id method to get device ID and other params.
513 * For some NAND chips, controller can't report the correct
514 * device ID by reading from DEVICE_ID register
516 addr
= MODE_11
| BANK(denali
->flash_bank
);
517 index_addr(denali
, addr
| 0, 0x90);
518 index_addr(denali
, addr
| 1, 0);
519 for (i
= 0; i
< 8; i
++)
520 index_addr_read_data(denali
, addr
| 2, &id_bytes
[i
]);
521 maf_id
= id_bytes
[0];
522 device_id
= id_bytes
[1];
524 if (ioread32(denali
->flash_reg
+ ONFI_DEVICE_NO_OF_LUNS
) &
525 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE
) { /* ONFI 1.0 NAND */
526 if (FAIL
== get_onfi_nand_para(denali
))
528 } else if (maf_id
== 0xEC) { /* Samsung NAND */
529 get_samsung_nand_para(denali
, device_id
);
530 } else if (maf_id
== 0x98) { /* Toshiba NAND */
531 get_toshiba_nand_para(denali
);
532 } else if (maf_id
== 0xAD) { /* Hynix NAND */
533 get_hynix_nand_para(denali
, device_id
);
536 dev_info(denali
->dev
,
537 "Dump timing register values:\n"
538 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
539 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
540 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
541 ioread32(denali
->flash_reg
+ ACC_CLKS
),
542 ioread32(denali
->flash_reg
+ RE_2_WE
),
543 ioread32(denali
->flash_reg
+ RE_2_RE
),
544 ioread32(denali
->flash_reg
+ WE_2_RE
),
545 ioread32(denali
->flash_reg
+ ADDR_2_DATA
),
546 ioread32(denali
->flash_reg
+ RDWR_EN_LO_CNT
),
547 ioread32(denali
->flash_reg
+ RDWR_EN_HI_CNT
),
548 ioread32(denali
->flash_reg
+ CS_SETUP_CNT
));
550 find_valid_banks(denali
);
552 detect_partition_feature(denali
);
555 * If the user specified to override the default timings
556 * with a specific ONFI mode, we apply those changes here.
558 if (onfi_timing_mode
!= NAND_DEFAULT_TIMINGS
)
559 nand_onfi_timing_set(denali
, onfi_timing_mode
);
564 static void denali_set_intr_modes(struct denali_nand_info
*denali
,
567 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
568 __FILE__
, __LINE__
, __func__
);
571 iowrite32(1, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
573 iowrite32(0, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
577 * validation function to verify that the controlling software is making
580 static inline bool is_flash_bank_valid(int flash_bank
)
582 return flash_bank
>= 0 && flash_bank
< 4;
585 static void denali_irq_init(struct denali_nand_info
*denali
)
590 /* Disable global interrupts */
591 denali_set_intr_modes(denali
, false);
593 int_mask
= DENALI_IRQ_ALL
;
595 /* Clear all status bits */
596 for (i
= 0; i
< denali
->max_banks
; ++i
)
597 iowrite32(0xFFFF, denali
->flash_reg
+ INTR_STATUS(i
));
599 denali_irq_enable(denali
, int_mask
);
602 static void denali_irq_cleanup(int irqnum
, struct denali_nand_info
*denali
)
604 denali_set_intr_modes(denali
, false);
605 free_irq(irqnum
, denali
);
608 static void denali_irq_enable(struct denali_nand_info
*denali
,
613 for (i
= 0; i
< denali
->max_banks
; ++i
)
614 iowrite32(int_mask
, denali
->flash_reg
+ INTR_EN(i
));
618 * This function only returns when an interrupt that this driver cares about
619 * occurs. This is to reduce the overhead of servicing interrupts
621 static inline uint32_t denali_irq_detected(struct denali_nand_info
*denali
)
623 return read_interrupt_status(denali
) & DENALI_IRQ_ALL
;
626 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
627 static inline void clear_interrupt(struct denali_nand_info
*denali
,
630 uint32_t intr_status_reg
;
632 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
634 iowrite32(irq_mask
, denali
->flash_reg
+ intr_status_reg
);
637 static void clear_interrupts(struct denali_nand_info
*denali
)
641 spin_lock_irq(&denali
->irq_lock
);
643 status
= read_interrupt_status(denali
);
644 clear_interrupt(denali
, status
);
646 denali
->irq_status
= 0x0;
647 spin_unlock_irq(&denali
->irq_lock
);
650 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
)
652 uint32_t intr_status_reg
;
654 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
656 return ioread32(denali
->flash_reg
+ intr_status_reg
);
660 * This is the interrupt service routine. It handles all interrupts
661 * sent to this device. Note that on CE4100, this is a shared interrupt.
663 static irqreturn_t
denali_isr(int irq
, void *dev_id
)
665 struct denali_nand_info
*denali
= dev_id
;
667 irqreturn_t result
= IRQ_NONE
;
669 spin_lock(&denali
->irq_lock
);
671 /* check to see if a valid NAND chip has been selected. */
672 if (is_flash_bank_valid(denali
->flash_bank
)) {
674 * check to see if controller generated the interrupt,
675 * since this is a shared interrupt
677 irq_status
= denali_irq_detected(denali
);
678 if (irq_status
!= 0) {
679 /* handle interrupt */
680 /* first acknowledge it */
681 clear_interrupt(denali
, irq_status
);
683 * store the status in the device context for someone
686 denali
->irq_status
|= irq_status
;
687 /* notify anyone who cares that it happened */
688 complete(&denali
->complete
);
689 /* tell the OS that we've handled this */
690 result
= IRQ_HANDLED
;
693 spin_unlock(&denali
->irq_lock
);
696 #define BANK(x) ((x) << 24)
698 static uint32_t wait_for_irq(struct denali_nand_info
*denali
, uint32_t irq_mask
)
700 unsigned long comp_res
;
701 uint32_t intr_status
;
702 unsigned long timeout
= msecs_to_jiffies(1000);
706 wait_for_completion_timeout(&denali
->complete
, timeout
);
707 spin_lock_irq(&denali
->irq_lock
);
708 intr_status
= denali
->irq_status
;
710 if (intr_status
& irq_mask
) {
711 denali
->irq_status
&= ~irq_mask
;
712 spin_unlock_irq(&denali
->irq_lock
);
713 /* our interrupt was detected */
718 * these are not the interrupts you are looking for -
721 spin_unlock_irq(&denali
->irq_lock
);
722 } while (comp_res
!= 0);
726 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
727 intr_status
, irq_mask
);
735 * This helper function setups the registers for ECC and whether or not
736 * the spare area will be transferred.
738 static void setup_ecc_for_xfer(struct denali_nand_info
*denali
, bool ecc_en
,
741 int ecc_en_flag
, transfer_spare_flag
;
743 /* set ECC, transfer spare bits if needed */
744 ecc_en_flag
= ecc_en
? ECC_ENABLE__FLAG
: 0;
745 transfer_spare_flag
= transfer_spare
? TRANSFER_SPARE_REG__FLAG
: 0;
747 /* Enable spare area/ECC per user's request. */
748 iowrite32(ecc_en_flag
, denali
->flash_reg
+ ECC_ENABLE
);
749 iowrite32(transfer_spare_flag
, denali
->flash_reg
+ TRANSFER_SPARE_REG
);
753 * sends a pipeline command operation to the controller. See the Denali NAND
754 * controller's user guide for more information (section 4.2.3.6).
756 static int denali_send_pipeline_cmd(struct denali_nand_info
*denali
,
757 bool ecc_en
, bool transfer_spare
,
758 int access_type
, int op
)
761 uint32_t page_count
= 1;
762 uint32_t addr
, cmd
, irq_status
, irq_mask
;
764 if (op
== DENALI_READ
)
765 irq_mask
= INTR_STATUS__LOAD_COMP
;
766 else if (op
== DENALI_WRITE
)
771 setup_ecc_for_xfer(denali
, ecc_en
, transfer_spare
);
773 clear_interrupts(denali
);
775 addr
= BANK(denali
->flash_bank
) | denali
->page
;
777 if (op
== DENALI_WRITE
&& access_type
!= SPARE_ACCESS
) {
778 cmd
= MODE_01
| addr
;
779 iowrite32(cmd
, denali
->flash_mem
);
780 } else if (op
== DENALI_WRITE
&& access_type
== SPARE_ACCESS
) {
781 /* read spare area */
782 cmd
= MODE_10
| addr
;
783 index_addr(denali
, cmd
, access_type
);
785 cmd
= MODE_01
| addr
;
786 iowrite32(cmd
, denali
->flash_mem
);
787 } else if (op
== DENALI_READ
) {
788 /* setup page read request for access type */
789 cmd
= MODE_10
| addr
;
790 index_addr(denali
, cmd
, access_type
);
793 * page 33 of the NAND controller spec indicates we should not
794 * use the pipeline commands in Spare area only mode.
797 if (access_type
== SPARE_ACCESS
) {
798 cmd
= MODE_01
| addr
;
799 iowrite32(cmd
, denali
->flash_mem
);
801 index_addr(denali
, cmd
,
802 PIPELINE_ACCESS
| op
| page_count
);
805 * wait for command to be accepted
806 * can always use status0 bit as the
807 * mask is identical for each bank.
809 irq_status
= wait_for_irq(denali
, irq_mask
);
811 if (irq_status
== 0) {
813 "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
814 cmd
, denali
->page
, addr
);
817 cmd
= MODE_01
| addr
;
818 iowrite32(cmd
, denali
->flash_mem
);
825 /* helper function that simply writes a buffer to the flash */
826 static int write_data_to_flash_mem(struct denali_nand_info
*denali
,
827 const uint8_t *buf
, int len
)
833 * verify that the len is a multiple of 4.
834 * see comment in read_data_from_flash_mem()
836 BUG_ON((len
% 4) != 0);
838 /* write the data to the flash memory */
839 buf32
= (uint32_t *)buf
;
840 for (i
= 0; i
< len
/ 4; i
++)
841 iowrite32(*buf32
++, denali
->flash_mem
+ 0x10);
842 return i
* 4; /* intent is to return the number of bytes read */
845 /* helper function that simply reads a buffer from the flash */
846 static int read_data_from_flash_mem(struct denali_nand_info
*denali
,
847 uint8_t *buf
, int len
)
853 * we assume that len will be a multiple of 4, if not it would be nice
854 * to know about it ASAP rather than have random failures...
855 * This assumption is based on the fact that this function is designed
856 * to be used to read flash pages, which are typically multiples of 4.
858 BUG_ON((len
% 4) != 0);
860 /* transfer the data from the flash */
861 buf32
= (uint32_t *)buf
;
862 for (i
= 0; i
< len
/ 4; i
++)
863 *buf32
++ = ioread32(denali
->flash_mem
+ 0x10);
864 return i
* 4; /* intent is to return the number of bytes read */
867 /* writes OOB data to the device */
868 static int write_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
870 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
872 uint32_t irq_mask
= INTR_STATUS__PROGRAM_COMP
|
873 INTR_STATUS__PROGRAM_FAIL
;
878 if (denali_send_pipeline_cmd(denali
, false, false, SPARE_ACCESS
,
879 DENALI_WRITE
) == PASS
) {
880 write_data_to_flash_mem(denali
, buf
, mtd
->oobsize
);
882 /* wait for operation to complete */
883 irq_status
= wait_for_irq(denali
, irq_mask
);
885 if (irq_status
== 0) {
886 dev_err(denali
->dev
, "OOB write failed\n");
890 dev_err(denali
->dev
, "unable to send pipeline command\n");
896 /* reads OOB data from the device */
897 static void read_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
899 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
900 uint32_t irq_mask
= INTR_STATUS__LOAD_COMP
;
901 uint32_t irq_status
, addr
, cmd
;
905 if (denali_send_pipeline_cmd(denali
, false, true, SPARE_ACCESS
,
906 DENALI_READ
) == PASS
) {
907 read_data_from_flash_mem(denali
, buf
, mtd
->oobsize
);
910 * wait for command to be accepted
911 * can always use status0 bit as the
912 * mask is identical for each bank.
914 irq_status
= wait_for_irq(denali
, irq_mask
);
917 dev_err(denali
->dev
, "page on OOB timeout %d\n",
921 * We set the device back to MAIN_ACCESS here as I observed
922 * instability with the controller if you do a block erase
923 * and the last transaction was a SPARE_ACCESS. Block erase
924 * is reliable (according to the MTD test infrastructure)
925 * if you are in MAIN_ACCESS.
927 addr
= BANK(denali
->flash_bank
) | denali
->page
;
928 cmd
= MODE_10
| addr
;
929 index_addr(denali
, cmd
, MAIN_ACCESS
);
934 * this function examines buffers to see if they contain data that
935 * indicate that the buffer is part of an erased region of flash.
937 static bool is_erased(uint8_t *buf
, int len
)
941 for (i
= 0; i
< len
; i
++)
946 #define ECC_SECTOR_SIZE 512
948 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
949 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
950 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
951 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
952 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
953 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
955 static bool handle_ecc(struct denali_nand_info
*denali
, uint8_t *buf
,
956 uint32_t irq_status
, unsigned int *max_bitflips
)
958 bool check_erased_page
= false;
959 unsigned int bitflips
= 0;
961 if (irq_status
& INTR_STATUS__ECC_ERR
) {
962 /* read the ECC errors. we'll ignore them for now */
963 uint32_t err_address
, err_correction_info
, err_byte
,
964 err_sector
, err_device
, err_correction_value
;
965 denali_set_intr_modes(denali
, false);
968 err_address
= ioread32(denali
->flash_reg
+
970 err_sector
= ECC_SECTOR(err_address
);
971 err_byte
= ECC_BYTE(err_address
);
973 err_correction_info
= ioread32(denali
->flash_reg
+
974 ERR_CORRECTION_INFO
);
975 err_correction_value
=
976 ECC_CORRECTION_VALUE(err_correction_info
);
977 err_device
= ECC_ERR_DEVICE(err_correction_info
);
979 if (ECC_ERROR_CORRECTABLE(err_correction_info
)) {
981 * If err_byte is larger than ECC_SECTOR_SIZE,
982 * means error happened in OOB, so we ignore
983 * it. It's no need for us to correct it
984 * err_device is represented the NAND error
985 * bits are happened in if there are more
986 * than one NAND connected.
988 if (err_byte
< ECC_SECTOR_SIZE
) {
991 offset
= (err_sector
*
996 /* correct the ECC error */
997 buf
[offset
] ^= err_correction_value
;
998 denali
->mtd
.ecc_stats
.corrected
++;
1003 * if the error is not correctable, need to
1004 * look at the page to see if it is an erased
1005 * page. if so, then it's not a real ECC error
1007 check_erased_page
= true;
1009 } while (!ECC_LAST_ERR(err_correction_info
));
1011 * Once handle all ecc errors, controller will triger
1012 * a ECC_TRANSACTION_DONE interrupt, so here just wait
1013 * for a while for this interrupt
1015 while (!(read_interrupt_status(denali
) &
1016 INTR_STATUS__ECC_TRANSACTION_DONE
))
1018 clear_interrupts(denali
);
1019 denali_set_intr_modes(denali
, true);
1021 *max_bitflips
= bitflips
;
1022 return check_erased_page
;
1025 /* programs the controller to either enable/disable DMA transfers */
1026 static void denali_enable_dma(struct denali_nand_info
*denali
, bool en
)
1028 iowrite32(en
? DMA_ENABLE__FLAG
: 0, denali
->flash_reg
+ DMA_ENABLE
);
1029 ioread32(denali
->flash_reg
+ DMA_ENABLE
);
1032 /* setups the HW to perform the data DMA */
1033 static void denali_setup_dma(struct denali_nand_info
*denali
, int op
)
1036 const int page_count
= 1;
1037 uint32_t addr
= denali
->buf
.dma_buf
;
1039 mode
= MODE_10
| BANK(denali
->flash_bank
);
1041 /* DMA is a four step process */
1043 /* 1. setup transfer type and # of pages */
1044 index_addr(denali
, mode
| denali
->page
, 0x2000 | op
| page_count
);
1046 /* 2. set memory high address bits 23:8 */
1047 index_addr(denali
, mode
| ((addr
>> 16) << 8), 0x2200);
1049 /* 3. set memory low address bits 23:8 */
1050 index_addr(denali
, mode
| ((addr
& 0xffff) << 8), 0x2300);
1052 /* 4. interrupt when complete, burst len = 64 bytes */
1053 index_addr(denali
, mode
| 0x14000, 0x2400);
1057 * writes a page. user specifies type, and this function handles the
1058 * configuration details.
1060 static int write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1061 const uint8_t *buf
, bool raw_xfer
)
1063 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1064 dma_addr_t addr
= denali
->buf
.dma_buf
;
1065 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1066 uint32_t irq_status
;
1067 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
|
1068 INTR_STATUS__PROGRAM_FAIL
;
1071 * if it is a raw xfer, we want to disable ecc and send the spare area.
1072 * !raw_xfer - enable ecc
1073 * raw_xfer - transfer spare
1075 setup_ecc_for_xfer(denali
, !raw_xfer
, raw_xfer
);
1077 /* copy buffer into DMA buffer */
1078 memcpy(denali
->buf
.buf
, buf
, mtd
->writesize
);
1081 /* transfer the data to the spare area */
1082 memcpy(denali
->buf
.buf
+ mtd
->writesize
,
1087 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1089 clear_interrupts(denali
);
1090 denali_enable_dma(denali
, true);
1092 denali_setup_dma(denali
, DENALI_WRITE
);
1094 /* wait for operation to complete */
1095 irq_status
= wait_for_irq(denali
, irq_mask
);
1097 if (irq_status
== 0) {
1098 dev_err(denali
->dev
, "timeout on write_page (type = %d)\n",
1100 denali
->status
= NAND_STATUS_FAIL
;
1103 denali_enable_dma(denali
, false);
1104 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1109 /* NAND core entry points */
1112 * this is the callback that the NAND core calls to write a page. Since
1113 * writing a page with ECC or without is similar, all the work is done
1114 * by write_page above.
1116 static int denali_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1117 const uint8_t *buf
, int oob_required
, int page
)
1120 * for regular page writes, we let HW handle all the ECC
1121 * data written to the device.
1123 return write_page(mtd
, chip
, buf
, false);
1127 * This is the callback that the NAND core calls to write a page without ECC.
1128 * raw access is similar to ECC page writes, so all the work is done in the
1129 * write_page() function above.
1131 static int denali_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1132 const uint8_t *buf
, int oob_required
,
1136 * for raw page writes, we want to disable ECC and simply write
1137 * whatever data is in the buffer.
1139 return write_page(mtd
, chip
, buf
, true);
1142 static int denali_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1145 return write_oob_data(mtd
, chip
->oob_poi
, page
);
1148 static int denali_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1151 read_oob_data(mtd
, chip
->oob_poi
, page
);
1156 static int denali_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1157 uint8_t *buf
, int oob_required
, int page
)
1159 unsigned int max_bitflips
;
1160 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1162 dma_addr_t addr
= denali
->buf
.dma_buf
;
1163 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1165 uint32_t irq_status
;
1166 uint32_t irq_mask
= INTR_STATUS__ECC_TRANSACTION_DONE
|
1167 INTR_STATUS__ECC_ERR
;
1168 bool check_erased_page
= false;
1170 if (page
!= denali
->page
) {
1171 dev_err(denali
->dev
,
1172 "IN %s: page %d is not equal to denali->page %d",
1173 __func__
, page
, denali
->page
);
1177 setup_ecc_for_xfer(denali
, true, false);
1179 denali_enable_dma(denali
, true);
1180 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1182 clear_interrupts(denali
);
1183 denali_setup_dma(denali
, DENALI_READ
);
1185 /* wait for operation to complete */
1186 irq_status
= wait_for_irq(denali
, irq_mask
);
1188 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1190 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1192 check_erased_page
= handle_ecc(denali
, buf
, irq_status
, &max_bitflips
);
1193 denali_enable_dma(denali
, false);
1195 if (check_erased_page
) {
1196 read_oob_data(&denali
->mtd
, chip
->oob_poi
, denali
->page
);
1198 /* check ECC failures that may have occurred on erased pages */
1199 if (check_erased_page
) {
1200 if (!is_erased(buf
, denali
->mtd
.writesize
))
1201 denali
->mtd
.ecc_stats
.failed
++;
1202 if (!is_erased(buf
, denali
->mtd
.oobsize
))
1203 denali
->mtd
.ecc_stats
.failed
++;
1206 return max_bitflips
;
1209 static int denali_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1210 uint8_t *buf
, int oob_required
, int page
)
1212 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1213 dma_addr_t addr
= denali
->buf
.dma_buf
;
1214 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1215 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
;
1217 if (page
!= denali
->page
) {
1218 dev_err(denali
->dev
,
1219 "IN %s: page %d is not equal to denali->page %d",
1220 __func__
, page
, denali
->page
);
1224 setup_ecc_for_xfer(denali
, false, true);
1225 denali_enable_dma(denali
, true);
1227 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1229 clear_interrupts(denali
);
1230 denali_setup_dma(denali
, DENALI_READ
);
1232 /* wait for operation to complete */
1233 wait_for_irq(denali
, irq_mask
);
1235 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1237 denali_enable_dma(denali
, false);
1239 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1240 memcpy(chip
->oob_poi
, denali
->buf
.buf
+ mtd
->writesize
, mtd
->oobsize
);
1245 static uint8_t denali_read_byte(struct mtd_info
*mtd
)
1247 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1248 uint8_t result
= 0xff;
1250 if (denali
->buf
.head
< denali
->buf
.tail
)
1251 result
= denali
->buf
.buf
[denali
->buf
.head
++];
1256 static void denali_select_chip(struct mtd_info
*mtd
, int chip
)
1258 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1260 spin_lock_irq(&denali
->irq_lock
);
1261 denali
->flash_bank
= chip
;
1262 spin_unlock_irq(&denali
->irq_lock
);
1265 static int denali_waitfunc(struct mtd_info
*mtd
, struct nand_chip
*chip
)
1267 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1268 int status
= denali
->status
;
1275 static int denali_erase(struct mtd_info
*mtd
, int page
)
1277 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1279 uint32_t cmd
, irq_status
;
1281 clear_interrupts(denali
);
1283 /* setup page read request for access type */
1284 cmd
= MODE_10
| BANK(denali
->flash_bank
) | page
;
1285 index_addr(denali
, cmd
, 0x1);
1287 /* wait for erase to complete or failure to occur */
1288 irq_status
= wait_for_irq(denali
, INTR_STATUS__ERASE_COMP
|
1289 INTR_STATUS__ERASE_FAIL
);
1291 return irq_status
& INTR_STATUS__ERASE_FAIL
? NAND_STATUS_FAIL
: PASS
;
1294 static void denali_cmdfunc(struct mtd_info
*mtd
, unsigned int cmd
, int col
,
1297 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1302 case NAND_CMD_PAGEPROG
:
1304 case NAND_CMD_STATUS
:
1305 read_status(denali
);
1307 case NAND_CMD_READID
:
1308 case NAND_CMD_PARAM
:
1311 * sometimes ManufactureId read from register is not right
1312 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1313 * So here we send READID cmd to NAND insteand
1315 addr
= MODE_11
| BANK(denali
->flash_bank
);
1316 index_addr(denali
, addr
| 0, 0x90);
1317 index_addr(denali
, addr
| 1, col
);
1318 for (i
= 0; i
< 8; i
++) {
1319 index_addr_read_data(denali
, addr
| 2, &id
);
1320 write_byte_to_buf(denali
, id
);
1323 case NAND_CMD_READ0
:
1324 case NAND_CMD_SEQIN
:
1325 denali
->page
= page
;
1327 case NAND_CMD_RESET
:
1330 case NAND_CMD_READOOB
:
1331 /* TODO: Read OOB data */
1334 pr_err(": unsupported command received 0x%x\n", cmd
);
1338 /* end NAND core entry points */
1340 /* Initialization code to bring the device up to a known good state */
1341 static void denali_hw_init(struct denali_nand_info
*denali
)
1344 * tell driver how many bit controller will skip before
1345 * writing ECC code in OOB, this register may be already
1346 * set by firmware. So we read this value out.
1347 * if this value is 0, just let it be.
1349 denali
->bbtskipbytes
= ioread32(denali
->flash_reg
+
1350 SPARE_AREA_SKIP_BYTES
);
1351 detect_max_banks(denali
);
1352 denali_nand_reset(denali
);
1353 iowrite32(0x0F, denali
->flash_reg
+ RB_PIN_ENABLED
);
1354 iowrite32(CHIP_EN_DONT_CARE__FLAG
,
1355 denali
->flash_reg
+ CHIP_ENABLE_DONT_CARE
);
1357 iowrite32(0xffff, denali
->flash_reg
+ SPARE_AREA_MARKER
);
1359 /* Should set value for these registers when init */
1360 iowrite32(0, denali
->flash_reg
+ TWO_ROW_ADDR_CYCLES
);
1361 iowrite32(1, denali
->flash_reg
+ ECC_ENABLE
);
1362 denali_nand_timing_set(denali
);
1363 denali_irq_init(denali
);
1367 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1368 * but denali controller in MRST only support 15bit and 8bit ECC
1371 #define ECC_8BITS 14
1372 static struct nand_ecclayout nand_8bit_oob
= {
1376 #define ECC_15BITS 26
1377 static struct nand_ecclayout nand_15bit_oob
= {
1381 static uint8_t bbt_pattern
[] = {'B', 'b', 't', '0' };
1382 static uint8_t mirror_pattern
[] = {'1', 't', 'b', 'B' };
1384 static struct nand_bbt_descr bbt_main_descr
= {
1385 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1386 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1391 .pattern
= bbt_pattern
,
1394 static struct nand_bbt_descr bbt_mirror_descr
= {
1395 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1396 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1401 .pattern
= mirror_pattern
,
1404 /* initialize driver data structures */
1405 static void denali_drv_init(struct denali_nand_info
*denali
)
1409 /* setup interrupt handler */
1411 * the completion object will be used to notify
1412 * the callee that the interrupt is done
1414 init_completion(&denali
->complete
);
1417 * the spinlock will be used to synchronize the ISR with any
1418 * element that might be access shared data (interrupt status)
1420 spin_lock_init(&denali
->irq_lock
);
1422 /* indicate that MTD has not selected a valid bank yet */
1423 denali
->flash_bank
= CHIP_SELECT_INVALID
;
1425 /* initialize our irq_status variable to indicate no interrupts */
1426 denali
->irq_status
= 0;
1429 int denali_init(struct denali_nand_info
*denali
)
1433 if (denali
->platform
== INTEL_CE4100
) {
1435 * Due to a silicon limitation, we can only support
1436 * ONFI timing mode 1 and below.
1438 if (onfi_timing_mode
< -1 || onfi_timing_mode
> 1) {
1439 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1444 /* allocate a temporary buffer for nand_scan_ident() */
1445 denali
->buf
.buf
= devm_kzalloc(denali
->dev
, PAGE_SIZE
,
1446 GFP_DMA
| GFP_KERNEL
);
1447 if (!denali
->buf
.buf
)
1450 denali
->mtd
.dev
.parent
= denali
->dev
;
1451 denali_hw_init(denali
);
1452 denali_drv_init(denali
);
1455 * denali_isr register is done after all the hardware
1456 * initilization is finished
1458 if (request_irq(denali
->irq
, denali_isr
, IRQF_SHARED
,
1459 DENALI_NAND_NAME
, denali
)) {
1460 pr_err("Spectra: Unable to allocate IRQ\n");
1464 /* now that our ISR is registered, we can enable interrupts */
1465 denali_set_intr_modes(denali
, true);
1466 denali
->mtd
.name
= "denali-nand";
1467 denali
->mtd
.priv
= &denali
->nand
;
1469 /* register the driver with the NAND core subsystem */
1470 denali
->nand
.select_chip
= denali_select_chip
;
1471 denali
->nand
.cmdfunc
= denali_cmdfunc
;
1472 denali
->nand
.read_byte
= denali_read_byte
;
1473 denali
->nand
.waitfunc
= denali_waitfunc
;
1476 * scan for NAND devices attached to the controller
1477 * this is the first stage in a two step process to register
1478 * with the nand subsystem
1480 if (nand_scan_ident(&denali
->mtd
, denali
->max_banks
, NULL
)) {
1482 goto failed_req_irq
;
1485 /* allocate the right size buffer now */
1486 devm_kfree(denali
->dev
, denali
->buf
.buf
);
1487 denali
->buf
.buf
= devm_kzalloc(denali
->dev
,
1488 denali
->mtd
.writesize
+ denali
->mtd
.oobsize
,
1490 if (!denali
->buf
.buf
) {
1492 goto failed_req_irq
;
1495 /* Is 32-bit DMA supported? */
1496 ret
= dma_set_mask(denali
->dev
, DMA_BIT_MASK(32));
1498 pr_err("Spectra: no usable DMA configuration\n");
1499 goto failed_req_irq
;
1502 denali
->buf
.dma_buf
= dma_map_single(denali
->dev
, denali
->buf
.buf
,
1503 denali
->mtd
.writesize
+ denali
->mtd
.oobsize
,
1505 if (dma_mapping_error(denali
->dev
, denali
->buf
.dma_buf
)) {
1506 dev_err(denali
->dev
, "Spectra: failed to map DMA buffer\n");
1508 goto failed_req_irq
;
1512 * support for multi nand
1513 * MTD known nothing about multi nand, so we should tell it
1514 * the real pagesize and anything necessery
1516 denali
->devnum
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
1517 denali
->nand
.chipsize
<<= (denali
->devnum
- 1);
1518 denali
->nand
.page_shift
+= (denali
->devnum
- 1);
1519 denali
->nand
.pagemask
= (denali
->nand
.chipsize
>>
1520 denali
->nand
.page_shift
) - 1;
1521 denali
->nand
.bbt_erase_shift
+= (denali
->devnum
- 1);
1522 denali
->nand
.phys_erase_shift
= denali
->nand
.bbt_erase_shift
;
1523 denali
->nand
.chip_shift
+= (denali
->devnum
- 1);
1524 denali
->mtd
.writesize
<<= (denali
->devnum
- 1);
1525 denali
->mtd
.oobsize
<<= (denali
->devnum
- 1);
1526 denali
->mtd
.erasesize
<<= (denali
->devnum
- 1);
1527 denali
->mtd
.size
= denali
->nand
.numchips
* denali
->nand
.chipsize
;
1528 denali
->bbtskipbytes
*= denali
->devnum
;
1531 * second stage of the NAND scan
1532 * this stage requires information regarding ECC and
1533 * bad block management.
1536 /* Bad block management */
1537 denali
->nand
.bbt_td
= &bbt_main_descr
;
1538 denali
->nand
.bbt_md
= &bbt_mirror_descr
;
1540 /* skip the scan for now until we have OOB read and write support */
1541 denali
->nand
.bbt_options
|= NAND_BBT_USE_FLASH
;
1542 denali
->nand
.options
|= NAND_SKIP_BBTSCAN
;
1543 denali
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1545 /* no subpage writes on denali */
1546 denali
->nand
.options
|= NAND_NO_SUBPAGE_WRITE
;
1549 * Denali Controller only support 15bit and 8bit ECC in MRST,
1550 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1553 if (!nand_is_slc(&denali
->nand
) &&
1554 (denali
->mtd
.oobsize
> (denali
->bbtskipbytes
+
1555 ECC_15BITS
* (denali
->mtd
.writesize
/
1556 ECC_SECTOR_SIZE
)))) {
1557 /* if MLC OOB size is large enough, use 15bit ECC*/
1558 denali
->nand
.ecc
.strength
= 15;
1559 denali
->nand
.ecc
.layout
= &nand_15bit_oob
;
1560 denali
->nand
.ecc
.bytes
= ECC_15BITS
;
1561 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
1562 } else if (denali
->mtd
.oobsize
< (denali
->bbtskipbytes
+
1563 ECC_8BITS
* (denali
->mtd
.writesize
/
1564 ECC_SECTOR_SIZE
))) {
1565 pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1566 goto failed_req_irq
;
1568 denali
->nand
.ecc
.strength
= 8;
1569 denali
->nand
.ecc
.layout
= &nand_8bit_oob
;
1570 denali
->nand
.ecc
.bytes
= ECC_8BITS
;
1571 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
1574 denali
->nand
.ecc
.bytes
*= denali
->devnum
;
1575 denali
->nand
.ecc
.strength
*= denali
->devnum
;
1576 denali
->nand
.ecc
.layout
->eccbytes
*=
1577 denali
->mtd
.writesize
/ ECC_SECTOR_SIZE
;
1578 denali
->nand
.ecc
.layout
->oobfree
[0].offset
=
1579 denali
->bbtskipbytes
+ denali
->nand
.ecc
.layout
->eccbytes
;
1580 denali
->nand
.ecc
.layout
->oobfree
[0].length
=
1581 denali
->mtd
.oobsize
- denali
->nand
.ecc
.layout
->eccbytes
-
1582 denali
->bbtskipbytes
;
1585 * Let driver know the total blocks number and how many blocks
1586 * contained by each nand chip. blksperchip will help driver to
1587 * know how many blocks is taken by FW.
1589 denali
->totalblks
= denali
->mtd
.size
>> denali
->nand
.phys_erase_shift
;
1590 denali
->blksperchip
= denali
->totalblks
/ denali
->nand
.numchips
;
1592 /* override the default read operations */
1593 denali
->nand
.ecc
.size
= ECC_SECTOR_SIZE
* denali
->devnum
;
1594 denali
->nand
.ecc
.read_page
= denali_read_page
;
1595 denali
->nand
.ecc
.read_page_raw
= denali_read_page_raw
;
1596 denali
->nand
.ecc
.write_page
= denali_write_page
;
1597 denali
->nand
.ecc
.write_page_raw
= denali_write_page_raw
;
1598 denali
->nand
.ecc
.read_oob
= denali_read_oob
;
1599 denali
->nand
.ecc
.write_oob
= denali_write_oob
;
1600 denali
->nand
.erase
= denali_erase
;
1602 if (nand_scan_tail(&denali
->mtd
)) {
1604 goto failed_req_irq
;
1607 ret
= mtd_device_register(&denali
->mtd
, NULL
, 0);
1609 dev_err(denali
->dev
, "Spectra: Failed to register MTD: %d\n",
1611 goto failed_req_irq
;
1616 denali_irq_cleanup(denali
->irq
, denali
);
1620 EXPORT_SYMBOL(denali_init
);
1622 /* driver exit point */
1623 void denali_remove(struct denali_nand_info
*denali
)
1625 denali_irq_cleanup(denali
->irq
, denali
);
1626 dma_unmap_single(denali
->dev
, denali
->buf
.dma_buf
,
1627 denali
->mtd
.writesize
+ denali
->mtd
.oobsize
,
1630 EXPORT_SYMBOL(denali_remove
);