posix-clock: Fix return code on the poll method's error path
[linux/fpc-iii.git] / drivers / mtd / nand / diskonchip.c
blob0802158a3f757b19506947bdbf1d46124ae6fdc8
1 /*
2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/io.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
39 #endif
41 static unsigned long doc_locations[] __initdata = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else
50 0xc8000, 0xca000, 0xcc000, 0xce000,
51 0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 0xd8000, 0xda000, 0xdc000, 0xde000,
53 0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif
56 #endif
57 0xffffffff };
59 static struct mtd_info *doclist = NULL;
61 struct doc_priv {
62 void __iomem *virtadr;
63 unsigned long physadr;
64 u_char ChipID;
65 u_char CDSNControl;
66 int chips_per_floor; /* The number of chips detected on each floor */
67 int curfloor;
68 int curchip;
69 int mh0_page;
70 int mh1_page;
71 struct mtd_info *nextdoc;
73 /* Handle the last stage of initialization (BBT scan, partitioning) */
74 int (*late_init)(struct mtd_info *mtd);
77 /* This is the syndrome computed by the HW ecc generator upon reading an empty
78 page, one with all 0xff for data and stored ecc code. */
79 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
81 /* This is the ecc value computed by the HW ecc generator upon writing an empty
82 page, one with all 0xff for data. */
83 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
85 #define INFTL_BBT_RESERVED_BLOCKS 4
87 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
88 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
89 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
91 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
92 unsigned int bitmask);
93 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
95 static int debug = 0;
96 module_param(debug, int, 0);
98 static int try_dword = 1;
99 module_param(try_dword, int, 0);
101 static int no_ecc_failures = 0;
102 module_param(no_ecc_failures, int, 0);
104 static int no_autopart = 0;
105 module_param(no_autopart, int, 0);
107 static int show_firmware_partition = 0;
108 module_param(show_firmware_partition, int, 0);
110 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
111 static int inftl_bbt_write = 1;
112 #else
113 static int inftl_bbt_write = 0;
114 #endif
115 module_param(inftl_bbt_write, int, 0);
117 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
118 module_param(doc_config_location, ulong, 0);
119 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
121 /* Sector size for HW ECC */
122 #define SECTOR_SIZE 512
123 /* The sector bytes are packed into NB_DATA 10 bit words */
124 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
125 /* Number of roots */
126 #define NROOTS 4
127 /* First consective root */
128 #define FCR 510
129 /* Number of symbols */
130 #define NN 1023
132 /* the Reed Solomon control structure */
133 static struct rs_control *rs_decoder;
136 * The HW decoder in the DoC ASIC's provides us a error syndrome,
137 * which we must convert to a standard syndrome usable by the generic
138 * Reed-Solomon library code.
140 * Fabrice Bellard figured this out in the old docecc code. I added
141 * some comments, improved a minor bit and converted it to make use
142 * of the generic Reed-Solomon library. tglx
144 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
146 int i, j, nerr, errpos[8];
147 uint8_t parity;
148 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
150 memset(syn, 0, sizeof(syn));
151 /* Convert the ecc bytes into words */
152 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
153 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
154 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
155 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
156 parity = ecc[1];
158 /* Initialize the syndrome buffer */
159 for (i = 0; i < NROOTS; i++)
160 s[i] = ds[0];
162 * Evaluate
163 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
164 * where x = alpha^(FCR + i)
166 for (j = 1; j < NROOTS; j++) {
167 if (ds[j] == 0)
168 continue;
169 tmp = rs->index_of[ds[j]];
170 for (i = 0; i < NROOTS; i++)
171 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
174 /* Calc syn[i] = s[i] / alpha^(v + i) */
175 for (i = 0; i < NROOTS; i++) {
176 if (s[i])
177 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
179 /* Call the decoder library */
180 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
182 /* Incorrectable errors ? */
183 if (nerr < 0)
184 return nerr;
187 * Correct the errors. The bitpositions are a bit of magic,
188 * but they are given by the design of the de/encoder circuit
189 * in the DoC ASIC's.
191 for (i = 0; i < nerr; i++) {
192 int index, bitpos, pos = 1015 - errpos[i];
193 uint8_t val;
194 if (pos >= NB_DATA && pos < 1019)
195 continue;
196 if (pos < NB_DATA) {
197 /* extract bit position (MSB first) */
198 pos = 10 * (NB_DATA - 1 - pos) - 6;
199 /* now correct the following 10 bits. At most two bytes
200 can be modified since pos is even */
201 index = (pos >> 3) ^ 1;
202 bitpos = pos & 7;
203 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
204 val = (uint8_t) (errval[i] >> (2 + bitpos));
205 parity ^= val;
206 if (index < SECTOR_SIZE)
207 data[index] ^= val;
209 index = ((pos >> 3) + 1) ^ 1;
210 bitpos = (bitpos + 10) & 7;
211 if (bitpos == 0)
212 bitpos = 8;
213 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
214 val = (uint8_t) (errval[i] << (8 - bitpos));
215 parity ^= val;
216 if (index < SECTOR_SIZE)
217 data[index] ^= val;
221 /* If the parity is wrong, no rescue possible */
222 return parity ? -EBADMSG : nerr;
225 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
227 volatile char dummy;
228 int i;
230 for (i = 0; i < cycles; i++) {
231 if (DoC_is_Millennium(doc))
232 dummy = ReadDOC(doc->virtadr, NOP);
233 else if (DoC_is_MillenniumPlus(doc))
234 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
235 else
236 dummy = ReadDOC(doc->virtadr, DOCStatus);
241 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
243 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
244 static int _DoC_WaitReady(struct doc_priv *doc)
246 void __iomem *docptr = doc->virtadr;
247 unsigned long timeo = jiffies + (HZ * 10);
249 if (debug)
250 printk("_DoC_WaitReady...\n");
251 /* Out-of-line routine to wait for chip response */
252 if (DoC_is_MillenniumPlus(doc)) {
253 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
254 if (time_after(jiffies, timeo)) {
255 printk("_DoC_WaitReady timed out.\n");
256 return -EIO;
258 udelay(1);
259 cond_resched();
261 } else {
262 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
263 if (time_after(jiffies, timeo)) {
264 printk("_DoC_WaitReady timed out.\n");
265 return -EIO;
267 udelay(1);
268 cond_resched();
272 return 0;
275 static inline int DoC_WaitReady(struct doc_priv *doc)
277 void __iomem *docptr = doc->virtadr;
278 int ret = 0;
280 if (DoC_is_MillenniumPlus(doc)) {
281 DoC_Delay(doc, 4);
283 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
284 /* Call the out-of-line routine to wait */
285 ret = _DoC_WaitReady(doc);
286 } else {
287 DoC_Delay(doc, 4);
289 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
290 /* Call the out-of-line routine to wait */
291 ret = _DoC_WaitReady(doc);
292 DoC_Delay(doc, 2);
295 if (debug)
296 printk("DoC_WaitReady OK\n");
297 return ret;
300 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
302 struct nand_chip *this = mtd->priv;
303 struct doc_priv *doc = this->priv;
304 void __iomem *docptr = doc->virtadr;
306 if (debug)
307 printk("write_byte %02x\n", datum);
308 WriteDOC(datum, docptr, CDSNSlowIO);
309 WriteDOC(datum, docptr, 2k_CDSN_IO);
312 static u_char doc2000_read_byte(struct mtd_info *mtd)
314 struct nand_chip *this = mtd->priv;
315 struct doc_priv *doc = this->priv;
316 void __iomem *docptr = doc->virtadr;
317 u_char ret;
319 ReadDOC(docptr, CDSNSlowIO);
320 DoC_Delay(doc, 2);
321 ret = ReadDOC(docptr, 2k_CDSN_IO);
322 if (debug)
323 printk("read_byte returns %02x\n", ret);
324 return ret;
327 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
329 struct nand_chip *this = mtd->priv;
330 struct doc_priv *doc = this->priv;
331 void __iomem *docptr = doc->virtadr;
332 int i;
333 if (debug)
334 printk("writebuf of %d bytes: ", len);
335 for (i = 0; i < len; i++) {
336 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
337 if (debug && i < 16)
338 printk("%02x ", buf[i]);
340 if (debug)
341 printk("\n");
344 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
346 struct nand_chip *this = mtd->priv;
347 struct doc_priv *doc = this->priv;
348 void __iomem *docptr = doc->virtadr;
349 int i;
351 if (debug)
352 printk("readbuf of %d bytes: ", len);
354 for (i = 0; i < len; i++) {
355 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
359 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
361 struct nand_chip *this = mtd->priv;
362 struct doc_priv *doc = this->priv;
363 void __iomem *docptr = doc->virtadr;
364 int i;
366 if (debug)
367 printk("readbuf_dword of %d bytes: ", len);
369 if (unlikely((((unsigned long)buf) | len) & 3)) {
370 for (i = 0; i < len; i++) {
371 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
373 } else {
374 for (i = 0; i < len; i += 4) {
375 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
380 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
382 struct nand_chip *this = mtd->priv;
383 struct doc_priv *doc = this->priv;
384 uint16_t ret;
386 doc200x_select_chip(mtd, nr);
387 doc200x_hwcontrol(mtd, NAND_CMD_READID,
388 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
389 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
390 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
392 /* We can't use dev_ready here, but at least we wait for the
393 * command to complete
395 udelay(50);
397 ret = this->read_byte(mtd) << 8;
398 ret |= this->read_byte(mtd);
400 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
401 /* First chip probe. See if we get same results by 32-bit access */
402 union {
403 uint32_t dword;
404 uint8_t byte[4];
405 } ident;
406 void __iomem *docptr = doc->virtadr;
408 doc200x_hwcontrol(mtd, NAND_CMD_READID,
409 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
410 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
411 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
412 NAND_NCE | NAND_CTRL_CHANGE);
414 udelay(50);
416 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
417 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
418 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
419 this->read_buf = &doc2000_readbuf_dword;
423 return ret;
426 static void __init doc2000_count_chips(struct mtd_info *mtd)
428 struct nand_chip *this = mtd->priv;
429 struct doc_priv *doc = this->priv;
430 uint16_t mfrid;
431 int i;
433 /* Max 4 chips per floor on DiskOnChip 2000 */
434 doc->chips_per_floor = 4;
436 /* Find out what the first chip is */
437 mfrid = doc200x_ident_chip(mtd, 0);
439 /* Find how many chips in each floor. */
440 for (i = 1; i < 4; i++) {
441 if (doc200x_ident_chip(mtd, i) != mfrid)
442 break;
444 doc->chips_per_floor = i;
445 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
448 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
450 struct doc_priv *doc = this->priv;
452 int status;
454 DoC_WaitReady(doc);
455 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
456 DoC_WaitReady(doc);
457 status = (int)this->read_byte(mtd);
459 return status;
462 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
464 struct nand_chip *this = mtd->priv;
465 struct doc_priv *doc = this->priv;
466 void __iomem *docptr = doc->virtadr;
468 WriteDOC(datum, docptr, CDSNSlowIO);
469 WriteDOC(datum, docptr, Mil_CDSN_IO);
470 WriteDOC(datum, docptr, WritePipeTerm);
473 static u_char doc2001_read_byte(struct mtd_info *mtd)
475 struct nand_chip *this = mtd->priv;
476 struct doc_priv *doc = this->priv;
477 void __iomem *docptr = doc->virtadr;
479 //ReadDOC(docptr, CDSNSlowIO);
480 /* 11.4.5 -- delay twice to allow extended length cycle */
481 DoC_Delay(doc, 2);
482 ReadDOC(docptr, ReadPipeInit);
483 //return ReadDOC(docptr, Mil_CDSN_IO);
484 return ReadDOC(docptr, LastDataRead);
487 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
489 struct nand_chip *this = mtd->priv;
490 struct doc_priv *doc = this->priv;
491 void __iomem *docptr = doc->virtadr;
492 int i;
494 for (i = 0; i < len; i++)
495 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
496 /* Terminate write pipeline */
497 WriteDOC(0x00, docptr, WritePipeTerm);
500 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
502 struct nand_chip *this = mtd->priv;
503 struct doc_priv *doc = this->priv;
504 void __iomem *docptr = doc->virtadr;
505 int i;
507 /* Start read pipeline */
508 ReadDOC(docptr, ReadPipeInit);
510 for (i = 0; i < len - 1; i++)
511 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
513 /* Terminate read pipeline */
514 buf[i] = ReadDOC(docptr, LastDataRead);
517 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
519 struct nand_chip *this = mtd->priv;
520 struct doc_priv *doc = this->priv;
521 void __iomem *docptr = doc->virtadr;
522 u_char ret;
524 ReadDOC(docptr, Mplus_ReadPipeInit);
525 ReadDOC(docptr, Mplus_ReadPipeInit);
526 ret = ReadDOC(docptr, Mplus_LastDataRead);
527 if (debug)
528 printk("read_byte returns %02x\n", ret);
529 return ret;
532 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
534 struct nand_chip *this = mtd->priv;
535 struct doc_priv *doc = this->priv;
536 void __iomem *docptr = doc->virtadr;
537 int i;
539 if (debug)
540 printk("writebuf of %d bytes: ", len);
541 for (i = 0; i < len; i++) {
542 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
543 if (debug && i < 16)
544 printk("%02x ", buf[i]);
546 if (debug)
547 printk("\n");
550 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
552 struct nand_chip *this = mtd->priv;
553 struct doc_priv *doc = this->priv;
554 void __iomem *docptr = doc->virtadr;
555 int i;
557 if (debug)
558 printk("readbuf of %d bytes: ", len);
560 /* Start read pipeline */
561 ReadDOC(docptr, Mplus_ReadPipeInit);
562 ReadDOC(docptr, Mplus_ReadPipeInit);
564 for (i = 0; i < len - 2; i++) {
565 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
566 if (debug && i < 16)
567 printk("%02x ", buf[i]);
570 /* Terminate read pipeline */
571 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
572 if (debug && i < 16)
573 printk("%02x ", buf[len - 2]);
574 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
575 if (debug && i < 16)
576 printk("%02x ", buf[len - 1]);
577 if (debug)
578 printk("\n");
581 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
583 struct nand_chip *this = mtd->priv;
584 struct doc_priv *doc = this->priv;
585 void __iomem *docptr = doc->virtadr;
586 int floor = 0;
588 if (debug)
589 printk("select chip (%d)\n", chip);
591 if (chip == -1) {
592 /* Disable flash internally */
593 WriteDOC(0, docptr, Mplus_FlashSelect);
594 return;
597 floor = chip / doc->chips_per_floor;
598 chip -= (floor * doc->chips_per_floor);
600 /* Assert ChipEnable and deassert WriteProtect */
601 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
602 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
604 doc->curchip = chip;
605 doc->curfloor = floor;
608 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
610 struct nand_chip *this = mtd->priv;
611 struct doc_priv *doc = this->priv;
612 void __iomem *docptr = doc->virtadr;
613 int floor = 0;
615 if (debug)
616 printk("select chip (%d)\n", chip);
618 if (chip == -1)
619 return;
621 floor = chip / doc->chips_per_floor;
622 chip -= (floor * doc->chips_per_floor);
624 /* 11.4.4 -- deassert CE before changing chip */
625 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
627 WriteDOC(floor, docptr, FloorSelect);
628 WriteDOC(chip, docptr, CDSNDeviceSelect);
630 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
632 doc->curchip = chip;
633 doc->curfloor = floor;
636 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
638 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
639 unsigned int ctrl)
641 struct nand_chip *this = mtd->priv;
642 struct doc_priv *doc = this->priv;
643 void __iomem *docptr = doc->virtadr;
645 if (ctrl & NAND_CTRL_CHANGE) {
646 doc->CDSNControl &= ~CDSN_CTRL_MSK;
647 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
648 if (debug)
649 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
650 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
651 /* 11.4.3 -- 4 NOPs after CSDNControl write */
652 DoC_Delay(doc, 4);
654 if (cmd != NAND_CMD_NONE) {
655 if (DoC_is_2000(doc))
656 doc2000_write_byte(mtd, cmd);
657 else
658 doc2001_write_byte(mtd, cmd);
662 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
664 struct nand_chip *this = mtd->priv;
665 struct doc_priv *doc = this->priv;
666 void __iomem *docptr = doc->virtadr;
669 * Must terminate write pipeline before sending any commands
670 * to the device.
672 if (command == NAND_CMD_PAGEPROG) {
673 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
674 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
678 * Write out the command to the device.
680 if (command == NAND_CMD_SEQIN) {
681 int readcmd;
683 if (column >= mtd->writesize) {
684 /* OOB area */
685 column -= mtd->writesize;
686 readcmd = NAND_CMD_READOOB;
687 } else if (column < 256) {
688 /* First 256 bytes --> READ0 */
689 readcmd = NAND_CMD_READ0;
690 } else {
691 column -= 256;
692 readcmd = NAND_CMD_READ1;
694 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
696 WriteDOC(command, docptr, Mplus_FlashCmd);
697 WriteDOC(0, docptr, Mplus_WritePipeTerm);
698 WriteDOC(0, docptr, Mplus_WritePipeTerm);
700 if (column != -1 || page_addr != -1) {
701 /* Serially input address */
702 if (column != -1) {
703 /* Adjust columns for 16 bit buswidth */
704 if (this->options & NAND_BUSWIDTH_16 &&
705 !nand_opcode_8bits(command))
706 column >>= 1;
707 WriteDOC(column, docptr, Mplus_FlashAddress);
709 if (page_addr != -1) {
710 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
711 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
712 /* One more address cycle for higher density devices */
713 if (this->chipsize & 0x0c000000) {
714 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
715 printk("high density\n");
718 WriteDOC(0, docptr, Mplus_WritePipeTerm);
719 WriteDOC(0, docptr, Mplus_WritePipeTerm);
720 /* deassert ALE */
721 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
722 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
723 WriteDOC(0, docptr, Mplus_FlashControl);
727 * program and erase have their own busy handlers
728 * status and sequential in needs no delay
730 switch (command) {
732 case NAND_CMD_PAGEPROG:
733 case NAND_CMD_ERASE1:
734 case NAND_CMD_ERASE2:
735 case NAND_CMD_SEQIN:
736 case NAND_CMD_STATUS:
737 return;
739 case NAND_CMD_RESET:
740 if (this->dev_ready)
741 break;
742 udelay(this->chip_delay);
743 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
744 WriteDOC(0, docptr, Mplus_WritePipeTerm);
745 WriteDOC(0, docptr, Mplus_WritePipeTerm);
746 while (!(this->read_byte(mtd) & 0x40)) ;
747 return;
749 /* This applies to read commands */
750 default:
752 * If we don't have access to the busy pin, we apply the given
753 * command delay
755 if (!this->dev_ready) {
756 udelay(this->chip_delay);
757 return;
761 /* Apply this short delay always to ensure that we do wait tWB in
762 * any case on any machine. */
763 ndelay(100);
764 /* wait until command is processed */
765 while (!this->dev_ready(mtd)) ;
768 static int doc200x_dev_ready(struct mtd_info *mtd)
770 struct nand_chip *this = mtd->priv;
771 struct doc_priv *doc = this->priv;
772 void __iomem *docptr = doc->virtadr;
774 if (DoC_is_MillenniumPlus(doc)) {
775 /* 11.4.2 -- must NOP four times before checking FR/B# */
776 DoC_Delay(doc, 4);
777 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
778 if (debug)
779 printk("not ready\n");
780 return 0;
782 if (debug)
783 printk("was ready\n");
784 return 1;
785 } else {
786 /* 11.4.2 -- must NOP four times before checking FR/B# */
787 DoC_Delay(doc, 4);
788 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
789 if (debug)
790 printk("not ready\n");
791 return 0;
793 /* 11.4.2 -- Must NOP twice if it's ready */
794 DoC_Delay(doc, 2);
795 if (debug)
796 printk("was ready\n");
797 return 1;
801 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
803 /* This is our last resort if we couldn't find or create a BBT. Just
804 pretend all blocks are good. */
805 return 0;
808 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
810 struct nand_chip *this = mtd->priv;
811 struct doc_priv *doc = this->priv;
812 void __iomem *docptr = doc->virtadr;
814 /* Prime the ECC engine */
815 switch (mode) {
816 case NAND_ECC_READ:
817 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
818 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
819 break;
820 case NAND_ECC_WRITE:
821 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
822 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
823 break;
827 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
829 struct nand_chip *this = mtd->priv;
830 struct doc_priv *doc = this->priv;
831 void __iomem *docptr = doc->virtadr;
833 /* Prime the ECC engine */
834 switch (mode) {
835 case NAND_ECC_READ:
836 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
837 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
838 break;
839 case NAND_ECC_WRITE:
840 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
841 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
842 break;
846 /* This code is only called on write */
847 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
849 struct nand_chip *this = mtd->priv;
850 struct doc_priv *doc = this->priv;
851 void __iomem *docptr = doc->virtadr;
852 int i;
853 int emptymatch = 1;
855 /* flush the pipeline */
856 if (DoC_is_2000(doc)) {
857 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
858 WriteDOC(0, docptr, 2k_CDSN_IO);
859 WriteDOC(0, docptr, 2k_CDSN_IO);
860 WriteDOC(0, docptr, 2k_CDSN_IO);
861 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
862 } else if (DoC_is_MillenniumPlus(doc)) {
863 WriteDOC(0, docptr, Mplus_NOP);
864 WriteDOC(0, docptr, Mplus_NOP);
865 WriteDOC(0, docptr, Mplus_NOP);
866 } else {
867 WriteDOC(0, docptr, NOP);
868 WriteDOC(0, docptr, NOP);
869 WriteDOC(0, docptr, NOP);
872 for (i = 0; i < 6; i++) {
873 if (DoC_is_MillenniumPlus(doc))
874 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
875 else
876 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
877 if (ecc_code[i] != empty_write_ecc[i])
878 emptymatch = 0;
880 if (DoC_is_MillenniumPlus(doc))
881 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
882 else
883 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
884 #if 0
885 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
886 if (emptymatch) {
887 /* Note: this somewhat expensive test should not be triggered
888 often. It could be optimized away by examining the data in
889 the writebuf routine, and remembering the result. */
890 for (i = 0; i < 512; i++) {
891 if (dat[i] == 0xff)
892 continue;
893 emptymatch = 0;
894 break;
897 /* If emptymatch still =1, we do have an all-0xff data buffer.
898 Return all-0xff ecc value instead of the computed one, so
899 it'll look just like a freshly-erased page. */
900 if (emptymatch)
901 memset(ecc_code, 0xff, 6);
902 #endif
903 return 0;
906 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
907 u_char *read_ecc, u_char *isnull)
909 int i, ret = 0;
910 struct nand_chip *this = mtd->priv;
911 struct doc_priv *doc = this->priv;
912 void __iomem *docptr = doc->virtadr;
913 uint8_t calc_ecc[6];
914 volatile u_char dummy;
915 int emptymatch = 1;
917 /* flush the pipeline */
918 if (DoC_is_2000(doc)) {
919 dummy = ReadDOC(docptr, 2k_ECCStatus);
920 dummy = ReadDOC(docptr, 2k_ECCStatus);
921 dummy = ReadDOC(docptr, 2k_ECCStatus);
922 } else if (DoC_is_MillenniumPlus(doc)) {
923 dummy = ReadDOC(docptr, Mplus_ECCConf);
924 dummy = ReadDOC(docptr, Mplus_ECCConf);
925 dummy = ReadDOC(docptr, Mplus_ECCConf);
926 } else {
927 dummy = ReadDOC(docptr, ECCConf);
928 dummy = ReadDOC(docptr, ECCConf);
929 dummy = ReadDOC(docptr, ECCConf);
932 /* Error occurred ? */
933 if (dummy & 0x80) {
934 for (i = 0; i < 6; i++) {
935 if (DoC_is_MillenniumPlus(doc))
936 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
937 else
938 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
939 if (calc_ecc[i] != empty_read_syndrome[i])
940 emptymatch = 0;
942 /* If emptymatch=1, the read syndrome is consistent with an
943 all-0xff data and stored ecc block. Check the stored ecc. */
944 if (emptymatch) {
945 for (i = 0; i < 6; i++) {
946 if (read_ecc[i] == 0xff)
947 continue;
948 emptymatch = 0;
949 break;
952 /* If emptymatch still =1, check the data block. */
953 if (emptymatch) {
954 /* Note: this somewhat expensive test should not be triggered
955 often. It could be optimized away by examining the data in
956 the readbuf routine, and remembering the result. */
957 for (i = 0; i < 512; i++) {
958 if (dat[i] == 0xff)
959 continue;
960 emptymatch = 0;
961 break;
964 /* If emptymatch still =1, this is almost certainly a freshly-
965 erased block, in which case the ECC will not come out right.
966 We'll suppress the error and tell the caller everything's
967 OK. Because it is. */
968 if (!emptymatch)
969 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
970 if (ret > 0)
971 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
973 if (DoC_is_MillenniumPlus(doc))
974 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
975 else
976 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
977 if (no_ecc_failures && mtd_is_eccerr(ret)) {
978 printk(KERN_ERR "suppressing ECC failure\n");
979 ret = 0;
981 return ret;
984 //u_char mydatabuf[528];
986 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
987 * attempt to retain compatibility. It used to read:
988 * .oobfree = { {8, 8} }
989 * Since that leaves two bytes unusable, it was changed. But the following
990 * scheme might affect existing jffs2 installs by moving the cleanmarker:
991 * .oobfree = { {6, 10} }
992 * jffs2 seems to handle the above gracefully, but the current scheme seems
993 * safer. The only problem with it is that any code that parses oobfree must
994 * be able to handle out-of-order segments.
996 static struct nand_ecclayout doc200x_oobinfo = {
997 .eccbytes = 6,
998 .eccpos = {0, 1, 2, 3, 4, 5},
999 .oobfree = {{8, 8}, {6, 2}}
1002 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1003 On successful return, buf will contain a copy of the media header for
1004 further processing. id is the string to scan for, and will presumably be
1005 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1006 header. The page #s of the found media headers are placed in mh0_page and
1007 mh1_page in the DOC private structure. */
1008 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1010 struct nand_chip *this = mtd->priv;
1011 struct doc_priv *doc = this->priv;
1012 unsigned offs;
1013 int ret;
1014 size_t retlen;
1016 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1017 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1018 if (retlen != mtd->writesize)
1019 continue;
1020 if (ret) {
1021 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1023 if (memcmp(buf, id, 6))
1024 continue;
1025 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1026 if (doc->mh0_page == -1) {
1027 doc->mh0_page = offs >> this->page_shift;
1028 if (!findmirror)
1029 return 1;
1030 continue;
1032 doc->mh1_page = offs >> this->page_shift;
1033 return 2;
1035 if (doc->mh0_page == -1) {
1036 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1037 return 0;
1039 /* Only one mediaheader was found. We want buf to contain a
1040 mediaheader on return, so we'll have to re-read the one we found. */
1041 offs = doc->mh0_page << this->page_shift;
1042 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1043 if (retlen != mtd->writesize) {
1044 /* Insanity. Give up. */
1045 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1046 return 0;
1048 return 1;
1051 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1053 struct nand_chip *this = mtd->priv;
1054 struct doc_priv *doc = this->priv;
1055 int ret = 0;
1056 u_char *buf;
1057 struct NFTLMediaHeader *mh;
1058 const unsigned psize = 1 << this->page_shift;
1059 int numparts = 0;
1060 unsigned blocks, maxblocks;
1061 int offs, numheaders;
1063 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1064 if (!buf) {
1065 return 0;
1067 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1068 goto out;
1069 mh = (struct NFTLMediaHeader *)buf;
1071 le16_to_cpus(&mh->NumEraseUnits);
1072 le16_to_cpus(&mh->FirstPhysicalEUN);
1073 le32_to_cpus(&mh->FormattedSize);
1075 printk(KERN_INFO " DataOrgID = %s\n"
1076 " NumEraseUnits = %d\n"
1077 " FirstPhysicalEUN = %d\n"
1078 " FormattedSize = %d\n"
1079 " UnitSizeFactor = %d\n",
1080 mh->DataOrgID, mh->NumEraseUnits,
1081 mh->FirstPhysicalEUN, mh->FormattedSize,
1082 mh->UnitSizeFactor);
1084 blocks = mtd->size >> this->phys_erase_shift;
1085 maxblocks = min(32768U, mtd->erasesize - psize);
1087 if (mh->UnitSizeFactor == 0x00) {
1088 /* Auto-determine UnitSizeFactor. The constraints are:
1089 - There can be at most 32768 virtual blocks.
1090 - There can be at most (virtual block size - page size)
1091 virtual blocks (because MediaHeader+BBT must fit in 1).
1093 mh->UnitSizeFactor = 0xff;
1094 while (blocks > maxblocks) {
1095 blocks >>= 1;
1096 maxblocks = min(32768U, (maxblocks << 1) + psize);
1097 mh->UnitSizeFactor--;
1099 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1102 /* NOTE: The lines below modify internal variables of the NAND and MTD
1103 layers; variables with have already been configured by nand_scan.
1104 Unfortunately, we didn't know before this point what these values
1105 should be. Thus, this code is somewhat dependent on the exact
1106 implementation of the NAND layer. */
1107 if (mh->UnitSizeFactor != 0xff) {
1108 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1109 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1110 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1111 blocks = mtd->size >> this->bbt_erase_shift;
1112 maxblocks = min(32768U, mtd->erasesize - psize);
1115 if (blocks > maxblocks) {
1116 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1117 goto out;
1120 /* Skip past the media headers. */
1121 offs = max(doc->mh0_page, doc->mh1_page);
1122 offs <<= this->page_shift;
1123 offs += mtd->erasesize;
1125 if (show_firmware_partition == 1) {
1126 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1127 parts[0].offset = 0;
1128 parts[0].size = offs;
1129 numparts = 1;
1132 parts[numparts].name = " DiskOnChip BDTL partition";
1133 parts[numparts].offset = offs;
1134 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1136 offs += parts[numparts].size;
1137 numparts++;
1139 if (offs < mtd->size) {
1140 parts[numparts].name = " DiskOnChip Remainder partition";
1141 parts[numparts].offset = offs;
1142 parts[numparts].size = mtd->size - offs;
1143 numparts++;
1146 ret = numparts;
1147 out:
1148 kfree(buf);
1149 return ret;
1152 /* This is a stripped-down copy of the code in inftlmount.c */
1153 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1155 struct nand_chip *this = mtd->priv;
1156 struct doc_priv *doc = this->priv;
1157 int ret = 0;
1158 u_char *buf;
1159 struct INFTLMediaHeader *mh;
1160 struct INFTLPartition *ip;
1161 int numparts = 0;
1162 int blocks;
1163 int vshift, lastvunit = 0;
1164 int i;
1165 int end = mtd->size;
1167 if (inftl_bbt_write)
1168 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1170 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1171 if (!buf) {
1172 return 0;
1175 if (!find_media_headers(mtd, buf, "BNAND", 0))
1176 goto out;
1177 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1178 mh = (struct INFTLMediaHeader *)buf;
1180 le32_to_cpus(&mh->NoOfBootImageBlocks);
1181 le32_to_cpus(&mh->NoOfBinaryPartitions);
1182 le32_to_cpus(&mh->NoOfBDTLPartitions);
1183 le32_to_cpus(&mh->BlockMultiplierBits);
1184 le32_to_cpus(&mh->FormatFlags);
1185 le32_to_cpus(&mh->PercentUsed);
1187 printk(KERN_INFO " bootRecordID = %s\n"
1188 " NoOfBootImageBlocks = %d\n"
1189 " NoOfBinaryPartitions = %d\n"
1190 " NoOfBDTLPartitions = %d\n"
1191 " BlockMultiplerBits = %d\n"
1192 " FormatFlgs = %d\n"
1193 " OsakVersion = %d.%d.%d.%d\n"
1194 " PercentUsed = %d\n",
1195 mh->bootRecordID, mh->NoOfBootImageBlocks,
1196 mh->NoOfBinaryPartitions,
1197 mh->NoOfBDTLPartitions,
1198 mh->BlockMultiplierBits, mh->FormatFlags,
1199 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1200 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1201 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1202 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1203 mh->PercentUsed);
1205 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1207 blocks = mtd->size >> vshift;
1208 if (blocks > 32768) {
1209 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1210 goto out;
1213 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1214 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1215 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1216 goto out;
1219 /* Scan the partitions */
1220 for (i = 0; (i < 4); i++) {
1221 ip = &(mh->Partitions[i]);
1222 le32_to_cpus(&ip->virtualUnits);
1223 le32_to_cpus(&ip->firstUnit);
1224 le32_to_cpus(&ip->lastUnit);
1225 le32_to_cpus(&ip->flags);
1226 le32_to_cpus(&ip->spareUnits);
1227 le32_to_cpus(&ip->Reserved0);
1229 printk(KERN_INFO " PARTITION[%d] ->\n"
1230 " virtualUnits = %d\n"
1231 " firstUnit = %d\n"
1232 " lastUnit = %d\n"
1233 " flags = 0x%x\n"
1234 " spareUnits = %d\n",
1235 i, ip->virtualUnits, ip->firstUnit,
1236 ip->lastUnit, ip->flags,
1237 ip->spareUnits);
1239 if ((show_firmware_partition == 1) &&
1240 (i == 0) && (ip->firstUnit > 0)) {
1241 parts[0].name = " DiskOnChip IPL / Media Header partition";
1242 parts[0].offset = 0;
1243 parts[0].size = mtd->erasesize * ip->firstUnit;
1244 numparts = 1;
1247 if (ip->flags & INFTL_BINARY)
1248 parts[numparts].name = " DiskOnChip BDK partition";
1249 else
1250 parts[numparts].name = " DiskOnChip BDTL partition";
1251 parts[numparts].offset = ip->firstUnit << vshift;
1252 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1253 numparts++;
1254 if (ip->lastUnit > lastvunit)
1255 lastvunit = ip->lastUnit;
1256 if (ip->flags & INFTL_LAST)
1257 break;
1259 lastvunit++;
1260 if ((lastvunit << vshift) < end) {
1261 parts[numparts].name = " DiskOnChip Remainder partition";
1262 parts[numparts].offset = lastvunit << vshift;
1263 parts[numparts].size = end - parts[numparts].offset;
1264 numparts++;
1266 ret = numparts;
1267 out:
1268 kfree(buf);
1269 return ret;
1272 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1274 int ret, numparts;
1275 struct nand_chip *this = mtd->priv;
1276 struct doc_priv *doc = this->priv;
1277 struct mtd_partition parts[2];
1279 memset((char *)parts, 0, sizeof(parts));
1280 /* On NFTL, we have to find the media headers before we can read the
1281 BBTs, since they're stored in the media header eraseblocks. */
1282 numparts = nftl_partscan(mtd, parts);
1283 if (!numparts)
1284 return -EIO;
1285 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1286 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1287 NAND_BBT_VERSION;
1288 this->bbt_td->veroffs = 7;
1289 this->bbt_td->pages[0] = doc->mh0_page + 1;
1290 if (doc->mh1_page != -1) {
1291 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1292 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1293 NAND_BBT_VERSION;
1294 this->bbt_md->veroffs = 7;
1295 this->bbt_md->pages[0] = doc->mh1_page + 1;
1296 } else {
1297 this->bbt_md = NULL;
1300 ret = this->scan_bbt(mtd);
1301 if (ret)
1302 return ret;
1304 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1307 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1309 int ret, numparts;
1310 struct nand_chip *this = mtd->priv;
1311 struct doc_priv *doc = this->priv;
1312 struct mtd_partition parts[5];
1314 if (this->numchips > doc->chips_per_floor) {
1315 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1316 return -EIO;
1319 if (DoC_is_MillenniumPlus(doc)) {
1320 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1321 if (inftl_bbt_write)
1322 this->bbt_td->options |= NAND_BBT_WRITE;
1323 this->bbt_td->pages[0] = 2;
1324 this->bbt_md = NULL;
1325 } else {
1326 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1327 if (inftl_bbt_write)
1328 this->bbt_td->options |= NAND_BBT_WRITE;
1329 this->bbt_td->offs = 8;
1330 this->bbt_td->len = 8;
1331 this->bbt_td->veroffs = 7;
1332 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1333 this->bbt_td->reserved_block_code = 0x01;
1334 this->bbt_td->pattern = "MSYS_BBT";
1336 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1337 if (inftl_bbt_write)
1338 this->bbt_md->options |= NAND_BBT_WRITE;
1339 this->bbt_md->offs = 8;
1340 this->bbt_md->len = 8;
1341 this->bbt_md->veroffs = 7;
1342 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1343 this->bbt_md->reserved_block_code = 0x01;
1344 this->bbt_md->pattern = "TBB_SYSM";
1347 ret = this->scan_bbt(mtd);
1348 if (ret)
1349 return ret;
1351 memset((char *)parts, 0, sizeof(parts));
1352 numparts = inftl_partscan(mtd, parts);
1353 /* At least for now, require the INFTL Media Header. We could probably
1354 do without it for non-INFTL use, since all it gives us is
1355 autopartitioning, but I want to give it more thought. */
1356 if (!numparts)
1357 return -EIO;
1358 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1361 static inline int __init doc2000_init(struct mtd_info *mtd)
1363 struct nand_chip *this = mtd->priv;
1364 struct doc_priv *doc = this->priv;
1366 this->read_byte = doc2000_read_byte;
1367 this->write_buf = doc2000_writebuf;
1368 this->read_buf = doc2000_readbuf;
1369 doc->late_init = nftl_scan_bbt;
1371 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1372 doc2000_count_chips(mtd);
1373 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1374 return (4 * doc->chips_per_floor);
1377 static inline int __init doc2001_init(struct mtd_info *mtd)
1379 struct nand_chip *this = mtd->priv;
1380 struct doc_priv *doc = this->priv;
1382 this->read_byte = doc2001_read_byte;
1383 this->write_buf = doc2001_writebuf;
1384 this->read_buf = doc2001_readbuf;
1386 ReadDOC(doc->virtadr, ChipID);
1387 ReadDOC(doc->virtadr, ChipID);
1388 ReadDOC(doc->virtadr, ChipID);
1389 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1390 /* It's not a Millennium; it's one of the newer
1391 DiskOnChip 2000 units with a similar ASIC.
1392 Treat it like a Millennium, except that it
1393 can have multiple chips. */
1394 doc2000_count_chips(mtd);
1395 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1396 doc->late_init = inftl_scan_bbt;
1397 return (4 * doc->chips_per_floor);
1398 } else {
1399 /* Bog-standard Millennium */
1400 doc->chips_per_floor = 1;
1401 mtd->name = "DiskOnChip Millennium";
1402 doc->late_init = nftl_scan_bbt;
1403 return 1;
1407 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1409 struct nand_chip *this = mtd->priv;
1410 struct doc_priv *doc = this->priv;
1412 this->read_byte = doc2001plus_read_byte;
1413 this->write_buf = doc2001plus_writebuf;
1414 this->read_buf = doc2001plus_readbuf;
1415 doc->late_init = inftl_scan_bbt;
1416 this->cmd_ctrl = NULL;
1417 this->select_chip = doc2001plus_select_chip;
1418 this->cmdfunc = doc2001plus_command;
1419 this->ecc.hwctl = doc2001plus_enable_hwecc;
1421 doc->chips_per_floor = 1;
1422 mtd->name = "DiskOnChip Millennium Plus";
1424 return 1;
1427 static int __init doc_probe(unsigned long physadr)
1429 unsigned char ChipID;
1430 struct mtd_info *mtd;
1431 struct nand_chip *nand;
1432 struct doc_priv *doc;
1433 void __iomem *virtadr;
1434 unsigned char save_control;
1435 unsigned char tmp, tmpb, tmpc;
1436 int reg, len, numchips;
1437 int ret = 0;
1439 if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1440 return -EBUSY;
1441 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1442 if (!virtadr) {
1443 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1444 ret = -EIO;
1445 goto error_ioremap;
1448 /* It's not possible to cleanly detect the DiskOnChip - the
1449 * bootup procedure will put the device into reset mode, and
1450 * it's not possible to talk to it without actually writing
1451 * to the DOCControl register. So we store the current contents
1452 * of the DOCControl register's location, in case we later decide
1453 * that it's not a DiskOnChip, and want to put it back how we
1454 * found it.
1456 save_control = ReadDOC(virtadr, DOCControl);
1458 /* Reset the DiskOnChip ASIC */
1459 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1460 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1462 /* Enable the DiskOnChip ASIC */
1463 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1464 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1466 ChipID = ReadDOC(virtadr, ChipID);
1468 switch (ChipID) {
1469 case DOC_ChipID_Doc2k:
1470 reg = DoC_2k_ECCStatus;
1471 break;
1472 case DOC_ChipID_DocMil:
1473 reg = DoC_ECCConf;
1474 break;
1475 case DOC_ChipID_DocMilPlus16:
1476 case DOC_ChipID_DocMilPlus32:
1477 case 0:
1478 /* Possible Millennium Plus, need to do more checks */
1479 /* Possibly release from power down mode */
1480 for (tmp = 0; (tmp < 4); tmp++)
1481 ReadDOC(virtadr, Mplus_Power);
1483 /* Reset the Millennium Plus ASIC */
1484 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1485 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1486 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1488 mdelay(1);
1489 /* Enable the Millennium Plus ASIC */
1490 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1491 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1492 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1493 mdelay(1);
1495 ChipID = ReadDOC(virtadr, ChipID);
1497 switch (ChipID) {
1498 case DOC_ChipID_DocMilPlus16:
1499 reg = DoC_Mplus_Toggle;
1500 break;
1501 case DOC_ChipID_DocMilPlus32:
1502 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1503 default:
1504 ret = -ENODEV;
1505 goto notfound;
1507 break;
1509 default:
1510 ret = -ENODEV;
1511 goto notfound;
1513 /* Check the TOGGLE bit in the ECC register */
1514 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1515 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1516 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1517 if ((tmp == tmpb) || (tmp != tmpc)) {
1518 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1519 ret = -ENODEV;
1520 goto notfound;
1523 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1524 unsigned char oldval;
1525 unsigned char newval;
1526 nand = mtd->priv;
1527 doc = nand->priv;
1528 /* Use the alias resolution register to determine if this is
1529 in fact the same DOC aliased to a new address. If writes
1530 to one chip's alias resolution register change the value on
1531 the other chip, they're the same chip. */
1532 if (ChipID == DOC_ChipID_DocMilPlus16) {
1533 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1534 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1535 } else {
1536 oldval = ReadDOC(doc->virtadr, AliasResolution);
1537 newval = ReadDOC(virtadr, AliasResolution);
1539 if (oldval != newval)
1540 continue;
1541 if (ChipID == DOC_ChipID_DocMilPlus16) {
1542 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1543 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1544 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1545 } else {
1546 WriteDOC(~newval, virtadr, AliasResolution);
1547 oldval = ReadDOC(doc->virtadr, AliasResolution);
1548 WriteDOC(newval, virtadr, AliasResolution); // restore it
1550 newval = ~newval;
1551 if (oldval == newval) {
1552 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1553 goto notfound;
1557 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1559 len = sizeof(struct mtd_info) +
1560 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1561 mtd = kzalloc(len, GFP_KERNEL);
1562 if (!mtd) {
1563 ret = -ENOMEM;
1564 goto fail;
1567 nand = (struct nand_chip *) (mtd + 1);
1568 doc = (struct doc_priv *) (nand + 1);
1569 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1570 nand->bbt_md = nand->bbt_td + 1;
1572 mtd->priv = nand;
1573 mtd->owner = THIS_MODULE;
1575 nand->priv = doc;
1576 nand->select_chip = doc200x_select_chip;
1577 nand->cmd_ctrl = doc200x_hwcontrol;
1578 nand->dev_ready = doc200x_dev_ready;
1579 nand->waitfunc = doc200x_wait;
1580 nand->block_bad = doc200x_block_bad;
1581 nand->ecc.hwctl = doc200x_enable_hwecc;
1582 nand->ecc.calculate = doc200x_calculate_ecc;
1583 nand->ecc.correct = doc200x_correct_data;
1585 nand->ecc.layout = &doc200x_oobinfo;
1586 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1587 nand->ecc.size = 512;
1588 nand->ecc.bytes = 6;
1589 nand->ecc.strength = 2;
1590 nand->bbt_options = NAND_BBT_USE_FLASH;
1591 /* Skip the automatic BBT scan so we can run it manually */
1592 nand->options |= NAND_SKIP_BBTSCAN;
1594 doc->physadr = physadr;
1595 doc->virtadr = virtadr;
1596 doc->ChipID = ChipID;
1597 doc->curfloor = -1;
1598 doc->curchip = -1;
1599 doc->mh0_page = -1;
1600 doc->mh1_page = -1;
1601 doc->nextdoc = doclist;
1603 if (ChipID == DOC_ChipID_Doc2k)
1604 numchips = doc2000_init(mtd);
1605 else if (ChipID == DOC_ChipID_DocMilPlus16)
1606 numchips = doc2001plus_init(mtd);
1607 else
1608 numchips = doc2001_init(mtd);
1610 if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
1611 /* DBB note: i believe nand_release is necessary here, as
1612 buffers may have been allocated in nand_base. Check with
1613 Thomas. FIX ME! */
1614 /* nand_release will call mtd_device_unregister, but we
1615 haven't yet added it. This is handled without incident by
1616 mtd_device_unregister, as far as I can tell. */
1617 nand_release(mtd);
1618 kfree(mtd);
1619 goto fail;
1622 /* Success! */
1623 doclist = mtd;
1624 return 0;
1626 notfound:
1627 /* Put back the contents of the DOCControl register, in case it's not
1628 actually a DiskOnChip. */
1629 WriteDOC(save_control, virtadr, DOCControl);
1630 fail:
1631 iounmap(virtadr);
1633 error_ioremap:
1634 release_mem_region(physadr, DOC_IOREMAP_LEN);
1636 return ret;
1639 static void release_nanddoc(void)
1641 struct mtd_info *mtd, *nextmtd;
1642 struct nand_chip *nand;
1643 struct doc_priv *doc;
1645 for (mtd = doclist; mtd; mtd = nextmtd) {
1646 nand = mtd->priv;
1647 doc = nand->priv;
1649 nextmtd = doc->nextdoc;
1650 nand_release(mtd);
1651 iounmap(doc->virtadr);
1652 release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1653 kfree(mtd);
1657 static int __init init_nanddoc(void)
1659 int i, ret = 0;
1661 /* We could create the decoder on demand, if memory is a concern.
1662 * This way we have it handy, if an error happens
1664 * Symbolsize is 10 (bits)
1665 * Primitve polynomial is x^10+x^3+1
1666 * first consecutive root is 510
1667 * primitve element to generate roots = 1
1668 * generator polinomial degree = 4
1670 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1671 if (!rs_decoder) {
1672 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1673 return -ENOMEM;
1676 if (doc_config_location) {
1677 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1678 ret = doc_probe(doc_config_location);
1679 if (ret < 0)
1680 goto outerr;
1681 } else {
1682 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1683 doc_probe(doc_locations[i]);
1686 /* No banner message any more. Print a message if no DiskOnChip
1687 found, so the user knows we at least tried. */
1688 if (!doclist) {
1689 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1690 ret = -ENODEV;
1691 goto outerr;
1693 return 0;
1694 outerr:
1695 free_rs(rs_decoder);
1696 return ret;
1699 static void __exit cleanup_nanddoc(void)
1701 /* Cleanup the nand/DoC resources */
1702 release_nanddoc();
1704 /* Free the reed solomon resources */
1705 if (rs_decoder) {
1706 free_rs(rs_decoder);
1710 module_init(init_nanddoc);
1711 module_exit(cleanup_nanddoc);
1713 MODULE_LICENSE("GPL");
1714 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1715 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");